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Hausdorff Measures

The Carathéodory Construction

@ Let X be a metric space, F c 2Xand ¢ : F — [0, .
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The Carathéodory Construction

@ Let X be a metric space, F c 2Xand ¢ : F — [0, .

The idea is to “measure” the elements of F by means of the method or
gauge ¢ and use that to define a Borel measure on X, abstracting the
geometric idea underlying the construction of the Lebesgue measure.
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Hausdorff Measures

The Carathéodory Construction

@ Let X be a metric space, F c 2Xand ¢ : F — [0, .

The idea is to “measure” the elements of F by means of the method or
gauge ¢ and use that to define a Borel measure on X, abstracting the
geometric idea underlying the construction of the Lebesgue measure.

@ For 0 < § < oo we define VA C X,
Ys(A) = inf{d ¢(S) |G C Fn{S|diam S < 4},

Se§
g countable , A C USG}.
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Hausdorff Measures

The Carathéodory Construction

@ Let X be a metric space, F c 2Xand ¢ : F — [0, .

The idea is to “measure” the elements of F by means of the method or
gauge ¢ and use that to define a Borel measure on X, abstracting the
geometric idea underlying the construction of the Lebesgue measure.

@ For 0 < 6 < oo we define VA C X,
Ys(A) = inf{d ¢(S) |G C Fn{S|diam S < 4},
Se§
g countable , A C USG}.

© Define, for each A C X, (A) := sup{1s(A) | 0 < § < o} € [0, q].
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Hausdorff Measures

The Carathéodory Construction

Definition (2.1)

With the notation above, we call ¢ the result of Carathéodory’s
construction from the gauge ¢ on ¥, and we call ¢s5 the size ¢
approximating measure.
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Hausdorff Measures

The Carathéodory Construction

Definition (2.1)

With the notation above, we call ¢ the result of Carathéodory’s
construction from the gauge ¢ on ¥, and we call ¢s5 the size ¢
approximating measure.

Proposition (2.2)

Let X be a metric space and 1 be the result of Carathéodory’s
construction from the gauge ¢ on ¥ ¢ 2X. Then ) is a Borel measure.
Besides, if ¥ C $x, 1 is Borel regular.
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Hausdorff Measures

The Carathéodory Construction

Definition (Hausdorff measures; 2.3)

Let X be a metric space and m a nonnegative real number. Take
F =2%Xand ¢ : 2X — [0, <] given by

((8) = a(m) 20 T

xm/2

where a(m) = Fm/21) (i.e. the euclidean volume of B™ if m integer).

The result of Carathéodory’s construction from the gauge ¢ on 2X is
called Hausdorff m-dimensional measure on X, denoted by H. We
use the notation (" for the size ¢ approximation of H".
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Hausdorff Measures

Hausdorff measures

Proposition (immediate properties of Hausdorff measure; 2.4)

Let X be a metric space and m a nonnegative real number. The
following properties hold for H™:

v
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Hausdorff measures

Proposition (immediate properties of Hausdorff measure; 2.4)

Let X be a metric space and m a nonnegative real number. The
following properties hold for H™:

@ The Hausdorff measure is compatible with the operation of taking
traces. That is, if X is a metric space and A C X, the trace of H™
on A coincides with the m-dimensional Hausdorff measure on A
(as a metric subspace of X).

v
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Hausdorff measures

Proposition (immediate properties of Hausdorff measure; 2.4)

Let X be a metric space and m a nonnegative real number. The
following properties hold for H™:

@ The Hausdorff measure is compatible with the operation of taking
traces. That is, if X is a metric space and A C X, the trace of H™
on A coincides with the m-dimensional Hausdorff measure on A
(as a metric subspace of X).

@ The Hausdorff measure is invariant by isometries. That is, if Y is
another metric space and f : X — Y is an isometry onto Y, then
the pushforward f,H™ coincides with the Hausdorff
m-dimensional measure on'Y.

V.
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Hausdorff Measures

Hausdorff measures

Proposition (immediate properties of Hausdorff measure; 2.4)

Let X be a metric space and m a nonnegative real number. The
following properties hold for H™:

@ The Hausdorff measure is compatible with the operation of taking
traces. That is, if X is a metric space and A C X, the trace of H™
on A coincides with the m-dimensional Hausdorff measure on A
(as a metric subspace of X).

@ The Hausdorff measure is invariant by isometries. That is, if Y is
another metric space and f : X — Y is an isometry onto Y, then
the pushforward f,H™ coincides with the Hausdorff
m-dimensional measure on'Y.

© IfY is another metric space and f : X — Y has Lipschitz constant
Lip f < oo, then VA C X, H™(f(A)) < (Lip f)"H™(A).

y
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Hausdorff Measures

Hausdorff measures

© 7™ also coincides with the result of Carathéodory’s construction
from ¢ (same gauge) on ¥ = {closed subsets of X} or
3" = {open subsets of X}. If X is a normed vector space, we may
also take 3" = {closed convex subsets of X}.
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Hausdorff measures

© 7™ also coincides with the result of Carathéodory’s construction
from ¢ (same gauge) on ¥ = {closed subsets of X} or
3" = {open subsets of X}. If X is a normed vector space, we may
also take 3" = {closed convex subsets of X}.

@ 3™ is a Borel regular measure on X.
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Hausdorff Measures

Hausdorff measures

© 7™ also coincides with the result of Carathéodory’s construction
from ¢ (same gauge) on ¥ = {closed subsets of X} or
3" = {open subsets of X}. If X is a normed vector space, we may
also take 3" = {closed convex subsets of X}.

@ 3™ is a Borel regular measure on X.
O P coincides with the counting measure on X.
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Hausdorff measures

Corollary (2.5)

If X, Y are metric spaces, m a nonnegative real numberandf: X — Y
is an isometry into Y, then VA C X, H™(f(A)) = H™(A).
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Hausdorff Measures

Characterization of H™—null sets

Exercise (H™—null sets; 2.6)

Let X be a metric space, AC X and0 < m < co. The following
statements are equivalent:

@ 7™(A) = 0.
@ 39 € (0, <] such that H"(A) = 0.
© Ve > 0, 3(En)nen cover of A such thaty” . (diam Ep)™ < e.
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Hausdorff Measures

Hausdorff dimension

Proposition (2.7)

Let X be a metric space, AC X and0 < s < t < co. IfH5(A) < 0
then 3(!(A) = 0.
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Hausdorff Measures

Hausdorff dimension

Proposition (2.7)
Let X be a metric space, AC X and0 < s < t < co. IfH5(A) < 0
then 3(!(A) = 0.

As a corollary, if 0 < s < t < oo and H!(A) > 0, then H$(A) = oco. It
then follows that inf{m € [0, c0) | K™(A) = 0} = sup{m € [0, c0) |
HM(A) = 0o} € [0, 0.
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Hausdorff Measures

Hausdorff dimension

Proposition (2.7)

Let X be a metric space, AC X and0 < s < t < co. IfH5(A) < 0
then 3(!(A) = 0.

As a corollary, if 0 < s < t < oo and H!(A) > 0, then H$(A) = oco. It
then follows that inf{m € [0, c0) | K™(A) = 0} = sup{m € [0, c0) |
HM(A) = 0o} € [0, 0.

Definition (Hausdorff dimension; 2.8)

Let X be a metric space and A C X. The extended real number
inf{m € [0, 00) | H™(A) = 0} = sup{m € [0,0) | H™(A) = oo} € [0, 7]
is called Hausdorff dimension of A, denoted by H-dim A.

v
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Hausdorff Measures

Hausdorff dimension

Exercise (properties of Hausdorff dimension; 2.9)
Let X be a metric space.
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Hausdorff Measures

Hausdorff dimension

Exercise (properties of Hausdorff dimension; 2.9)
Let X be a metric space.

a) If Y C X is a metric subspace of X and A C Y, the Hausdorff
dimension of A as a subset of the metric space Y is the same for A
as a subset of the metric space X.
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Hausdorff Measures

Hausdorff dimension

Exercise (properties of Hausdorff dimension; 2.9)
Let X be a metric space.

a) If Y C X is a metric subspace of X and A C Y, the Hausdorff
dimension of A as a subset of the metric space Y is the same for A
as a subset of the metric space X.

b) The Hausdorff dimension is invariant by isometries, i.e. if Y is a
metric space, f : X — Y an isometry into Y and A C X, then
H-dim A = H-dim f(A).
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Hausdorff Measures

Hausdorff dimension

Exercise (properties of Hausdorff dimension; 2.9)
Let X be a metric space.

a) If Y C X is a metric subspace of X and A C Y, the Hausdorff
dimension of A as a subset of the metric space Y is the same for A
as a subset of the metric space X.

b) The Hausdorff dimension is invariant by isometries, i.e. if Y is a
metric space, f : X — Y an isometry into Y and A C X, then
H-dim A = FH-dim f(A).

c) Let X, Y be metric spaces and f : X — Y be a Lipschitz map. For
all A c X, H-dim f(A) < H-dim A. In particular, if f is bi-Lipschitz
onto its image (i.e. f is Lipschitz and has a Lipschitz inverse
f~1:Imf— X), thenVA C X, H-dim f(A) = H-dim A.
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Hausdorff Measures

Hausdorff dimension

d) (monotonicity) If A c B C X, H-dim A < H-dim B.
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Hausdorff Measures

Hausdorff dimension

d) (monotonicity) If A c B C X, H-dim A < H-dim B.

e) (stability with respect to countable unions) If A = UpenAn C X, then
H-dim A = sup{H-dim A, | n € N}.
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Hausdorff Measures

Préximo objetivo:
H"=L"
in R".
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Vitali’s Covering Theorem

Notation for Balls

For a metric space (X, d):
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Vitali’s Covering Theorem

Notation for Balls

For a metric space (X, d):
® B(x,r):={yeX|[d(y,x)<r};
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Vitali’s Covering Theorem

Notation for Balls

For a metric space (X, d):
® B(x,r):={yeX|[d(y,x)<r};
e Ulx,r):={yeX|dy,x)<r}
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Vitali’s Covering Theorem

Notation for Balls

For a metric space (X, d):
@ B(x,r):={yeX|dy,x)<r};
@ Ulx,r)={yeX|dy,x)<r};
o if Bisaclosedballand t > 1,

2

tB := U{B' C X closed ball | B'n B # 0,diam B’ < diam B}.
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5—times covering lemma

Theorem (5-times covering lemma; 2.10)

Let X be a metric space and ¥ ¢ 2% a family of nondegenerate closed
balls in X such that sup{diam B | B € ¥} < oo. Then there exists a
disjoint subfamily G C F such that UgcsB C Upeg5B.
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Vitali’s Covering Theorem

5—times covering lemma

Proof:

Let R := sup{diam B | B € 3’} < 0. Forany B € 4,

diam B € (0,R] = U/eN(QN o sA-]. Thus, putting

Vj € N,J;:={Be T |diam B e (£, ;F]}, we have Ujen Fj = 7.
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Vitali’s Covering Theorem

5—times covering lemma

Proof:

Let R := sup{diam B | B € 3’} < 0. Forany B € 4,

diam B € (0, R] = U/eN(QN o sA-]. Thus, putting

Vi eN,J;:={BeJ|diam Be (2,, e 21}, we have UienFj = 7.
Define inductively (G;);en by:
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Vitali’s Covering Theorem

5—times covering lemma

Proof:

Let R := sup{diam B | B € ‘f} < 0. Forany B € 4,

diam B € (0, R] = ujeN(z, o sA-]. Thus, putting

Vi eN,J;:={BeJ|diam Be (2,, e 21}, we have UienFj = 7.

Define inductively (G;);en by:

@ S, is a maximal disjoint subfamily of &4, obtained by an

application of Zorn’s lemma to the set of all disjoint subfamilies of
F, partially ordered by inclusion;
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Vitali’s Covering Theorem

5—times covering lemma

Proof:
Let R := sup{diam B | B € ff} < 0. Forany B € 4,
diam B € (0, R] = ujeN(z, o sA-]. Thus, putting
Vi eN,J;:={BeJ|diam Be (2,, e 21}, we have UienFj = 7.
Define inductively (G;);en by:
@ S, is a maximal disjoint subfamily of &4, obtained by an
application of Zorn’s lemma to the set of all disjoint subfamilies of
F, partially ordered by inclusion;
© Once defined G4 C F4,...,9j-1 C Fj_ 1 we take a maximal disjoint
subfamily §; of 5} := {B € J; | VB' € W_19i, BN B =}, obtained
by an application of Zorn’s lemma to the set of all disjoint
subfamilies of ng/ C J; partially ordered by inclusion.
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Vitali’s Covering Theorem

5—times covering lemma

Proof(cont.)

We contend that § := UjenG; C T satisfies the thesis of the theorem.
Indeed, it is clear, by construction, that G is a disjoint subfamily of F.
On the other hand, for any B € 3}, there exists B’ € U,_,§; such that
Bn B' # ), otherwise §;U{B} 2 G; would be a disjoint subfamily of 77,
violating the maximality of §;. Since diam B < ;f; = 2% and

g < diam B/, it follows that diam B < 2diam B/, so that B ¢ 5B'.
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Vitali’s Covering Theorem

5—times covering lemma

Remark (2.11)

@ Note that, if X is separable, then § is countable (since any disjoint
family of sets with nonempty interiors in X is countable).

@ We have actually proved a stronger statement than the thesis:
there exists a disjoint subfamily § C F such that, for any B € &,
dB' € § with BN B’ # () and diam B < 2diam B’ (thus B C 58').

.
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