
Geometric Measure Theory

Gláucio Terra

Departamento de Matemática
IME - USP

August 12, 2019

Gláucio Terra (IME - USP) GMT August 12, 2019 1 / 12



Vitali’s Covering Theorem

5–times covering lemma

Definition (2.12)
Let X be a metric space, F a collection of balls in X and A ⊂ X . We
say that F is a fine cover A, or that F covers A finely, if F is a cover of A
such that, ∀x ∈ A, inf{diam B | x ∈ B ∈ F} = 0.

Corollary (2.13)

Let X be a metric space, A ⊂ X, F ⊂ 2X a family of nondegenerate
closed balls of X which covers A finely. Then there exists a disjoint
subfamily G ⊂ F such that, for all F ⊂ F finite, A \ ∪B∈F B ⊂ ∪B∈G\F 5B.
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Vitali’s Covering Theorem

5–times covering lemma

Proof.
Since the cover F is fine, we may assume that
sup{diam B | B ∈ F} ≤ 1; otherwise, discard the balls in F with
diameter > 1, so that the remaining balls still cover A finely.
Take G ⊂ F as in the previous remark. Let x ∈ A \ ∪B∈F B. Since F
is finite, ∪B∈F B is closed, hence there exists r > 0 such that
U(x , r) ∩ ∪B∈F B = ∅.
Since F covers A finely, there exists B ∈ F such that x ∈ B and
diam B < r , so that B ⊂ U(x , r), thus B ∩ ∪B∈F B = ∅. Take B′ ∈ G

such that B′ ∩ B 6= ∅ (hence B′ /∈ F ) and diam B < 2 diam B′, so
that x ∈ B ⊂ 5B′. Then A \ ∪B∈F B ⊂ ∪B∈G\F 5B, as asserted.
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Vitali’s Covering Theorem

Vitali’s covering theorem

Corollary (Vitali’s covering theorem for the Lebesgue measure;2.14)

Let A ⊂ Rn and F a collection of nondegenerate closed balls in Rn

which covers A finely. Then, for every ε > 0, there exists a disjoint
subfamily G ⊂ F such that Ln(∪G) ≤ Ln(A) + ε and Ln(A \ ∪G) = 0.

Corollary (filling open sets with balls with respect to Lebesgue
measure; 2.15)

Let U ⊂ Rn be an open set and F a family of nondegenerate closed
balls contained in U which covers U finely (for instance, if F is the
family of all nondegenerate closed balls contained in U, or the family of
all such balls with diameters bounded by a fixed δ > 0). Then there
exists a disjoint subfamily G ⊂ F such that Ln(U \ ∪G) = 0.
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Steiner Symmetrization

Notation

Notation for sections
For E ⊂ X × Y and (x0, y0) ∈ X × Y ,

Ex0 := {y ∈ Y | (x0, y) ∈ E} (the x0-section of E);
Ey0 := {x ∈ X | (x , y0) ∈ E} (the y0-section of E).
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Steiner Symmetrization

Steiner Symmetrization

Definition (2.16)

Let (e1, . . . ,en) be the standard basis of Rn and identify
Rn−1 ≡ 〈e1, . . . ,en−1〉, R ≡ 〈en〉, so that Rn ≡ Rn−1 × R. We define the
Steiner symmetrization with respect to Rn−1 to be the map
Sen : 2Rn → 2Rn

defined by (see figure 1):

Sen(A) :=
⋃

{x ′∈Rn−1|Ax′ 6=∅}

{(x ′, xn) | |xn| ≤
1
2
L1(Ax ′)}.

Given a ∈ Sn−1 ⊂ Rn, we define similarly the Steiner symmetrization
Sa with respect to the (n − 1)-dimensional subspace 〈a〉⊥: take any
orthogonal map φ ∈ O(n) such that φ(a) = en (hence φ(〈a〉⊥) = Rn−1)
and put Sa := φ−1 ◦ Sen ◦ φ.
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Steiner Symmetrization

Steiner Symmetrization

Figure: Steiner Symmetrization
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Steiner Symmetrization

Steiner Symmetrization

Proposition (properties of Steiner symmetrization; 2.17)

Let a ∈ Sn−1.
i) ∀A ⊂ Rn, diam Sa(A) ≤ diam A.
ii) If A ⊂ Rn is Ln-measurable, then so is Sa(A) and

Ln(A) = Ln(Sa(A)
)
.
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Steiner Symmetrization

Steiner Symmetrization

Lemma (2.18)

Let f : Rn → [0,∞] be Ln-measurable. Then
hyp f := {(x , t) ∈ Rn × [0,∞) | t ≤ f (x)} ⊂ Rn+1 is Ln+1-measurable.
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The isodiametric inequality; Ln = Hn

The isodiametric inequality

Theorem (isodiametric inequality; 2.19)

The Lebesgue measure of any subset of Rn is at most the measure of
an euclidean ball with the same diameter. That is, for all A ⊂ Rn,

Ln(A) ≤ α(n)
(diam A

2

)n
.

Exercise (2.20)

Show an example of a set A ⊂ Rn which is not contained in any ball
with diameter diam A.
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The isodiametric inequality; Ln = Hn

Ln = Hn

Theorem (2.21)

For all δ ∈ (0,∞] and n ∈ N, Hn = Hn
δ = Ln in Rn.

Corollary (2.22)

H-dim Rn = n.

Proof.
Apply the stability with respect to countable unions of the Hausdorff
dimension to Rn = ∪k∈NCk , where each Ck is a nondegenerate cube
with finite Lebesgue measure, i.e. 0 < Hn(Ck ) <∞, so that ∀k ∈ N,
H-dim Ck = n.
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The isodiametric inequality; Ln = Hn

Ln = Hn

Exercise (2.23)

If E is a k-dimensional subspace of a normed space X, then
H-dim E = k.
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