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Hausdorff Measures

The Carathéodory Construction

1 Let X be a metric space, F ⊂ 2X and ζ : F → [0,∞].

The idea is to “measure” the elements of F by means of the method or
gauge ζ and use that to define a Borel measure on X , abstracting the
geometric idea underlying the construction of the Lebesgue measure.

2 For 0 < δ ≤ ∞ we define ∀A ⊂ X ,

ψδ(A) := inf{
∑
S∈G

ζ(S) | G ⊂ F ∩ {S | diam S ≤ δ},

G countable ,A ⊂ ∪G}.

3 Define, for each A ⊂ X , ψ(A) := sup{ψδ(A) | 0 < δ ≤ ∞} ∈ [0,∞].
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Hausdorff Measures

The Carathéodory Construction

Definition (2.1)
With the notation above, we call ψ the result of Carathéodory’s
construction from the gauge ζ on F, and we call ψδ the size δ
approximating measure.

Proposition (2.2)
Let X be a metric space and ψ be the result of Carathéodory’s
construction from the gauge ζ on F ⊂ 2X . Then ψ is a Borel measure.
Besides, if F ⊂ BX , ψ is Borel regular.
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Hausdorff Measures

The Carathéodory Construction

Definition (Hausdorff measures; 2.3)
Let X be a metric space and m a nonnegative real number. Take
F = 2X and ζ : 2X → [0,∞] given by

ζ(S) := α(m)
(diam S)m

2m ,

where α(m) = πm/2

Γ(m/2+1) (i.e. the euclidean volume of Bm if m integer).
The result of Carathéodory’s construction from the gauge ζ on 2X is
called Hausdorff m-dimensional measure on X , denoted by Hm. We
use the notation Hm

δ for the size δ approximation of Hm.
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Hausdorff Measures

Hausdorff measures

Proposition (immediate properties of Hausdorff measure; 2.4)
Let X be a metric space and m a nonnegative real number. The
following properties hold for Hm:

1 The Hausdorff measure is compatible with the operation of taking
traces. That is, if X is a metric space and A ⊂ X, the trace of Hm

on A coincides with the m-dimensional Hausdorff measure on A
(as a metric subspace of X).

2 The Hausdorff measure is invariant by isometries. That is, if Y is
another metric space and f : X → Y is an isometry onto Y , then
the pushforward f#Hm coincides with the Hausdorff
m-dimensional measure on Y .

3 If Y is another metric space and f : X → Y has Lipschitz constant
Lip f <∞, then ∀A ⊂ X, Hm(f (A)) ≤ (Lip f )mHm(A).
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Hausdorff Measures

Hausdorff measures

4 Hm also coincides with the result of Carathéodory’s construction
from ζ (same gauge) on F′ = {closed subsets of X} or
F′′ = {open subsets of X}. If X is a normed vector space, we may
also take F′′′ = {closed convex subsets of X}.

5 Hm is a Borel regular measure on X .
6 H0 coincides with the counting measure on X .
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Hausdorff Measures

Hausdorff measures

Corollary (2.5)
If X , Y are metric spaces, m a nonnegative real number and f : X → Y
is an isometry into Y , then ∀A ⊂ X, Hm(f (A)) = Hm(A).
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Hausdorff Measures

Characterization of Hm–null sets

Exercise (Hm–null sets; 2.6)

Let X be a metric space, A ⊂ X and 0 < m <∞. The following
statements are equivalent:

1 Hm(A) = 0.
2 ∃δ ∈ (0,∞] such that Hm

δ (A) = 0.
3 ∀ε > 0, ∃(En)n∈N cover of A such that

∑
n∈N(diam En)

m < ε.
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Hausdorff Measures

Hausdorff dimension

Proposition (2.7)

Let X be a metric space, A ⊂ X and 0 ≤ s < t <∞. If Hs(A) <∞
then Ht(A) = 0.

As a corollary, if 0 ≤ s < t <∞ and Ht(A) > 0, then Hs(A) =∞. It
then follows that inf{m ∈ [0,∞) | Hm(A) = 0} = sup{m ∈ [0,∞) |
Hm(A) =∞} ∈ [0,∞].

Definition (Hausdorff dimension; 2.8)
Let X be a metric space and A ⊂ X . The extended real number
inf{m ∈ [0,∞) | Hm(A) = 0} = sup{m ∈ [0,∞) | Hm(A) =∞} ∈ [0,∞]
is called Hausdorff dimension of A, denoted by H-dim A.
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Hausdorff Measures

Hausdorff dimension

Exercise (properties of Hausdorff dimension; 2.9)
Let X be a metric space.
a) If Y ⊂ X is a metric subspace of X and A ⊂ Y, the Hausdorff

dimension of A as a subset of the metric space Y is the same for A
as a subset of the metric space X.

b) The Hausdorff dimension is invariant by isometries, i.e. if Y is a
metric space, f : X → Y an isometry into Y and A ⊂ X, then
H-dim A = H-dim f (A).

c) Let X, Y be metric spaces and f : X → Y be a Lipschitz map. For
all A ⊂ X, H-dim f (A) ≤ H-dim A. In particular, if f is bi-Lipschitz
onto its image (i.e. f is Lipschitz and has a Lipschitz inverse
f−1 : Im f → X), then ∀A ⊂ X, H-dim f (A) = H-dim A.
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Hausdorff Measures

Hausdorff dimension

d) (monotonicity) If A ⊂ B ⊂ X , H-dim A ≤ H-dim B.
e) (stability with respect to countable unions) If A = ∪n∈NAn ⊂ X , then

H-dim A = sup{H-dim An | n ∈ N}.

Gláucio Terra (IME - USP) GMT August 12, 2019 11 / 17



Hausdorff Measures

Hausdorff dimension

d) (monotonicity) If A ⊂ B ⊂ X , H-dim A ≤ H-dim B.
e) (stability with respect to countable unions) If A = ∪n∈NAn ⊂ X , then

H-dim A = sup{H-dim An | n ∈ N}.

Gláucio Terra (IME - USP) GMT August 12, 2019 11 / 17



Hausdorff Measures

Próximo objetivo:

Hn = Ln

in Rn.
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Vitali’s Covering Theorem

Notation for Balls

For a metric space (X ,d):

B(x , r) := {y ∈ X | d(y , x) ≤ r};
U(x , r) := {y ∈ X | d(y , x) < r};
if B is a closed ball and t ≥ 1,

tB := ∪{B′ ⊂ X closed ball | B′ ∩ B 6= ∅,diam B′ ≤ t − 1
2

diam B}.
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Vitali’s Covering Theorem

5–times covering lemma

Theorem (5–times covering lemma; 2.10)

Let X be a metric space and F ⊂ 2X a family of nondegenerate closed
balls in X such that sup{diam B | B ∈ F} <∞. Then there exists a
disjoint subfamily G ⊂ F such that ∪B∈FB ⊂ ∪B∈G5B.

Gláucio Terra (IME - USP) GMT August 12, 2019 14 / 17



Vitali’s Covering Theorem

5–times covering lemma

Proof:
Let R := sup{diam B | B ∈ F} <∞. For any B ∈ F,
diam B ∈ (0,R] = _∪j∈N(

R
2j ,

R
2j−1 ]. Thus, putting

∀j ∈ N,Fj := {B ∈ F | diam B ∈ (R
2j ,

R
2j−1 ]}, we have _∪j∈N Fj = F.

Define inductively (Gj)j∈N by:
1 G1 is a maximal disjoint subfamily of F1, obtained by an

application of Zorn’s lemma to the set of all disjoint subfamilies of
F1 partially ordered by inclusion;

2 Once defined G1 ⊂ F1, . . . ,Gj−1 ⊂ Fj−1, we take a maximal disjoint
subfamily Gj of F′j := {B ∈ Fj | ∀B′ ∈ ∪j−1

i=1Gi ,B ∩ B′ = ∅}, obtained
by an application of Zorn’s lemma to the set of all disjoint
subfamilies of F′j ⊂ Fj partially ordered by inclusion.
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Vitali’s Covering Theorem

5–times covering lemma

Proof(cont.)
We contend that G := ∪j∈NGj ⊂ F satisfies the thesis of the theorem.
Indeed, it is clear, by construction, that G is a disjoint subfamily of F.
On the other hand, for any B ∈ Fj , there exists B′ ∈ ∪j

i=1Gi such that
B ∩ B′ 6= ∅, otherwise Gj _∪{B} % Gj would be a disjoint subfamily of F′j ,
violating the maximality of Gj . Since diam B ≤ R

2j−1 = 2 R
2j and

R
2j < diam B′, it follows that diam B < 2 diam B′, so that B ⊂ 5B′.
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Vitali’s Covering Theorem

5–times covering lemma

Remark (2.11)
1 Note that, if X is separable, then G is countable (since any disjoint

family of sets with nonempty interiors in X is countable).
2 We have actually proved a stronger statement than the thesis:

there exists a disjoint subfamily G ⊂ F such that, for any B ∈ F,
∃B′ ∈ G with B ∩ B′ 6= ∅ and diam B < 2 diam B′ (thus B ⊂ 5B′).
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