Geometric Measure Theory

Gláucio Terra

Departamento de Matemática IME - USP

August 12, 2019

Gláucio Terra (IME - USP)

< ロ > < 同 > < 回 > < 回 >

August 12, 2019

• Let *X* be a metric space, $\mathcal{F} \subset 2^X$ and $\zeta : \mathcal{F} \to [0, \infty]$.

The idea is to "measure" the elements of \mathcal{F} by means of the *method* or *gauge* ζ and use that to define a Borel measure on *X*, abstracting the geometric idea underlying the construction of the Lebesgue measure.

2 For $0 < \delta \leq \infty$ we define $\forall A \subset X$,

$$\psi_{\delta}(A) := \inf\{\sum_{S \in \mathfrak{G}} \zeta(S) \mid \mathfrak{G} \subset \mathfrak{F} \cap \{S \mid \text{diam } S \leq \delta\},$$

 $\mathfrak{G} \text{ countable }, A \subset \cup \mathfrak{G}\}.$

3 Define, for each $A \subset X$, $\psi(A) := \sup\{\psi_{\delta}(A) \mid 0 < \delta \le \infty\} \in [0, \infty]$.

イロン 不通 とくほう 不良 とうほう

() Let X be a metric space,
$$\mathcal{F} \subset 2^X$$
 and $\zeta : \mathcal{F} \to [0, \infty]$.

The idea is to "measure" the elements of \mathcal{F} by means of the *method* or *gauge* ζ and use that to define a Borel measure on *X*, abstracting the geometric idea underlying the construction of the Lebesgue measure.

3 For
$$0 < \delta \leq \infty$$
 we define $\forall A \subset X$,

$$\begin{split} \psi_{\delta}(\boldsymbol{A}) &:= \inf\{\sum_{\boldsymbol{S} \in \boldsymbol{\Im}} \zeta(\boldsymbol{S}) \mid \boldsymbol{\Im} \subset \boldsymbol{\mathcal{F}} \cap \{\boldsymbol{S} \mid \text{diam } \boldsymbol{S} \leq \delta\}, \\ \boldsymbol{\Im} \text{ countable }, \boldsymbol{A} \subset \cup \boldsymbol{\Im}\}. \end{split}$$

3 Define, for each $A \subset X$, $\psi(A) := \sup\{\psi_{\delta}(A) \mid 0 < \delta \le \infty\} \in [0, \infty]$.

() Let X be a metric space,
$$\mathcal{F} \subset 2^X$$
 and $\zeta : \mathcal{F} \to [0, \infty]$.

The idea is to "measure" the elements of \mathcal{F} by means of the *method* or *gauge* ζ and use that to define a Borel measure on *X*, abstracting the geometric idea underlying the construction of the Lebesgue measure.

2 For
$$0 < \delta \leq \infty$$
 we define $\forall A \subset X$,

$$\psi_{\delta}(\mathcal{A}) := \inf\{\sum_{\mathcal{S} \in \mathfrak{G}} \zeta(\mathcal{S}) \mid \mathfrak{G} \subset \mathfrak{F} \cap \{\mathcal{S} \mid \text{diam } \mathcal{S} \le \delta\}, \$$

 $\mathfrak{G} \text{ countable }, \mathcal{A} \subset \cup \mathfrak{G}\}.$

3 Define, for each $A \subset X$, $\psi(A) := \sup\{\psi_{\delta}(A) \mid 0 < \delta \le \infty\} \in [0, \infty]$.

(日)

August 12, 2019

() Let X be a metric space,
$$\mathcal{F} \subset 2^X$$
 and $\zeta : \mathcal{F} \to [0, \infty]$.

The idea is to "measure" the elements of \mathcal{F} by means of the *method* or *gauge* ζ and use that to define a Borel measure on *X*, abstracting the geometric idea underlying the construction of the Lebesgue measure.

2 For
$$0 < \delta \leq \infty$$
 we define $\forall A \subset X$,

$$\begin{split} \psi_{\delta}(\boldsymbol{A}) &:= \inf\{\sum_{\boldsymbol{S} \in \mathfrak{G}} \zeta(\boldsymbol{S}) \mid \mathfrak{G} \subset \mathfrak{F} \cap \{\boldsymbol{S} \mid \text{diam } \boldsymbol{S} \leq \delta\}, \\ \mathfrak{G} \text{ countable }, \boldsymbol{A} \subset \cup \mathfrak{G}\}. \end{split}$$

■ Define, for each $A \subset X$, $\psi(A) := \sup\{\psi_{\delta}(A) \mid 0 < \delta \le \infty\} \in [0, \infty]$.

Definition (2.1)

With the notation above, we call ψ the *result of Carathéodory's* construction from the gauge ζ on \mathcal{F} , and we call ψ_{δ} the size δ approximating measure.

Proposition (2.2)

Let X be a metric space and ψ be the result of Carathéodory's construction from the gauge ζ on $\mathcal{F} \subset 2^X$. Then ψ is a Borel measure. Besides, if $\mathcal{F} \subset \mathscr{B}_X$, ψ is Borel regular.

Definition (2.1)

With the notation above, we call ψ the *result of Carathéodory's* construction from the gauge ζ on \mathcal{F} , and we call ψ_{δ} the size δ approximating measure.

Proposition (2.2)

Let X be a metric space and ψ be the result of Carathéodory's construction from the gauge ζ on $\mathcal{F} \subset 2^X$. Then ψ is a Borel measure. Besides, if $\mathcal{F} \subset \mathscr{B}_X$, ψ is Borel regular.

・ロン ・四 ・ ・ ヨン ・ ヨン

August 12, 2019

Definition (Hausdorff measures; 2.3)

Let X be a metric space and m a nonnegative real number. Take $\mathcal{F} = 2^X$ and $\zeta : 2^X \to [0, \infty]$ given by

$$\zeta(\boldsymbol{S}) := \alpha(\boldsymbol{m}) \frac{(\operatorname{diam} \boldsymbol{S})^m}{2^m},$$

where $\alpha(m) = \frac{\pi^{m/2}}{\Gamma(m/2+1)}$ (i.e. the euclidean volume of \mathbb{B}^m if *m* integer). The result of Carathéodory's construction from the gauge ζ on 2^X is called *Hausdorff m-dimensional measure* on *X*, denoted by \mathcal{H}^m . We use the notation \mathcal{H}^m_{δ} for the size δ approximation of \mathcal{H}^m .

Proposition (immediate properties of Hausdorff measure; 2.4) Let X be a metric space and m a nonnegative real number. The following properties hold for \mathcal{H}^m :

- The Hausdorff measure is compatible with the operation of taking traces. That is, if X is a metric space and A ⊂ X, the trace of ℋ^m on A coincides with the m-dimensional Hausdorff measure on A (as a metric subspace of X).
- 2 The Hausdorff measure is invariant by isometries. That is, if Y is another metric space and f : X → Y is an isometry onto Y, then the pushforward f_#ℋ^m coincides with the Hausdorff m-dimensional measure on Y.
- ③ If Y is another metric space and $f : X \to Y$ has Lipschitz constant Lip $f < \infty$, then $\forall A \subset X$, $\mathcal{H}^m(f(A)) \leq (\text{Lip } f)^m \mathcal{H}^m(A)$.

3

Proposition (immediate properties of Hausdorff measure; 2.4)

Let X be a metric space and m a nonnegative real number. The following properties hold for \mathcal{H}^m :

- The Hausdorff measure is compatible with the operation of taking traces. That is, if X is a metric space and A ⊂ X, the trace of ℋ^m on A coincides with the m-dimensional Hausdorff measure on A (as a metric subspace of X).
- 2 The Hausdorff measure is invariant by isometries. That is, if Y is another metric space and f : X → Y is an isometry onto Y, then the pushforward f_#^m coincides with the Hausdorff m-dimensional measure on Y.
- ③ If Y is another metric space and $f : X \to Y$ has Lipschitz constant Lip $f < \infty$, then $\forall A \subset X$, $\mathcal{H}^m(f(A)) \leq (\text{Lip } f)^m \mathcal{H}^m(A)$.

3

Proposition (immediate properties of Hausdorff measure; 2.4)

Let X be a metric space and m a nonnegative real number. The following properties hold for \mathcal{H}^m :

- The Hausdorff measure is compatible with the operation of taking traces. That is, if X is a metric space and A ⊂ X, the trace of ℋ^m on A coincides with the m-dimensional Hausdorff measure on A (as a metric subspace of X).
- ② The Hausdorff measure is invariant by isometries. That is, if Y is another metric space and f : X → Y is an isometry onto Y, then the pushforward f_#ℋ^m coincides with the Hausdorff m-dimensional measure on Y.
- ③ If Y is another metric space and $f : X \to Y$ has Lipschitz constant Lip $f < \infty$, then $\forall A \subset X$, $\mathcal{H}^m(f(A)) \leq (\text{Lip } f)^m \mathcal{H}^m(A)$.

3

Proposition (immediate properties of Hausdorff measure; 2.4)

Let X be a metric space and m a nonnegative real number. The following properties hold for \mathcal{H}^m :

- The Hausdorff measure is compatible with the operation of taking traces. That is, if X is a metric space and A ⊂ X, the trace of H^m on A coincides with the m-dimensional Hausdorff measure on A (as a metric subspace of X).
- ② The Hausdorff measure is invariant by isometries. That is, if Y is another metric space and f : X → Y is an isometry onto Y, then the pushforward f_#ℋ^m coincides with the Hausdorff m-dimensional measure on Y.
- ③ If Y is another metric space and $f : X \to Y$ has Lipschitz constant Lip $f < \infty$, then $\forall A \subset X$, $\mathcal{H}^m(f(A)) \leq (\text{Lip } f)^m \mathcal{H}^m(A)$.

3

イロト 不得 トイヨト イヨト

- St^m also coincides with the result of Carathéodory's construction from ζ (same gauge) on F' = {closed subsets of X} or F'' = {open subsets of X}. If X is a normed vector space, we may also take F''' = {closed convex subsets of X}.
- **I** \mathcal{H}^m is a Borel regular measure on X.
- \mathcal{H}^0 coincides with the counting measure on X.

August 12, 2019

- H^m also coincides with the result of Carathéodory's construction from ζ (same gauge) on F' = {closed subsets of X} or F'' = {open subsets of X}. If X is a normed vector space, we may also take F''' = {closed convex subsets of X}.
- \mathfrak{H}^m is a Borel regular measure on X.
- \mathcal{H}^0 coincides with the counting measure on X.

August 12, 2019

- H^m also coincides with the result of Carathéodory's construction from ζ (same gauge) on F' = {closed subsets of X} or F'' = {open subsets of X}. If X is a normed vector space, we may also take F''' = {closed convex subsets of X}.
- \mathfrak{H}^m is a Borel regular measure on X.
- \mathcal{H}^0 coincides with the counting measure on *X*.

イロト 不得 トイヨト イヨト

August 12, 2019

Corollary (2.5)

If X, Y are metric spaces, m a nonnegative real number and $f : X \to Y$ is an isometry into Y, then $\forall A \subset X$, $\mathfrak{H}^m(f(A)) = \mathfrak{H}^m(A)$.

∃ ► < ∃</p>

August 12, 2019

Characterization of \mathcal{H}^m -null sets

Exercise (\mathcal{H}^m -null sets; 2.6)

Let X be a metric space, $A \subset X$ and $0 < m < \infty$. The following statements are equivalent:

2)
$$\exists \delta \in (0,\infty]$$
 such that $\mathfrak{H}^m_{\delta}(A) = 0$.

③
$$\forall \epsilon > 0, \exists (E_n)_{n \in \mathbb{N}}$$
 cover of A such that $\sum_{n \in \mathbb{N}} (\text{diam } E_n)^m < \epsilon$.

August 12, 2019

Proposition (2.7)

Let X be a metric space, $A \subset X$ and $0 \le s < t < \infty$. If $\mathfrak{H}^{s}(A) < \infty$ then $\mathfrak{H}^{t}(A) = 0$.

As a corollary, if $0 \le s < t < \infty$ and $\mathcal{H}^t(A) > 0$, then $\mathcal{H}^s(A) = \infty$. It then follows that $\inf\{m \in [0, \infty) \mid \mathcal{H}^m(A) = 0\} = \sup\{m \in [0, \infty) \mid \mathcal{H}^m(A) = \infty\} \in [0, \infty]$.

Definition (Hausdorff dimension; 2.8)

Let *X* be a metric space and $A \subset X$. The extended real number $\inf\{m \in [0,\infty) \mid \mathcal{H}^m(A) = 0\} = \sup\{m \in [0,\infty) \mid \mathcal{H}^m(A) = \infty\} \in [0,\infty]$ is called *Hausdorff dimension* of *A*, denoted by \mathcal{H} -dim *A*.

Proposition (2.7)

Let X be a metric space, $A \subset X$ and $0 \le s < t < \infty$. If $\mathfrak{H}^{s}(A) < \infty$ then $\mathfrak{H}^{t}(A) = 0$.

As a corollary, if $0 \le s < t < \infty$ and $\mathcal{H}^t(A) > 0$, then $\mathcal{H}^s(A) = \infty$. It then follows that $\inf\{m \in [0, \infty) \mid \mathcal{H}^m(A) = 0\} = \sup\{m \in [0, \infty) \mid \mathcal{H}^m(A) = \infty\} \in [0, \infty]$.

Definition (Hausdorff dimension; 2.8)

Let *X* be a metric space and $A \subset X$. The extended real number $\inf\{m \in [0,\infty) \mid \mathcal{H}^m(A) = 0\} = \sup\{m \in [0,\infty) \mid \mathcal{H}^m(A) = \infty\} \in [0,\infty]$ is called *Hausdorff dimension* of *A*, denoted by \mathcal{H} -dim *A*.

Proposition (2.7)

Let X be a metric space, $A \subset X$ and $0 \le s < t < \infty$. If $\mathfrak{H}^{s}(A) < \infty$ then $\mathfrak{H}^{t}(A) = 0$.

As a corollary, if $0 \le s < t < \infty$ and $\mathcal{H}^t(A) > 0$, then $\mathcal{H}^s(A) = \infty$. It then follows that $\inf\{m \in [0, \infty) \mid \mathcal{H}^m(A) = 0\} = \sup\{m \in [0, \infty) \mid \mathcal{H}^m(A) = \infty\} \in [0, \infty]$.

Definition (Hausdorff dimension; 2.8)

Let *X* be a metric space and $A \subset X$. The extended real number $\inf\{m \in [0, \infty) \mid \mathcal{H}^m(A) = 0\} = \sup\{m \in [0, \infty) \mid \mathcal{H}^m(A) = \infty\} \in [0, \infty]$ is called *Hausdorff dimension* of *A*, denoted by \mathcal{H} -dim *A*.

Exercise (properties of Hausdorff dimension; 2.9) Let X be a metric space.

- a) If Y ⊂ X is a metric subspace of X and A ⊂ Y, the Hausdorff dimension of A as a subset of the metric space Y is the same for A as a subset of the metric space X.
- b) The Hausdorff dimension is invariant by isometries, i.e. if Y is a metric space, f : X → Y an isometry into Y and A ⊂ X, then H-dim A = H-dim f(A).

c) Let X, Y be metric spaces and f : X → Y be a Lipschitz map. For all A ⊂ X, ℋ-dim f(A) ≤ ℋ-dim A. In particular, if f is bi-Lipschitz onto its image (i.e. f is Lipschitz and has a Lipschitz inverse f⁻¹ : Im f → X), then ∀A ⊂ X, ℋ-dim f(A) = ℋ-dim A.

3

Exercise (properties of Hausdorff dimension; 2.9)

Let X be a metric space.

- a) If Y ⊂ X is a metric subspace of X and A ⊂ Y, the Hausdorff dimension of A as a subset of the metric space Y is the same for A as a subset of the metric space X.
- b) The Hausdorff dimension is invariant by isometries, i.e. if Y is a metric space, f : X → Y an isometry into Y and A ⊂ X, then H-dim A = H-dim f(A).
- c) Let X, Y be metric spaces and f : X → Y be a Lipschitz map. For all A ⊂ X, ℋ-dim f(A) ≤ ℋ-dim A. In particular, if f is bi-Lipschitz onto its image (i.e. f is Lipschitz and has a Lipschitz inverse f⁻¹ : Im f → X), then ∀A ⊂ X, ℋ-dim f(A) = ℋ-dim A.

3

イロト 不得 トイヨト イヨト

Exercise (properties of Hausdorff dimension; 2.9)

Let X be a metric space.

- a) If Y ⊂ X is a metric subspace of X and A ⊂ Y, the Hausdorff dimension of A as a subset of the metric space Y is the same for A as a subset of the metric space X.
- b) The Hausdorff dimension is invariant by isometries, i.e. if Y is a metric space, f : X → Y an isometry into Y and A ⊂ X, then H-dim A = H-dim f(A).

c) Let X, Y be metric spaces and f : X → Y be a Lipschitz map. For all A ⊂ X, ℋ-dim f(A) ≤ ℋ-dim A. In particular, if f is bi-Lipschitz onto its image (i.e. f is Lipschitz and has a Lipschitz inverse f⁻¹ : Im f → X), then ∀A ⊂ X, ℋ-dim f(A) = ℋ-dim A.

Exercise (properties of Hausdorff dimension; 2.9)

Let X be a metric space.

- a) If Y ⊂ X is a metric subspace of X and A ⊂ Y, the Hausdorff dimension of A as a subset of the metric space Y is the same for A as a subset of the metric space X.
- b) The Hausdorff dimension is invariant by isometries, i.e. if Y is a metric space, f : X → Y an isometry into Y and A ⊂ X, then H-dim A = H-dim f(A).
- c) Let X, Y be metric spaces and f : X → Y be a Lipschitz map. For all A ⊂ X, H-dim f(A) ≤ H-dim A. In particular, if f is bi-Lipschitz onto its image (i.e. f is Lipschitz and has a Lipschitz inverse f⁻¹ : Im f → X), then ∀A ⊂ X, H-dim f(A) = H-dim A.

August 12, 2019

d) (monotonicity) If $A \subset B \subset X$, \mathcal{H} -dim $A \leq \mathcal{H}$ -dim B.

e) (stability with respect to countable unions) If $A = \bigcup_{n \in \mathbb{N}} A_n \subset X$, then \mathcal{H} -dim $A = \sup\{\mathcal{H}$ -dim $A_n \mid n \in \mathbb{N}\}$.

イロト 不得 トイヨト イヨト

August 12, 2019

-

- d) (monotonicity) If $A \subset B \subset X$, \mathcal{H} -dim $A \leq \mathcal{H}$ -dim B.
- e) (stability with respect to countable unions) If $A = \bigcup_{n \in \mathbb{N}} A_n \subset X$, then \mathcal{H} -dim $A = \sup\{\mathcal{H}$ -dim $A_n \mid n \in \mathbb{N}\}$.

イロン イ理 とく ヨン イヨン

August 12, 2019

3

Próximo objetivo:

$$\mathcal{H}^n = \mathcal{L}^n$$

in \mathbb{R}^n .

イロト イヨト イヨト イヨト

August 12, 2019

2

For a metric space (X, d):

- $\mathbb{B}(x,r) := \{y \in X \mid d(y,x) \le r\};$
- $\mathbb{U}(x,r) := \{y \in X \mid d(y,x) < r\};$
- if *B* is a closed ball and $t \ge 1$,

 $tB := \cup \{B' \subset X \text{ closed ball } | B' \cap B \neq \emptyset, \text{ diam } B' \leq \frac{t-1}{2} \text{ diam } B\}.$

E 5 4 E

August 12, 2019

For a metric space (X, d):

- $\mathbb{B}(x,r) := \{y \in X \mid d(y,x) \leq r\};$
- $\mathbb{U}(x,r) := \{y \in X \mid d(y,x) < r\};$

• if *B* is a closed ball and $t \ge 1$,

 $tB := \cup \{B' \subset X \text{ closed ball } | B' \cap B \neq \emptyset, \text{ diam } B' \leq \frac{t-1}{2} \text{ diam } B\}.$

A B >
A B >

August 12, 2019

For a metric space (X, d):

- $\mathbb{B}(x,r) := \{y \in X \mid d(y,x) \leq r\};$
- $U(x, r) := \{y \in X \mid d(y, x) < r\};$

• if *B* is a closed ball and $t \ge 1$,

 $tB := \cup \{B' \subset X \text{ closed ball } | B' \cap B \neq \emptyset, \text{ diam } B' \leq \frac{t-1}{2} \text{ diam } B\}.$

A B >
A B >

August 12, 2019

For a metric space (X, d):

- $\mathbb{B}(x,r) := \{y \in X \mid d(y,x) \leq r\};$
- $U(x, r) := \{y \in X \mid d(y, x) < r\};$
- if *B* is a closed ball and $t \ge 1$,

$$tB := \cup \{B' \subset X \text{ closed ball } | B' \cap B \neq \emptyset, ext{diam } B' \leq rac{t-1}{2} ext{ diam } B\}.$$

Image: A matrix and a matrix

A B F A B F

August 12, 2019

3

Theorem (5-times covering lemma; 2.10)

Let X be a metric space and $\mathcal{F} \subset 2^X$ a family of nondegenerate closed balls in X such that $\sup\{\text{diam } B \mid B \in \mathcal{F}\} < \infty$. Then there exists a disjoint subfamily $\mathcal{G} \subset \mathcal{F}$ such that $\bigcup_{B \in \mathcal{F}} B \subset \bigcup_{B \in \mathcal{G}} 5B$.

(B)

August 12, 2019

Proof:

Let $R := \sup\{\text{diam } B \mid B \in \mathcal{F}\} < \infty$. For any $B \in \mathcal{F}$, diam $B \in (0, R] = \sqcup_{j \in \mathbb{N}} (\frac{R}{2^j}, \frac{R}{2^{j-1}}]$. Thus, putting $\forall j \in \mathbb{N}, \mathcal{F}_j := \{B \in \mathcal{F} \mid \text{diam } B \in (\frac{R}{2^j}, \frac{R}{2^{j-1}}]\}$, we have $\sqcup_{j \in \mathbb{N}} \mathcal{F}_j = \mathcal{F}$. Define inductively $(\mathcal{G}_j)_{j \in \mathbb{N}}$ by:

- G₁ is a maximal disjoint subfamily of F₁, obtained by an application of Zorn's lemma to the set of all disjoint subfamilies of F₁ partially ordered by inclusion;
- Once defined 𝔅₁ ⊂ 𝔅₁,...,𝔅_{j-1} ⊂ 𝔅_{j-1}, we take a maximal disjoint subfamily 𝔅_j of 𝔅_j := {*B* ∈ 𝔅_j | ∀*B*' ∈ ∪^{j-1}_{i=1}𝔅_i, *B* ∩ *B*' = ∅}, obtained by an application of Zorn's lemma to the set of all disjoint subfamilies of 𝔅_j ⊂ 𝔅_j partially ordered by inclusion.

Proof:

Let $R := \sup\{\text{diam } B \mid B \in \mathcal{F}\} < \infty$. For any $B \in \mathcal{F}$, diam $B \in (0, R] = \sqcup_{j \in \mathbb{N}} (\frac{R}{2^j}, \frac{R}{2^{j-1}}]$. Thus, putting $\forall j \in \mathbb{N}, \mathcal{F}_j := \{B \in \mathcal{F} \mid \text{diam } B \in (\frac{R}{2^j}, \frac{R}{2^{j-1}}]\}$, we have $\sqcup_{j \in \mathbb{N}} \mathcal{F}_j = \mathcal{F}$. Define inductively $(\mathcal{G}_j)_{j \in \mathbb{N}}$ by:

- G₁ is a maximal disjoint subfamily of F₁, obtained by an application of Zorn's lemma to the set of all disjoint subfamilies of F₁ partially ordered by inclusion;
- ② Once defined $\mathfrak{G}_1 \subset \mathfrak{F}_1, \ldots, \mathfrak{G}_{j-1} \subset \mathfrak{F}_{j-1}$, we take a maximal disjoint subfamily \mathfrak{G}_j of $\mathfrak{F}'_j := \{B \in \mathfrak{F}_j \mid \forall B' \in \cup_{i=1}^{j-1} \mathfrak{G}_i, B \cap B' = \emptyset\}$, obtained by an application of Zorn's lemma to the set of all disjoint subfamilies of $\mathfrak{F}'_j \subset \mathfrak{F}_j$ partially ordered by inclusion.

Proof:

Let $R := \sup\{\text{diam } B \mid B \in \mathcal{F}\} < \infty$. For any $B \in \mathcal{F}$, diam $B \in (0, R] = \sqcup_{j \in \mathbb{N}} (\frac{R}{2^j}, \frac{R}{2^{j-1}}]$. Thus, putting $\forall j \in \mathbb{N}, \mathcal{F}_j := \{B \in \mathcal{F} \mid \text{diam } B \in (\frac{R}{2^j}, \frac{R}{2^{j-1}}]\}$, we have $\sqcup_{j \in \mathbb{N}} \mathcal{F}_j = \mathcal{F}$. Define inductively $(\mathcal{G}_j)_{j \in \mathbb{N}}$ by:

G₁ is a maximal disjoint subfamily of F₁, obtained by an application of Zorn's lemma to the set of all disjoint subfamilies of F₁ partially ordered by inclusion;

② Once defined 𝔅₁ ⊂ 𝔅₁, ..., 𝔅_{j-1} ⊂ 𝔅_{j-1}, we take a maximal disjoint subfamily 𝔅_j of 𝔅'_j := {*B* ∈ 𝔅_j | ∀*B*' ∈ ∪^{j-1}_{i=1}𝔅_i, *B* ∩ *B*' = ∅}, obtained by an application of Zorn's lemma to the set of all disjoint subfamilies of 𝔅'_j ⊂ 𝔅_j partially ordered by inclusion.

Proof:

Let $R := \sup\{\text{diam } B \mid B \in \mathcal{F}\} < \infty$. For any $B \in \mathcal{F}$, diam $B \in (0, R] = \sqcup_{j \in \mathbb{N}} (\frac{R}{2^j}, \frac{R}{2^{j-1}}]$. Thus, putting $\forall j \in \mathbb{N}, \mathcal{F}_j := \{B \in \mathcal{F} \mid \text{diam } B \in (\frac{R}{2^j}, \frac{R}{2^{j-1}}]\}$, we have $\sqcup_{j \in \mathbb{N}} \mathcal{F}_j = \mathcal{F}$. Define inductively $(\mathcal{G}_j)_{j \in \mathbb{N}}$ by:

- G₁ is a maximal disjoint subfamily of F₁, obtained by an application of Zorn's lemma to the set of all disjoint subfamilies of F₁ partially ordered by inclusion;
- Once defined 𝔅₁ ⊂ 𝔅₁,...,𝔅_{j-1} ⊂ 𝔅_{j-1}, we take a maximal disjoint subfamily 𝔅_j of 𝔅_j' := {𝔅 ∈ 𝔅_j | ∀𝔅 ∈ ∪^{j-1}_{i=1}𝔅_i, 𝔅 ∩ 𝔅' = ∅}, obtained by an application of Zorn's lemma to the set of all disjoint subfamilies of 𝔅_j' ⊂ 𝔅_j partially ordered by inclusion.

Proof(cont.)

We contend that $\mathcal{G} := \bigcup_{j \in \mathbb{N}} \mathcal{G}_j \subset \mathcal{F}$ satisfies the thesis of the theorem. Indeed, it is clear, by construction, that \mathcal{G} is a disjoint subfamily of \mathcal{F} . On the other hand, for any $B \in \mathcal{F}_j$, there exists $B' \in \bigcup_{j=1}^{j} \mathcal{G}_j$ such that $B \cap B' \neq \emptyset$, otherwise $\mathcal{G}_j \sqcup \{B\} \supseteq \mathcal{G}_j$ would be a disjoint subfamily of \mathcal{F}'_j , violating the maximality of \mathcal{G}_j . Since diam $B \leq \frac{R}{2^{j-1}} = 2\frac{R}{2^j}$ and $\frac{R}{2^j} < \text{diam } B'$, it follows that diam B < 2 diam B', so that $B \subset 5B'$.

August 12, 2019

Remark (2.11)

- Note that, if X is separable, then G is countable (since any disjoint family of sets with nonempty interiors in X is countable).
- ② We have actually proved a stronger statement than the thesis: there exists a disjoint subfamily $\mathcal{G} \subset \mathcal{F}$ such that, for any $B \in \mathcal{F}$, $\exists B' \in \mathcal{G}$ with $B \cap B' \neq \emptyset$ and diam B < 2 diam B' (thus $B \subset 5B'$).

A B >
A B >

August 12, 2019