Geometric Measure Theory

Gláucio Terra

Departamento de Matemática IME - USP

August 8, 2019

• • • • • • • • • • • • •

August 8, 2019

Definition (outer measures; def. 1.1)

A *measure* on a set X is a set function $\mu : 2^X \to [0, \infty]$ such that:

$$(\emptyset) = 0$$

- (monotonicity) $\mu(A) \leq \mu(B)$ whenever $A \subset B$,
- (countable subadditivity) $\mu(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} \mu(A_n)$.

Definition (Carathéodory measurability; 1.2)

Given a measure μ on a set *X*, a subset $A \subset X$ is called *measurable* with respect to μ (or μ -measurable, or simply measurable) if it satisfies the *Carathéodory condition*:

$$\forall T \subset X, \mu(T) = \mu(T \cap A) + \mu(T \setminus A).$$

We denote by $\sigma(\mu)$ the set of measurable subsets of X with respect to μ .

August 8, 2019

Definition (algebras and σ -algebras; 1.6)

Given a set X, $\mathfrak{M} \subset 2^X$ is called an *algebra* of subsets of X if:

- $\emptyset \in \mathcal{M};$
- $A \in \mathcal{M} \Rightarrow A^{c} \in \mathcal{M};$
- $A, B \in \mathcal{M} \Rightarrow A \cup B \in \mathcal{M}.$

 \mathcal{M} is called a σ -algebra if it is an algebra closed under countable unions. The sets in \mathcal{M} are called *measurable with respect to* \mathcal{M} , or \mathcal{M} -measurable.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Definition (algebras and σ -algebras; 1.6)

Given a set $X, \mathfrak{M} \subset 2^X$ is called an *algebra* of subsets of X if:

- $\emptyset \in \mathcal{M};$
- $A \in \mathcal{M} \Rightarrow A^{c} \in \mathcal{M};$
- $A, B \in \mathcal{M} \Rightarrow A \cup B \in \mathcal{M}.$

 \mathcal{M} is called a σ -algebra if it is an algebra closed under countable unions. The sets in \mathcal{M} are called *measurable with respect to* \mathcal{M} , or \mathcal{M} -*measurable*.

August 8, 2019

Definition (measures on σ -algebras; 1.6)

Given a σ -algebra $\mathcal{M} \subset 2^X$, we call a set function $\mu : \mathcal{M} \to [0, \infty]$ a *measure on* \mathcal{M} if it satisfies:

$${ 0} \quad \mu(\emptyset) = { 0},$$

(countable additivity)
$$\mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n).$$

A D N A B N A B N

Theorem (Carathéodory; 1.7)

If μ is a measure on a set X, then $\sigma(\mu)$ is a σ -algebra and the restriction of μ to $\sigma(\mu)$ is a complete measure on $\sigma(\mu)$.

Theorem (1.8)

If \mathfrak{M} is a σ -algebra of subsets of X and $\mu : \mathfrak{M} \to [0,\infty]$ is a measure on \mathfrak{M} , then the set function:

$$\begin{array}{rccc} \mu^*: & 2^X & \longrightarrow & [0,\infty] \\ & A & \longmapsto & \inf\{\mu(E) \mid A \subset E \in \mathcal{M}\} \end{array}$$

is a measure which extends μ and such that $\mathcal{M} \subset \sigma(\mu^*)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Carathéodory; 1.7)

If μ is a measure on a set X, then $\sigma(\mu)$ is a σ -algebra and the restriction of μ to $\sigma(\mu)$ is a complete measure on $\sigma(\mu)$.

Theorem (1.8)

If \mathcal{M} is a σ -algebra of subsets of X and $\mu : \mathcal{M} \to [0, \infty]$ is a measure on \mathcal{M} , then the set function:

$$\begin{array}{rccc} \mu^*: & \mathbf{2}^X & \longrightarrow & [\mathbf{0},\infty] \\ & A & \longmapsto & \inf\{\mu(E) \mid A \subset E \in \mathcal{M}\} \end{array}$$

is a measure which extends μ and such that $\mathfrak{M} \subset \sigma(\mu^*)$.

Definition (1.9)

A measure $\mu : 2^X \rightarrow [0, \infty]$ is called:

- *regular*, if $\forall A \subset X$, $\exists E \in \sigma(\mu)$ such that $A \subset E$ and $\mu(A) = \mu(E)$.
- *finite* (respectively, σ -finite) if so is its restriction to $\sigma(\mu)$.

Proposition (Continuity properties of measures; 1.11)

For a measure μ on X, the following properties hold:

- (continuity from below) if $(E_n)_{n \in \mathbb{N}}$ is an increasing sequence in $\sigma(\mu)$, then $\mu(\bigcup_{n=1}^{\infty} E_n) = \lim_{n \to \infty} \mu(E_n)$,
- (continuity from above) if $(E_n)_{n \in \mathbb{N}}$ is a decreasing sequence in $\sigma(\mu)$ and $\mu(E_1) < \infty$, then $\mu(\bigcap_{n=1}^{\infty} E_n) = \lim_{n \to \infty} \mu(E_n)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition (1.9)

A measure $\mu : 2^X \rightarrow [0, \infty]$ is called:

- *regular*, if $\forall A \subset X$, $\exists E \in \sigma(\mu)$ such that $A \subset E$ and $\mu(A) = \mu(E)$.
- finite (respectively, σ-finite) if so is its restriction to σ(μ).

Proposition (Continuity properties of measures; 1.11)

For a measure μ on X, the following properties hold:

- (continuity from below) if $(E_n)_{n \in \mathbb{N}}$ is an increasing sequence in $\sigma(\mu)$, then $\mu(\bigcup_{n=1}^{\infty} E_n) = \lim_{n \to \infty} \mu(E_n)$,
- (continuity from above) if $(E_n)_{n \in \mathbb{N}}$ is a decreasing sequence in $\sigma(\mu)$ and $\mu(E_1) < \infty$, then $\mu(\bigcap_{n=1}^{\infty} E_n) = \lim_{n \to \infty} \mu(E_n)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition (Restrictions and traces of measures; 1.13)

Let μ be a measure on a set X and $A \subset X$. We define the:

• *restriction* of μ to A, denoted by $\mu \bigsqcup A$, as the measure $2^X \rightarrow [0, \infty]$ given by $E \mapsto \mu(A \cap E)$.

 trace of μ on A, denoted by μ|_A, as the measure 2^A → [0,∞] given by E ↦ μ(E).

< ロ > < 同 > < 回 > < 回 >

Definition (Restrictions and traces of measures; 1.13)

Let μ be a measure on a set X and $A \subset X$. We define the:

- *restriction* of μ to A, denoted by $\mu \bigsqcup A$, as the measure $2^X \rightarrow [0, \infty]$ given by $E \mapsto \mu(A \cap E)$.
- trace of μ on A, denoted by μ|_A, as the measure 2^A → [0,∞] given by E ↦ μ(E).

イロト イポト イラト イラ

August 8, 2019

Definition (Pushforward of measures; 1.14)

Let μ be a measure on the set X and $f : X \to Y$ a map into the set Y. We define a measure $2^Y \to [0, \infty]$ on Y by:

$$A \subset Y \mapsto \mu(f^{-1}(A)),$$

called *pushforward* of μ by *f* and denoted by $f_{\#}\mu$.

August 8, 2019

Proposition (1.15)

Let μ be a measure on the set X, $A \subset X$ and $f : X \to Y$. The following properties hold:

- If $E \in \sigma(\mu)$, then $E \cap A \in \sigma(\mu|_A)$. Besides, if $A \in \sigma(\mu)$, then $\sigma(\mu|_A) = \sigma(\mu) \cap 2^A = \{E \in \sigma(\mu) \mid B \subset A\}.$
- For $B \subset Y$, $f^{-1}(B)$ is μ -measurable iff $\forall A \subset X$, B is $f_{\#}(\mu \sqcup A)$ -measurable.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

August 8, 2019

Proposition (1.15)

Let μ be a measure on the set X, $A \subset X$ and $f : X \to Y$. The following properties hold:

- If $E \in \sigma(\mu)$, then $E \cap A \in \sigma(\mu|_A)$. Besides, if $A \in \sigma(\mu)$, then $\sigma(\mu|_A) = \sigma(\mu) \cap 2^A = \{E \in \sigma(\mu) \mid B \subset A\}.$
- For $B \subset Y$, $f^{-1}(B)$ is μ -measurable iff $\forall A \subset X$, B is $f_{\#}(\mu \sqcup A)$ -measurable.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

August 8, 2019

Proposition (1.15)

Let μ be a measure on the set X, $A \subset X$ and $f : X \to Y$. The following properties hold:

- **1** If $E \in \sigma(\mu)$, then $E \cap A \in \sigma(\mu|_A)$. Besides, if $A \in \sigma(\mu)$, then $\sigma(\mu|_A) = \sigma(\mu) \cap 2^A = \{E \in \sigma(\mu) \mid B \subset A\}.$
- For $B \subset Y$, $f^{-1}(B)$ is μ -measurable iff $\forall A \subset X$, B is $f_{\#}(\mu \sqcup A)$ -measurable.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

August 8, 2019

Proposition (1.15)

Let μ be a measure on the set X, $A \subset X$ and $f : X \to Y$. The following properties hold:

- **1** If $E \in \sigma(\mu)$, then $E \cap A \in \sigma(\mu|_A)$. Besides, if $A \in \sigma(\mu)$, then $\sigma(\mu|_A) = \sigma(\mu) \cap 2^A = \{E \in \sigma(\mu) \mid B \subset A\}.$
- For $B \subset Y$, $f^{-1}(B)$ is μ -measurable iff $\forall A \subset X$, B is $f_{\#}(\mu \sqcup A)$ -measurable.

B + 4 B +

August 8, 2019

10/36

A D b 4 A b 4

Recall

Given a subset $S \subset 2^X$, there exists a smallest σ -algebra of subsets of X which contains S, that is, the intersection of the family of σ -algebras that contain S, which we denote by $\sigma(S)$.

Definition (Borel measures; 1.16)

For a topological space (X, τ) , we define its *Borel* σ -algebra as the σ -algebra generated by τ , i.e. $\sigma(\tau)$. We denote it by \mathscr{B}_X .

- We say that a measure μ on X is a Borel measure if each Borel set is μ-measurable, i.e. if B_X ⊂ σ(μ).
- A Borel regular measure on X is a Borel measure on X which satisfies: ∀A ⊂ X, ∃E ∈ ℬ_X such that A ⊂ E and μ(A) = μ(E).

3

Recall

Given a subset $S \subset 2^X$, there exists a smallest σ -algebra of subsets of X which contains S, that is, the intersection of the family of σ -algebras that contain S, which we denote by $\sigma(S)$.

Definition (Borel measures; 1.16)

For a topological space (X, τ) , we define its *Borel* σ -algebra as the σ -algebra generated by τ , i.e. $\sigma(\tau)$. We denote it by \mathscr{B}_X .

- We say that a measure μ on X is a Borel measure if each Borel set is μ-measurable, i.e. if B_X ⊂ σ(μ).
- A Borel regular measure on X is a Borel measure on X which satisfies: ∀A ⊂ X, ∃E ∈ ℬ_X such that A ⊂ E and μ(A) = μ(E).

3

イロト 不得 トイヨト イヨト

Recall

Given a subset $S \subset 2^X$, there exists a smallest σ -algebra of subsets of X which contains S, that is, the intersection of the family of σ -algebras that contain S, which we denote by $\sigma(S)$.

Definition (Borel measures; 1.16)

For a topological space (X, τ) , we define its *Borel* σ -algebra as the σ -algebra generated by τ , i.e. $\sigma(\tau)$. We denote it by \mathscr{B}_X .

- We say that a measure μ on X is a Borel measure if each Borel set is μ-measurable, i.e. if ℬ_X ⊂ σ(μ).
- A Borel regular measure on X is a Borel measure on X which satisfies: ∀A ⊂ X, ∃E ∈ ℬ_X such that A ⊂ E and μ(A) = μ(E).

3

イロト 不得 トイヨト イヨト

Recall

Given a subset $S \subset 2^X$, there exists a smallest σ -algebra of subsets of X which contains S, that is, the intersection of the family of σ -algebras that contain S, which we denote by $\sigma(S)$.

Definition (Borel measures; 1.16)

For a topological space (X, τ) , we define its *Borel* σ -algebra as the σ -algebra generated by τ , i.e. $\sigma(\tau)$. We denote it by \mathscr{B}_X .

- We say that a measure μ on X is a Borel measure if each Borel set is μ-measurable, i.e. if ℬ_X ⊂ σ(μ).
- A Borel regular measure on X is a Borel measure on X which satisfies: ∀A ⊂ X, ∃E ∈ ℬ_X such that A ⊂ E and μ(A) = μ(E).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Carathéodory's criterion)

A measure μ on a metric space (X, d) is Borel iff

$$\mu(\mathbf{A} \cup \mathbf{B}) = \mu(\mathbf{A}) + \mu(\mathbf{B}) \tag{Ca}$$

< ロ > < 同 > < 回 > < 回 >

August 8, 2019

12/36

whenever $A, B \subset X$ satisfy $d(A, B) := \inf\{d(a, b) \mid a \in A, b \in B\} > 0$.

Definition (1.22)

A Borel measure μ on a topological space (X, τ) is called:

- open σ -finite if there exists a sequence $(U_n)_{n \in \mathbb{N}}$ of open subsets of X such that $X = \bigcup_{n \in \mathbb{N}} U_n$ and $\forall n \in \mathbb{N}, \mu(U_n) < \infty$.
- *locally finite* if, for each x ∈ X, there exists an open neighborhood U of x such that μ(U) < ∞.

Example

A locally finite Borel measure on a second countable topological space is open σ -finite.

Definition (1.22)

A Borel measure μ on a topological space (X, τ) is called:

- open σ -finite if there exists a sequence $(U_n)_{n \in \mathbb{N}}$ of open subsets of X such that $X = \bigcup_{n \in \mathbb{N}} U_n$ and $\forall n \in \mathbb{N}, \mu(U_n) < \infty$.
- *locally finite* if, for each $x \in X$, there exists an open neighborhood U of x such that $\mu(U) < \infty$.

Example

A locally finite Borel measure on a second countable topological space is open σ -finite.

3

Definition (1.22)

A Borel measure μ on a topological space (X, τ) is called:

- open σ -finite if there exists a sequence $(U_n)_{n \in \mathbb{N}}$ of open subsets of X such that $X = \bigcup_{n \in \mathbb{N}} U_n$ and $\forall n \in \mathbb{N}, \mu(U_n) < \infty$.
- *locally finite* if, for each $x \in X$, there exists an open neighborhood U of x such that $\mu(U) < \infty$.

Example

A locally finite Borel measure on a second countable topological space is open σ -finite.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Nice measures

There are two main classes of measures which interact nicely with the topology:

- locally finite Borel regular measures on separable metric spaces;
- Radon measures on locally compact Hausdorff spaces.

Nice measures

There are two main classes of measures which interact nicely with the topology:

- locally finite Borel regular measures on separable metric spaces;
- Radon measures on locally compact Hausdorff spaces.

Theorem (approximation by open and closed sets; 1.23)

Let μ be an open σ -finite Borel regular measure on a topological space (X, τ) for which each closed set is a G_{δ} . The following approximation properties hold:

- (approximation by open sets from the outside) $\forall A \subset X$, $\mu(A) = \inf{\{\mu(U) \mid A \subset U \in \tau\}}$,
- (approximation by closed sets from the inside) $\forall A \in \sigma(\mu)$, $\mu(A) = \sup\{\mu(C) \mid C \subset A, C \text{ closed}\}.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

August 8, 2019

Lemma (1.25)

Let X be a set, $S \subset 2^X$ and $\mathcal{F} \subset 2^X$ such that:

• *F* is closed under countable intersections and countable unions.

• If $A \in S$, both A and its complement A^c belong to \mathfrak{F} . Then $\mathfrak{F} \supset \sigma(S)$.

Proof.

```
Let \mathcal{G} := \{ A \in \mathcal{F} \mid A^{c} \in \mathcal{F} \}. Then:
```

 $\bigcirc S \subset \mathcal{G}.$

- Is closed under complementation.
- Is closed under countable unions.

Therefore, \mathfrak{G} is a σ -algebra which contains S, i.e. $\sigma(S) \subset \mathfrak{G} \subset \mathfrak{F}$.

- 31

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma (1.25)

Let X be a set, $S \subset 2^X$ and $\mathcal{F} \subset 2^X$ such that:

• *F* is closed under countable intersections and countable unions.

• If $A \in S$, both A and its complement A^c belong to \mathfrak{F} . Then $\mathfrak{F} \supset \sigma(S)$.

Proof.

Let
$$\mathcal{G} := \{ \boldsymbol{A} \in \mathcal{F} \mid \boldsymbol{A}^{\boldsymbol{c}} \in \mathcal{F} \}$$
. Then:

 $\bigcirc S \subset \mathcal{G}$

- Is closed under complementation.
- 9 is closed under countable unions.

Therefore, \mathfrak{G} is a σ -algebra which contains $m{S}$, i.e. $\sigma(m{S})\subset \mathfrak{G}\subset \mathfrak{F}$

Lemma (1.25)

Let X be a set, $S \subset 2^X$ and $\mathcal{F} \subset 2^X$ such that:

• *F* is closed under countable intersections and countable unions.

• If $A \in S$, both A and its complement A^c belong to \mathfrak{F} . Then $\mathfrak{F} \supset \sigma(S)$.

Proof.

Let
$$\mathcal{G} := \{ \boldsymbol{A} \in \mathcal{F} \mid \boldsymbol{A}^{\boldsymbol{c}} \in \mathcal{F} \}$$
. Then:

 $S \subset \mathfrak{G}.$

Is closed under complementation.

Is closed under countable unions.

Therefore, \mathfrak{G} is a σ -algebra which contains $m{S}$, i.e. $\sigma(m{S})\subset\mathfrak{G}\subset\mathfrak{F}$

Lemma (1.25)

Let X be a set, $S \subset 2^X$ and $\mathcal{F} \subset 2^X$ such that:

• *F* is closed under countable intersections and countable unions.

• If $A \in S$, both A and its complement A^c belong to \mathfrak{F} . Then $\mathfrak{F} \supset \sigma(S)$.

Proof.

Let
$$\mathcal{G} := \{ \mathbf{A} \in \mathcal{F} \mid \mathbf{A}^{c} \in \mathcal{F} \}$$
. Then:

 $0 S \subset \mathfrak{G}.$

Is closed under complementation.

Is closed under countable unions.

Γherefore, 9 is a σ -algebra which contains *S*, i.e. $\sigma(S) \subset 9 \subset \mathfrak{F}$.

Lemma (1.25)

Let X be a set, $S \subset 2^X$ and $\mathcal{F} \subset 2^X$ such that:

• *F* is closed under countable intersections and countable unions.

• If $A \in S$, both A and its complement A^c belong to \mathfrak{F} . Then $\mathfrak{F} \supset \sigma(S)$.

Proof.

Let
$$\mathfrak{G} := \{ \mathbf{A} \in \mathfrak{F} \mid \mathbf{A}^{c} \in \mathfrak{F} \}$$
. Then:

$$0 S \subset 9.$$

- Is closed under complementation.
- Is closed under countable unions.

Γherefore, 9 is a σ -algebra which contains $m{S}$, i.e. $\sigma(m{S}) \subset 9 \subset \mathfrak{F}$.

Lemma (1.25)

Let X be a set, $S \subset 2^X$ and $\mathcal{F} \subset 2^X$ such that:

• *F* is closed under countable intersections and countable unions.

• If $A \in S$, both A and its complement A^c belong to \mathfrak{F} . Then $\mathfrak{F} \supset \sigma(S)$.

Proof.

Let
$$\mathfrak{G} := \{ \mathbf{A} \in \mathfrak{F} \mid \mathbf{A}^{c} \in \mathfrak{F} \}$$
. Then:

$$S \subset \mathfrak{G}.$$

- Is closed under complementation.
- Is closed under countable unions.

Therefore, \mathcal{G} is a σ -algebra which contains S, i.e. $\sigma(S) \subset \mathcal{G} \subset \mathcal{F}$.

Lemma (1.27)

Let μ be a Borel measure on a topological space (X, τ) for which each closed set is a G_{δ} . If $B \in \mathscr{B}_X$ and $\mu(B) < \infty$, for all $\epsilon > 0$ there exists a closed set $C \subset B$ such that $\mu(B \setminus C) < \epsilon$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

August 8, 2019

Radon measures

Definition (Radon measures; 1.28)

A *Radon measure* on a locally compact Hausdorff topological space (X, τ) is a Borel measure μ on X such that:

- (*finiteness on compact sets*) if *K* is a compact subset of *X*, then $\mu(K) < \infty$,
- (*interior regularity for open sets*) for all $U \subset X$ open, $\mu(U) = \sup\{\mu(K) \mid K \subset U, K \text{ compact}\},$
- (exterior regularity) for all $A \subset X$, $\mu(A) = \inf \{ \mu(U) \mid A \subset U, U \text{ open} \}.$

August 8, 2019

Remark (1.29)

Note that, by condition R2 in the definition above, every Radon measure is Borel regular.

A measure μ : ℬ_X → [0,∞] is called a *Radon measure on* ℬ_X if its canonical extension μ* : 2^X → [0,∞] is an exterior Radon measure as defined above. That is equivalent to saying that μ satisfies R1, R2 and R3 for any Borel set A ⊂ X.

< ロ > < 同 > < 回 > < 回 >

August 8, 2019

Remark (1.29)

- Note that, by condition R2 in the definition above, every Radon measure is Borel regular.
- A measure µ : ℬ_X → [0, ∞] is called a *Radon measure on* ℬ_X if its canonical extension µ* : 2^X → [0, ∞] is an exterior Radon measure as defined above. That is equivalent to saying that µ satisfies R1, R2 and R3 for any Borel set A ⊂ X.

August 8, 2019

Exercise (1.31)

If μ is a Radon measure on a locally compact Hausdorff space (X, τ) , then μ is inner regular on all σ -finite μ -measurable sets. In particular, if μ is σ -finite, then it is inner regular on all μ -measurable sets.

Exercise (1.32)

Let X be a locally compact separable metric space. Then μ is a Radon measure on X iff μ is a locally finite Borel regular measure on X. Moreover, if μ is such a measure, then μ is σ -finite, hence it is inner regular on all μ -measurable sets by the previous exercise.

Exercise (1.31)

If μ is a Radon measure on a locally compact Hausdorff space (X, τ) , then μ is inner regular on all σ -finite μ -measurable sets. In particular, if μ is σ -finite, then it is inner regular on all μ -measurable sets.

Exercise (1.32)

Let X be a locally compact separable metric space. Then μ is a Radon measure on X iff μ is a locally finite Borel regular measure on X. Moreover, if μ is such a measure, then μ is σ -finite, hence it is inner regular on all μ -measurable sets by the previous exercise.

August 8, 2019

Corollary (1.33)

It follows from the previous exercise that, if X is a locally compact separable metric space and $\mu : \mathscr{B}_X \to [0,\infty]$ is a measure which is finite on compact subsets of X, then the canonical extension of μ to a measure on X is a Radon measure.

Definition (1.34)

Let μ be a measure on a topological space *X*.

- We say that μ is *concentrated* on a set $A \subset X$ if $\mu(X \setminus A) = 0$.
- The support of µ, denoted by spt µ, is the complement of the union of all open sets V ⊂ X such that µ(V) = 0.

August 8, 2019

Definition (1.34)

Let μ be a measure on a topological space *X*.

- We say that μ is *concentrated* on a set $A \subset X$ if $\mu(X \setminus A) = 0$.
- The support of µ, denoted by spt µ, is the complement of the union of all open sets V ⊂ X such that µ(V) = 0.

August 8, 2019

Definition (1.34)

Let μ be a measure on a topological space *X*.

- We say that μ is *concentrated* on a set $A \subset X$ if $\mu(X \setminus A) = 0$.
- The support of µ, denoted by spt µ, is the complement of the union of all open sets V ⊂ X such that µ(V) = 0.

< ロ > < 同 > < 回 > < 回 >

August 8, 2019

Proposition (1.35)

If μ is a measure on a second countable topological space or if μ is a Radon measure on a locally compact Hausdorff topological space, then μ is concentrated on its support. Actually, its support is the smallest closed set on which μ is concentrated.

August 8, 2019

Proof.

- If μ is a measure on a second countable topological space X, by Lindelöf's theorem we may cover X \ spt μ by countably many open sets of measure zero, thus μ(X \ spt μ) = 0.
- If μ is a Radon measure on a locally compact Hausdorff topological space, for each compact K ⊂ X \ spt μ, we may cover K with finitely many open sets of measure zero, hence μ(K) = 0. By interior regularity, it follows that μ(X \ spt μ) = sup{μ(K) | K ⊂ X \ spt μ, K compact} = 0. In any of the two cases, its clear that spt μ the smallest closed set on which μ is concentrated.

< ロ > < 同 > < 回 > < 回 >

Proof.

- If μ is a measure on a second countable topological space X, by Lindelöf's theorem we may cover X \ spt μ by countably many open sets of measure zero, thus μ(X \ spt μ) = 0.
- If μ is a Radon measure on a locally compact Hausdorff topological space, for each compact K ⊂ X \ spt μ, we may cover K with finitely many open sets of measure zero, hence μ(K) = 0. By interior regularity, it follows that μ(X \ spt μ) = sup{μ(K) | K ⊂ X \ spt μ, K compact} = 0. In any of the two cases, its clear that spt μ the smallest closed set on which μ is concentrated.

Proof.

- If μ is a measure on a second countable topological space X, by Lindelöf's theorem we may cover X \ spt μ by countably many open sets of measure zero, thus μ(X \ spt μ) = 0.
- If μ is a Radon measure on a locally compact Hausdorff topological space, for each compact K ⊂ X \ spt μ, we may cover K with finitely many open sets of measure zero, hence μ(K) = 0. By interior regularity, it follows that μ(X \ spt μ) = sup{μ(K) | K ⊂ X \ spt μ, K compact} = 0. In any of the two cases, its clear that spt μ the smallest closed set on which μ is concentrated.

< ロ > < 同 > < 回 > < 回 >

Proposition (Regularity properties of restrictions; 1.36)

Let μ be a measure on the set X and $A \subset X$. The following properties hold:

If X is a metric space, μ is a Borel regular measure on X and either 1) $A \in \mathscr{B}_X$ or 2) $A \in \sigma(\mu)$ and $\mu(A) < \infty$, then $\mu \sqsubseteq A$ is Borel regular.

If X is a locally compact separable metric space, μ a Radon measure on X and either 1) A ∈ ℬ_X or 2) A ∈ σ(μ) and μ(A) < ∞, then μ ∟A is a Radon measure.

Proposition (Regularity properties of pushforwards; 1.37)

Proposition (Regularity properties of restrictions; 1.36)

Let μ be a measure on the set X and $A \subset X$. The following properties hold:

If X is a metric space, μ is a Borel regular measure on X and either 1) $A \in \mathscr{B}_X$ or 2) $A \in \sigma(\mu)$ and $\mu(A) < \infty$, then $\mu \sqsubseteq A$ is Borel regular.

If X is a locally compact separable metric space, μ a Radon measure on X and either 1) A ∈ ℬ_X or 2) A ∈ σ(μ) and μ(A) < ∞, then μ ∟A is a Radon measure.

Proposition (Regularity properties of pushforwards; 1.37)

Proposition (Regularity properties of restrictions; 1.36)

Let μ be a measure on the set X and $A \subset X$. The following properties hold:

- If X is a metric space, μ is a Borel regular measure on X and either 1) $A \in \mathscr{B}_X$ or 2) $A \in \sigma(\mu)$ and $\mu(A) < \infty$, then $\mu \sqsubseteq A$ is Borel regular.
- If X is a locally compact separable metric space, μ a Radon measure on X and either 1) A ∈ ℬ_X or 2) A ∈ σ(μ) and μ(A) < ∞, then μ ∟A is a Radon measure.</p>

Proposition (Regularity properties of pushforwards; 1.37)

Proposition (Regularity properties of restrictions; 1.36)

Let μ be a measure on the set X and $A \subset X$. The following properties hold:

- If X is a metric space, μ is a Borel regular measure on X and either 1) $A \in \mathscr{B}_X$ or 2) $A \in \sigma(\mu)$ and $\mu(A) < \infty$, then $\mu \sqsubseteq A$ is Borel regular.
- If X is a locally compact separable metric space, μ a Radon measure on X and either 1) A ∈ ℬ_X or 2) A ∈ σ(μ) and μ(A) < ∞, then μ ∟A is a Radon measure.</p>

Proposition (Regularity properties of pushforwards; 1.37)

Definition (Measurable spaces and measurable maps; 1.39)

A measurable space is a pair (X, \mathcal{M}) where X is a set and \mathcal{M} is a σ -algebra of subsets of X. The elements of \mathcal{M} are called \mathcal{M} -measurable subsets of X.

Given measurable spaces (X, \mathcal{M}) and (Y, \mathcal{N}) , a map $f : X \to Y$ is called *measurable with respect to* \mathcal{M} *and* \mathcal{N} if, $\forall A \in \mathcal{N}$, $f^{-1}(A) \in \mathcal{M}$.

< ロ > < 同 > < 回 > < 回 >

August 8, 2019

Definition (Measurable spaces and measurable maps; 1.39)

A measurable space is a pair (X, \mathcal{M}) where X is a set and \mathcal{M} is a σ -algebra of subsets of X. The elements of \mathcal{M} are called \mathcal{M} -measurable subsets of X.

Given measurable spaces (X, \mathcal{M}) and (Y, \mathcal{N}) , a map $f : X \to Y$ is called *measurable with respect to* \mathcal{M} *and* \mathcal{N} if, $\forall A \in \mathcal{N}$, $f^{-1}(A) \in \mathcal{M}$.

< ロ > < 同 > < 回 > < 回 >

August 8, 2019

Measurable maps

If X (or Y) is a topological space, we shall tacitly assume that the σ -algebra \mathcal{M} is the Borel σ -algebra \mathscr{B}_X . Thus, for instance:

- For X = ℝ and Y a topological space (in particular, for Y = ℝ or C), a map f : X → Y is called *Lebesgue measurable* if it is measurable with respect to ℒ and ℬ_Y, where ℒ is the σ-algebra of Lebesgue measurable subsets of ℝ.

Measurable maps

If X (or Y) is a topological space, we shall tacitly assume that the σ -algebra \mathcal{M} is the Borel σ -algebra \mathscr{B}_X . Thus, for instance:

- For X = ℝ and Y a topological space (in particular, for Y = ℝ or C), a map f : X → Y is called *Lebesgue measurable* if it is measurable with respect to ℒ and ℬ_Y, where ℒ is the σ-algebra of Lebesgue measurable subsets of ℝ.

August 8, 2019

Measurable maps

If X (or Y) is a topological space, we shall tacitly assume that the σ -algebra \mathcal{M} is the Borel σ -algebra \mathscr{B}_X . Thus, for instance:

- For X = ℝ and Y a topological space (in particular, for Y = ℝ or ℂ), a map f : X → Y is called *Lebesgue measurable* if it is measurable with respect to ℒ and ℬ_Y, where ℒ is the σ-algebra of Lebesgue measurable subsets of ℝ.

August 8, 2019

Definition (μ -measurable maps)

Let μ be a measure on the set X and Y a topological space. A function $f : \text{dom } f \subset X \rightarrow Y$ is called *measurable with respect to* μ if the following conditions hold:

- Its domain covers almost all of X, i.e. $\mu(X \setminus \text{dom } f) = 0$,
- **(**) for all $B \in \mathscr{B}_Y$, $f^{-1}(B)$ is μ -measurable.

μ -measurable maps

f: dom $f \subset X \to Y$ is measurable with respect to μ in the sense of the definition above iff any extension of f to a map $X \to Y$ is measurable with respect to $\sigma(\mu)$ and \mathscr{B}_Y .

Definition (μ -measurable maps)

Let μ be a measure on the set *X* and *Y* a topological space. A function $f : \text{dom } f \subset X \rightarrow Y$ is called *measurable with respect to* μ if the following conditions hold:

- Its domain covers almost all of X, i.e. $\mu(X \setminus \text{dom } f) = 0$,
- **(**) for all $B \in \mathscr{B}_Y$, $f^{-1}(B)$ is μ -measurable.

μ -measurable maps

 $f : \text{dom } f \subset X \to Y$ is measurable with respect to μ in the sense of the definition above iff any extension of f to a a map $X \to Y$ is measurable with respect to $\sigma(\mu)$ and \mathscr{B}_Y .

3

・ロト ・ 四ト ・ ヨト ・ ヨト

Theorem (Properties of measurable maps; 1.41) Let (X, \mathcal{M}) , (Y, \mathcal{N}) , (Z, \mathcal{O}) be measurable spaces. The following properties hold:

- $f: X \to Y$ is measurable iff given $S \subset 2^{Y}$ such that $\sigma(S) = \mathbb{N}$, for all $B \in S$, $f^{-1}(B) \in \mathbb{M}$.
- If $f: X \to Y$ and $g: Y \to Z$ are both measurable maps, so is $g \circ f$.
- If X and Y are topological spaces and $f : X \rightarrow Y$ is continuous, then it is Borelian.
- For Y = ℝ, if (f_n)_{n∈ℕ} is a sequence of measurable maps X → ℝ, the following maps X → ℝ are measurable: inf_{n∈ℕ} f_n, sup_{n∈ℕ} f_n, lim inf f_n, lim sup f_n. In particular, if (f_n)_{n∈ℕ} is pointwise convergent, the limit function is measurable. More generally, if Y is a metric space and (f_n)_{n∈ℕ} is a pointwise convergent sequence of measurable maps X → Y, the limit function is measurable.

Theorem (Properties of measurable maps; 1.41)

Let (X, \mathcal{M}) , (Y, \mathcal{N}) , (Z, \mathcal{O}) be measurable spaces. The following properties hold:

- $f: X \to Y$ is measurable iff given $S \subset 2^{Y}$ such that $\sigma(S) = \mathbb{N}$, for all $B \in S$, $f^{-1}(B) \in \mathbb{M}$.
- 0 If $f: X \to Y$ and $g: Y \to Z$ are both measurable maps, so is $g \circ f$.
- If X and Y are topological spaces and $f : X \rightarrow Y$ is continuous, then it is Borelian.
- For Y = ℝ, if (f_n)_{n∈ℕ} is a sequence of measurable maps X → ℝ, the following maps X → ℝ are measurable: inf_{n∈ℕ} f_n, sup_{n∈ℕ} f_n, lim inf f_n, lim sup f_n. In particular, if (f_n)_{n∈ℕ} is pointwise convergent, the limit function is measurable. More generally, if Y is a metric space and (f_n)_{n∈ℕ} is a pointwise convergent sequence of measurable maps X → Y, the limit function is measurable.

Theorem (Properties of measurable maps; 1.41)

Let (X, \mathcal{M}) , (Y, \mathcal{N}) , (Z, \mathcal{O}) be measurable spaces. The following properties hold:

- $f: X \to Y$ is measurable iff given $S \subset 2^Y$ such that $\sigma(S) = \mathbb{N}$, for all $B \in S$, $f^{-1}(B) \in \mathbb{M}$.
- **1** If $f: X \to Y$ and $g: Y \to Z$ are both measurable maps, so is $g \circ f$.
- If X and Y are topological spaces and $f : X \rightarrow Y$ is continuous, then it is Borelian.

For Y = ℝ, if (f_n)_{n∈ℕ} is a sequence of measurable maps X → ℝ, the following maps X → ℝ are measurable: inf_{n∈ℕ} f_n, sup_{n∈ℕ} f_n, lim inf f_n, lim sup f_n. In particular, if (f_n)_{n∈ℕ} is pointwise convergent, the limit function is measurable. More generally, if Y is a metric space and (f_n)_{n∈ℕ} is a pointwise convergent sequence of measurable maps X → Y, the limit function is measurable.

Theorem (Properties of measurable maps; 1.41)

Let (X, \mathcal{M}) , (Y, \mathcal{N}) , (Z, \mathcal{O}) be measurable spaces. The following properties hold:

- $f: X \to Y$ is measurable iff given $S \subset 2^Y$ such that $\sigma(S) = \mathbb{N}$, for all $B \in S$, $f^{-1}(B) \in \mathbb{M}$.
- **1** If $f: X \to Y$ and $g: Y \to Z$ are both measurable maps, so is $g \circ f$.
- If X and Y are topological spaces and $f : X \rightarrow Y$ is continuous, then it is Borelian.

For Y = ℝ, if (f_n)_{n∈ℕ} is a sequence of measurable maps X → ℝ, the following maps X → ℝ are measurable: inf_{n∈ℕ} f_n, sup_{n∈ℕ} f_n, lim inf f_n, lim sup f_n. In particular, if (f_n)_{n∈ℕ} is pointwise convergent, the limit function is measurable. More generally, if Y is a metric space and (f_n)_{n∈ℕ} is a pointwise convergent sequence of measurable maps X → Y, the limit function is measurable.

Theorem (Properties of measurable maps; 1.41)

Let (X, \mathcal{M}) , (Y, \mathcal{N}) , (Z, \mathcal{O}) be measurable spaces. The following properties hold:

- $f: X \to Y$ is measurable iff given $S \subset 2^Y$ such that $\sigma(S) = \mathbb{N}$, for all $B \in S$, $f^{-1}(B) \in \mathbb{M}$.
- **1** If $f: X \to Y$ and $g: Y \to Z$ are both measurable maps, so is $g \circ f$.
- If X and Y are topological spaces and $f : X \rightarrow Y$ is continuous, then it is Borelian.
- For $Y = \overline{\mathbb{R}}$, if $(f_n)_{n \in \mathbb{N}}$ is a sequence of measurable maps $X \to \overline{\mathbb{R}}$, the following maps $X \to \overline{\mathbb{R}}$ are measurable: $\inf_{n \in \mathbb{N}} f_n$, $\sup_{n \in \mathbb{N}} f_n$, lim inf f_n , lim sup f_n . In particular, if $(f_n)_{n \in \mathbb{N}}$ is pointwise convergent, the limit function is measurable. More generally, if Y is a metric space and $(f_n)_{n \in \mathbb{N}}$ is a pointwise convergent sequence of measurable maps $X \to Y$, the limit function is measurable.

Corollary (1.42)

If $f, g : X \to \overline{\mathbb{R}}$ are both measurable, so are $\max\{f, g\}$ and $\min\{f, g\}$. In particular, both $f^+ := \max\{f, 0\}$ and $f^- := \max\{-f, 0\}$ are measurable.

< ロ > < 同 > < 回 > < 回 >

August 8, 2019

Definition (σ -algebra induced by a family of maps; 1.43)

Let *X* be a set, $(Y_{\alpha}, \mathcal{N}_{\alpha})_{\alpha \in A}$ a family of measurable spaces and $(X \xrightarrow{f_{\alpha}} Y_{\alpha})_{\alpha \in A}$ a family of maps defined on *X*. The smallest σ -algebra on *X* for which $\forall \alpha \in A$, f_{α} is measurable (i.e. the intersection of the family of σ -algebras which make all f_{α} 's measurable maps) is called σ -algebra induced by $(f_{\alpha})_{\alpha \in A}$, denoted by $\sigma((f_{\alpha})_{\alpha \in A})$.

Proposition (1.44)

With the notation from the previous definition, let ${\mathfrak M}=\sigma(({\mathfrak f}_lpha)_{lpha\in{\mathsf A}})$.

- If $\forall \alpha \in A$, $\mathbb{N}_{\alpha} = \sigma(S_{\alpha})$, then $\mathcal{M} = \sigma(\{V \subset X \mid \exists \alpha \in A, \exists D \in S_{\alpha}, V = f_{\alpha}^{-1}(D)\}).$
- If (Z, \mathfrak{O}) is a measurable space, then a map $g : Z \to X$ is measurable with respect to \mathfrak{O} and \mathfrak{M} iff $\forall \alpha \in A$, $f_{\alpha} \circ g$ is measurable.

Definition (σ -algebra induced by a family of maps; 1.43)

Let *X* be a set, $(Y_{\alpha}, \mathcal{N}_{\alpha})_{\alpha \in A}$ a family of measurable spaces and $(X \xrightarrow{f_{\alpha}} Y_{\alpha})_{\alpha \in A}$ a family of maps defined on *X*. The smallest σ -algebra on *X* for which $\forall \alpha \in A$, f_{α} is measurable (i.e. the intersection of the family of σ -algebras which make all f_{α} 's measurable maps) is called σ -algebra induced by $(f_{\alpha})_{\alpha \in A}$, denoted by $\sigma((f_{\alpha})_{\alpha \in A})$.

Proposition (1.44)

With the notation from the previous definition, let $\mathfrak{M} = \sigma((f_{\alpha})_{\alpha \in A})$.

$$If \forall \alpha \in A, \ \mathcal{N}_{\alpha} = \sigma(S_{\alpha}), \ then \\ \mathcal{M} = \sigma(\{V \subset X \mid \exists \alpha \in A, \exists D \in S_{\alpha}, V = f_{\alpha}^{-1}(D)\}).$$

If (Z, 0) is a measurable space, then a map g : Z → X is measurable with respect to 0 and M iff ∀α ∈ A, f_α ∘ g is measurable.

Examples of induced σ -algebras

Product σ -algebra Let $(X_{\alpha}, \mathcal{M}_{\alpha})_{\alpha \in A}$ be a family of measurable spaces. On the product $X = \prod_{\alpha \in A} X_{\alpha}$, the σ -algebra induced by the family of projections $(\mathrm{pr}_{\alpha} : X \to X_{\alpha})_{\alpha \in A}$ is called product σ -algebra, denoted by $\otimes_{\alpha \in A} \mathcal{M}_{\alpha}$.

Pullback Let (Y, \mathbb{N}) be a measurable space and $f : X \to Y$. The σ -agebra on X induced by $\{f\}$ is called *pullback* of \mathbb{N} , denoted by $f^*\mathbb{N}$.

Note that $f^*\mathbb{N} = \{f^{-1}(V) : V \in \mathbb{N}\}$. In particular, if $X \subset Y$ e f = i is the inclusion $X \to Y$, the *pullback* $i^*\mathbb{N}$ coincides with $\{B \cap X : B \in \mathbb{N}\}$, called *restriction* or *trace* of \mathbb{N} on X, usually denoted by $\mathbb{N}|_X$. In this situation, if $X \in \mathbb{N}$, then $\mathbb{N}|_X = \{B \in \mathbb{N} \mid B \subset X\}$.

3

イロト 不得 トイヨト イヨト

Examples of induced σ -algebras

Product σ -algebra Let $(X_{\alpha}, \mathcal{M}_{\alpha})_{\alpha \in A}$ be a family of measurable spaces. On the product $X = \prod_{\alpha \in A} X_{\alpha}$, the σ -algebra induced by the family of projections $(\operatorname{pr}_{\alpha} : X \to X_{\alpha})_{\alpha \in A}$ is called *product* σ -algebra, denoted by $\otimes_{\alpha \in A} \mathcal{M}_{\alpha}$.

Pullback Let (Y, \mathbb{N}) be a measurable space and $f : X \to Y$. The σ -agebra on X induced by $\{f\}$ is called *pullback* of \mathbb{N} , denoted by $f^*\mathbb{N}$.

Note that $f^*\mathbb{N} = \{f^{-1}(V) : V \in \mathbb{N}\}$. In particular, if $X \subset Y$ e f = i is the inclusion $X \to Y$, the *pullback* $i^*\mathbb{N}$ coincides with $\{B \cap X : B \in \mathbb{N}\}$, called *restriction* or *trace* of \mathbb{N} on X, usually denoted by $\mathbb{N}|_X$. In this situation, if $X \in \mathbb{N}$, then $\mathbb{N}|_X = \{B \in \mathbb{N} \mid B \subset X\}$.

3

イロト 不得 トイヨト イヨト

Examples of induced σ -algebras

Product σ -algebra Let $(X_{\alpha}, \mathcal{M}_{\alpha})_{\alpha \in A}$ be a family of measurable spaces. On the product $X = \prod_{\alpha \in A} X_{\alpha}$, the σ -algebra induced by the family of projections $(\operatorname{pr}_{\alpha} : X \to X_{\alpha})_{\alpha \in A}$ is called *product* σ -algebra, denoted by $\otimes_{\alpha \in A} \mathcal{M}_{\alpha}$.

Pullback Let (Y, \mathbb{N}) be a measurable space and $f : X \to Y$. The σ -agebra on X induced by $\{f\}$ is called *pullback* of \mathbb{N} , denoted by $f^*\mathbb{N}$.

Note that $f^*\mathbb{N} = \{f^{-1}(V) : V \in \mathbb{N}\}$. In particular, if $X \subset Y$ e f = i is the inclusion $X \to Y$, the *pullback* $i^*\mathbb{N}$ coincides with $\{B \cap X : B \in \mathbb{N}\}$, called *restriction* or *trace* of \mathbb{N} on X, usually denoted by $\mathbb{N}|_X$. In this situation, if $X \in \mathbb{N}$, then $\mathbb{N}|_X = \{B \in \mathbb{N} \mid B \subset X\}$.

3

イロト 不得 トイヨト イヨト

Examples of induced σ -algebras

Product σ -algebra Let $(X_{\alpha}, \mathcal{M}_{\alpha})_{\alpha \in A}$ be a family of measurable spaces. On the product $X = \prod_{\alpha \in A} X_{\alpha}$, the σ -algebra induced by the family of projections $(\operatorname{pr}_{\alpha} : X \to X_{\alpha})_{\alpha \in A}$ is called *product* σ -algebra, denoted by $\otimes_{\alpha \in A} \mathcal{M}_{\alpha}$.

Pullback Let (Y, \mathbb{N}) be a measurable space and $f : X \to Y$. The σ -agebra on X induced by $\{f\}$ is called *pullback* of \mathbb{N} , denoted by $f^*\mathbb{N}$. Note that $f^*\mathbb{N} = \{f^{-1}(V) : V \in \mathbb{N}\}$. In particular, if $X \subset Y$

For that $f : \mathcal{N} = \{f \in \mathcal{N}\}$, in particular, if $X \subset F$ e f = i is the inclusion $X \to Y$, the *pullback* $i^*\mathcal{N}$ coincides with $\{B \cap X : B \in \mathcal{N}\}$, called *restriction* or *trace* of \mathcal{N} on X, usually denoted by $\mathcal{N}|_X$. In this situation, if $X \in \mathcal{N}$, then $\mathcal{N}|_X = \{B \in \mathcal{N} \mid B \subset X\}$.

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

Products, pullbacks and traces

- a map taking values on a product of measurable spaces endowed with the product *σ*-algebra is measurable iff each of its components is measurable.
- if a map *f* takes values on a measurable space (*Y*, N) and has its image contained in a subset *X*, than *f* is measurable iff it is measurable as a map taking values on *X* endowed with the trace *σ*-algebra.
- If X is a topological space and A ⊂ X, ℬ_X|_A = ℬ_A, i.e. the trace σ-algebra of ℬ_X on A coincides with the Borel σ-algebra of A endowed with the relative topology.

Products, pullbacks and traces

- a map taking values on a product of measurable spaces endowed with the product *σ*-algebra is measurable iff each of its components is measurable.
- if a map *f* takes values on a measurable space (Y, N) and has its image contained in a subset X, than *f* is measurable iff it is measurable as a map taking values on X endowed with the trace *σ*-algebra.
- If X is a topological space and A ⊂ X, ℬ_X|_A = ℬ_A, i.e. the trace σ-algebra of ℬ_X on A coincides with the Borel σ-algebra of A endowed with the relative topology.

Products, pullbacks and traces

- a map taking values on a product of measurable spaces endowed with the product *σ*-algebra is measurable iff each of its components is measurable.
- if a map *f* takes values on a measurable space (*Y*, N) and has its image contained in a subset *X*, than *f* is measurable iff it is measurable as a map taking values on *X* endowed with the trace *σ*-algebra.
- If X is a topological space and A ⊂ X, ℬ_X|_A = ℬ_A, i.e. the trace σ-algebra of ℬ_X on A coincides with the Borel σ-algebra of A endowed with the relative topology.

< ロ > < 同 > < 回 > < 回 >

August 8, 2019

Proposition (Product of Borel σ -algebras; 1.47)

Let $(X_{\alpha}, \tau_{\alpha})_{\alpha \in A}$ be a family of topological spaces and $X = \prod_{\alpha \in A} X_{\alpha}$ endowed with the product topology. Then:

() Equality holds in the previous item if A is countable and $\forall \alpha \in A, \tau_{\alpha}$ is second countable.

A D b 4 A b

August 8, 2019

Corollary (1.48)

For any $n \in \mathbb{N}$, $\mathscr{B}_{\mathbb{R}^n} = \bigotimes_1^n \mathscr{B}_{\mathbb{R}}$. In particular, if (X, \mathcal{M}) is a measure space, a map $f = (f_1, \ldots, f_n) : X \to \mathbb{R}^n$ is measurable iff each component f_i is measurable, $1 \le i \le n$.

Corollary (1.49)

Let (X, \mathcal{M}) be a measurable space, Y a topological space, $f_1, \ldots, f_n : X \to \mathbb{R}$ measurable maps and $\Phi : \mathbb{R}^n \to Y$ Borelian. Then $\Phi(f_1, \ldots, f_n) : X \to Y$ is measurable. In particular, sums, products and differences of measurable maps $X \to \mathbb{R}$ are measurable.

August 8, 2019

Corollary (1.48)

For any $n \in \mathbb{N}$, $\mathscr{B}_{\mathbb{R}^n} = \bigotimes_1^n \mathscr{B}_{\mathbb{R}}$. In particular, if (X, \mathcal{M}) is a measure space, a map $f = (f_1, \ldots, f_n) : X \to \mathbb{R}^n$ is measurable iff each component f_i is measurable, $1 \le i \le n$.

Corollary (1.49)

Let (X, \mathcal{M}) be a measurable space, Y a topological space, $f_1, \ldots, f_n : X \to \mathbb{R}$ measurable maps and $\Phi : \mathbb{R}^n \to Y$ Borelian. Then $\Phi(f_1, \ldots, f_n) : X \to Y$ is measurable. In particular, sums, products and differences of measurable maps $X \to \mathbb{R}$ are measurable.

August 8, 2019

Measurable partitions

Proposition (1.50)

Let (X, \mathcal{M}) , (Y, \mathcal{N}) be measurable spaces, and $(A_n)_{n \in \mathbb{N}}$ a sequence in \mathcal{M} such that $\bigcup_{n \in \mathbb{N}} A_n = X$. Then a map $f : X \to Y$ is measurable iff $\forall n \in \mathbb{N}$, $f|_{A_n} : A_n \to Y$ is measurable, where each A_n is endowed with the trace σ -algebra.

Example (1.51)

Let $+: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be arbitrarily defined on $\{(+\infty, -\infty), (-\infty, +\infty)\}$ and in the usual way on the complement of this set. Taking $A_1 = \{(+\infty, -\infty), (-\infty, +\infty)\}, A_2 = \mathbb{R} \times \{+\infty\} \cup \{+\infty\} \times \mathbb{R}, A_3 = \mathbb{R} \times \{-\infty\} \cup \{-\infty\} \times \mathbb{R}$ and $A_4 = \mathbb{R} \times \mathbb{R}$ in the previous preposition, is clear that + is Borelian. Thus, if (X, \mathcal{M}) is a measurable space and $f, g : X \to \mathbb{R}$ are measurable maps, so is f + g. We can treat similarly the difference, product and quotient of extended real valued measurable maps.

Gláucio Terra (IME - USP)

Measurable partitions

Proposition (1.50)

Let (X, \mathcal{M}) , (Y, \mathcal{N}) be measurable spaces, and $(A_n)_{n \in \mathbb{N}}$ a sequence in \mathcal{M} such that $\bigcup_{n \in \mathbb{N}} A_n = X$. Then a map $f : X \to Y$ is measurable iff $\forall n \in \mathbb{N}$, $f|_{A_n} : A_n \to Y$ is measurable, where each A_n is endowed with the trace σ -algebra.

Example (1.51)

Let $+: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be arbitrarily defined on $\{(+\infty, -\infty), (-\infty, +\infty)\}$ and in the usual way on the complement of this set. Taking $A_1 = \{(+\infty, -\infty), (-\infty, +\infty)\}, A_2 = \mathbb{R} \times \{+\infty\} \cup \{+\infty\} \times \mathbb{R}, A_3 = \mathbb{R} \times \{-\infty\} \cup \{-\infty\} \times \mathbb{R}$ and $A_4 = \mathbb{R} \times \mathbb{R}$ in the previous preposition, is clear that + is Borelian. Thus, if (X, \mathcal{M}) is a measurable space and $f, g : X \to \mathbb{R}$ are measurable maps, so is f + g. We can treat similarly the difference, product and quotient of extended real valued measurable maps.

Gláucio Terra (IME - USP)