Geometric Measure Theory

Gláucio Terra

Departamento de Matemática IME - USP

August 12, 2019

Gláucio Terra (IME - USP)

< ロ > < 同 > < 回 > < 回 >

August 12, 2019

Definition (2.12)

Let *X* be a metric space, \mathcal{F} a collection of balls in *X* and $A \subset X$. We say that \mathcal{F} is a *fine cover A*, or that \mathcal{F} *covers A finely*, if \mathcal{F} is a cover of *A* such that, $\forall x \in A$, inf{diam $B \mid x \in B \in \mathcal{F}$ } = 0.

Corollary (2.13)

Let X be a metric space, $A \subset X$, $\mathcal{F} \subset 2^X$ a family of nondegenerate closed balls of X which covers A finely. Then there exists a disjoint subfamily $\mathcal{G} \subset \mathcal{F}$ such that, for all $F \subset \mathcal{F}$ finite, $A \setminus \bigcup_{B \in F} B \subset \bigcup_{B \in \mathcal{G} \setminus F} 5B$.

Definition (2.12)

Let *X* be a metric space, \mathcal{F} a collection of balls in *X* and $A \subset X$. We say that \mathcal{F} is a *fine cover A*, or that \mathcal{F} *covers A finely*, if \mathcal{F} is a cover of *A* such that, $\forall x \in A$, inf{diam $B \mid x \in B \in \mathcal{F}$ } = 0.

Corollary (2.13)

Let X be a metric space, $A \subset X$, $\mathcal{F} \subset 2^X$ a family of nondegenerate closed balls of X which covers A finely. Then there exists a disjoint subfamily $\mathcal{G} \subset \mathcal{F}$ such that, for all $F \subset \mathcal{F}$ finite, $A \setminus \bigcup_{B \in F} B \subset \bigcup_{B \in \mathcal{G} \setminus F} 5B$.

Proof.

- Since the cover 𝔅 is fine, we may assume that sup{diam B | B ∈ 𝔅} ≤ 1; otherwise, discard the balls in 𝔅 with diameter > 1, so that the remaining balls still cover A finely.
- Take *G* ⊂ *F* as in the previous remark. Let *x* ∈ *A* \ ∪_{*B*∈*F*}*B*. Since *F* is finite, ∪_{*B*∈*F*}*B* is closed, hence there exists *r* > 0 such that U(*x*, *r*) ∩ ∪_{*B*∈*F*}*B* = Ø.
- Since 𝔅 covers A finely, there exists B ∈ 𝔅 such that x ∈ B and diam B < r, so that B ⊂ 𝔅(x, r), thus B ∩ ∪_{B∈F}B = Ø. Take B' ∈ 𝔅 such that B' ∩ B ≠ Ø (hence B' ∉ F) and diam B < 2 diam B', so that x ∈ B ⊂ 5B'. Then A \ ∪_{B∈F}B ⊂ ∪_{B∈𝔅\F}5B, as asserted.

Proof.

- Since the cover 𝔅 is fine, we may assume that sup{diam B | B ∈ 𝔅} ≤ 1; otherwise, discard the balls in 𝔅 with diameter > 1, so that the remaining balls still cover A finely.
- Take *G* ⊂ *F* as in the previous remark. Let *x* ∈ *A* \ ∪_{*B*∈*F*}*B*. Since *F* is finite, ∪_{*B*∈*F*}*B* is closed, hence there exists *r* > 0 such that U(*x*, *r*) ∩ ∪_{*B*∈*F*}*B* = Ø.
- Since 𝔅 covers A finely, there exists B ∈ 𝔅 such that x ∈ B and diam B < r, so that B ⊂ 𝔅(x, r), thus B ∩ ∪_{B∈F}B = Ø. Take B' ∈ 𝔅 such that B' ∩ B ≠ Ø (hence B' ∉ F) and diam B < 2 diam B', so that x ∈ B ⊂ 5B'. Then A \ ∪_{B∈F}B ⊂ ∪_{B∈𝔅\F}5B, as asserted.

Proof.

- Since the cover 𝔅 is fine, we may assume that sup{diam B | B ∈ 𝔅} ≤ 1; otherwise, discard the balls in 𝔅 with diameter > 1, so that the remaining balls still cover A finely.
- Take G ⊂ F as in the previous remark. Let x ∈ A \ ∪_{B∈F}B. Since F is finite, ∪_{B∈F}B is closed, hence there exists r > 0 such that U(x, r) ∩ ∪_{B∈F}B = Ø.
- Since 𝔅 covers A finely, there exists B ∈ 𝔅 such that x ∈ B and diam B < r, so that B ⊂ 𝔅(x, r), thus B ∩ ∪_{B∈F}B = Ø. Take B' ∈ 𝔅 such that B' ∩ B ≠ Ø (hence B' ∉ F) and diam B < 2 diam B', so that x ∈ B ⊂ 5B'. Then A \ ∪_{B∈F}B ⊂ ∪_{B∈𝔅\F}5B, as asserted.

Proof.

- Since the cover 𝔅 is fine, we may assume that sup{diam B | B ∈ 𝔅} ≤ 1; otherwise, discard the balls in 𝔅 with diameter > 1, so that the remaining balls still cover A finely.
- Take G ⊂ F as in the previous remark. Let x ∈ A \ ∪_{B∈F}B. Since F is finite, ∪_{B∈F}B is closed, hence there exists r > 0 such that U(x, r) ∩ ∪_{B∈F}B = Ø.
- Since 𝔅 covers A finely, there exists B ∈ 𝔅 such that x ∈ B and diam B < r, so that B ⊂ 𝔅(x, r), thus B ∩ ∪_{B∈F}B = Ø. Take B' ∈ 𝔅 such that B' ∩ B ≠ Ø (hence B' ∉ F) and diam B < 2 diam B', so that x ∈ B ⊂ 5B'. Then A \ ∪_{B∈F}B ⊂ ∪_{B∈𝔅\F}5B, as asserted.

Vitali's covering theorem

Corollary (Vitali's covering theorem for the Lebesgue measure;2.14) Let $A \subset \mathbb{R}^n$ and \mathfrak{F} a collection of nondegenerate closed balls in \mathbb{R}^n which covers A finely. Then, for every $\epsilon > 0$, there exists a disjoint subfamily $\mathfrak{G} \subset \mathfrak{F}$ such that $\mathcal{L}^n(\cup \mathfrak{G}) \leq \mathcal{L}^n(A) + \epsilon$ and $\mathcal{L}^n(A \setminus \cup \mathfrak{G}) = 0$.

Corollary (filling open sets with balls with respect to Lebesgue measure; 2.15)

Let $U \subset \mathbb{R}^n$ be an open set and \mathcal{F} a family of nondegenerate closed balls contained in U which covers U finely (for instance, if \mathcal{F} is the family of all nondegenerate closed balls contained in U, or the family of all such balls with diameters bounded by a fixed $\delta > 0$). Then there exists a disjoint subfamily $\mathcal{G} \subset \mathcal{F}$ such that $\mathcal{L}^n(U \setminus \cup \mathcal{G}) = 0$.

Vitali's covering theorem

Corollary (Vitali's covering theorem for the Lebesgue measure;2.14) Let $A \subset \mathbb{R}^n$ and \mathcal{F} a collection of nondegenerate closed balls in \mathbb{R}^n which covers A finely. Then, for every $\epsilon > 0$, there exists a disjoint subfamily $\mathcal{G} \subset \mathcal{F}$ such that $\mathcal{L}^n(\cup \mathcal{G}) \leq \mathcal{L}^n(A) + \epsilon$ and $\mathcal{L}^n(A \setminus \cup \mathcal{G}) = 0$.

Corollary (filling open sets with balls with respect to Lebesgue measure; 2.15)

Let $U \subset \mathbb{R}^n$ be an open set and \mathcal{F} a family of nondegenerate closed balls contained in U which covers U finely (for instance, if \mathcal{F} is the family of all nondegenerate closed balls contained in U, or the family of all such balls with diameters bounded by a fixed $\delta > 0$). Then there exists a disjoint subfamily $\mathcal{G} \subset \mathcal{F}$ such that $\mathcal{L}^n(U \setminus \cup \mathcal{G}) = 0$.

3

イロト 不得 トイヨト イヨト

Notation

Notation for sections

For $E \subset X \times Y$ and $(x_0, y_0) \in X \times Y$,

- $E_{x_0} := \{y \in Y \mid (x_0, y) \in E\}$ (the x_0 -section of E);
- $E_{y_0} := \{x \in X \mid (x, y_0) \in E\}$ (the y_0 -section of E).

イロト イヨト イヨト イヨト

- 3

5/12

August 12, 2019

Definition (2.16)

Let (e_1, \ldots, e_n) be the standard basis of \mathbb{R}^n and identify $\mathbb{R}^{n-1} \equiv \langle e_1, \ldots, e_{n-1} \rangle$, $\mathbb{R} \equiv \langle e_n \rangle$, so that $\mathbb{R}^n \equiv \mathbb{R}^{n-1} \times \mathbb{R}$. We define the *Steiner symmetrization* with respect to \mathbb{R}^{n-1} to be the map $S_{e_n} : 2^{\mathbb{R}^n} \to 2^{\mathbb{R}^n}$ defined by (see figure 1):

$$\mathsf{S}_{\mathsf{e}_{\mathsf{n}}}(A) := \bigcup_{\{x' \in \mathbb{R}^{n-1} | A_{x'} \neq \emptyset\}} \{ (x', x_{\mathsf{n}}) \mid |x_{\mathsf{n}}| \leq \frac{1}{2} \mathcal{L}^{1}(A_{x'}) \}.$$

Given $a \in \mathbb{S}^{n-1} \subset \mathbb{R}^n$, we define similarly the Steiner symmetrization S_a with respect to the (n-1)-dimensional subspace $\langle a \rangle^{\perp}$: take any orthogonal map $\phi \in O(n)$ such that $\phi(a) = e_n$ (hence $\phi(\langle a \rangle^{\perp}) = \mathbb{R}^{n-1}$ and put $S_a := \phi^{-1} \circ S_{e_n} \circ \phi$.

Definition (2.16)

Let (e_1, \ldots, e_n) be the standard basis of \mathbb{R}^n and identify $\mathbb{R}^{n-1} \equiv \langle e_1, \ldots, e_{n-1} \rangle$, $\mathbb{R} \equiv \langle e_n \rangle$, so that $\mathbb{R}^n \equiv \mathbb{R}^{n-1} \times \mathbb{R}$. We define the *Steiner symmetrization* with respect to \mathbb{R}^{n-1} to be the map $S_{e_n} : 2^{\mathbb{R}^n} \to 2^{\mathbb{R}^n}$ defined by (see figure 1):

$$\mathsf{S}_{\mathsf{e}_{\mathsf{n}}}(A) := \bigcup_{\{x' \in \mathbb{R}^{n-1} | A_{x'} \neq \emptyset\}} \{(x', x_n) \mid |x_n| \leq \frac{1}{2} \mathcal{L}^1(A_{x'})\}.$$

Given $a \in \mathbb{S}^{n-1} \subset \mathbb{R}^n$, we define similarly the Steiner symmetrization S_a with respect to the (n-1)-dimensional subspace $\langle a \rangle^{\perp}$: take any orthogonal map $\phi \in O(n)$ such that $\phi(a) = e_n$ (hence $\phi(\langle a \rangle^{\perp}) = \mathbb{R}^{n-1}$) and put $S_a := \phi^{-1} \circ S_{e_n} \circ \phi$.

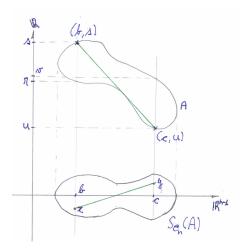


Figure: Steiner Symmetrization

Gláucio Terra (IME - USP)

2

イロト イヨト イヨト イヨト

Proposition (properties of Steiner symmetrization; 2.17)

Let $a \in \mathbb{S}^{n-1}$. i) $\forall A \subset \mathbb{R}^n$, diam $S_a(A) \leq \text{diam } A$. ii) If $A \subset \mathbb{R}^n$ is \mathcal{L}^n -measurable, then so is $S_a(A)$ and $\mathcal{L}^n(A) = \mathcal{L}^n(S_a(A))$.

August 12, 2019

Lemma (2.18)

Let $f : \mathbb{R}^n \to [0, \infty]$ be \mathcal{L}^n -measurable. Then hyp $f := \{(x, t) \in \mathbb{R}^n \times [0, \infty) \mid t \leq f(x)\} \subset \mathbb{R}^{n+1}$ is \mathcal{L}^{n+1} -measurable.

The isodiametric inequality

Theorem (isodiametric inequality; 2.19)

The Lebesgue measure of any subset of \mathbb{R}^n is at most the measure of an euclidean ball with the same diameter. That is, for all $A \subset \mathbb{R}^n$,

$$\mathcal{L}^{n}(A) \leq \alpha(n) \Big(\frac{\operatorname{diam} A}{2} \Big)^{n}.$$

Exercise (2.20)

Show an example of a set $A \subset \mathbb{R}^n$ which is not contained in any ball with diameter diam A.

August 12, 2019

The isodiametric inequality

Theorem (isodiametric inequality; 2.19)

The Lebesgue measure of any subset of \mathbb{R}^n is at most the measure of an euclidean ball with the same diameter. That is, for all $A \subset \mathbb{R}^n$,

$$\mathcal{L}^{n}(A) \leq \alpha(n) \Big(\frac{\operatorname{diam} A}{2} \Big)^{n}.$$

Exercise (2.20)

Show an example of a set $A \subset \mathbb{R}^n$ which is not contained in any ball with diameter diam A.

A B >
A B >

August 12, 2019

10/12

A D b 4 A b

 $\mathcal{L}^n = \mathcal{H}^n$

Theorem (2.21)

For all $\delta \in (0, \infty]$ and $n \in \mathbb{N}$, $\mathcal{H}^n = \mathcal{H}^n_{\delta} = \mathcal{L}^n$ in \mathbb{R}^n .

Corollary (2.22)

 \mathcal{H} -dim $\mathbb{R}^n = n$.

Proof.

Apply the stability with respect to countable unions of the Hausdorff dimension to $\mathbb{R}^n = \bigcup_{k \in \mathbb{N}} C_k$, where each C_k is a nondegenerate cube with finite Lebesgue measure, i.e. $0 < \mathcal{H}^n(C_k) < \infty$, so that $\forall k \in \mathbb{N}$, \mathcal{H} -dim $C_k = n$.

 $\mathcal{L}^n = \mathcal{H}^n$

Theorem (2.21)

For all $\delta \in (0,\infty]$ and $n \in \mathbb{N}$, $\mathfrak{H}^n = \mathfrak{H}^n_{\delta} = \mathcal{L}^n$ in \mathbb{R}^n .

Corollary (2.22)

 \mathfrak{H} -dim $\mathbb{R}^n = n$.

Proof.

Apply the stability with respect to countable unions of the Hausdorff dimension to $\mathbb{R}^n = \bigcup_{k \in \mathbb{N}} C_k$, where each C_k is a nondegenerate cube with finite Lebesgue measure, i.e. $0 < \mathcal{H}^n(C_k) < \infty$, so that $\forall k \in \mathbb{N}$, \mathcal{H} -dim $C_k = n$.

 $\mathcal{L}^n = \mathcal{H}^n$

Exercise (2.23)

If *E* is a *k*-dimensional subspace of a normed space *X*, then \mathcal{H} -dim E = k.

August 12, 2019

-