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General Notations and Conventions

We list below some basic notation used for objects which are not
defined in the text. A more detailed list, including the notation used
for objects defined in the text (with references to the pages where each
object was defined) may be found at the list of symbols at the end.

General convention for function spaces: From chapter 4 on, all
function spaces refer to spaces of real-valued functions, unless otherwise
specified.

2X power set of X 283
UA {y|Jz € Ay € x} 283
NA {y | Ve € A,y € x} 283

UacaXs  the same as U{X, |« € A} 283
UacaXo  the same as N{X, |« € A} 283

R [—00, 00] (extended real numbers) 283
U(x,r)  open ball of center x and radius r 283
B(xz,r)  closed ball of center x and radius r 283

U or U" open unit ball in R™ 283
B or B® closed unit ball in R™ 283

S» unit sphere in R"*! 283
C(z,r,h) Ulp-2,7) x U(q-2,h) CRF x R** forx = (p-x,q-x) € RF x R*7*F
283

C(z,r)  C(x,r,r) 283

C(z,7,h) C(z,r,h) C R¥ x R** 283
C(z,7)  C(z,r,7) 283

A closure of A 283

A° interior of A 283

A° complement of A 283

XA characteristic function of A 283

iii



lim sup f(z)

Tr—xQ

liminf f(z)

T—T0

LCH
LCS

o f

A(n,m)

Glossary

symmetric difference of A and B, i.e. (A\ B)U(B\ A) 283

A is a compact subset of X 283

norm of = (in R™, the euclidean norm, unless otherwise specified) 283
norm of uniform convergence. 283
oy # 0 and 0 otherwise 283

standard basis of R™ 283

m/2
m (euclidean volume of B™ if m integer) 283
inf sup f(x)=1lim sup f(z) 283
6>0 2€U(z0,7) ( ) 6—0 2€U(z0,7) ( )
sup inf x) =lim inf x) 283
5>Ig x€U(zo,r) f( ) 0—0 z€U(zo,r) f< )

locally compact Hausdorff space 283

locally compact separable metric space 283

bounded continuous functions 283

Ck functions with bounded derivatives up to order & 283
continuous functions with compact support 283

Ck functions with compact support 283

continuous functions which vanish at infinity 283

Ck functions whose derivatives up to order k vanish at infinity 283

ck functions on U whose derivatives up to order k extend continuously
to U 283

graph of f, ie. {(z,y) |y = f(z)} 283

epigraph of f, i.e. {( x,y) €Edom f xR |y > f(x)} 283

strict epigraph of f, i.e. {(x,y) €dom f xR |y > f(x)} 283
hypograph of f,i.e. {(z,y) €dom f xR |y < f(z)} 283
strict hypograph of f,ie. {(z,y) €dom f xR |y < f(x)} 283

feC(U)and 0 < f <1283
Dirac measure centered at a. 283
x— f(—x) 283

x— f(z —y) 283

Lipschitz constant of f 283

For a multi-index o € Z7, ((%1)041 e (%)anf 283

For a multi-index o« € Z", oy + -+ - 4+ v, 283
Fréchet derivative of f 283

set of strictly increasing functions {1,...,m} — {1,...,n} 283



CHAPTER 1

Measure and Integration Theory

1.1. Measures

DEFINITION 1.1. A measure on a set X is a set function p : 2% —
0, 00| such that:
M1) p(0) =0,
M2) (monotonicity) u(A) < u(B) whenever A C B,
M3) (countable subadditivity) p(Us Ay) < D u(Ay).

WARNING. Our nomenclature is in accordance with the one com-
monly used in Geometric Measure Theory. However, most textbooks
on Real Analysis (see, for instance, [Fol99]) call such a set function an
outer measure, reserving the name measure for a countably additive set
function defined on a o-algebra M of subsets of X, as defined below in
1.6. We shall use the term “measure” for both types of set functions,
if no confusion arises; if the context does not make it clear, we may
use, for clarification, “measure on a g-algebra” or “measure on M” for
countably additive set functions on g-algebras, or “outer measure” for
the set functions introduced in the previous definition.

DEFINITION 1.2. Given a measure p on a set X, a subset A C
X is called measurable with respect to pu (or p-measurable, or simply
measurable) if it satisfies the Carathéodory condition:

VI C X, u(T)=pu(TNA)+ T\ A).

We denote by o (i) the set of measurable subsets of X with respect
to u.

EXAMPLE 1.3. The following are examples of measures:

1) Let X be a set and p : 2% — [0, 00] be defined by u(A) := card (A)
if A is finite and p(A) := oo otherwise. Then p is a measure on X,
called counting measure, and it can be readily checked that o(u) =
2%,

2) Let X be aset, a € X and u : 2% — [0, 00] be defined by u(A) :=1
if a € A and u(A) := 0 otherwise. Then  is a measure on X, called
Dirac measure centered at a, denoted by ¢, (or simply 6 if a = 0).
It can be readily checked that o(d,) = 2¥.

1



2 1. MEASURE AND INTEGRATION THEORY

3) Let X = R™and p : 2¥ — [0, 00] be defined by u(A) := inf{} . 4 vol(Q) |
A countable cover of A by cubes with sides parallel to the coordi-
nate axes}, where vol(Q)) denotes the euclidean volume of the cube
@ (which is not assumed to be open or closed, i.e. any product of
intervals with the same length is a valid cube). Then y is a measure
on R", called Lebesque measure. We denote the Lebesgue measure
on R™ by |-| or £L", and the set o(L™) of Lebesgue-measurable sets
by Zgn (or simply Z).
4) Hausdorff measures, to be defined in section 2.

EXERCISE 1.4.

a) L" is invariant by translations, i.e. Vo € R", VA C R", L*"(A+1z) =
LM(A).

b) L£" is homogeneous of degree n with respect to homotheties, i.e.
VA >0, VA CR" L"(AA) = A"L™(A).

EXERCISE 1.5. Let p and v be measures on X and ¢ > 0. Then:

a) i+ v is a measure on X and o(p) No(v) C o(p+ v).
b) cu is a measure on X and o(cu) = o(p).

DEFINITION 1.6. Given a set X, M C 2% is called an algebra of
subsets of X if it contains the empty set, it is closed under comple-
mentation and closed under finite unions. M is called a o-algebra if it
is an algebra closed under countable unions. The sets in M are called
measurable with respect to M, or M-measurable, or (if clear from the
context) simply measurable.

Given a g-algebra M C 2% we call a set function p: M — [0, o0]
a measure on M if it satisfies:

M1) p(0) =0,
M2) (countable additivity) p(Une, A,) = S20° u(A,) (we use “U” for
disjoint unions).
A measure p: M — [0, 00] is called:

o complete it E € M, u(F)=0and A C F implies A € M,

o finite if u(X) < oo,

e o-finite if there exists a sequence (F,),eny in M such that
UnenE, = X and Vn € N, u(FE,) < oo. More generally, a set
A C X is said to be o-finite if it can be covered by countably
many measurable sets of finite measure.

THEOREM 1.7 (Carathéodory). If p is a measure on a set X, then
o(u) is a o-algebra and the restriction of p to o(u) is a complete mea-
sure on o).
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Thus, each measure determines a measure on a o-algebra by re-
striction to its measurable sets. Conversely, each measure defined on a
o-algebra of subsets of X can be extended to a measure on X:

THEOREM 1.8. If M is a o-algebra of subsets of X and p: M —
0, 00] is a measure on M, then the set function:

wr 2% — [0, o]
A — inf{u(F)|ACFEeM}

is a measure which extends p and such that M C o(u*).

The above theorem is a corollary of Carathéodory’s extension the-
orem ([Fol99], proposition 1.13). Henceforth, whenever no confusion

arises, we shall drop the “x” in the notation and denote by the same
symbol both the measure ;1 on M and its induced measure on X.

DEFINITION 1.9. A measure p : 2%¥ — [0, 00] is called:

e reqular, if VA C X, 3F € o(u) such that A C F and u(A) =
n(E).

e finite (respectively, o-finite) if so is its restriction to o(u), cf.
definition 1.6. We define similarly sets which are finite or o-
finite with respect to p.

REMARK 1.10. i) If we depart from a measure pu : M — [0, o]
defined on a o-algebra M C 2% and take its extension u* : 2% —
[0, o0] given by theorem 1.8, then the measure p* : o(u*) — [0, 00]
is an extension of u. It coincides with the completion of u if p is
o-finite (hence it is equal to p if p is complete and o-finite). In
general, this extension coincides with saturation of the completion
of 1 (see exercise 1.22 in [Fol99]).

ii) Similarly, if we depart from a measure u : 2% — [0,00], take
the measure on o(u) given by the restriction of u to o(u), and
then take the extension p* : 2% — [0,00] of the latter measure
given by theorem 1.8, then p* is a regular measure which satisfies
< p*. Equality holds iff p is a regular measure, cf. exercise 1.20
in [Fol99].

PROPOSITION 1.11 (continuity properties of measures). For a mea-
sure . on X, the following properties hold:

i) (continuity from below) if (E,)nen @S an increasing sequence in
0(1“)? then M(UzozlEn) = hmn—)oo H’(En);

it) (continuity from above) if (E,)nen is a decreasing sequence in o (i)
and p(Ey) < oo, then u(NS 1 E,) = limy, o u(E,).



4 1. MEASURE AND INTEGRATION THEORY

EXERCISE 1.12. If p is a regular measure on X, property i) in
proposition 1.11 holds for any increasing sequence (E,),en of subsets
of X (i.e. the sets need not be measurable).

1.1.1. Operations on measures. Three useful ways of obtaining
new measures from old are restrictions, traces and pushforwards:

DEFINITION 1.13 (Restrictions and traces of measures). Let p be
a measure on a set X and A C X. We define the:

e restriction of j1 to A, denoted by u LA, as the measure 2%X —
[0, 00] given by E — pu(ANE).

e trace of u on A, denoted by p|4, as the measure 24 — [0, o0
given by E + u(E), i.e the restriction to 24 C 2% of the map
w25 — [0, o).

Note that the restriction u LA is a measure on X, whereas the
trace |4 is a measure on A. Moreover, we do not assume A to be
p-measurable.

DEFINITION 1.14 (Pushforward of measures). Let u be a measure
on the set X and f : X — Y a map into the set Y. We define a
measure 2 — [0, 00] on Y by:

ACY = pu(f1(A),
called pushforward of p by f and denoted by fu .

PROPOSITION 1.15. Let p be a measure on the set X, A C X and
f: X =Y. The following properties hold:
i) o(p) Co(p LLA).
ii) If E € o(u), then ENA € o(ula). Besides, if A € o(u), then
o(pla) =o(p)n2t ={E €o(u)| B C A}.
i) For BCY, f~Y(B) is p-measurable ift VA C X, B is fy(u LLA)-

measurable.

PROOF.

i) Let B € o(u). It follows from Carathéodory’s condition in 1.2 that,
forall T C X, p LA(T) = n(ANT) = wf(ANTNB) 4+ pn((ANT)\
B) = pu LA(TNB)+up LA(T\B), hence B is i1 L A-measurable.

ii) Let B € o(u). It follows from Carathéodory’s condition that, for
all T C X, u(T) = p(T'N B) + (T \ B). In particular, for all
T C AysinceTNB=TNBNAand T\ B =T\ (BnNA):
u(T) = (TN B)+u(T\ B) = u(TNBNA)+u(T\ (BNA)),
hence BN A is p|a-measurable.
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Besides, if A € o(u) and B € o(p|a), for all T C X:
w(T) = w(TNA) + u(T\ A) =
— W(T AN B)+p(T 0 A\ B) + (T \ A) 2 u(T' 0 B) + (T \ B),

where we have used the p-measurability of A in (1), the p|a-
measurability of B in (2) and again the p-measurability of A in
(3), which allows us to conclude that (TN A\ B) + u(T\ A) =
n((T\B)NA) +up((T\B)\ A) =u(T\ B). Thus B € o(y).

iii) Let B C Y such that f~!(B) is u-measurable. For all A C X, for
all S CY:

falpn LAY)S) = p LA(FH(S) = (AN f71(S)) =
= (AN SN HB)) +u(An SN\ FU(B)) =
= (AN NSO B)) +u(AN S\ B)) =

= fa(p LA)(SNB) + fyu(p LA)(S\ B),

hence B is fu(p L A)-measurable.

Conversely, assume that VA C X, Bis f4(u L A)-measurable.
Forall T C X: p(TNf(B))+u(T\f(B)) = falp LT)(B)+
fap LTYY \ B) = fu(p LT)(Y) = p LT(X) = u(T), hence
f~Y(B) is p-measurable.

U

1.1.2. Measures on topological spaces. We now introduce a
topology 7 on the set X. We shall consider measures on X which
interact with the topology, in the sense that they have nice regularity
and approximation properties, to be made precise below. This will
allow us to obtain theorems which make an interplay between topology
and measure theory, one of the key ideas of Geometric Measure Theory.

Recall that, given a subset S C 2%, there exists a smallest o-algebra
of subsets of X which contains S, that is, the intersection of the family
of o-algebras that contain S (this family is non-empty, since 2% is such
a o-algebra). We denote this o-algebra by ¢ (.5), the so-called g-algebra
generated by S.

DEFINITION 1.16. For a topological space (X, 7), we define its Borel
o-algebra as the o-algebra generated by 7, i.e. o(7). We denote it by
PBx or B(X). The elements of By are called Borel sets.
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We say that a measure p on X is a Borel measure if each Borel set
is p-measurable, i.e. if Bx C o(u). A Borel regular measure on X is
a Borel measure on X which satisfies: VA C X, dF € %y such that
A C FE and u(A) = u(E).

EXERCISE 1.17. Let p and v be measures on a topological space X
and ¢ > 0.

a) If 4 and v are Borel measures on X, so are pu + v and cp.
b) If © and v are Borel regular measures on X, so are p + v and cu.

Note that, if S C 2% and M is a o-algebra of subsets of X, then
o(S) c M iff S € M. In particular, if (X, 7) is a topological space
and p is a measure on X, then p is a Borel measure iff 7 C o(p), i.e. if
each open subset of X is p-measurable (or, equivalently, if each closed
subset of X is g-measurable). In case the topology be metrizable by a
metric d, a simple criterion for a measure i to be Borelian is given by
the theorem below.

THEOREM 1.18 (Carathéodory’s criterion). A measure u on a met-
ric space (X,d) is Borel iff

(Ca) p(AUB) = p(A) + u(B)
whenever A, B C X satisfy d(A, B) := inf{d(a,b) | a € A,b € B} > 0.

PROOF. If v is Borel and d(A, B) > 0, then ANB = () = ANB and,
by the measurability of A, u(AUB) = u((AUB)NA)+pu((AUB)\A) =
u(A) + u(B).

Conversely, assume that condition (Ca) holds. In order to prove
that u is Borel, it suffices to prove that every closed set C' is measurable.
Equivalently, we must show that, for each T' C X such that u(T") < oo,
w(T) > w(T NC)+ p(T\ C) (what clearly implies Carathéodory’s
condition in definition 1.2, since the same inequality is trivial if u(7") =
oo and the other inequality holds by subadditivity of ).

For each i € N, let C; := {x € X | d(z,C) < 1/i}. Then d(T N
C,T\C;) > 1/i > 0, so that the monotonicity of ;1 and condition (Ca)
imply p(T) > p((TNCYU(T\C;)) = (T NC)+ pu(T\ C;). Therefore,
it suffices to prove that u(T \ C;) == u(T'\ C).

Foreach je N, let T, :=TN{z € X | ]ﬁ <d(z,C) < %} Due to
the fact that C'is closed, d(z, C') > 0iff z € X\C, hence Vi € N, T\C =
T\C;U3, T;. Therefore, Vi € N, u(T\C) < u(T\Ci)+_72,; u(Tj). The
thesis then follows if we show that » 7%, (7)) < oo, since this implies
> e (T5) %0, so that u(T'\ C) < liminf u(T\ C;) < limsup p(T"\
C;) < u(T\ C), where the last inequality holds by monotonicity.
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Since d(7;,T;) > 0if i # j are both odd or both even, it follows from
condition (Ca) that, for all k € N, u(T) > u(U5_,Ty;) = Z?ZIM(TQJ»)

and p(T) > (U Toji1) = S5y i(Tojn), thus S50, pu(To;) < p(T)
and > 72 u(Toj41) < p(T), from what we conclude that > 22| u(7}) <
2u(T) < oc.

U

ExAMPLE 1.19. The Lebesgue measure L™ is a Borel regular mea-
sure on R”. Indeed:

1) Let d be the euclidean distance in R"; we show L" satisfies the
Carathéodory criterion (CA). Given A, B C R™ such that d(A, B) =
0 > 0, let A be a countable cover of AU B by cubes with sides paral-
lel to the coordinate axes. Subdividing the sides of each cube in A, if
necessary, we may take another countable cover A’ of AU B formed
by cubes of diameter less than §/2 and such that » ., vol(Q) =
> 0eavol(Q). Discarding the cubes of the latter family which do
not intersect A or B, we obtain a subfamily A” which still covers
AU B. In view of the choice of the diameters of the cubes in A,
we can decompose A” in two disjoint subfamilies A" = A; U As,
where the cubes in A; cover A and those in Ay cover B. It then
follows that L"(A) + LM(B) < > oc, VoUQ) + D gea, vOU(Q) =
> 0ear VoUQ) < D pen vol(Q) = > e vol(Q). By the arbitrari-
ness of the countable cover A of AUB by cubes with sides parallel to
the coordinate axes, we conclude that £"(A)+ L"(B) < L"(AUB),
and the other inequality holds by finite subadditivity of £™. Thus,
by theorem 1.18, L™ is a Borel measure.

2) Let A C R” such that £"(A) < co. We contend that 3B € Bgn
such that A C B and L"(A) = L"(B) (hence L™ is Borel regular).
As a matter of fact, for each n € N, take a countable cover A,
of A by cubes with sides parallel to the coordinate axes such that
LMA) +1/n > 3 gea, vol(Q). Take B := Nyen Ugea, @, so that
A C B € Bgrn. Then, for each n € N, A, covers B, so that Vn € N,
LM(B) < Y gea, VoUQ) < L™(A) + 1/n, whence L™(B) < L"(A),
and the other inequality holds by monotonicity of £".

REMARK 1.20. Since the Lebesgue measure of each bounded cube
@ in R™ with sides parallel to the coordinate axes is finite (as it is
< vol(Q) < oo, by definition; it actually coincides with vol(Q), but we
postpone the proof of this fact to example 1.86, after the introduction
of product measures), and since R" is a countable union of such cubes,
which are Borelian, it follows that the restriction of L™ to % is a
o-finite measure on HBr.. By the Borel regularity of £", c¢f. example
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1.19, the extension given by theorem 1.8 of L™ : Brn — [0,00] is L"
itself. Therefore, by remark 1.10.(i), we conclude that the completion
of L™ : Brn — [0,00]. is L™ : L =0o(L™) — [0, 00].

REMARK 1.21. The fact that the inclusions Brn C £ C 28" are
strict can be seen by cardinality arguments. Indeed, card (%gr-)=c¢ and
card (Z) = 2¢, whence ZBrn & £. As to the strictness of the other
inclusion, it holds a more general result — see theorem 2.2.4 in [Fed69].

DEFINITION 1.22. A Borel measure p on a topological space (X, T)
is called:

e open o-finite if there exists a sequence (U, ),en of open subsets
of X such that X = U,enU, and Vn € N, p(U,) < oo.

e [ocally finite if, for each x € X, there exists an open neighbor-
hood U of x such that u(U) < oo .

It is clear that a locally finite Borel measure on a second countable
topological space is open o-finite.

As a rule of thumb, there are two main classes of measures which in-
teract nicely with the topology: 1) locally finite Borel regular measures
on separable metric spaces and 2) Radon measures (to be introduced in
definition 1.28) on locally compact Hausdorff spaces. For instance, the
approximation theorem below holds in the first case (and, by definition
1.28, similar approximation properties also hold for Radon measures).
In later developments of the theory we shall be mainly interested in
locally compact separable metric spaces (for instance, open subsets of
R™ or, more generally, locally closed subsets of R", like embedded sub-
manifolds), for which the aforementioned classes of measures coincide,
cf. exercise 1.32.

THEOREM 1.23 (approximation by open and closed sets). Let u be
an open o-finite Borel reqular measure on a topological space (X, T)
for which each closed set is a G (i.e. a countable intersection of open
sets). The following approzimation properties hold:

i) (approximation by open sets from the outside) VA C X, u(A) =
inf{u(U)| ACU e},

i1) (approximation by closed sets from the inside) VA € o(u), u(A) =
sup{u(C) | C C A, C closed}.

REMARK 1.24. The theorem holds, in particular, for a locally finite
Borel regular measure on a separable metric space.

The proof is a consequence of the following lemmas.

LEMMA 1.25. Let X be a set, S C 2% and F C 2% such that:
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o F is closed under countable intersections and countable unions.
e [fA €S, both A and its complement A° belong to F.

Then F D o(S).

PROOF. Let G :={A € F | A° € F}. Then:
1) Scg.

2) G is closed under complementation.
3) G is closed under countable unions. Indeed, if (A,,)nen is & sequence
in G, then U,enA, € F and (UpenAn)© = MuenAS € F.

Therefore, G is a o-algebra which contains S, i.e. o(S) C G C F. O

COROLLARY 1.26. If X is a set and S C 2%, o(S) is the smallest
family of subsets of X closed under countable unions and countable
intersections, which contains S and the complements of the elements

of S.

LEMMA 1.27. Let p be a Borel measure on a topological space (X, T)
for which each closed set is a Gs. If B € Bx and u(B) < oo, for all
€ > 0 there exists a closed set C C B such that u(B\ C) < e.

PROOF. Define v := u L B. By proposition 1.15, v is a finite Borel
measure.

Let S be the family of all closed subsets of X and F the family of
all v-measurable sets A C X such that Ve > 0, 3C C A closed with
v(A\ C) < e. We assert that F D HBy; in particular, that implies
B € F, whence the thesis. The assertion follows once we show that F
satisfies the hypotheses of lemma 1.25. Indeed:

e Let (A, )nen be a sequence in F and fix € > 0. For eachn € N,
3C, C A, closed such that v(A,, \ C,) < 27"e. Then, since
both NpenAn \ NnenCr and UyenA;, \ UpenC,, are contained in
Unen(Ay \ Cr), it follows by subadditivity that:

1) v(NuenAn \ MpenCr) < € and NuenC, is closed, thus
mnENAn cF

2) V(UpenAn\UnenCy) < €. Since v is finite and the sequence
of v-measurable sets (U,enA, \ UF_,Cp)ren decreases to
Unen4n \ UpenCh, by continuity from above 1.11 there
exists k € N such that v(UpenA, \ Uf_,C,) < €. As
Uk_,C, is closed, this shows that U,enA, € F.

e Since every closed subset of X is a Gy, taking complements we
conclude that every open subset of X is a F, i.e. a countable
union of closed sets. Thus, if C' € S, then C' € F and X \ C €
F, since F is closed under countable unions by the previous
item.
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Hence, by lemma 1.25, F D o(S) = %x, as asserted. d

PROOF OF THEOREM 1.23. Firstly, we prove part (ii). Let A €
o(p). Assume that u(A) < oo. Since p is Borel regular, 3B’ € By
such that B D A and u(B’) = p(A) < oo, hence u(B’'\ A) = 0. Use
the Borel regularity again to obtain B” € By such that B” D B\ A
and p(B") = u(B'\ A) = 0. Then B := B'\ B" € %y is such that
B C A and u(B) = p(A). Applying lemma 1.27 for a given € > 0,
we obtain a closed set C' C B such that u(B\ C) = p(A\ C) < ¢,
which proves part (ii) in case A has finite measure. If y(A) = oo, due
to the fact that u is o-finite, there exists a disjoint sequence (A, )nen
in o(p) such that A = Uyen A, and Vn € N, p(A,) < oo. Given
e > 0, for each n € N, apply the case just proved to obtain a closed
set C,, C A, such that u(A, \ C,) = u(A,) — n(C,) < 27" Since
Yoo i(Ay) = p(A) = oo, it then follows that Y >, u(C,) = oo.
Thus, for every M > 0, there exists N € N such that the closed
subset C' = UN_C,, of A has measure u(C) = S0 u(C,) > M, i.e.
sup{u(C) | C C A, C closed} = oo = u(A).

In order to prove part (i), we may assume, by Borel regularity, that
A € PBx. Assume that there exists an open set V such that VO A
and p(V) < o0o. The thesis in this case follows from part (ii), passing
to the complements: for a given ¢ > 0, take a closed set C C V' \ A
such that p((V \ A)\ C) < e. Then U =V \ C is an open set which
does the job: U D A and u(U \ A) < ¢, since U\ A= (V\ A)\C.

In the general case, given A € Ay, we use the hypothesis of u being
open o-finite to obtain a sequence (V},),en of open sets of finite measure
such that A C U,enV,,. Fix € > 0. For each n € N, we may apply the
case just proved to the Borel set ANV, C V,, to obtain an open set
U, D ANV, such that M(Un \ (AN Vn)) < 27 ". Then U = U,enU, is
an open set which cointains A and U\ A C Upen (U, \ (ANV,)), thus
w(U \ A) < e by countable subadditivity.

O

DEFINITION 1.28. A Radon measure on a locally compact Hausdorff
topological space (X, 7) is a Borel measure p on X such that:

R1) (finiteness on compact sets) if K is a compact subset of X, then
1(K) < oo,

R2) (interior regularity for open sets) for all U C X open, u(U) =
sup{u(K) | K C U, K compact},

R3) (exterior regularity) for all A C X, p(A) = inf{u(U) | A C
U,U open}.

REMARK 1.29.
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i) Note that, by condition R2 in the definition above, every Radon
measure is Borel regular.

ii) A measure p: Bx — [0,00] is called a Radon measure on ABx if
its extension u* : 2% — [0, 00] given by theorem 1.8 is a Radon
measure as defined above. That is equivalent to saying that pu
satisfies R1, R2 and R3 for any Borel set A C X, what coincides
with the usual definition of Radon measures in most Real Analysis
textbooks (for instance, in [Fol99], section 7.1).

It is clear that, if we depart from a Radon measure p : 2% —
[0, 00], its restriction to Ax is an Radon measure on Ay, whose
extension given by theorem 1.8 is the original measure pu, thanks to
its Borel regularity. We therefore obtain a bijection between the set
of outer Radon measures on X and the set of Radon measures on
A x, which associates each Radon outer measure to its restriction
to Bx. By means of this bijection, we may identify Radon outer
measures on X and Radon measures on Ax.

EXERCISE 1.30. If p and v are Radon measures on a locally compact
Hausdorff space X and ¢ > 0, then u + v and cu are Radon measures
on X.

EXERCISE 1.31. If 1 is a Radon measure on a locally compact Haus-
dorff space (X, ), then p is inner regular on all o-finite py-measurable
sets, i.e. property R2 holds for any o-finite p-measurable set A in
place of U. In particular, if p is o-finite, property R2 holds for all
p-measurable sets.

EXERCISE 1.32. Let X be a locally compact separable metric space.
Then p is a Radon measure on X iff u is a locally finite Borel regular
measure on X. Moreover, if u is such a measure, then p is o-finite,
hence it is inner regular on all y-measurable sets by the previous exer-
cise.

REMARK 1.33. It follows from exercise 1.32 that, if X is a locally
compact separable metric space and p : Zx — [0,00] is a measure
which is finite on compact subsets of X, then the extension of u to a
measure on X given by theorem 1.8 is a Radon measure (since it is a
locally finite Borel regular measure on X). In particular, the measure
1 on By is Radon, cf. remark 1.29.

DEFINITION 1.34 (Support of a measure on a topological space).
Let i be a measure on a topological space X.

e We say that p is concentrated on a set A C X if u(X\ A) = 0.

e The support of i, denoted by spt pu, is the complement of the
union of all open sets V' C X such that p(V) = 0.
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In the situation of the definition above, in general it is not true
that u is concentrated on its support, i.e that pu(X \ spt u) = 0. The
following proposition gives two sufficient conditions for that property
to hold:

ProOPOSITION 1.35. If i1 is a measure on a second countable topo-
logical space or if u is a Radon measure on a locally compact Hausdorff
topological space, then p is concentrated on its support. Actually, its
support is the smallest closed set on which p is concentrated.

PRrROOF. If 1 is a measure on a second countable topological space
X, by Lindel6f’s theorem we may cover X \ spt p by countably many
open sets of measure zero, thus p(X \ spt ) = 0. If p is a Radon
measure on a locally compact Hausdorff topological space, for each
compact K C X \ spt u, we may cover K with finitely many open sets
of measure zero, hence u(K) = 0. By interior regularity, it follows that
(X \ spt p) = sup{u(K) | K C X \spt p, K compact} = 0. In any of
the two cases, its clear that spt p the smallest closed set on which p is

concentrated.
O

In the following propositions, we relate measurability and regularity
properties of a measure p and those of the measures obtained from p
by restriction or pushforward operations.

PROPOSITION 1.36. Let y1 be a measure on the set X and A C X.
The following properties hold:

i) If X is a metric space, | is a Borel reqular measure on X and
either 1) A € Bx or 2) A € o(u) and u(A) < oo, then p LA is
Borel reqular.

it) If X is a locally compact separable metric space, pv a Radon measure
on X and either 1) A€ Bx or 2) A€ o(u) and u(A) < oo, then
LA is a Radon measure.

PROOF.

i) In both cases ;1 LA is a Borel measure, by proposition 1.15. We
must show that it is Borel regular.

1) Let A € #Bx. Given T' C X, we must show that 3B € HBx
such that B D T and p LLA(B) = u LLA(T). Since p is Borel
regular, 3B’ € B x such that B D ANT and u(B') = u(ANT).
Since B' D AN B > ANT, by monotonicity it follows p(A N
B') = n(ANT). Then, taking B = B'U A® € HABx, we have
BDOTand u LAB)=uwANB) =u(ANB) =uANT) =
p LA(T).
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2) Let A € o(p) with p(A) < co. Since p is Borel regular, 3A’ €
A x such that A’ O A and p(A") = u(A). Since A € o(p) has u-
finite measure, by finite additivity it follows that u(A"\ A) = 0,
hence u LA = u LA’ is Borel regular by the previous item.
ii) By remark 1.29, u is Borel regular. Hence, by the previous item,
w LA is Borel regular. Since p is locally finite, so is u L A. There-
fore, from exercise 1.32, we conclude that u LA is Radon.

O

ProprosITION 1.37. If both X and Y are separable locally compact
metric spaces, [ a continuous proper map and p a Radon measure on
X, then fup is a Radon measure on'Y, and spt fup = f(spt p).

PROOF.

1) fuu is a Borel measure. Indeed, if U C Y is open, so is f~1(U),
since f is continuous. In particular, f~'(U) € Zx C o(u), hence
U € o(fgp) by proposition 1.15.

2) fup is locally finite. Indeed, if K C Y is compact, so is f~1(K),
since f is proper. Hence fupu(K) = p(f~'(K)) < co. AsY is
locally compact, the assertion follows.

3) fau is Borel regular (hence Radon, by the previous items and by
exercise 1.32). Indeed, given T' C Y, we apply the exterior regularity
of yp on f~1(T) to obtain, for each n € N, U, C X open such that
Uy D f4T) and p(U,) < p(f(T)) + 1/n. Since f is closed
(because it is proper), V,, = Y \ f(X \U,) isopenin Y, T C V,
and, noting that f(Y \ f(X \U,)) = X\ [ f(X\U,) C U,
fen(Va) < p(U,) < p(fHT)) +1/n = fuu(T) + 1/n. Taking
V = NpenVi, € By, we then have T' C V and fop(T) = fap(V),
what proves the assertion.

4) Finally, we prove that spt fupu = f(spt p). Firstly, since 0 =
L \spt fagn) = u(X\f~(spt fg0)), and since X\ F(spt fp)
is open in X, it follows that X \ f~'(spt fgu) C X \ spt u, hence
(taking complements) spt 4 C f~'(spt fgu), from what we con-
clude that f(spt p) C spt fuu.

On the other hand, fupu(Y '\ f(spt ) = p(X \ f71f(spt p)) <
(X \spt 1) =0, hence spt fp is concentrated on f(spt p). Since f
is closed, f(spt ) is a closed subset of Y, thus spt fuu C f(spt u),
and we had already proved the other inclusion, whence the thesis.

0

REMARK 1.38. Let X and Y be separable locally compact metric
spaces, u a Radon measure on X and f: X — Y a Borelian map, i.e.
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such that VB € By, f~1(B) € %x. If f is not a continuous proper
map, fxp may not be a Radon measure on Y (it might not be finite on
compact sets, and even if it is, it might not be a Borel regular measure).
However, if we add the hypothesis that, for all K C Y, p(f‘l(K)) <
0o, we may modify the definition of the pushforward in order to ensure
that fup be a Radon measure on Y. Instead of taking the pushforward
by f of the outer measure p (i.e. the pushforward in the sense of
definition 1.14), we take the pushforward by f of the measure i : Zx —
[0, 00], i.e. the measure fyp on By given by A € By — pu(f~'(A)),
which is finite on compact sets by the hypothesis assumed on f and pu.
Then, by remarks 1.29 and 1.33, fxu is a Radon measure on Y. Both
definitions of fupu coincide if f is a proper continuous map.

1.2. Measurable Maps

DEFINITION 1.39 (Measurable spaces and measurable maps). A
measurable space is a pair (X, M) where X is a set and M is a o-
algebra of subsets of X. The elements of M are called M-measurable
(or simply measurable, if M is clear from the context) subsets of X.

Given measurable spaces (X, M) and (Y,N),amap f: X — Y is
called measurable with respect to M and N (or simply measurable, if
M and N are clear from the context) if, VA € N, f71(A4) € M.

If X (orY) is a topological space, we shall tacitly assume that the
o-algebra M is the Borel g-algebra Zx, unless another o-algebra is
explicitly specified. Thus, for instance:

e For X and Y topological spaces, a map f : X — Y is called
Borelian or Borel measurable if it is measurable with respect
to Bx and By .

e For X = R and Y a topological space (in particular, for Y = R
or C), amap f: X — Y is called Lebesque measurable if it
is measurable with respect to . and %y, where .Z is the
o-algebra of Lebesgue measurable subsets of R.

DEFINITION 1.40 (pu-measurable maps). Let p be a measure on the
set X and Y a topological space. A function f :dom f C X — Y is
called measurable with respect to p if the following conditions hold:

i) its domain covers almost all of X, i.e. p(X \ dom f) =0,
ii) for all B € By, f~'(B) is p-measurable.

Due to the fact that every subset of null measure of X is y-measurable,
amap f:dom f C X — Y is measurable with respect to pu in the
sense of the definition above iff any extension of f toaamap X — Y is
measurable with respect to o(u) and Ay in the sense of definition 1.39.
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Moreover, if f is y-measurable, any other function which coincides with
f except for a set of null measure is also p-measurable.
We list below some of the main properties of measurable maps.

THEOREM 1.41 (Properties of measurable maps). Let (X, M), (Y, N),

(Z,0) be measurable spaces. The following properties hold:

i) f: X — Y is measurable iff given S C 2 such that o(S) = N,
forall Be S, f71(B) e M.

i) If f: X =Y and g : Y — Z are both measurable maps, so is go f.

iti) If X and Y are topological spaces and f : X — Y is continuous,
then it is Borelian.

) For Y =R, if (fu)nen is a sequence of measurable maps X — R,
the following maps X — R are measurable: inf,en fn, SUP,cn fo,
liminf f,, limsup f,. In particular, if (fu)nen s pointwise con-
vergent, the limit function is measurable. More generally, if Y is
a metric space and (f,)nen 1S a pointwise convergent sequence of
measurable maps X — Y, the limit function is measurable.

PROOF.

i) The implication (=) is clear. On the other hand, N’ := {T' C
Y | f7YT) € M} is clearly a o-algebra of subsets of Y. Thus, if
Sc N, N=0c(S)CN, ie. fismeasurable.

ii) VA€ O, (go )™ (A) = f1(¢7'(A)) e M.

iii) Since f is continuous, YU € 7y, f~H(U) € 7x C o(7x) = Bx. As
o(1y) = By, it suffices to apply part i to S = 7y

iv) Let g := inf,ey fn. Foralla € R, g7 ([, 00]) = Npen S, ([, 00]) €

M. Since S := {[a, ] | @ € R} generates Ay, it follows from part

i that g is measurable. Similarly, sup,,cy f» is measurable, and so

are liminf f,, = sup,cyinf,> f, and limsup f,, = infrensup,,~;, fn-

Finally, let (f,)nen be a sequence of measurable maps X —

Y pointwise convergent to f. Then, for each open set U C Y,

FHU) = Uien Ujen Mz [t {x € U | d(x, Y\ U) > 1/i}) € M,

hence f is measurable.
O

COROLLARY 1.42. If f,g : X — R are both measurable, so are
max{f,g} and min{f,g}. In particular, both fT:= max{f,0} and
fmi=max{—f,0} are measurable.

DEFINITION 1.43 (c-algebra induced by a family of maps). Let

X be a set, (Yo, Ny)aca a family of measurable spaces and (X ELN
Ya)aca a family of maps defined on X. The smallest o-algebra on X
for which Voo € A, f, is measurable (i.e. the intersection of the family
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of o-algebras which make all f,’s measurable maps) is called o-algebra
induced by (fa)aca, denoted by a((fa)aeA).

PropPOSITION 1.44. With the notation from definition 1.43, let
M = 0-((fa)oz€A)‘
i) IfVa € A, N, = 0(S,), then M =o({V C X | Ja € A,3D €
S,V = [ 1(D)}).
it) If (Z,O) is a measurable space, then a map g : Z — X is measur-
able with respect to O and M iff Va € A, f, o g is measurable.

PROOF.

i) Let N:i=o({VCX|3a€A,3DeS,,V=[7D)}). It follows
from theorem 1.41.i that Vo € A, f, is measurable with respect to
N and N,. Hence, M C N, and the other inclusion follows from
the fact that {V € X | Ja € A,3D € S,,V = f;1(D)} c M.

ii) (=) follows from theorem 1.41 part ii. Conversely, if Va € A,
fa © g is measurable, then Voo € A, VD € N, g7 f71(D) = (fa o
g)"Y(D) € O, thus g is measurable by the previous item and by
theorem 1.41 part i.

O

Particular cases of the above construction are:

Product g-algebra: Let (X,, Mg)aca be a family of measur-
able spaces. On the product X = [] .4 Xa, the o-algebra
induced by the family of projections (pr, : X — Xa)aca is
called product o-algebra, denoted by ®pea M.

Pullback: Let (Y, N) be a measurable space and f : X — Y.
The o-agebra on X induced by {f} is called pullback of N,
denoted by f*N.

Note that f*N = {f~Y(V) : V € N}. In particular, if
X CY e f =1is the inclusion X — Y, the pullback i*N
coincides with {BNX : B € N}, called restriction or trace of
N on X, usually denoted by N|x. In this situation, if X € N,
then N|x ={BeN | BcC X}

REMARK 1.45. As an application of proposition 1.44, note that:

e a map taking values on a product of measurable spaces en-
dowed with the product o-algebra is measurable iff each of its
components is measurable.

e if a map f takes values on a measurable space (Y, N') and has
its image contained in a subset X, than f is measurable iff it
is measurable as a map taking values on X endowed with the
trace o-algebra.
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e If X is a topological space and A C X, Bx|a = B, i.e. the
trace o-algebra of Zx on A coincides with the Borel o-algebra
of A endowed with the relative topology.

EXERCISE 1.46. If X is a locally compact separable metric space,
1 a Radon measure on X and A C X is locally compact in the relative
topology (i.e. A is a locally closed subspace), then p|4 is a Radon
measure on A.

PROPOSITION 1.47 (Product of Borel o-algebras). Let (Xo, To)aca
be a family of topological spaces and X = [],. 4 Xo endowed with the
product topology. Then:

Z) RacA %Xa C %X.
it) Equality holds in the previous item if A is countable and Vo € A, 1,
15 second countable.

aEA

PROOF. For each a € A, the projection [] ., Xo — X, is con-
tinuous. Hence, by theorem 1.41.iii, it is measurable with respect to
Bx and Hx,_. It then follows from proposition 1.44.ii that the iden-
tity X — X is measurable with respect to Zx and Rpeca By, , i-e.
Raca Bx, C Bx.

On the other hand, assume that A is countable and Vo € A, 7, is
second countable, so that the product topology on X is second count-
able. We may take a countable base for this topology formed by rectan-
gles [],c4 Ua where each U, is open in X, and, except for finetely many
a’s, U, = X,. Since each such rectangle is measurable with respect
t0 ®aca Hx,,, it follows that every open set in the product topology,
being a countable union of such rectangles, is measurable with respect
t0 Ruea Bx.,, thus Bx C Qaca Bx,, - O

COROLLARY 1.48. For any n € N, Brn = Q Br. In particular,
if (X, M) is a measure space, a map f = (f1,...,fn) : X — R" is
measurable iff each component f; is measurable, 1 <1 < n.

It follows from the corollary above, identifying C = R? as metric
spaces, that a function f : X — C is measurable iff both Re f and Im f
are measurable.

COROLLARY 1.49. Let (X, M) be a measurable space, Y a topo-
logical space, fi,..., [, : X — R measurable maps and & : R* — Y
Borelian. Then ®(fi,..., f,) : X — Y is measurable. In particular,
sums, products and differences of measurable maps X — R are mea-
surable.

So is the quotient of measurable maps, as long as the denominator
is never zero, but see example 1.51, below.
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The following is a useful criterion for testing measurability in terms
of countable measurable covers.

PROPOSITION 1.50. Let (X, M), (Y,N') be measurable spaces, and
(An)nen a sequence in M such that UpenA, = X. Then a map f :
X =Y is measurable iff Y¥n € N, fla, : A, = Y is measurable, where
each A, is endowed with the trace o-algebra.

PROOF. For each B € N, f7H(B) = Upenfl4 (B) € M, since
Vn € N, M|a, C M, due to the fact that Vn € N, 4,, € M. O

The following example shows how the proposition above may be
applied:

EXAMPLE 1.51.

1) Let sgn : C — C be defined by sgn z:= z/|z| if z # 0 and sgn 0 := 0.
Taking X = C, A; = {0} and A, = C\ {0} in proposition 1.50, it
is clear that sgn is measurable (note that the trace o-algebra on A,
coincides with its Borel g-algebra as a metric subspace of C, and
that sgn |4, is continuous). Thus, if (X, M) is a measurable space,
each measurable function f : X — C admits a polar decomposition
f =segn f-|f|, where each factor is measurable.

2) Let 4 : RxR — R be arbitrarily defined on {(+o00, —00), (—00, +00)}
and in the usual way on the complement of this set. Taking A; =
{(+00, —00), (—00,4+00)}, A2 = R x {+00} U {400} x R, A3 =
R x {—oc0} U{—o0} x R and A; = R x R in preposition 1.50, is
clear that + is Borelian. Thus, if (X, M) is a measurable space and
f,g: X — R are measurable maps, so is f + g. We can treat sim-
ilarly the difference, product and quotient of extended real valued
measurable maps.

We now focus our attention in a class of measurable maps which

will be used to develop the integration theory of a measure p on a set
X.

DEFINITION 1.52 (Simple functions). Let X and Y be measurable
spaces. A function ¢ : X — Y is called simple if it is measurable and
has finite image.

In the next section we shall be concerned with simple functions
taking values in R or C.

PROPOSITION 1.53 (properties of simple functions). Let (X, M) be
a measure space.

i) The set of all C-valued simple functions on X is a subalgebra of
CX.
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it) If f + X — [0, 00| is measurable, there exists an increasing sequence
(@n)nen of simple functions X — [0, 00) which converges pointwise
to f and such that the convergence is uniform on each part where
f is bounded.

wi) If f + X — C is measurable, there exists a sequence (@pn)nen Of
simple functions X — C which converges pointwise to f, and such
that Yn € N, |p,| < |pnt1] < |f| and the convergence is uniform
on each part where f is bounded.

EXERCISE 1.54. Let (X, M) be a measurable space, f : X — [0, 0]
measurable, (7, )nen @ sequence in (0, 00) such that r, = 0e > oo 7, =
oo. Then there exists a sequence (A, )nen in M such that Y, rixa,
increases pointwise to f.

HINT. Define (Ag)ren and (gx)ren inductively by: 1) Ay = {z €
X | < f(o)}and gy :=rixa,; 2) Ap o= {z € X | gea(2)+r L < f(x)}
and gr 1= gr—1 + TEX4,-

EXERCISE 1.55. Let (X, M) be a measurable space, Y a separable
metric space and f : X — Y a measurable map. Then there exists a
sequence of simple functions X — Y which converges pointwise to f.

We end this section with a definition of support for measurable
functions on a topological space endowed with a Borel measure which
is often more natural from a measure-theoretic point of view than the
usual definition of support.

DEFINITION 1.56 (Support and essential support). Let X be a topo-
logical space endowed with a Borel measure ¢ and f a measurable
function on X.

i) The support of f, denoted by spt f, is the complement in X of the
union of all open sets on which f is null'.

ii) The essential support of f, denoted by essspt f, is the complement
in X of the union of all open sets on which f is p-a.e. null.

REMARK 1.57 (Support and essential support). With the notation
from the previous definition:

1) It is clear that essspt f C spt f.

2) If f is continuous on X and spt p = X, then essspt f = spt f.

3) If X is second countable, or if X is locally compact Hausdorff and p
is Radon, then essspt f is the complement of the biggest open set
on which f is null p-a.e.

1Actually this definition makes sense for arbitrary functions on topological
spaces, not necessarily endowed with measures.
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4) We adopt the convention that, henceforth, “support of f” means
“essential support of 7, which will be denoted accordingly by “spt f”.

1.3. Integration Theory

Up to the end of this section, we fix a measure ;1 on the set X. The
restriction of p to o(u) yields a classical measure space (X,o(u), p),
for which an integration theory is developed in standard Real Analysis
textbooks. For the sake of completeness, we list some definitions and
theorems below and refer the reader elsewhere for more details.

In the theory of integration described below we consider measurable
functions on X taking values in R or C. We denote by L* (1) the set
of p-measurable functions on X taking values in [0, 0o].

DEFINITION 1.58. For a simple function ¢ € L*(p), i.e. for ¢ simple
and taking values in [0, 00), let Im¢ = {ay,...,a,}, with a; # a; if
1 # j, so that ¢ = Z?:l @i X o1 (a;) (which is the so-called standard
form or standard representation of the simple function ¢). We define
the integral of p with respect to u by:

/@du = Zam(so’l(ai)) € [0, 00},

where we use the convention 0 - oo := 0.
For an arbitrary f € L™ (u), we now define:

[ rani=sunf [ w| e Lt simple o < 1} € 0.

One can check that, whenever f,g € L*(u) and ¢ € [0,00), [(f +
g)dp= [ fdp+ [gdpand [cfdp=c [ fdpu. _

For a pu-measurable function f taking values in R, we consider the
positive and negative parts of f, i.e. fT = max{f,0} and f~ =
max{—f,0}; according to corollary 1.42, they are both measurable
and satisfy f = ft — f= |f| = [T+ f~. We say that f is inte-
grable if [ ftdu < oo or [ f~du < oo; if so, we define [ fdu:=
[ fTdu—[ f*du € R. Wesay that f is summable if both [ f+du < oo
and [ f~du < oo (or, equivalently, if [|f|dp < o0), i.e. if f is inte-
grable and [ fdu € R.

As it is usual, henceforth we omit the “4” in the notation whenever
the measure is clear from the context. For a measurable set £ C X,
we define [, f:= [ x&f-

Finally, a p-measurable C-valued function f is called summable if
[1f] < oo (or, equivalently, if both real and imaginary parts of f are
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summable). For such a function, we define [ f:= [Ref+i [Imf €
C. We denote by L!(u1) the set of summable functions f: X — C.

If 11 is the counting measure on a set X and f is an integrable func-
tion on X, we use the notation Y,y f(z) for [ fdpu, called unordered
sum of f.

EXERCISE 1.59. Let If 1 be the counting measure on a set X and
f:X —0,00]. Then

Z flz) = sup{z fle)| FC X ﬁnite}.

zeX zeF
Moreover, if 3 _y f(z) < 0o, then {z € X | f(z) > 0} is countable.

WARNING. Some authors use the nomenclature “almost integrable”
for what we have called “integrable” and “integrable” for what we have
called “summable”.

We summarize the main properties of the integral defined above
in the theorems that follow. As it is usual, we say that a property P
which refers to points of X holds u-almost everywhere (or simply almost
everywhere if the measure is clear from the context), with notation “P
p-a.e.” or “P ae. [u]”, if the set of the points at which P does not
hold has measure zero.

THEOREM 1.60 (properties of the integral). The following proper-
ties for the integral defined in 1.58 hold:

i) LY(u) is a complex vector space and the integral is a linear func-
tional on 1t.
i) If f € LY, then [ f=0iff f =0 p-a.e.
wi) If f and g are integrable and f = g a.e., then [ f= [g. If f <g
a.e., then [ f < [g.
w) (integral triangle inequality) If f € LY, then |[ f| < [|f].
v) Ve Lr(w), [|fllh:= [If|du defines a seminorm on L*(p).

It follows from ii, above, that the linear subspace N := {f € L1(u) |
I fll: = 0} of L(u) consists of the measurable functions on X which
are null almost everywhere. The elements of the quotient L!(x)/N are,
therefore, classes of equivalence of summable functions which coincide
almost everywhere, and ||-|[; is a norm on this quotient. The fact
that this norm is complete (so that L'(4)/N is a Banach space) is a
consequence of the convergence theorems 1.62 and 1.64 stated below.

REMARK 1.61. As it is usual, we shall, henceforth, overload the
notation “L*(x)”, which will be used both with its original meaning and
also to denote the aforementioned quotient space. That is, whenever
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we write “f € LY(n)”, it may signify, depending on the context, that f
is a summable function or that f is a class of equivalence of summable
functions which coincide almost everywhere. A similar remark applies
to the LP spaces, to be introduced in subsection 1.3.1, below.

THEOREM 1.62 (monotone convergence theorem). Let (f,)nen be
an increasing sequence in LT (p), which converges p-a.e. to f € LT (u).

Then [ f, — [ f.

THEOREM 1.63 (Fatou’s lemma). Let (f,)nen be a sequence in
L™ (). Then [liminf f, <liminf [ f,.

THEOREM 1.64 (dominated convergence theorem). Let (f,)nen be
a sequence in LY () dominated by a summable function g, i.e such that
Vn € N, |ful < 9. If (fu)nen converges pointwise almost everywhere to

[, then f € LY(p) and [ f,, — [ f.
COROLLARY 1.65. With the same hypothesis, f, — f in LY(u).

PROOF. |f,— f| converges pointwise almost everywhere to zero and
the convergence is dominated by 2¢, hence ||f, — flli = [|fo — f| —
0. O

Thus, dominated pointwise almost everywhere convergence implies
convergence in L. On the other hand, without additional hypothe-
ses we cannot recover pointwise almost everywhere convergence from
L! convergence, but we can ensure the pointwise almost everywhere
convergence of a subsequence, i.e. if (f,), converges to f in L(u),
there exists a subsequence of (f,,) which converges pointwise almost
everywhere to f.

The following improved version of the dominated convergence the-
orem often comes in handy:

THEOREM 1.66 (generalized dominated convergence theorem). Let
(fu)nen and (gn)nen be sequences in L(u) such that:
i) Vn € N, |f| < gn p-a.e.
it) fn — f pointwise a.e. and g, — g pointwise a.e.
i) [ g — [g < oc.
Then f € LY(u) and [ f, — [ f.

An important application of the dominated convergence theorem
is related to the study of continuity and differentiability of functions
defined by integrals. For instance, the following proposition is a direct
consequence of the dominated convergence theorem:
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PROPOSITION 1.67 (differentiation under the integral sign using
the dominated convergence theorem). Let I C R be a nondegenerate
interval and f : X x I —> R such that ¥t € I, f(-,t) € LY(u). Let
F: I — R defined by F(t) := [ f(z,t)dp(z).

i) Let ty € I and suppose that Yz € X, Ilimyy, f(x,t) and there
exists g € LY(u) such that | f(z,t)| < g( ) for all (z,t). Then

hm/f (x,t) dp(z /}E’iﬁf(t,x) dp(x).

t—to

In particular, F is continuous at ty if Vo € X, f(x,-) is continuous
m tg.
i) Suppose that exists 2L at and there exists g € LY (i) such that ‘% (z,t)] <
g(x) for all (xz,t). Then F is differentiable and

’w:/%mﬁww.

Similar statements hold if we replace the parameter interval 1
by an open subset of R¥.

EXERCISE 1.68 (upper and lower integrals). We call ¢ : X — C an
extended simple function if it is p-measurable and its image is count-
able. For a function f : X — [0,00], not necessarily measurable, we
define:
o (upper integral) [* f du:=inf{ [ ¢du | ¢ € LT extended simple, o >
fae} €l0,00],
o (lower integral) [ fdp:=sup{[ ¢du|¢ € LT extended simple, p <
fae} el0,00].
Prove that:
a) If [ f= ["f < oo, then f is y-measurable and [ f coincides with
both upper and lower integrals (hence f € L!).
b) If f is prmeasurable, then [ f= [ f= [ f.
¢) The monotone convergence theorem holds for the upper integral,
i.e. if (fn)nen is a sequence of positive functions (not necessarily
measurable) which increases p-a.e. to a function f (not necessarily
measurable), then [~ f, — [ f. Similarly, Fatou’s lemma also
holds for the upper integral.
d) If (fu)nen is a sequence of positive functions (not necessarily mea-
surable) such that [ " fo — 0, there exists a subsequence of (fy)nen
which converges pointwise almost everywhere to zero.

EXERCISE 1.69. Let p be a measure on a set X and A C X.
a) If f € LT (), then f € LT(u LLA), fla € LT (ula)and [ fd(p LA) =
J flad(ula).
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b) If A € o(u), both integrals in the previous item coincide with
Ja fdp.

EXERCISE 1.70. Let u be a measure on the set X and f : X —
Y a map into the set Y. If g € L*(fgp), then go f € LT(u) and

Jgd(fem) = [go fdpu.

REMARK 1.71. In the previous exercise, if X and Y are topological
spaces and f : X — Y is a Borelian map, the same same statement
holds for a Borelian function g > 0 on Y if we take the alternative
definition of the pushforward from remark 1.38, i.e. we take the push-
forward by f of the measure p on %x, which is a measure fup on
Py, and then we take the extension of this measure given by theorem
1.7 (the alternative definition may be more convenient in this situation
because it yields a Borel regular measure). In fact, both definitions of
fup coincide on Ay, and the integrals depend only on the measures
on the Borel sets, i.e. they depend only on u : By — [0,00] and
fap: By — [0, 00].

1.3.1. LP spaces.

DEFINITION 1.72. Let f be a C-valued measurable function on X.
We define:

o For real 0 < p < o0, [|f]l,i= ([IfP d)" "> € [0, 0],
e For p =oo, ||f|l, =inf{C e R||f| < Cp—ae onX} e
[0, 00] (note that inf ) = +00).

For 0 < p < oo, we define LP(u):= {f : X — C p — measurable |
1fllp < o0}

For p € [1,00], we define its conjugate exponent p' € [1,00] by
%%—[%:1 (thus p’ = oo for p =0 and p' =1 for p = o0).

For each real 0 < p < oo or p = o0, one can readily check that
LP(u) is a vector space over C. For 1 < p < oo, it follows from theorem
1.75, stated below, that ||-||, is a seminorm on LP(u).

THEOREM 1.73 (Holder’s inequality). For any p € [1,00], f,g C-
valued measurable functions on X, the following inequality holds:

gl < I 1bllglly-
In particular, fg € LX) if f € LP(u) and g € LP (p).

THEOREM 1.74 (Generalized Holder’s inequality). Let py,...,px €

[1,00] such that Zle pii =1 <1 and fi,..., fr C-valued measurable
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functions on X. Then

k k
T A0 < TTIS M-
i=1 i=1

In particular, Hle fie () if f; € LP(p) for 1 <i<k.

THEOREM 1.75 (Minkowski’s inequality). For any p € [1,00], f, g
C-valued measurable functions on X, the following inequality holds:

1f+ gl < 1 fllp + llgllp-

For 1 < p < oo, the linear subspace N := {f € LP(n) | ||f]l, =
0} of LP(u) consists of the measurable functions on X which are null
almost everywhere. Therefore, the quotient LP(u)/N consists of classes
of equivalence of functions in LP(x) which coincide almost everywhere,
and ||-||, is a norm on this quotient, which is complete by the following
theorem. As in remark 1.61, we shall henceforth overload the notation
“LP(p)”, which will be used both with its original meaning and also to
denote the aforementioned quotient space.

THEOREM 1.76. For 1 < p < oo, LP(u) is a Banach space. For
p = 2, it is a Hilbert space, since ||-||2 is induced by the Hermitian
inner product (f,g) == [ fgdu (where~ denotes complex conjugation),
whenever f,g € L?(u).

For 1 < p < oo, the theorem above is a consequence of the conver-
gence theorems for the integral 1.62, 1.63, 1.64.

We now state a basic interpolation theorem which may be derived
by a convenient application of Holder’s inequality.

THEOREM 1.77 (Basic interpolation for LP spaces). If 0 < p < g <
r < oo, then LP(p) N L"(u) C LY9(u) and, for all measurable f on X,
1 llg < IFIRILFIE, where X € (0,1) is defined by

I A 1=

qg P r

The following density theorem is a consequence of the regularity
properties of Radon measures (1.28, 1.31). For a locally compact Haus-
dorff space X, we denote by C_(X) the space of continuous functions
on X with compact support.

ProPOSITION 1.78. If 1 is a Radon measure on a locally compact
Hausdorff space X and 1 < p < 0o, then C_(X) is dense in LP(u).
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PROOF. Since LP simple functions are dense in LP (as it can be read-
ily checked by means of proposition 1.53 and theorem 1.64), it suffices
to prove that such functions may be arbitrarily approximated in the
LP norm by continuous functions with compact support. Besides, since
any LP simple function is a finite linear combination of characteristic
functions of measurable sets of finite measure, it suffices to show that,
given F € o(p) with u(E) < oo and € > 0, there exists ¢ € C(X)
such that ||¢ — xg|l, < e Indeed, take a compact set K C E and
an open set U D E such that pu(U \ K) < §, with § > 0 to be cho-
sen later. Applying Urysohn’s lemma, choose ¢ € C_(X) such that
0<¢ <1, ¢=1on aneighborhood of K and spt ¢ C U. Therefore,
xx < ¢ < xvand xx < xg < Xv , so that |¢ — xe| < xv — xx, what
implies ||¢ — x|, < lxv — Xk, = 6/7. Taking 6'/? < ¢, the thesis is
achieved. O

We now identify the dual space of the Banach space LP(u). For
fixed p € [1,00], ¢ = p’ the conjugate exponent of p and f € LP(u),
let @,(f) : LYu) — C be defined by g — [ fgdu. It follows from
Holder’s inequality 1.73 that ®,(f) is well defined, ®,(f) € L9(u)
and [|®,(f)|l; < |Ifll,- Actually, in “almost all” situations the last
inequality is an equality, and @, is an isometry of LP(u) onto L9(u):

THEOREM 1.79 (Riesz representation theorem). With the notation
above, if 1 < p < oo, ®, is an isometry of LP(u) onto L9(u)', so that
we may identify by means of this isometry L9(u)" = LP(u).

e Forp = oo, if p is o-finite, P, is an isometry of L(u) onto
L (), so that LX ()" = L ().

o For p = 1, ®, is an isometry of L*(u) into L=(u)', but in
general it is not onto, i.e. in general the dual of L>®(u) is
bigger than L(p).

We end this subsection with a criterion for compacity in LP(L").
For a function f defined on R™ and z,y € R", we adopt the usual
notation for translations:

7y f(x) = f(z —y)
THEOREM 1.80 (Kolmogorov-Riesz-Fréchet). Let 1 < p < oo and
F be a bounded subset of LP(L™) such that

lim 7./ — fl}, = 0

uniformly in f € F. Then, for each Q) € o(L™) with finite measure,
the closure of Flq in LP(L"|q) is compact.

Here, Flo:={fla| f € F}.
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1.3.2. Change of variables formula. We state in the next two
theorems the version of the change of variables formula for the Lebesgue
integral which is usually presented in Real Analysis textbooks. That
formula will be generalized in chapter 5 by the area and coarea formu-
las.

THEOREM 1.81 (linear change of variables for the Lebesgue inte-
gral). Let T' € GL(n,R).
i) IfA€ Lrn, thenT - A€ Lgrn and LT - A) = |det T|L"(A);
it) If f : R™ — R is Lebesque-measurable, so is foT, and, if f > 0
or f ell,

/fdmz/foﬂdem ac.

THEOREM 1.82 (Cl-change of variables formula for the Lebesgue
integral). Let U C R™ open and ¢ : U — R™ be a C* diffeomorphism
onto its image V = ¢(U) (which is an open subset of R™). If f is
a Lebesgue-measurable function on V', f o ¢ is a Lebesque-measurable
function on U; besides, if f > 0 or f € L1, then

/ Facr = / £ o é(x)[det Do (x)| AL ().
\%4 U

1.4. Product measures and Fubini-Tonelli’s theorem

If (X, M, u) and (Y, N, v) are measure spaces, there exists a stan-
dard construction, based on Carathéodory’s extension theorem, which
yields a measure p x v on the product cg-algebra M @ N C 2%¥*Y
called product measure of p and v. If both pu and v are o-finite,
i X v is characterized by the property of being the unique measure
on M x N such that , for all measurable rectangles A x B € M x N,
uxv(AxB) = u(A)v(B). The main tool used in the study and compu-
tation of integrals with respect to u X v is the classical Fubini-Tonelli’s
theorem, which relates integrals with respect to u X v to iterated inte-
grals with respect to p and v.

We now describe how to make an analogous construction for the
product of outer measures p on a set X and v on a set Y. We may
define the product p x v as the extension given by theorem 1.8 of the
product (in the sense of the previous paragraph) pt|s() ® v|s@). That
is equivalent to the definition below.

DEFINITION 1.83 (product measure). We define, for all £ C X x
Y, pxv(E) = inf{) uA)v(B,) | Vn € N, A, € o(pn),B, €
o(v), E C UpenAn X B,} € [0,00]. Recall that we use the convention
0-00=0. We call u x v the product measure of p and v.
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We make a similar definition for any finite number of measures.

The theorem below, which may be obtained as a direct consequence
of classical Fubini-Tonelli’s theorem for products of measures on o-
algebras, ensures that p x v it is indeed a measure. Note that p x v is
a regular measure, but we do not assume the regularity of p or v. We
use the following:

NOTATION.

e For £ C X xY and (xg,y0) € X XY, E, - ={yeY | (x,y) €
E} (the zg-section of E) and E,, = {x € X | (x,y0) € E}
(the yo-section of E).

e For a function f defined on dom f C X x Y and (zg,y) €
X xY, fi, (the zo-section of f) and f,, (the yo-section of
f) are the functions defined, respectively, on (dom f),, and

(dom f)y, by y — f(xo,y) and z — f(z,yo).

THEOREM 1.84 (Fubini-Tonelli’s for outer measures, [Fed69], [EG91]).
With the notation from the previous definition, p X v : 2X*¥ — [0, oo]
15 a reqular measure. Moreover:

i) If A€ o(p) and B € o(v), then Ax B € o(pu x v) and p X v(A X
B) = u(A)v(B).

it) If E € o(uxv) is o-finite with respect to u X v, then, for p-almost
everyx € X, E, € o(v), and for v-almost everyy € Y, E, € o(u).
The functions x +— v(E;) and y — u(E,) are measurable, and the
measure of E2 may be computed by:

px(B) = [v(E) du(o) = [ () )

iii) If f is an integrable function defined on dom f C X XY such that
{f # 0} is o-finite with respect to pxv (what holds, in particular, if
f is summable), then, for p-almost every x € X, f, is v-integrable,
and for v-almost every y € Y, f, is p-integrable. The almost
everywhere defined functions x — [ fydv and y — [ f,du are
integrable, and [ fd(u x v) may be computed by iterated integrals:

/fd,uxu //fxdy dp(z //fyd/,z ) du(y

REMARK 1.85. If ;4 and v are both o-finite, then so is u X v, so that
the o-finiteness hypotheses in parts ii and iii above are automatically
fulfilled. Moreover, every positive measurable function is integrable,
so that part iii holds for such functions (what corresponds to classical
Tonelli’s theorem).
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ExAMPLE 1.86. We show that the Lebesgue measure £" on R"

coincides with the product measure (£')" = L1 x---x L. Fix A C R"™.

1)

As defined in example 1.3, £"(A) = inf{}_, , vol(Q) | A countable
cover of A by cubes with sides parallel to the coordinate axes}.
Since any cube @ € R" is a product of intervals (hence a product
of L£'-measurable sets) and since, for each such cube, the euclidean
volume vol(Q) coincides with (£1)"(Q) (by the fact that the length
of an interval coincides with its Lebesgue measure), we immediately
conclude from definition 1.83 that (L£')"(A) < L"(A).

In the definition of £™"(A), we may use rectangles (i.e. products of
arbitrary intervals) instead of cubes (products of intervals with the
same side length), without modifying £"(A). Indeed, it suffices to
show that, for any such rectangle R = H?Zl I; and € > 0, R may be
covered by a countable family A of cubes such that » . , vol(Q) <
vol(R) + €. In order to accomplish that, assume vol(R) < oo (oth-
erwise we are done) and, for m € N (to be chosen later), cover
each interval I; by countably many disjoint intervals (1 ]’“m) ke With
side lengths equal to 1/m so that >, £'(I},,) — L'(I;) < 1/m.
Then A, := (H ]fﬁn X - X ]ffjlm) by is a countable cover of R

by cubes and Y-, vol(Q) = [Ty (X pen £ (1)) "% vol(R);
thus, for m sufficiently large, A = A,, does the job.

In view of the previous item, to prove the remaining inequality
(L£Y)*(A) > L"(A), it suffices to show that, given B = []_, B; with
(V1 < j <n)Bj € Ly, for all € > 0, there exists a countable fam-
ily A of rectangles which covers B and such that }_, , vol(Q) <
[li<j<n £'(B;) + ¢ We assume that [[,.,., L'(B;) < oo, oth-
erwise the inequality is trivial. Recall that £ is a Borel regu-
lar measure, as we have seen in example 1.19; actually, it is a
Radon measure, by exercise 1.32. It then follows from theorem
1.23 that, for any m € N and for 1 < j < n, there exist open sets
Ujm C Rsuch that B; C Uj,, and £! (Ujvm\Bj) < 1/m. Since each
open set in R is a countable disjoint union of open intervals, there
exists a countable family (1 ]’fm)keN of disjoint open intervals such

that Uj,m = UkEN I]k,m, take Am = (H]f,lm X oo X Iﬁ,ﬂm)kl
Then A,, is a countable family of rectangles which covers B and
> rean, Vol(RR) =[], LYUjm) =5 [Ticj<n LY(B;); thus, for m

sufficiently large, A = A, does the job.

EXERCISE 1.87 (Layer-cake formula, [LLO1]). Let p be a o-finite

measure on X and v a Radon measure on [0, 00). Define ¢ : [0,00) — R
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by ¢(t) = v([0,t)). Then, for every f € L*(p):
Jooran=[ uttr>ma
In particular, if p > 0 and v = ptP~1 dt, it follows:
/f )P dp(x / p({f > thHt* 1 de.

HinT. Compute the integral on the first member by means of Fubini-
Tonelli’s theorem.

We close this section with a useful generalization of Minkowski’s
inequality 1.75 which may be obtained as a corollary of Fubini-Tonelli’s
theorem:

THEOREM 1.88 (Minkowski’s inequality for integrals). Let (X, M, u)
and (Y,N,v) be o-finite measure spaces and f a M & N -measurable
function on X x Y.

i) If f >0 and 1 < p < oo, then

[ / ( / f(a,y) du(y))” du(z)] = / [ / F )" du(e)] ).

it) If p € [1,00], the inequality below holds if the second member
makes sense and is finite. That is, if for v-a.e. y €Y f(-,y) €
LP(i) and the a.e. defined v-measurable function y — ||f(-,y)||,
is v-summable, then for p-a.e. x € X, the function f(x,-) is v-
summoable, the a.e. defined jui- measumble functionz — [ f(x,y)dv(y)
is in LP(u) and

1 st awl < [176 0 i),

1.5. Signed measures and Lebesgue-Radon-Nikodym
theorems

In this subsection we are concerned with measures on o-algebras
(i.e. we don’t consider outer measures). We recall the notion of “signed
measure” and some important decomposition theorems which may be
used to relate the properties and the integration theory of one measure
on a o-algebra to the corresponding properties of another measure on
the same o-algebra.

DEFINITION 1.89 (signed measures). A charge or signed measure
on a measurable space (X, M) is a set function v : M — R such that

SM1) v(0) = 0;
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SM2) Imv C [—o0,00) or Imv C (—o00, 0] (i.e. ¥ omits —oo or 4+00);
SM3) v is o-additive, i.e. for all countable disjoint family (A, ),en in

Ma
V<UneNAn) = Z V<An)a

neN
with the meaning that n +— u(A,) is summable with respect to
the counting measure on N and the sum is p(U,enA4,).

We say that a signed measure v is finite if Imv C R (i.e. if v omits
both —oco and +00). We say that v is o-finite if there exists a sequence
(An)nen in M such that U,enA, = X and Vn € N, v(4,,) € R.

EXAMPLE 1.90.

1) Let py and pe be measures on (X, M) such that py or s is finite.
Then v = py — s is a signed measure on (X, M).

2) Let 1 be a measure on (X, M) and f : X — R an integrable function
(in the sense of definition 1.58). Then fu : M — R given by
A fA fdu is a signed measure.

REMARK 1.91.

1) The second example is a particular case of the first, since fu =
fTu— f~pu. We will see in theorem 1.94 and in exercise 1.96 that
every signed measure on (X, M) may be written in both forms 1)
and 2).

2) Note that every measure on (X, M) is a signed measure. As it is
usual, for clarity reasons, sometimes we call a measure on (X, M)
a positive measure, to contrast with “signed measure”.

DEFINITION 1.92 (absolute continuity and mutual singularity). Let
w and v be positive measures on a measurable space (X, M). We say
that:

1) p is absolutely continuous with respect to v (notation: p < v) if
VA e M, v(A) =0 implies u(A) = 0.

2) p and v are mutually singular (notation: p L v) if there exists
A € M such that p is concentrated on A and v is concentrated on
X\ A.

EXERCISE 1.93. Let p be a finite positive measure and v a positive
measure on a measurable space (X, M). Then p < v iff Ve > 0,
36 > 0,VA € M, v(A) < § implies u(A) <e.

THEOREM 1.94 (Jordan decomposition theorem). Let v be a signed
measure on a measure space (X, M). Then there are unique positive
measures vt and v~ such that v =v™ — v~ and vt L v,
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DEFINITION 1.95 (positive part, negative part and total variation
of a signed measure). With the notation from theorem 1.94, we call v*
the positive part of v and v~ the negative part of v.

The positive measure |v|:= v* + v~ is called the total variation of
V.

EXERCISE 1.96. If v is a signed measure on a measure space (X, M),
there exists a Borelian |v|-integrable function f : X — R such that
|fl|=1and v = f|v|.

DEFINITION 1.97 (integration with respect to a signed measure).
Let v be a signed measure on a measure space (X, M)and f: X — Ra
measurable function. We say that f is summable with respect to v if it is
summable with respect to |v| and we use the notation L!(v) := L(|v]).
For such f, we define

[ra=[rar = [ o

Note that the integral defined above satisfies the usual linearity
and convergence properties, which are inherited from the corresponding
properties of the integrals with respect to v and v~.

DEFINITION 1.98 (absolute continuity and mutual singularity, bis).
Let v be a signed measure and p a positive measure on a measurable
space (X, M). We say that:

) v<pif lv] < p.
2) v Lpif |v] L p.

EXERCISE 1.99. Let v be a signed measure on a measurable space

(X, M). The following properties hold:

a) For all A e M, |[v(A)| < |v|(A).

b) v is finite (respectively, o-finite) iff ¥ and v~ are finite (respectively,
o-finite) iff |v| is finite (respectively, o-finite). If v is finite, Im v is
a bounded subset of R.

c¢) For all A € M,

lV|(A) = sup{§|u(An)| |¥n €N, A, € Mand U A, = A}
d) LY(|v]) = LY (v") n LY (v7).
e) For all f e L*(v), |[ fdv] < []f]d]v].
EXERCISE 1.100. Let v, and v, be signed measures on a measurable

space (X, M) such that both omit —oo or both omit +oo, i a positive
measure (X, M) and ¢ € R. Then:
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a) cvy and vy + vy are signed measures.

b) |evi| = |c||v1] and vy + va| < || + |1a|, with equality if || L |vsl.

c)If v L pwand vy L p, then vy + 15 L p. If both vy and vy are
positive measures, then v; | p and vo L p iff 1 + 15 L .

d) If 1y < pand vy < p, then v + vy < p. If both 14 and vy are
positive measures, then vy < p and vy < p iff v + 15 < p.

e) L*(v1) NLY(n) C L*(v1 + 1n) and, Vf € L (1n) N LY (o), [ fd(1n +
1/2) :fde1+fde2.

f) If ¢ # 0, LY(cv1) = LY (1) and, Vf € L (1), [ fd(ern) = c [ fdu.

THEOREM 1.101 (Lebesgue decomposition theorem). Let v be a
signed measure and j a positive measure on a measurable space (X, M),
both o-finite. Then there exist unique signed measures vy, and v, on
(X, M) such that vs L u, v, < p and v = vs + v,.

DEFINITION 1.102. With the notation from the previous theorem,
we call vy the singular part of v, v, the absolutely continuous part of v
and v = vy + v, the Lebesque decomposition of v with respect to .

THEOREM 1.103 (Radon-Nikodym theorem). Let p be a positive
measure and v a o-finite signed measure on a measurable space (X, M),
such that v < p. Then there exists a p-integrable function f : X — R,
unique up to p-null sets in M, such that v = fu, i.e. for all A € M,

V(A) = /A Fdp.

DEFINITION 1.104 (Radon-Nikodym derivative). With the notation
from the previous theorem, we cal f (or any measurable function which
coincides p-a..e with f) the Radon-Nikodym derivative of v with respect
to pu and denote it by j—; :

Note that, in the situation of example 1.90.2), i.e. if v = fu where
p is a positive measure on (X, M) and f : X — R is p-integrable,
then v < p. Hence, if v is o-finite, it follows from the uniqueness of
the Radon-Nikodym derivative stated in theorem 1.103 that f = g—;
(equality here and in similar statements below means that f is in the
equivalence class of j—: modulo p-a.e. null functions).

The Rdadon—Nikodym derivative has the properties suggested by the

notation 2. We list those properties in exercise 1.105 and proposition
)

1.107 below.

EXERCISE 1.105. Let (X, M) be a measurable space and p a posi-
tive measure on (X, M).
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a) If v is a o-finite signed measure on (X M) and v < p, then
d|V | |
du
In other words, if f: X — R is ,u—lntegrable and v = fu, then
|v| = | f|p. Moreover, v is finite iff g—: e L(u).
b) Let v, and v, be o-finite signed measures on (X, M) such that both

omit —oo or both omit +00 and ¢ € R. Suppose that 1y < p and
vy < p. Then

d(cvy) _ c% and d(v1 + o) _ @ N @
du du du du du
¢) If v is a o-finite signed measure on (X M) and v < p, then —” =
dw®) _ dwT) det) _ (g) _ (du )f
dp dp 7 dp du du :

REMARK 1.106. Let v be a signed measure on (X, M). It is imme-
diate from defintion 1.98 that v < |v|. If v is o-finite, it then follows

from exercise 1.105.a) with |v| in place of p that “ll”| = =+1 |v|-a.e. on
X.

PROPOSITION 1.107 (chain rule for the Radon-Nikodym deriva-
tive). Let \, v and p be positive measures on a measurable space (X, M)
with A\ and v o-finite and such that A < v < . Then:

i) For every f: X — [0, 00] measurable,

/de—/f—du

D _d
dp  dv dp’

i) A < poand

1.6. Convolutions

In this section we consider integrals with respect to the Lebesgue
measure in R"™, which we often denote by dx, dy, etc. We recall the
basic properties of convolutions and mollifiers, which will be extensively
used in subsequent chapters.

Let f,g : R — C be L"measurable functions. We define the
convolution f * g by:

fxg(z /fx— y) dy,

whenever the integral makes sense at least for £"-a.e. x € R". That
occurs mainly in two cases:
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e one of the functions is essentially bounded, the other belongs
to LL (L") and one of them has compact support;

e one of the functions belong to LP(L™) and the other belongs
to L9(L"), with % + é > 1, cf. proposition 1.108.g) below.

Broadly speaking, whenever defined, the convolution product is
commutative and associative, and inherits the regularity properties
from both factors. The latter property is widely explored in techniques
which involve approximation of functions by means of mollifiers.

We summarize the main properties of the convolution product in
the propositions below. For a function f defined on R" and =,y € R",
we use the notation:

nf(@) = flz—y) and f(z):= f(-2)

as well as the standard multi-index notation for partial derivatives, i.e.
given a = (ay,...,0,,) € Z7,

o 1w) = ()" ()" )

lal == a; + -+ + ay,.

PROPOSITION 1.108 (properties of the convolution product). For
fy9,h : R — C such that the convolution products are defined:

a) fx*g is L"-measurable.

b) fxg=gx*f.

c) (fxg)xh=fx(g*h).

d) sptvf*gcvspt f+sptyg.

e) (fxg)=fxg.

)Yy eR™, 7,(fxg) = (1,f) *g = [ +(1,9).

g) (Young’s inequality) If p,q,r € [1,00] with % + % =1+ %, then

1 glle < £ 1Ibllgllq-

Thus, f+xg € L"(L™) if f € LP(L™) and g € LY(L™). In particular,
forp =1 and q=r € [L,0, | *glly < | Fl1lgll-

If p and q are conjugate exponents, i.e. if we take p,q,r above
with v = oo, then fx*g(x) exists for every x € R™ and fxg is
bounded and uniformly continuous; besides, if both p and q are finite,
then f*g € Cy(R",C).

h) If f € LL (L") and g € L°(L™) with spt g compact, then fxg €
LL (L™).

loc
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i) If f and g satz’sfy the hypothesis of one of the two previous items
and ¢ € C(R",C), then

/f*g( dx_//f x—i—y)dxdy:/f(x)g*go(x)dx.

j) Let 0 < k < oo and a € Z" a multi-index with || < k. If f €
CK(R") and g € LY(L"), or f € CK(R™), g € LiL (L") and one of them
has compact support, then f*g € CK(R™) and 0%(f *g) = (0°f) *g.

Recall our convention adopted in remark 1.57, i.e. for measurable
functions “support” means “essential support”.

The proof of the proposition above can be found in standard real
analysis textbooks, but we offer a proof of part j) as an application of
the dominated convergence theorem.

PROOF OF PART J). We prove the assertion for k =1 and o = e,
1 < 5 < n. The general case follows by induction using the same
argument.

1) Suppose f € C} and g € L'. We have

9 fa — )] = 0,z — )o(y)

(917]'
hence Vz,y € R", aij =) 9W)]| <10y, fllulg(z)]. Since g € L,
we may differentiate under the integral sign using the dominated
convergence theorem 1.67.ii:

0y, (f % 9)(a /%f 9(y)dy = (D, )  g(2).

Moreover, since 0, f € L> and g € L?, it follows from the last state-
ment in part g) that (9, f) * g is continuous (actually it is uniformly
continuous). Since that holds for all 1 < j < n, we conclude that
f*g e Ch as asserted.

2) Suppose that f € C}(R"), g € LL (L") and one of them, say f, has
compact support (the case spt g € R™ is similar).

Fix zp € R™ and r > 0. Let K be the compact set B(zq,r)—spt f

(so that, for x € B(zg,7), x—y € spt f implies y € K). We have, for
all (z,y) € Ulwo, r) xR, |50 [f(z = y)g(y)]] = |0s, f(z=)|lg(y)| <
10x, fllu xx|g]. Since xk|g| € L*(L™), we may apply proposition 1.67
with U(zg,r) in place of I and (R", £") in place of (X, i), yielding,
for all z € U(xg,r),

By, (f * 9)(x /%fcc— (v)dy = (s, f) * g(x).
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Since (0, f)*g coincides on U(zo,r) with (9., f)*(xxg) (where
K = B(xo,r) — spt f, as above), ,,f € L™ and xxg € L', we
conclude that (9,,f)* g is continuous on U(xg,r). As that holds
for 1 < j < n, it follows that f * g is continuously differentiable on
U(xg,r); since zp € R™ and r > 0 were arbitrarily taken, we are
done.

0
LEMMA 1.109. If f € Co(R™), then f is uniformly continuous.

PrOOF. Fix € > 0 and let K C R" compact such that |f| < € on
K¢. Since f|k is uniformly continuous, there exists § > 0 such that
|f(z) — f(y)| < e whenever z,y € K with [z —y|| <. If z,y € R"
and ||z — y|| < d, we have:

1) ifz,y € K, [f(z) = f(y)] < ¢

2) ifx,y € K¢, |f(z) — f(y)| < 26

3) if x € K and y € K¢, the closed segment [x,y] intersects K, hence
there exists z € 0K C K such that ||z—z|| < J. Since, by continuity,
/] < ein 0K, we have [f(x) = f(y)| < [f(x) = F(2)|+[f(2) = f(y)] <
[f(@) = f) + F)]+ [f(y)] < 3e.

Hence, for all z,y € R™ with ||z —y|| < 6, |f(x) — f(y)| < 3e. O

LEMMA 1.110. If 1 < p < oo, translation is continuous in the
LP norm, i.e. for fized f € LP(L™), the map R™ — LP(L") given by
y — 7, f is continuous.

ProOOF. Fix z € R". We must prove that lim,_,.||7,f — 7. f|l, = 0.
Fix € > 0. Since C_(R") is dense in LP(L") (by proposition 1.78), there
exists g € C.(R") such that ||f — g|l, < e. Then ||7,f — 7.f], <

17y (f = 9llp + g9 = 7=gllp + [I7-(9 = F)llp < 2€ + ll7yg — 79[, Since
C.(R™") C Cy(R™), it follows from lemma 1.109 that ¢ is uniformly

continuous; hence
I7y9 = 79llp < ll7y9 — 7=l L"(spt 9) "= 0.

We therefore conclude that limsup,_,, |7, f — 7. f|l, < 2¢, whence the
thesis, since € > 0 was arbitrarily taken. 0

In the next theorem we use the following notation: for ¢ : R" — C
and t > 0, we define ¢, : R" — C by

(1.1) bu(z) =t "P(t ).

Note that, if ¢ € L}(£L"), it follows from theorem 1.81 that ¢; €
LY(L") and [ $dL" = [ ¢, dLr,
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THEOREM 1.111 (mollifiers, part I). Let ¢ € LY(L™) with [ ¢dL" =
a and [ R" — C.

i) If 1 <p<ooand f € LP(L"), then ¢y * f 2 af in LP(L™).
it) If f is uniformly continuous and either (1) f is bounded or (2)
spt @ is compact, then ¢y * f = af uniformly in R™.

1) If f is continuous on an open set U C R™ and either (1) f €
t—0

Lo°(L™) or (2) f € L2(L™) and spt ¢ is compact, then ¢y f — af

loc
uniformly on compact subsets of U.

PROOF.
i) Vt >0, Vo € R",

-1

Fro) —af@) = (1o —9) - o) dy "
= / [f(z —tz) = f(x)]o(2)dz =
~ [lret@) - @)ote) =

Thus, by Minkowski’s inequality for integrals 1.88,

If % i — afl, < /||thf — Fllol6(2)] d=.

For any sequence t,, — 0, ||74,..f — f||,|¢(2)| converges pointwise to
0, by force of lemma 1.110, and ||7,,.f — fllpl¢(2)] < 2| fllp|o(2)].
Since ¢ € L}(L"), we may therefore apply the dominated conver-
gence theorem 1.64 to conclude that [||7;,.f — fl,|6(z)|dz "= 0,
hence ||f* ¢y, — af|l, — 0. Since the sequence ¢, — 0 was ar-
bitrarily taken, it follows that || f*¢: —af|, — 0 ast — 0, as
asserted.

ii) By the same computation from the previous item, V¢ > 0, Vax € R",

[+ ulw) — af(x) = / I f(x) — F(@)]6(z) de.

Thus ||f « ¢y — af|lu < [T — fllul®(2)| dz. Since f is uniformly

continuous, we have |7, f — fl. 200 for all z € R*. If (1)
holds, then |7 f — fll|6(=)] < 201 f[l /()] for all = € R if (2)
holds, by the compacity of spt ¢ and by the uniform continuity of
f we may take 0 > 0 such that for all 0 < ¢ < ¢ and all z € spt ¢,
I7e2f = fllu < 1, whence |7, f = fllu[¢(2)] < |¢(2)] for all 0 < <6
and all z € R™. In either case, the dominated convergence theorem
ensures that ||f* ¢, — af|l, — 0 as t — 0, as asserted.
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iii) Fix € > 0. Let K C U compact and C' C R" compact such that
fR”\C‘¢| dL™ < € (which exists, since ¢ € L!). Take > 0 such that
n-sup{lz| | z € C} < d(K,U°); then K' .= {x —ty |z € K,y €
C,|t| < n} is a compact subset of U which contains K. Since
flu is continuous, by compacity it follows that f|x is uniformly
continuous; therefore, there exists 0 < 6 < min{n, 1} such that
sup{|f(z — ty) — f(x)| | * € K,y € C,|t| < 0} < e. Hence, if
It| <0, Ve e K:

-/ S @) = F)lo)dy + [t = s ol <

< 2€]| flleoe (rery + €l @l
where K = R™ in case (1) or K" = K +B(0,sup{|y| | y € spt ¢})
in case (2) (recall that 6 < 1).

Since € > 0 was arbitrarily taken, we therefore conclude that
I(f * &0 — af)lklle = sup{|f*¢u(x) — af(z)| | @ € K} — 0 as
t — 0.

O

In the applications of the previous theorem, the most important
cases are a = 1 and a = 0. For a = 1, we call (¢;)~o an approzimate
identity or mollifier, since it can be used to approximate a function f
on R™ by means of the convolutions ¢; * f, which have the same class
of regularity as ¢, in the appropriate topology of the function space f
belongs to.

For instance, we may take (¢;)-o given by the following definition:

DEFINITION 1.112 (standard mollifier in R™). Let ¢ : R™ — R be
the smooth function given by

. cexp(”wu+_1) if |||l <1
¢(x) := .
0 it o] > 1,

where ¢ is chosen so that [, #() dz = 1. The family (¢;)-o induced
by ¢ by means of (1.1) is called standard mollifier in R™.

Note that spt ¢ = B(0, 1), so that V¢t > 0, spt ¢, = B(0,1).

EXERCISE 1.113. Show that ¢ in the definition above is a C* func-
tion on R".
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EXERCISE 1.114 (differentiable Urysohn’s lemma). If K C U C R"
with K compact and U open, there exists f € C2°(R") such that 0 <
f<1, f=1lon K andspt f CU.

HINT. Let K' := K + B(0,3d(K,U¢)) and (¢;)so the standard
mollifier in R™. Take f = ¢ * xx for a convenient choice of ¢.

EXERCISE 1.115 (approximation in L} ). Let 1 < p < oo, f €

LY (L") and (¢¢)so the standard mollifier in R™. Then ¢y * f — f in
Lh (L), ie. for all K C R™ compact, |[¢y* f — flle(zni) — 0.

HINT. For each K C R" compact, let K’ := K+B; and f:: Xr' - f.
Then f € LP(L™) and, by theorem 1.111, ¢, * f — f in LP(L").

REMARK 1.116. The previous exercise means that ¢, x f converges
to f in the Fréchet topology of L) (L£™).

loc

We will resume this discussion on mollifiers and approximations in
chapter 6.

1.7. Lusin’s and Egorov’s Theorems

THEOREM 1.117 (Lusin, [Fed69]). Let v be a Borel regular mea-
sure on a metric space X (respectively, a Radon measure on a locally
compact Hausdorff space X ), Y a separable metric space, f : dom f C
X =Y a p-measurable map. Then, for each A € o(u) with p(A) < oo
and for each € > 0, there ezists a closed (respectively, compact) set
C C A such that p(A\ C) < € and fl|c is continuous.

PROOF. We may assume dom f = X (otherwise, replace A by
ANdom f and extend f arbitrarily to X). For each i € N, there
exists a countable disjoint sequence (Y ;)jen in Ay such that Vj € N,
diam Y;; < 1/i and UjenY;; = Y. To obtain such a sequence, cover
Y with countably many balls (B, ;) with diameter less than 1/i (what
is possible, since Y is separable) and then take Vj € N, Y, ; := B, \
U Bin. LetVj € N, A, == An f7(Y;;) € o(n), so that A =
Ujen Aij. By theorem 1.23 (respectively, exercise 1.31), there exists a
closed (respectively, compact) set C; ; C A;; such that Vj € N, p(A; ;\
C;;) < 27" Je. Then pu(A\ UjenC;;) < 27%€ and, by proposition 1.11.ii
(continuity from above for u), there exists J(i) € N such that pu(A\
U;-TQCZ-J-) < 27%. Now, for each 1 < j < J(i), choose y;; € Vi,
and define the function g; on the closed (respectively, compact) set
C; = Ujill)Civj by gilc,, = ¥ij- It is then clear that g; : C; — Y is
continuous and, due to the fact that diam Y; ; < 1/i, we have (denoting
by d the metric on Y) sup{d(f(z),g:(z)) | = € C;} < 1/i. Take
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C := NienC;y, so that C is closed (respectively, compact) and pu(A \
C) <Y ent(ANG) <e. AsVi € N, C C Cj, we have Vi € N,
sup{d(f(z),g;(x)) | © € C} < 1/i, hence (g;|c)ien converges uniformly
to fle, so f|c is continuous. d

COROLLARY 1.118. With the same hypotheses, if u is o-finite, f
coincides p-a.e. with a Borelian map X — Y.

PROOF. Let (A;)ien be a sequence in o(u) of disjoint sets such
that Vi € N, u(A;) < oo and X = Ujen A;. For each 4,5 € N, we
may apply theorem 1.117 to obtain a closed set C;; C A; such that
(A \ Cij) < 1/j and f|e,, is continuous. Then B := U;;enCi; is a
Borel set such that (X \ C') = 0 and, for each E € By, (f|g) ' (F) =
Uijen(fle,,) 1 (E) € Bx. Choose yp € Y and define F : X — Y by
F=yon X\ Band F = f on B. Then F is Borelian and F = f
[-a.e. U

COROLLARY 1.119. Let p be a o-finite Borel reqular measure on
a metric space X (respectively, a o-finite Radon measure on a locally
compact Hausdorff space X), Y =R or C, f:dom f C X - Y a
p-measurable function. Then there exists a sequence (fn)nen in C(X)
(respectively, in C_(X)) which converges pointwise j-a.e. to f. More-
over, if || fllec < 00, we can take this sequence (fy)nen So that ¥n € N,

[ falloo < [[f]loo-

PrROOF. We may assume, modifying f on a set of measure zero if
necessary, that dom f = X and Vo € X, |f(2)] < || flleo- Let (Ai)ien
be a sequence in o(u) of disjoint sets such that Vi € N, u(A;) < oo
and X = Usey 4;. For each 7,5 € N, we may apply theorem 1.117 to
obtain a closed (respectively, compact) set C;; C A; such that p(A; \
Cij) < 1/j and f|¢,, is continuous. For each n € N, let C,, be the
closed (respectively, compact) set U}';_;C;;. Since the last union is
finite, f|c, is continuous; use Tietze’s extension theorem to extend
flc, to a function f, € C(X) (respectively, f, € C.(X)). Note that,
if || f]lo < 00, we may and do take the extension f, so that ||| <
| fllco- The sequence (fy,)nen thus defined converges pointwise to f on
UnenCrn = U; jenCi j. Since pu(X \ U; jenCi ;) = 0, we are done. O

DEFINITION 1.120. Let p be a measure on the set X, Y a metric
space and A C X. We say that a sequence (f,)nen of p-measurable
Y-valued functions on X converges almost uniformly on A to a u-
measurable function f : dom f C X — Y if, for all € > 0, there exists
B € o(u) such that p(A\ B) < € and (f,)nen converges uniformly to
fon B.
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Note that, both in the definition above and in the theorem below,
we do not assume A to be py-measurable.

THEOREM 1.121 (Egorov). Let u be a measure on the set X, Y a
separable metric space, A C X with p(A) < oo and (f,)nen @ Sequence
of Y-valued measurable functions on X which converges pointwise -
a.e. on A to a pu-measurable function f : dom f C X — Y. Then
(fn)nen converges almost uniformly to f on A.

ProOOF. Fix € > 0 and denote by d the metric on Y. For 4,5 € N,
define C;j := U,>;{z € X | d(f.(2), f(z)) > 1/i}. Note that each C; ;
is p-measurable, since d : Y x Y — R is continuous (hence Borelian)
and, for fixed n > j, x € dom f, Ndom f (fn(x),f(x)) eY xY
is p-measurable (it is in this point that we use the separability of Y,
what ensures By .y = By ® By), so that z — d(fu(z), f(z)) is p-
measurable and Cj ; is a countable union of p-measurable sets. Hence,
for fixed ¢ € N, it follows from proposition 1.15.i that (C; ;) en is a
decreasing sequence of i L A-measurable sets. Since u(A) < oo, and
since N;jenCi ; has p L A-measure zero due to the fact that (f,,)nen con-
verges p-a.e. on A to f, we may apply the continuity from above 1.11

for the measure 1 LA to conclude that u L A(C; ;) =5 0. Therefore,
for fixed ¢ € N, there exists J(i) € N such that p LLA(C; ;) < 27'.
Let B := X \ UjenCi ). Then B € o(p), p(A\ B) = p L ( Usen
Ciay) < D ien it L (Ciy) < € and (fy)nen converges uniformly to f
on B. U

We close this section with an application of Egorov’s theorem. Re-
call that, for a Banach space X, the weak topology of X is the topology
induced by its dual X', i.e. the weakest topological vector space topol-
ogy on X which makes all elements of X’ continuous.

THEOREM 1.122 (theorem 1.35 in [AFPO00]). Let u be a measure
on the set X and 1 < p < oo. If (fu)nen s a bounded sequence in
LP(u) which converges pointwise almost everywhere to a function f,
then f € LP(u) and (fn)nen converges weakly to f.



CHAPTER 2

Hausdorff Measures

2.1. Carathéodory’s construction

Lebesgue measure on R” is not adequate to study “lower dimen-
sional” objects, such as embedded k-dimensional manifolds or, more
generally, their measure-theoretic cousins, the k-rectifiable sets. For
that purpose, we shall introduce Hausdorff measures and dimension,
a class of Borel regular measures whose origins may be traced back to
[Haul8] and [Car14].

In order to construct Hausdorff measures, we depart from an ab-
stract construction on a metric space X which may be used to generate
a plethora of Borel measures on X with nice geometric flavor. We shall
be concerned only with Hausdorff measures here, but the interested
reader may consult, for instance, [Fed69], [Mat95] or [KP08]| for
other such measures as well.

Let X be a metric space, F C 2% and ¢ : F — [0,00]. Roughly
speaking, the idea is to “measure” the elements of F by means of
the method or gauge ( and use that to define a Borel measure on
X, abstracting the geometric idea underlying the construction of the
Lebesgue measure. We define such measure in two steps:

1) For 0 < ¢ < oo we define VA C X,

s(A) == inf{ZC(S) | G € FN{S | diam S < 4}, G countable cover of A}.
Seg

Note that inf ) = oo, so that ¢5(A) = oo if there is no countable
cover of A by elements of F with diameter < §. Moreover, if A = (),
G = () C F is such a cover and, since the sum over the empty family
is zero (as we defined the sum by means of the integral with respect
to counting measure at the end of definition 1.58), we conclude
that ¢s(0) = 0. Besides, it is straightforward to check that v is
monotone and countably subbaditive, i.e. it is a measure according
to definition 1.1. In general, the measures (1)5)s thus defined are not
Borel, but we can fabricate a Borel measure out of them, as we do
in the second step of the construction:

2) Define, for each A C X, ¥(A) :=sup{vs(A) | 0 < 0 < o0} € [0, 00].

43
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Note that, for fixed A C X, {¢s(A)}s is decreasing in d, so that
the sup in the definition above coincides with lims o 1s(A).

DEFINITION 2.1. With the notation above, we call ¢ the result of
Carathéodory’s construction from the gauge ¢ on F, and we call 15 the
size 0 approximating measure.

We prove in the next proposition that 1 is actually a Borel measure.

PROPOSITION 2.2. Let X be a metric space and 1) be the result of
Carathéodory’s construction from the gauge ¢ on F C 2X. Then 1 is
a Borel measure. Besides, if F C Bx, Y is Borel reqular.

Proor. We denote by d the metric on X. That v is a measure
follows directly from the fact that, for each 6 € (0, 0], s is a measure.
In order to prove that ¢ is Borel, we verify the Carathéodory’s criterion
1.18. Let A, B C X such that d(A,B) = > 0 and ¥ (AU B) < oo; we
must show that ¢(AUB) > ¥(A)+¢(B). Indeed, for any n < 6/2, cover
AU B by a countable family G C F whose elements have diameters
< 7. Note that no element of G intersects both A an B, thanks to the
triangle inequality. Thus, discarding the elements of G which do not
meet A or B, we obtain a subcover G’ C G of AUB that may be written
as a disjoint union G’ = G, UG,, where G; covers A and G, covers
B. Then > 5.5¢(5) 2 D geq C(S) = Dseq, C(5) 4+ Xgeg, C(5) =
¥y (A) + 1,(B). By the arbitrariness of G C F whose elements have
diameters < 7, we conclude that 1,(AU B) > 9, (A) + 1,(B), for all
n < /2. Hence, taking n — 0, it follows that ¢ (AUB) > ¢(A)+¢(B),
as asserted.

Assume now that F C #x. We contend that ¢ is Borel regular.
Indeed, let A C X such that 1)(A) < oco; we must prove the existence
of B € #Bx such that B O A and ¢(B) = ¢(A). For each § > 0, we
can take Bs; € %x such that By D A and 15(Bs) = ¥s(A): choose,
for each n € N, a countable cover G, C F of A whose elements have
diameters < §, such that Y ¢ ((S) < ¥s5(A) + 1/n, and then put
Bs := Npen Useg, S. Define B := NyenByi/n € Bx. Then B O A and,
for each n € Na 77bl/n<14) < Qﬁl/n(B) < wl/n(Bl/n) = ¢1/n(A)’ so that
Y1/ (A) = 1/n(B), and taking n — oo yields 1(A) = ¥(B). O

DEFINITION 2.3. Let X be a metric space and m a nonnegative
real number. Take F = 2% and ¢ : 2% — [0, oc] given by

((8) = afm) B2 5"

where a(m) = F(”m/Q (i.e. the euclidean volume of B™ if m integer).

m/2+1)
The result of Carathéodory’s construction from the gauge ¢ on 2% is
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called Hausdorff m-dimensional measure on X, denoted by H™. We
use the notation Hj" for the size § approximation of H™.

PROPOSITION 2.4 (immediate properties of Hausdorff measure).
Let X be a metric space and m a nonnegative real number. The fol-
lowing properties hold for H™:

1) The Hausdorff measure is compatible with the operation of taking
traces. That is, if X is a metric space and A C X, the trace of H™
on A coincides with the m-dimensional Hausdorff measure on A (as
a metric subspace of X ).

2) The Hausdorff measure is invariant by isometries. That is, if Y is
another metric space and f : X — Y is an isometry onto Y, then
the pushforward fuH™ coincides with the Hausdorff m-dimensional
measure on Y .

3) If Y is another metric space and f : X — Y has Lipschitz constant
Lip f < oo, then VA C X, H™(f(A)) < (Lip f)™H™(A).

4) H™ also coincides with the result of Carathéodory’s construction
from ¢ (same gauge as in definition 2.3) on F' = {closed subsets of
X} or F" = {open subsets of X}. If X is a normed vector space,
we may also take F" = {closed convez subsets of X}.

5) H™ is a Borel reqular measure on X.

6) H coincides with the counting measure on X.

PROOF. Properties 1) and 2) are immediate; property 2) is also a
direct consequence of 3) since, if f is an isometry onto Y, then Lip f =
Lipf~'=1.

3) Let AC X, d € (0,00] and G a countable cover of A by subsets of
diameter < 0. Then f(G) := {f(S) | S € G} is a countable cover
of f(A) by subsets of diameter < ¢ - Lip f since, for each S C X,
diam f(S) < diam S - Lip f. Hence,

H?L@f(f(A)) < Z Oz(m)Q_m(diam f(S))m <
Seg

< (Lip /)™ a(m)27"(diam $)™.
Seg

By the arbitrariness of G, taking the infimum we conclude that
Hivio s (f(A)) < (Lip f)"H5'(A); thus, taking 6 — 0, the thesis
follows.

4) It is clear that we may use F' = {closed subsets of X} instead of
F = 2% since the diameters are not affected by taking closures. If X
is a normed vector space, the same argument works for 7" = {closed
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convex subsets of X}, since diameters are not affected by taking
closed convex hulls either.

As to the remaining case, let 1) be the result of Carathéodory’s
construction from ¢ on F” = {open subsets of X}. Since F’ C
F = 2%, it is clear that H™ < 1. To prove the reverse inequal-
ity, define, for each S C X and 6 > 0, Ss := U,esU(z,d/2); note
that Ss is open (for it is a union of open balls) and diam S5 <
diam S + 0. Given § > 0 and A C X such that H™(A) < oo,
for any countable cover G = {5, | n € N} of A by subsets of
diameter < ¢ such that ) _a(m)27"(diam S,)™ < oo, and for
any 0 < € < 6, G, = {(Sp)2-ne | n € N} C F” is a countable
open cover of A by subsets of diameter < 2§. Therefore, 195(A) <
> nen @(m)27™ (diam (S )o-ne) " < 30, oy a(m)27™(diam S, +27"€)™.
Taking e — 0 along any decreasing sequence, we may apply theorem
1.64 to conclude that the last sum converges to > a(m)27"(diam S,)™,
so that 195(A) < >y a(m)27™"(diam S,)™. By the arbitrariness
of the cover G, taking the infimum we conclude that g5(A) <
H*(A); thus, taking § — 0, it follows that ¥(A) < H™(A), as
asserted.

5) Since F' C Ax, it follows from the previous item and from propo-
sition 2.2 that ‘H™ is a Borel regular measure.

6) It is clear that, Vo € X, V§ € (0,00], H{({z}) = 1. Thus, H'({z}) =
1. Since H° is a Borel measure, we conclude that the measure of
each finite set coincides with its cardinality and the measure of each
infinity set is oo, i.e. H’ is the counting measure on X.

U

COROLLARY 2.5. If X, Y are metric spaces, m a nonnegative
real number and f : X — Y is an isometry into Y, then VA C X,
Hm(f(A)) =H™(A).

PROOF. By proposition 2.4.(1), we may substitute Y’ := Im f for
Y without modifying H™(f(A)). Since f : X — Y’ is an isometry
onto Y, the thesis follows from proposition 2.4.(2). O

EXERCISE 2.6 (H™-null sets). Let X be a metric space, A C X
and 0 < m < co. The following statements are equivalent:
1) H™(A) =0.
2) 30 € (0, 00] such that HP*(A) = 0.
3) Ve > 0, I(Ey)nen cover of A such that ) _(diam E,)™ < e.

The next proposition is a preparation for the introduction of the
notion of Hausdorff dimension.
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PROPOSITION 2.7. Let X be a metric space, A C X and 0 < s <
t <oo. If H*(A) < oo then H'(A) = 0.

PROOF. For each § > 0, since H3(A) < H*(A) < oo, there ex-
ists a countable cover G of A by subsets of diameter < ¢ such that
> geg @(s)27%(diam S)* < H*(A) + 1. Then

a(t)2t

H5(A) <) a(t)2 ! (diam S)' = (2

Seg

< QS_t@(St_S Z a(s)27%(diam 5)* < ZS_t@y_s (H*(A) + 1),
a(s) Seg a(s)

and taking § — 0 we conclude that H'(A) = 0. O

As a corollary, if 0 < s <t < oo and H!(A) > 0, then H5(A) = 0o
It then follows that inf{m € [0,00) | H™(A) = 0} = sup{m € [0, c0)
H™(A) = o0} € [0,00].

DEFINITION 2.8. Let X be a metric space and A C X. The ex-
tended real number inf{m € [0,00) | H™(A) = 0} = sup{m € [0, 00) |
H™(A) = oo} € [0,00] is called Hausdorff dimension of A, denoted by
H-dim A.

With the notation above, note that Vm > H-dim A, H™(A) = 0,
and VYm < H-dim A, H™(A) = oco. For m = H-dim A, nothing can
be said about H™(A), i.e. it can be zero, strictly positive or co. On
the other hand, if Im € [0,00) such that 0 < H™(A) < oo, then
H-dim A =m.

Za(s)Q’s(diam S)*(diam S)* <
Seg

EXERCISE 2.9 (properties of Hausdorff dimension). Let X be a
metric space.

a) If Y C X is a metric subspace of X and A C Y, the Hausdorff
dimension of A as a subset of the metric space Y is the same for A
as a subset of the metric space X.

b) The Hausdorff dimension is invariant by isometries, i.e. if Y is a
metric space, f : X — Y an isometry into Y and A C X, then
H-dim A = H-dim f(A).

¢) Let X, Y be metric spaces and f : X — Y be a Lipschitz map.
For all A C X, H-dim f(A) < H-dim A. In particular, if f is
bi-Lipschitz onto its image (i.e. f is Lipschitz and has a Lipschitz
inverse f~!: Im f — X), then VA C X, H-dim f(A) = H-dim A.

d) (monotonicity) If A C B C X, H-dim A < H-dim B.

e) (stability with respect to countable unions) If A = U,en4,, C X,
then H-dim A = sup{H-dim A,, | n € N}.
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We will show next that, for X = R", the Hausdorff n-dimensional
measure H" coincides with the Lebesgue n-dimensional measure £". In
particular, that implies H-dim R" = n (use the stability with respect
to countable unions of the Hausdorff dimension, cf. exercise 2.9, to
R"™ = U,enCh,, where each C,, is a cube with finite Lebesgue measure).
More generally, we will show in exercise 5.42 with the help of the area
formula that, for any smooth embedded k-submanifold M C R”, the
measure induced by the Riemannian metric on M coincides with the
trace H*|y, which implies H-dim M = k.

In order to prove that H"™ = L™ in R", we need to establish some
preliminaries which are of interest on their own right.

2.2. Vitali’s Covering Theorem

NOTATION. For a closed ball B = B(z,r) in R” and 0 < t < oo, we
define

tB :=B(z,tr).

In a general metric space, however, the center and radius of a ball are
not uniquely determined (take, for instance, [0, 00) as a metric subspace
of R and look at the balls centered at 0). In this case, for a closed ball
B C X, in order to define t B, we could choose once and for all a center
x and a radius r and proceed like above, i.e. we might consider x and
r as part of the given data when we speak of a ball; instead, we prefer
to proceed like in [Mat95] and define, let us say, for t = 5:

(2.1)

5B :=U{B’' C X closed ball | B'N B # (),diam B’ < 2diam B},

which clearly coincides with the previous definition in case X = R™.

THEOREM 2.10 (5-times covering lemma). Let X be a metric space
and F C 2% a family of nondegenerate closed balls in X such that
sup{diam B | B € F} < oo. Then there exists a disjoint subfamily
G C F such that UgerB C UpeghB.

PRrOOF. Let R :=sup{diam B | B € F} < oco. Since the balls in F
are nondegenerate, i.e. have strictly positive diameter, for any B € F,
diam B € (0, R] = U]-GN(£, yi_l] Thus, putting Vj € N, F; := {B €
F | diam B € (£, 7]}, we have Ujen F; = F.

We now define inductively (G;)jen by: 1) G; is a maximal disjoint
subfamily of Fj, obtained by an application of Zorn’s lemma to the
set of all disjoint subfamilies of F; partially ordered by inclusion; 2)
Once defined G, C Fi,...,G;-1 C F,_1, we take a maximal disjoint
subfamily G; of 7} := {B € F; | VB' € UZG;, BN B’ = ()}, obtained
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by an application of Zorn’s lemma to the set of all disjoint subfamilies
of F; C Fj partially ordered by inclusion.

We contend that G := U;enG; C F satisfies the thesis of the theo-
rem. Indeed, it is clear, by construction, that G is a disjoint subfamily
of F. On the other hand, for any B € F;, there exists B’ € U!_,G; such
that BN B’ # 0, otherwise G; U{B} 2 G; would be a disjoint subfam-
ily of F}, violating the maximality of G;. Since diam B < yi_l = 2%

and % < diam B’, it follows that diam B < 2diam B’, so that B C

5B'. U

REMARK 2.11. With the notation from theorem 2.10:

1) Note that, if X is separable, then G is countable (since any disjoint
family of sets with nonempty interiors in X is countable).

2) We have actually proved a stronger statement than the thesis: there
exists a disjoint subfamily G C F such that, forany B € F, 3B’ € G
with BN B’ # () and diam B < 2diam B’ (thus B C 5B’).

DEFINITION 2.12. Let X be a metric space, F a collection of balls
in X and A C X. We say that F is a fine cover A, or that F covers
A finely, if F is a cover of A such that, Va € A, inf{diam B |z € B €
F}=0.

COROLLARY 2.13. Let X be a metric space, A C X, F C 2% a
family of nondegenerate closed balls of X which covers A finely. Then
there exists a disjoint subfamily G C F such that, for all ' C F finite,
A \ UperB C UBeg\FE)B.

PROOF. Since the cover F is fine, we may assume that sup{diam B |
B € F} < 1; otherwise, discard the balls in F with diameter > 1, so
that the remaining balls still cover A finely. Take G C F as in remark
2.11.2. Let # € A\ UpgepB. Since F is finite, UgcpB is closed, hence
there exists r > 0 such that U(z,r) N UgerpB = (). Since F covers A
finely, there exists B € F such that x € B and diam B < r, so that
B C U(x,r), thus BN UgepB = 0. By remark 2.11.2, there exists
B’ € G such that BN B # ) (hence B’ ¢ F) and diam B < 2diam B/,
so that + € B C 5B'. Therefore, A\ UgepB C Upeg\rdB, as as-
serted. O

COROLLARY 2.14 (Vitali’s covering theorem for the Lebesgue mea-
sure). Let A C R™ and F a collection of nondegenerate closed balls in

R™ which covers A finely. Then, for every e > 0, there exists a disjoint
subfamily G C F such that L"(UG) < L™(A) + € and L*(A\ UG) = 0.

Note that we do not assume A to be L£L"-measurable.
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PROOF. Assume first that £"(A) < oo. We may assume that

L"(A) > 0, otherwise the thesis is trivial. Fix 0 < § < 57" (so that

1—

57" +4§ < 1) with dL™(A) < e. Since L™ is Borel regular, by theorem

1.23 there exists an open set U D A such that L*(U) < (14 )L™ (A).
We will show that there exists a disjoint subfamily G C F whose balls
are contained in U and L£"(A \ UG) = 0, whence the thesis (since
LM(UG) < LMU) < (140)L™"(A) < L'(A) +e).

1)

Fixfe(1—-5"+0,1).

Put Fy :={B € F| B C U,diam B < 1}. Since F covers A finely,
it is clear that Fy is still a fine cover of A. Applying theorem 2.10
to JFy, there exists a disjoint subfamily Gy C Fy such that A C
UFu C Upeg, 5B. Since Gy is disjoint (hence countable, by remark
2.11), it follows that L£"(A) < L™(Upeg,5B) < Y peg, L"(BB) =
5" peg, £"(B) = 5"L"(UGy). Thus L™ (A\UGy) < L"(U\UGy) =
LU) = L"(UGy) < (14+5—-5"")L"(A) < §L"(A); moreover, since
L"(A) < 0o, we may apply the continuity from above 1.11 for the
Borel measure £" |_A to obtain a finite subfamily G; C Gy such
that £"(A\ UGy) < 6L™(A).

Given 2 < j € N, assume we have defined finite disjoint subfamilies
G1 C --- C Gj_1 C Fsuch that, for 1 <i < j—1, the balls of G; are
contained in U and L™"(A\ UG;) < 0°L™(A). If L"(A\ UG;_1) =0,
we stop and the thesis follows with G := G;_;; otherwise, we reapply
the argument of the previous item to the open set U’ := U \ UG,_;
in place of U and to A" := A\ UG;_; C U’ in place of A (reducing
the open set U’, if necessary, we may assume that £"(U’) < (1 +
9)L"(A): take Fyr == {B € F | B C U',diam B < 1}, which
is a fine cover of A’, and use theorem 2.10 to extract a disjoint
subfamily Gy» C Fyr such that A" C UFy: C Upeg,, 5B, so that
LMA'\UGy) < (146—-5")L"(A"). Then, applying once more the
continuity from above for the Borel measure £™ L_A’, there exists
a finite set G} C Gy such that L*(A"\ UG)) < 0L"(A") < 67L"(A).
Put G, :=G;_1 U Q}. Then G; C F is a finite disjoint family whose
balls are contained in U, and A\ UG; = A"\ UG} has Lebesgue
measure < 67 L"(A).

We have thus inductively defined an increasing sequence (G;);en
such that, for each 7 € N, G; is a finite disjoint subfamily of F
whose balls are contained in U, with £"(A\UG;) < 87L"(A). Define
G = UienG;; then G is a disjoint subfamily of F whose balls are
contained in U, with Vj € N, £"(A\ UG) < 67£"(A) =5 0. Hence
L"(A\UG) = 0, which concludes the proof in the case L™"(A) < oco.
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If L"(A) = 00, we take VE € N, Vi :={x e R" | k — 1 < ||z]| < k}.
Given € > 0, for each k € N we take an open set U, D ANV}, such that
E”(Uk \ (AN Vk)) < 27%¢: substituting U, NV, for Uy, we may assume
Ur C Vi. We now apply the first part of the proof to find, for each k €
N, a disjoint subfamily G, C F whose balls are contained in U, C V},
and L"(AN V. \ UGk) = 0. Then, since the V}’s are pairwise disjoint,
G = UgenGyx is a disjoint subfamily of F such that £"(A \ UG) <
ﬁn(UkeN(Aﬂ‘/k\ng»+£n<Uk€N{CL’ e R"” | ||l‘|| = k—l}) = 0. Besides,
L(0) = ¥y £(UGH) < e LANV) +27Fe = L(A) +e. O

COROLLARY 2.15 (filling open sets with balls with respect to Lebesgue
measure). Let U C R™ be an open set and F a family of nondegenerate
closed balls contained in U which covers U finely (for instance, if F
1s the family of all nondegenerate closed balls contained in U, or the
family of all such balls with diameters bounded by a fixzed § > 0). Then
there exists a disjoint subfamily G C F such that L™(U \ UG) = 0.

PRrROOF. Apply the previous corollary with A = U. O

2.3. Steiner Symmetrization

We briefly study in this subsection some properties of the oper-
ation called Steiner symmetrization, introduced by Jakob Steiner in
1836 ([Ste38]). This operation will be used to prove the isodiametric
inequality in 2.19, our key ingredient to show that £" = H" in R".

DEFINITION 2.16. Let (ey,...,e,) be the standard basis of R™ and
identify R"™! = (ey,...,€,_1), R = (e,), so that R* = R"! x R. We
define the Steiner symmetrization with respect to R"~! to be the map
Se, : 2%" — 28" defined by (see figure 1):

Sld)= U A@ ) el < 5L (A},
{z'eR"—1|A_, #0}
where we have used the notation for sections established in 1.4.

Given a € S"! C R", we define similarly the Steiner symmetriza-
tion S, with respect to the (n— 1)-dimensional subspace (a)*: take any
orthogonal map ¢ € O(n) such that ¢(a) = e, (hence ¢({a)*) = R"1)
and put S, := ¢ oS,, oa¢.

PROPOSITION 2.17 (properties of Steiner symmetrization). Let a €
S
i) VA C R", diam S,(A) < diam A.
i) If A C R™ is L"-measurable, then so is S;(A) and L"(A) =
£7(Sa(4)).
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FIGURE 1. Steiner Symmetrization

PROOF. Since diameters and Lebesgue measure are preserved by

isometries, it suffices to prove the proposition for a = e,,.

i) First we make a reduction: it suffices to prove the thesis for closed

sets. Indeed, assuming the thesis for closed sets, since the Steiner
symmetrization is clearly monotone with respect to set inclusion,
it follows for arbitrary A C R™ that diam S, (A4) < diam S, (A) <
diam A = diam A.

So, assume that A is closed. Given z,y € S, (A), we will exhibit
2,y € A such that ||z —yl| < [l2' — ¢[|, what clearly implies
diam Se, (A) < diam (A). Indeed, let (see figure 1 for the notation)
r = (b,x,), y = (¢,yn), r := inf{t | (b,t) € A}, s := sup{t |
(b,t) € A}, uw := inf{t | (¢,t) € A} and v := sup{t | (c,t) € A}.
Note that, since A is closed, (b,r), (b, s), (c,u), (c,v) € A. Note
also that, since A, C [r, s] and A, C [u, v], we have s —r > L1(Ay)
and v —u > LY(A,).

Up to relabeling the points, we may assume that s —u > v —7r
(like it is the case in the figure). It then follows that:

s—uzl(s—u)jt%(v—r):

2
1 1
:§(s—r)+§(v—u)2

> %El(Ab) + %Ll(Ac) >
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Thus, [ = y|I* = [zn — yal* + b= c|* < (s —u)* + [[b— ¢l =
(b, s) — (c u)||?, thus the assertion is proved with 2/ = (b, s),y' =
(c,u) € A.

= 1, S, (A) is a closed set and it is clear that £'(A) =
A)
2)-

i) If n
L (Se,( ) Ifn>2 let f: R — [0,00] be given by f(z) =
%Ll( It follows from Fubini-Tonelli’s theorem 1.84 that f is

L™ 1-measurable; hence, by lemma 2.18, S := {(z,t) e R" ! xR |
—flx) <t < f(x )} is E” measurable. Then Se, (A) = S\ {(z,0) |
A, = (0} is £"-measurable and the fact that £"(A4) = £"(Se,(A))

is a consequence of Fubini-Tonelli’s theorem.

U

LEMMA 2.18. Let f : R™ — [0, 00] be L"-measurable. Then hyp f =
{(z,t) e R" x [0,00) | t < f(z)} C R is L -measurable.

PROOF. Let # : RxR — R be defined by 6(z,y) = 2 —y, with co—
00 := 0, —00o—(—00) := 0. Then # is measurable with respect to Bg.g
and By (see proposition 1.50 and example 1.51). On the other hand,
(f,¢) :R"xR — R xR given by (z,y) — (f(z),y) is measurable with
respect to Lgn+1 and By @ Ay, since each component is measurable
(see remark 1.45). Since By ® Br = PBr.x (by proposition 1.47), it
follows that the composite f — ¢ is measurable with respect to Zgn+1
and Pz, whence hyp f = (f — ¢)71([0,00]) N R™ x [0,00) is L1
measurable. U

2.4. The isodiametric inequality; £" = H"

THEOREM 2.19 (isodiametric inequality). The Lebesgue measure of
any subset of R™ is at most the measure of an euclidean ball with the
same diameter. That is, for all A C R",

diam A\7
)

PROOF. We assume that diam A < oo, otherwise the thesis is triv-
ial.

1) Let (eq,...,e,) be the standard basis of R™. Define Sy := S, o
Se,_,0---0S,,. Note that the same properties stated in proposition
2.17 for the Steiner symmetrization also hold for Sg (just apply that
proposition n times in a row).

2) We contend that, for all B C R™, for 1 < j <n, So(B) is symmetric
with respect to the hyperplane (e;)*; that is, denoting by R; : R" —
R™ the reflection with respect to {e;)*, R;(So(B)) = So(B). Indeed,
for 1 < j<n,let Bj:=Seo0---0Se(B).

Lr(A) < a(n)(
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i) By definition 2.16, it is clear that B; = Se,(B) is invariant by
Rl-

ii) Assume that, given 2 < j < n, B;_; is invariant by R; for
1 <i<j—1. We will show that B; = S (B;_1) is invariant
by R; for 1 < i < j. That is clear for 7 = j, by definition 2.16.
For ¢ < j, since B;_; is invariant by R;, we have, denoting by
P; the orthogonal projection on R"™' = (e;)* and by PjL the
orthogonal projection on R = (¢;), Vor € R* %

_ _ R;oP;=PjoR;
Bji NP (x) = Ri(Bj-) NP (z) =

= Ri(B;j-1 NP YR - )
As R;' = R; and PjoR; = P}, it then follows that, Vo € R":
(Bj—l)x = PJ_(BJ_l N Pj_l(iﬁ)) =

J
— pjl(Bj_1 N Pj‘l(Ri . x)) —
= (Bj-1)R;-a-

By the arbitrariness of x € R""!, the equality above implies,
in view of definition 2.16, that Ri(Sej(Bj,l)) = S¢(Bj_1), ie.
Bj = S¢/(Bj-1) is invariant by R;, as asserted.

Our contention is therefore proved.

3) From the contention in the previous item, it follows that, given B C
R", So(B) is invariant by R,0R,,_10---0Ry, i.e. So(B) is symmetric
with respect to the origin. Thus, Vo € So(B), —z € So(B), so that
2||z|| < diam So(B) < diam B, i.e. So(B) C B(0, 422-2),

4) It follows from the previous item applied to B = A that:

LM(A) < L"(A) = L7 (Se(A)) < L (B0, dla;“ A)) _

_ a(n)<dia12n X)n _ a(n)(dia;n A)n.
]

EXERCISE 2.20. Show an example of a set A C R" which is not
contained in any ball with diameter diam A.

THEOREM 2.21. For all § € (0,00] and n € N, H" = H} = L" in
R"™.

PrOOF. Fix § € (0,00] and A C R".
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Claim 1: H§(A) > L"(A). Indeed, let F be a countable cover of A
by subsets of R™ with diameters < §. For each S € F, it follows from
the isodiametric inequality 2.19 that £"(S) < «(n)27"(diam S)".
Hence, » ¢ ra(n)27"(diam S)" > > o - L"(S) > L"(A), where
the last inequality is due to the countable subadditivity of £". Tak-
ing the infimum of all such covers F yields the claim.

Claim 2: for all B € R™, £*(B) = 0 implies H"(B) = 0. To prove
the claim, fix ¢ > 0 and take F a countable cover of B by cubes
of sides parallel to the coordinate axes such that » .. vol(Q) < €;
such a cover exists, in view of the definition of the Lebesgue measure

in example 1.3. Since, for each cube @ € F, vol(Q) = (dii;%Q)n, we

conclude that ZQE #(diam Q)™ < n"/2¢. Hence, by the arbitrariness
of the € > 0 fixed, the claim follows from exercise 2.6.

Claim 3: HJ(A) < L"(A). Assume that L"(A) < oo (otherwise
the claim is trivial) and take a countable cover F of A by cubes
of sides parallel to the coordinate axes such that »_, »vol(Q) <
L"(A) 4+ e. For each Q € F, we may apply corollary 2.15 to Q°
to obtain a countable disjoint family (Bf))ren such that each Bg
is a nondegenerate closed ball with diameter < § contained in Q°
and L£™(Q° \ UkeNBg) = 0. Since L"(0Q) = 0, it then follows that
L(Q \ UrenBg)) = 0; hence, by claim 2, H™(Q \ UrenBg) = 0,
s0 HP(Q \ UrenBg)) = 0. Since, by finite subadditivity, H3(Q) <
HI(Q \ UrenBg) + Hji (UrenBg) = Hi(UrenBy), it follows that
H3(Q) = H} (UrenBg). Therefore,

countable subadditivity

A) <D THFQ) = Y M (UkenBY) <
QeF QeF
diam B§ <6

<> D HIBY) <
QEF keN

<ZZ dlamBQ :ZZE”BQ:
QEF keN QEF keN

= Z L"(UrenBg) = Z L£(Q) Z vol(Q) < L'(A) + e.
QEF QeF QEF

Thus, by the arbitrariness of €, claim 3 is proved.
By claims 1 and 3, H}(A) = L"(A). Since that holds for all § > 0,
it follows that £"(A) = H"(A), hence the thesis follows.

O

COROLLARY 2.22. H-dim R" = n.
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PROOF. Apply the stability with respect to countable unions of
the Hausdorff dimension, cf. exercise 2.9.e), to R" = UgenCp, where
each C} is a nondegenerate cube with finite Lebesgue measure, i.e.
0 < H™(C) < o0, so that Vk € N, H-dim Cj = n. O

EXERCISE 2.23. If E is a k-dimensional subspace of a normed space
X, then H-dim E = k.



CHAPTER 3

Differentiation of Measures

The main reference for this chapter is [Sim83].

3.1. Densities
Up to the end of this section we fix a metric space (X, d).

DEFINITION 3.1 (upper and lower n-dimensional densities). Let
AC X,z € X, n>0real and p a measure on X. We define:

1) the n-dimensional upper density of A at x with respect to pu:

ANB
O (u, A, z) := limsup ,u( (=, T))

0 a(n)rr

€ [0, oc].
2) the n-dimensional lower density of A at x with respect to p:

ANB
O (u, A, x) := liminf ! (.7))

r—0 a(n)rr

€ [0, o¢].

If @ (u, A,x) = O%(u, A, x), we denote their common value by
O™(u, A, x) and call it density of A at x with respect to pu.

For A = X, we use the notations ©*"*(u, z), O (u, x) and O"(u, x)
for ©"(u, X, z), O"(u, X, z) and ©"(u, X, z), respectively.

Note that we don’t assume A to be measurable.

REMARK 3.2. With the notation above:
1) Note that ©*"(u, A, z) = ©*"(u LA, z) and ©"(u, A, x) = O%(u LA, x).
2) f U C X isan open set and z € U, O (u, A,x) = 0" (u LU, A, x)

and ©"(u, A, z) = O0"(u LU, A, x).

LEMMA 3.3. If p is a locally finite Borel measure on X, A C X, x €
X and n > 0 real, then, the definitions of ©*"(u, A, x) or O"(u, A, )

do not change if we use open balls instead of closed balls.
PROOF. Recall that, for f : (0,00) — R,
limsup f(r) :=inf sup f(p),

r—0 7’>00<p<r
liminf f(r) :=sup inf .
iminf f(r) up oot f(p)

57
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Put, for r > 0,

) = p(ANU(z,7))

and g(r) := #ANB( 1)) :

a(n)rm a(n)rr

Since 1 is locally finite, there exists o > 0 such that p(U(z,70)) < oo.
In order to prove the lemma, it suffices to show that, VO < r < rq,

sup f(p) = sup g(p) and inf f(p) = inf g(p)

0<p<r 0<p<r 0<p<r

That is a consequence of the following claims:

)

Claim 1: Vp € (0,7), g(p) may be arbitrarily approximated by el-
ements of {f(p) | 0 < p < r}. Indeed, for a given p € (0,r),
B(x, p) = MrenU(z, p + 1/k); for sufficiently large k, p + 1/k < r,
hence p(U(z,p + 1/k)) < oco. That allows us to apply the con-
tinuity from above 1.11 to the Borel measure p LA, which en-
sures p(ANU(z,p+ 1/k)) = p(ANB(z,p)) as k — co. Thus,
flp+1/k) = g(p), as asserted.
Claim 2: Vp € (0,7), f(p) may be arbitrarily approximated by el-
ements of {g(p) | 0 < p < r}. Indeed, for a given p € (0,r),
U(z,p) = U{B(z,p — 1/k) | k € N,1/k < p}. Applying the con-
tinuity from below 1.11 to the Borel measure p L_A, it follows
that u(ANB(z,p — 1/k)) = p(ANU(z,p)) as k — oo. Thus,
g(p—1/k) — f(p), as asserted.

U

PROPOSITION 3.4. If i1 is a locally finite Borel measure on X, A C

X and n > 0 real, then the functions X — [0,00] given by © € X —
O*"(u, A, x) and x € X — O"(u, A, x) are Borelian.

1)

2)

PRrOOF.

Firstly, note that, for fixed » > 0, the function X — [0, c0] given
by z +— p(ANU(z,r)) is lower semicontinuous (hence Borelian).
Indeed, let x € X and (x,),en @ sequence in X convergent to x.
For all k£ € N such that r — 1/k > 0, Ing € N, Vn > ng, U(z,,7) D
B(z,r—1/k). Hence Vn > ng, n(ANU(z,, 7)) > p(ANB(z,r—1/k)),
whence lim inf,, o0 (ANU(zp, 7)) > p(ANB(x,7—1/k)). Applying
the continuity from below 1.11 for the Borel measure p L_ A, we con-
clude that pu(ANB(z,r—1/k)) = p(ANU(z,r)) < liminf, e (AN
U(zy, 1)), which shows the asserted lower semicontinuity at .
Claim: Given r > 0, the functions ¥,,?" : X — [0, oo| given by:

ANT ANU
x> inf ,u( (x,p)) and z — sup M( (=, p))
0<p<r afn)p” 0<p<r  a(n)p”
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respectively, are Borelian. Indeed, it suffices to show that, Vo € X,

np #ANUE0) (AN U, p))

|0<p<rpeQ} and

0<p<r  an)p® a(n)p”
sup M(AOU(:r,p)) _ Sup{,u(AﬂU(I,/))) |0<p<rpeQ},
0<p<r a(n)p" o(n)p"

in which case the asserted measurability follows from the previous

item and from theorem 1.41.(iv). In order to show the equalities

p(4nU(p))
a(n)p™

Al x,
be arbitrarily approximated by elements of the set {W |

0 < p<rpe€Q}. For that purpose, take a sequence of rationals
(pr)ren in (0, p) such that pp 1 p; then a(n)pp — a(n)p" and,
applying the continuity from below to the Borel measure p LA,

p{ANU(z,pk) p{ANU(z,p)
w(ANU(z, pr)) T (ANTU(z,p)), hence ( O ) (a(n)pn ) :
as asserted.
3) Due to the fact that p is a locally finite Borel measure, it follows

from lemma 3.3 that ©(u, A,-) = inf,cqy ¢¥" and OF(p, 4,-) =
SUD,.cqy ¥,. Thus, from the claim in the previous item and from

theorem 1.41.(iv), we conclude that both ©*"*(u, A, -) and ©7(u, A, )
are Borelian.

above, it is enough to prove that, for all 0 < p < r, may

O

COROLLARY 3.5. If i is a locally finite Borel measure on X, A C X
and n > 0 real, then the setY :={x € X | 0" (u, A, x) = O (u, A, x)}
is Borel measurable and ©™(u, A,-) 1 Y — [0, 00] is Borelian.

THEOREM 3.6 (comparison density theorem). Let i be a Borel mea-
sure on a metric space X, n > 0 real, t > 0 and A C A; C X. If
Ve e A, 07 (u, Ay, x) >t then tH"(A) < u(A,).

PrROOF. We assume that ¢ > 0 and p(A;) < oo, otherwise the
thesis is trivial.
Fix 0 < 7 < tand 6 > 0. Since, Vx € A, O™ (u, A, x) =

limsupr_m% >t > 71, it follows that Vz € A, Vr > 0,

30 < p < r such that %

{B |3z € A,3r >0,B = B(z,r), A > T 2r < 0} is a fine
cover of A. Take a disjoint subfamily G C F, given by corollary 2.13,

> 7. It then follows that F :=
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such that, for all F' C F finite,
(31) A \ UBGFB C UBGQ\F5B~

Due to the fact that p L_A; is a Borel measure, for all F C G fi-
nite, > pep (A1 N B) = (A1 N (UperB)) < pu(A;) < co. Therefore,
by exercise 1.59, > pcou(A1 N B) = sup{d_pcpu(A N B) | F C
G, F finite} < p(A;) < oo; since, for all B € G C F, u(A; N B) >0, it
follows that G is countable. Let (By)ren be an enumeration of G. For
each k € N, B, € F, hence there exists x;, € A and r, > 0 such that
By, = B(xg, i) and Ta(n)rp < pu(Ay N By), so that
Ty an)ry < Z,u(Al N By) =
k=1 k=1
= ,u(A1 N (UkGNBk)> < /L(Al) < Q0.

On the other hand, for all N € N, it follows from (3.1) that A C
(UN_ Bi) U (Upsn+15By). Since, for each k € N, diam By, < 2r, < §
and diam 5B < bdiam B < 10r, < 59, we then conclude that
a(n)27"(diam By)" + Z a(n)27"(diam 5By)" <

k=N-+1

55(A)

WE

3
I

a(n)ry +5" Z a(n)ry.

1 k=N+1

Thus, taking N — oo, it follows HZ5(A) < > r- | a(n)ry, hence 7HZ(A)
Ty ey a(n)ry < u(A;). Taking § — 0, we obtain 7H™(A) < u(A).
Finally, since 7 € (0,¢) was arbitrarily taken, making 7 — ¢ in the last
inequality yields the thesis. 0

M =

e
Il

THEOREM 3.7 (upper density theorem). Let u be a Borel regular

measure on a metric space X, n > 0 real and B € o(p) with p(B) < oo.
Then ©*"(u, B,x) =0 for H"-a.e. x € X \ B.

PROOF. Let C' C B be a closed set and t > 0. Define A" := {x €
X\ B|©*"(u,B,x) >t} and A} := X \ C D A", Since AL = X\ C
is an open set, it follows from remark 3.2 that, for all x € A" C A!,
O (u LB, A}, z) = 0" (u LLAL, B,x) = ©(u, B,z) > t. Thus, we
may apply theorem 3.6 with the Borel measure p LB in place of u, A'
in place of A and A} in place of Ay, yielding tH™"(A") < u LLB(A}) =
pu(B\C). By the arbitrariness of C, it follows that tH"(A*) < inf{u(B\
C) | C C B,C closed}. On the other hand, it follows from proposition
1.36 that u LB is a finite Borel regular measure, to which theorem
1.23 may be applied to approximate B by closed sets contained in B,

IN
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which yields inf{u(B\ C) | C C B,C closed} = 0. Ast > 0 was
arbitrarily taken, it follows that V¢ > 0, H"(A") = 0. Since {z €
X\ B | ©"(u,B,z) > 0} = UpenAY*, we conclude that H"({x €
X\ B|©*"(u,B,z) > 0}) =0, whence the thesis. O

EXERCISE 3.8. If p is an open o-finite Borel regular measure on a
metric space X, the thesis in theorem 3.7 holds for all B € o(u), i.e.
the hypothesis of x(B) being finite may be dropped.

COROLLARY 3.9 (density theorem for the Lebesgue measure). If
B C R™ is L"-measurable, then O"(L", B, x) exists for L"-a.e. x € R",
O"(L",B,z) =1 for L"-a.e. x € B and ©"(L", B,x) = 0 for L™-a.e.
re€R"\ B.

PROOF. Note that, if f, g : (0,00) — [0, o], then
hgl_}lglff(?“) + hrrn_}glfg(r) < hrrn_}glf(f +9g)(r) <
< liminf f(r) 4 limsup g(r) <
r—0 r—0

< limsup(f + ¢)(r) < limsup f(r) + lim sup g(r).

r—0 r—0 r—0
L™ z,r
Fix z € R™. Applying the inequalities above to f(r) = %

and g(r) = el ((RZ\(Z);B(I’T)) , and taking into consideration that f(r)+

g(r) =1, it follows that, for all x € R™:
(3.2) O™ (L",B,x) + O (L",R"\ B,z) =1,

and the same holds with R \ B in place of B.

On the other hand, theorems 2.21, 3.7, exercise 3.8 and the fact
that 0 < ©*(L", B,-) < ©**(L", B,-) < 1 imply that ©™"(L", B,z) =0
for L"-a.e. x € R"\ B. The same holds for R" \ B in place of B, i.e.
O"(L",R™\ B,z) =0 for L"-a.e. x € B. The last equality implies, in
view of (3.2), that ©"(L", B,x) = 1 for L"-a.e. x € B. O

EXERCISE 3.10. Any convex subset X of R" is £"-measurable.

HinT. Use corollary 3.9 to prove that 0.X has null Lebesgue mea-
sure.

EXERCISE 3.11. Let X be a metric space, n > 0 real and A C X be
H™-measurable with H"(A) < co. Then O (H", A, z) < 1 for H™-a.e.
x € A

HINT. For each t > 1, put A, := {x € A | ©"(H", A, x) > t}.
Given € > 0, take an open set U D A, such that H"(UNA) < H"(A;)+e
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(why such an open set exists?) and apply theorem 3.6 with H" LA in
place of i, A; in place of A and AN U in place of Aj.

3.2. Differentiation Theorems

In the first part of this section we extend theorems 3.6 and 3.7 to
the situation in which we define upper and lower densities of a Borel
measure i on a metric space X with respect to another Borel measure
v on X, with convenient regularity and finiteness assumptions.

DEFINITION 3.12 (upper and lower densities of a measure relative
another). Let X be a metric space, u and v measures on X, and x €
X. We define the upper and lower density of u relative to v at x by,
respectively:

B(z,
O™ (1, x) := limsup ————= 'LL( ! 7’)) € [0, 00],
r0 - v(B(z,r))
y - (B r)
CHUNORS hgl_gglfm € [0, oc],
where we adopt the extended arithmetic rules % =0, 2:=0 If

O (u,x) = O%(p,x), we say that the density of p relative to v at x
exists and denote it by 0" (u, x) := 0" (u, z) = O%(u, ).
Note that:
e if 3r >0, p(B(z,7)) =0, then O (u, ) = ©%(p,z) = 0.
o if #r > 0, ,u(IB%(:c,r)) = 0 and dr > 0, V(B(x,r)) = 0, then
O (1, x) = O (p, ) =
In particular, if = ¢ spt u N sup v, the upper and lower densities at
x assume value 0 or oco.

REMARK 3.13. If X = R", A C R", z € R" and p a measure
on R", the n-dimensional upper and lower densities of A at x with
respect to p, defined in 3.1, are special cases of the above definition:

O (u, A, ) = 0" (u LA, z) and ©%(u, A, 1) = 05" (u LA, x).

LEMMA 3.14. If p and v are locally finite Borel measures on a met-
ric space X, and x € X, then the definitions of ©*(u,x) or OY(u, x)
do not change if we use open balls instead of closed balls.

Proor. It is an adaptation of the proof of lemma 3.3, analyzing
separately the case in which x # spt p Nspt v.
Define, for r» > 0,

flr) = —5—+"12% ; and g(r) :=
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1) If 3rg > 0, u(B(z,70)) =0, then VO < r < ro, f(r) = g(r) = 0 and
the thesis is trivial in this case.

2) If 3r > 0, u(B(z,r)) = 0 and Iry > 0, v(B(z,70)) = 0, then
VO < r <y, f(r) =g(r) = co and the thesis is also trivial in this
case.

3) If neither of the previous cases holds, then x € spt p N spt v.
Since both p and v are locally finite, there exists rq > 0 such that
1(B(x, 7)) < oo and v(B(z,rg)) < oo. That is, for all 0 < r < rg,
0 < pu(B(z,r)) < oo and 0 < v(B(z,r)) < co. In order conclude
the proof of the lemma, it suffices to show that, VO < r < rq,

Sup flp) = oiligrg@) and inf f(p) = inf g(p)

That is a consequence of the following claims:

i) Claim 1: Vp € (0,7), g(p) may be arbitrarily approximated by
elements of {f(p) | 0 < p < r}. Indeed, for a given p € (0,7r),
B(xz, p) = NkenU(x, p+1/k); for sufficiently large k, p+1/k < r,
hence 11(U(z, p+ 1/k)) < oo and v(U(z, p+ 1/k)) < oo. That
allows us to apply the continuity from above 1.11 to the Borel
measures 4 and v, which ensures p(U(z, p+1/k)) — p(B(z, p))
and v(U(z,p + 1/k)) — v(B(z,p)) > 0 as k — oo. Thus,
f(p+1/k) — g(p), as asserted.

ii) Claim 2: Vp € (0,7), f(p) may be arbitrarily approximated by
elements of {g(p) | 0 < p < r}. Indeed, for a given p € (0,r),
U(z,p) = U{B(z,p — 1/k) | k € N,1/k < p}. Applying the
continuity from below 1.11 to the Borel measures p and v, it
follows that u(B(z,p — 1/k)) — u(U(z,p)) and v(B(z,p —
1/k)) = v(U(z, p)) > 0 as k — oo. Thus, g(p — 1/k) = f(p),
as asserted.

D

PROPOSITION 3.15. Let p and v be locally finite Borel measures
on a metric space X, with v finite on all closed balls of X. Then the
functions X — [0,00] given by x € X — O%(u,z) and v € X
OY(u, x) are Borelian.

PrOOF. We adapt the proof or proposition 3.4.

1) Let Up == {x € X | 3Ir > 0,v(B(z,7)) = 0} = X \ spt v and
Vo :={z € X | 3Ir>0,uBr) =0} =X)\sptp We wil
apply proposition 1.50 to A; = Vy, Ay = Uy \ Vp and A3 = X\
(Uy U Vp). Note that, since Uy and Vj are open sets, (A;)i1<i<3 is
a Borel partition of X. As 0" (u,-) and ©%(u,-) are constant on
Ay (equal to 0) and Ay (equal to oo), their restrictions to A; and
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As, endowed with the respective trace o-algebras, are measurable.
It remains to show that the restrictions of ©(u,-) and ©Y(u,-)
to A3 = spt u N spt v are measurable, endowing Az with the trace
o-algebra ABx|a,.

Note that, for fixed r > 0, the functions X — [0, 00| given by z
1(U(z,r)) and z + v(U(z,r)) are lower semicontinuous (hence
Borelian). Indeed, let z € X and (z,),en a sequence in X conver-
gent to x. For all k& € N such that r — 1/k > 0, Ing € N, Vn > ny,
U(zy,r) D B(z,r — 1/k). Hence Vn > ng, p(U(zy, 1)) > p(B(z,r —
1/k)), whence lim inf,,_, o p(U(, 7)) > p(B(z,r—1/k)). Applying
the continuity from below 1.11 to the Borel measure pu, we conclude
that pu(B(z,r—1/k)) — p(U(z,r)) < liminf, e p(U(2y, 7)), what
shows the asserted lower semicontinuity at = for u, and the same
argument holds for v.

It then follows that the quotient “EEE"T;; : X — [0, 00] is Bore-

lian (see example 1.51.2), so its restriction to Aj is measurable with
respect to the trace o-algebra.
Claim: Given r > 0, the functions 9,,9" : X — [0, 00| given by:

oy i MO L s(UGp)
— 0<p£7’ V(U(x, p)) doe 0<pI<)r V(U(-CE’ p)) ,

respectively, have measurable restrictions to Az. Indeed, it suffices
to show that, Vo € As,

e #UGp) (UG p)) ) .
oS v (U, p)) . (U(z, p)) 0= p<rpeQhand
“u 1(U(z, p)) . 1(U(z, p)) )

0<per v(U(z,p)) p{y(U(x7p)) |[0<p<rpeQ}

in which case the asserted measurability follows from the previous
item and from theorem 1.41.(iv). In order to show the equalities
above, it is enough to prove that, for all x € A3 and 0 < p < r,
M(U(C’fvﬂ))
V(U(x,p))
# (V@) |
V(U(:l‘,p))
of rationals (pg)ren in (0, p) such that py 1 p; then, applying the
continuity from below to the Borel measures p and v, M(U(as, pk)) T
1(U(z, p)) and v(U(z, pi)) T v(U(z, p)). Since z € A3 C spt v and

may be arbitrarily approximated by elements of the set

0<p<rmrpe Q} Forthat purpose, take a sequence
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v is finite on balls, we have 0 < V(I[J(x7 p)) < 0o. Hence #(U(z,pk)) N
v(V(a.pn))

M, as asserted.

V('U(:L‘,p))

4) Due to the fact that p and v are locally finite Borel measures,
it follows from lemma 3.14 that ©™(u,")[, = infreqy ¥"|a, and
OY(1,)|as = SUD,.cqy | a,. Thus, from the claim in the previous

item and from theorem 1.41.(iv), we conclude that both ©* (pu, -)|
and OY(u, -)|a, are measurable.

O

EXERCISE 3.16. Show that, in proposition 3.15, the hypothesis of v
being finite on all closed balls of X may be replaced by the hypothesis
of X being separable.

HinT. Adapt the argument above. Prove that, for each x € Aj,
there exists an open neighborhood x € U C X and ry > 0 such that,
for all 0 < r < ry the restrictions of 1, and ¥" to UN A3 are measurable.

COROLLARY 3.17. Let p and v be locally finite Borel measures on
a metric space X, with v finite on all closed balls of X. Then the
set Y :={z € X | ©¥(u,x) = ©%(u,x)} is Borel measurable and
©"(u,-) : Y — [0,00] is Borelian.

In order to obtain similar versions of the comparison 3.6 and upper
density 3.7 theorems to the situation in which the densities of a Borel
measure p are taken with respect to another Borel measure v, we need
v to satisfy the “symmetric Vitali property” introduced below. The
idea is to abstract the Vitali property of the Lebesgue measure stated
in corollary 2.14.

DEFINITION 3.18. Let X be a metric space, F a collection of balls
in X and A C X. We say that F is a strongly fine cover A, or that
F covers A finely in the strong sense, if F is a cover of A such that,
Ve e A, inf{r >0 |B(z,r) € F} = 0.

It is clear that every strongly fine cover of A is a fine cover of A in
the sense of definition 2.12, but the converse does not hold.

DEFINITION 3.19 (symmetric Vitali property (SVP)). We say that
a measure u on a metric space X satisfies the symmetric Vitali property
if, for all A € X with u(A) < oo and for all F strongly fine cover of A by
nondegenerate closed balls, there exists a countable disjoint subfamily
G C F such that pu(A\ UG) =0.
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Note that A is not assumed to be p-measurable.

REMARK 3.20.

1) It is clear that, if a measure p on a metric space X has SVP, so does
any restriction of yu, i.e. VY C X, p LLY has SVP.

2) If a measure p on a metric space X is o-finite and has SVP, then
i is concentrated on its support, i.e. u(X \ spt u) = 0. Indeed, let
X = UgenAg, with Vk € N; Ay € o(p) and p(Ag) < oo. For each
k € N, the family of nondegenerate closed balls F = {B(x,r) | z €
X\spt p,r >0, u(B(z, 7)) = 0} covers A;\spt  finely in the strong
sense. Hence, there exists a countable disjoint subfamily G, C F
such that p((Ax \ spt 1) \ UG) = 0; since p(UG;) = 0 (because
Gk is countable and each B € i has null measure), we conclude
that u(Ag \ spt u) = 0. Therefore X \ spt p = Ugen(Ag \ spt 1) has
[i-measure zero.

We list in the propositions below some sufficient conditions in order
for a measure to satisfy the symmetric Vitali property.

PROPOSITION 3.21 (doubling property implies SVP). Let X be a
separable metric space and p a finite Borel reqular measure on X. As-
sume that u satisfies the doubling property:

3C > 0, VB C X nondegenerate closed ball, n(5B) < Cu(B),
where 5B is given by (2.1). Then p has the symmetric Vitali property.

ProoOF. Let A C X and F a fine cover of A by nondegenerate
closed balls. By corollary 2.13, there exists a disjoint subfamily G C F
such that, for all ' C F finite, A\ UpepB C Upeg\pdB. Since X is
separable, G is countable; let (B,,),en be an enumeration of G. Then,
for all N € N,

A \ Uiylen C Un2N+15Bn~

Hence, pu(A\UN_,B,) < C Y oy 1i(Bn) 2800, since Yo w(By) =
1(UG) < u(X) < oo. Thus, applying the continuity from above 1.11
to the finite measure p, it follows that u(A\ UG) = 0. O

REMARK 3.22. We have actually proved that, if u is a finite Borel
regular measure on X with the doubling property, then the symmetric
Vitali property holds in a stronger sense, i.e. given A C X with u(A) <
00, the symmetric Vitali property holds for arbitrary fine covers of A,
not necessarily in the strong sense.

PROPOSITION 3.23 (Borel measures on subsets of R" satisfy SVP).
Let X be a metric subspace of R™ and pu a Borel measure on X. Then
1 satisfies the symmetric Vitali property.
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In order to prove this proposition, we will need the following cov-
ering theorem:

THEOREM 3.24 (Besicovitch covering theorem). For each n € N,
there exists a natural constant N = N(n), depending only on n, which
satisfies the following property: if F is any family of nondegenerate
closed balls in R™ with sup{diam B | B € F} < oo and A is the set of
centers of the balls in F, then exist Gy, ...,Gn such that, for1 <i < N,
G; is a disjoint subfamily of F and UX.,G; covers A.

For the proof of this theorem, we refer, for instance, to [EG91],
[KPO08|, [Mat95] or [Fed69].

COROLLARY 3.25. Let pu be a Borel measure in R", A C R™ with
w(A) < 0o and F a family of nondegenerate closed balls which covers
A finely in the strong sense. Then, for any open set U D A, there
exists a countable disjoint subfamily G C F such that UG C U and
pn(A\ UG) = 0.

PRrOOF. It is an adaptation of the argument used to prove corollary
2.14, using Besicovitch covering theorem instead of the 5-times covering
lemma 2.10.

Let N = N(n) be the constant given by theorem 3.24 and fix 6 €
(1 — +,1). We may assume that p(A) > 0, otherwise the thesis is
trivial. Let U D A be an open set.

1) Put Fy :={B € F | B C U,diam B < 1}. Since F covers A finely
in the strong sense, it is clear that Fy; is still a strongly fine cover of
A; in particular, A is contained in the set of centers of the balls in
F. Applying theorem 3.24 to Fy, we may take disjoint subfamilies
G, ... G C Fysuchthat A C UY,(UG}). Hence, by subadditivity,
(A <oV, 1t(AN(UG;)). We therefore conclude that there exists
1 <i < N such that p(AN(UG})) > +u(A) > (1—6)u(A). Since G,
is a countable family (by remark 2.11) of closed balls, we may apply
the continuity from below 1.11 to the Borel measure 1 L A to obtain
a finite subfamily G; C G}, such that p(A N (UG1)) > (1 — 0)u(A).
But, since UG, is Borelian (hence p-measurable), we have

p(A) = p(AN (UG)) + u(A\ UG,
and the fact that pu(A) < oo allows us to conclude that p(A\UG;) <
Gu(A).

2) Given 2 < j € N, assume we have defined finite disjoint subfamilies
G1 C --- C Gj—1 C F such that, for 1 < i < j — 1, the balls of
G; are contained in U and p(A\ UG;) < 6'u(A). We reapply the
argument of the previous item to the open set U’ := U \ UG,_;
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in place of U and to A" := A\ UG;_; C U’ in place of A: take
Fur:={B € F | B C U',diam B < 1}, which is a strongly fine
cover of A’, and use theorem 3.24 as in the previous item to find a
disjoint subfamily Gy C Fyr such that p(A' N (UGy)) > xu(A') >
(1—=0)u(A’). Then, applying the continuity from below to the Borel
measure 1 L A’, there exists a finite set Gj C Gy such that u(A’ N
(UG})) > (1—0)u(A’). As in the previous item, the p-measurability
of G and the fact that y(A’) < oo imply that u(A"\UG}) < Ou(A’) <
07 1u(A). Put G =G, UQ;-. Then G; C F is a finite disjoint family
whose balls are contained in U, and A\ UG; = A"\ UG’ satisfies
U(A\UG;) < 0in(A).

3) We have thus inductively defined an increasing sequence (G;);en
such that, for each j € N, G; is a finite disjoint subfamily of F
whose balls are contained in U, with p(A4 \ UG;) < 67u(A). Define
G = UienG;; then G is a disjoint subfamily of F whose balls are
contained in U, with Vj € N, pu(A\ UG) < 09u(A) == 0. Hence
u(A\ UG) = 0, which concludes the proof.

O

PROOF OF PROPOSITION 3.23. If X = R", the thesis follows di-
rectly from corollary 3.25.

In the general case, let p denote the metric on X induced by the
euclidean metric d on R™ and ¢ : X — R” the inclusion. We use
superscripts p and d for balls in X and R", respectively, so that Vo € X,
B(x,r)? = B(z,7)¢N X. Given A C X with u(A) < oo and F C 2%
a strongly fine cover of A by nondegenerate closed balls, let F' :=
{ B nondegenerate closed ball in R” | BN X € F}. Then F' C 2%
is a strongly fine cover of A in R"; indeed, Vax € A, V§ > 0, the fact
that F is a strongly fine cover for A in X ensures the existence of
0 < r < ¢ such that B(z,7)?N X = B(x,r)? € F, hence B(z,r)? € F'
by definition. Since, by proposition 1.15.(iii), the pushforward measure
L4t is a Borel measure on R”, it follows from the case already proved
that there exists a countable disjoint subfamily G’ C F’ such that
Ly fl(A\UG') = 0. Define G := {BNX | B € G'}; then G is a countable
disjoint subfamily of F and, since VB € G', A\ B = A\ (BN X), it
follows that A\ UG = A\ UG’, thus pu(A\ UG) = txpu(A\ UG') = 0,
which concludes the proof. 0

THEOREM 3.26 (general comparison density theorem). Let u and v
be open o-finite Borel reqular measures on a metric space X such that
v has the symmetric Vitali property, t > 0 and A C X. IfVx € A,
O (u,x) >t then tv(A) < u(A).
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PRrROOF. We assume that t > 0, otherwise the thesis is trivial.
Firstly, assume that v(A) < oc.
Fix 0 < 7 < t and an open set U D A. Since, Vx € A, O (pu, x) =

lim sup M(E(JC’T)) >t>r,it follows that Vx € A, Vr >0, 0 < p <7
r=0 Z/(B(:B,T))

u(B(:v,p)
V(B(x,p))
order for the quotient to be > 7, according to our extended arithmetic
convention in 3.12, the numerator cannot be 0 and the denominator
cannot be 0o). It then follows that F := {B | 3z € A,3r > 0,B =
B(z,r), n(B(z, p)) > Tv(B(z,p)), B C U} is a strongly fine cover of
A. Since v(A) < oo and v has the symmetric Vitali property, we may
take a countable disjoint subfamily G C F such that v(A\ UG) = 0.
Therefore, by countable subadditivity,

Tv(A) < 7[> v(B)+v(A\UG)] <

Beg

<> u(B) = p(UG) < u(U).

Beg

such that

> 7, so that p(B(z, p)) > 7v(B(z, p)) (note that, in

Since p is open o-finite Borel regular, theorem 1.23 may be applied and
vields p(A) = inf{u(U) | U D A open} > 7v(A) and, taking 7 — ¢,
the thesis follows in case v(A) < oco.

If v(A) = oo, the fact that v is open o-finite allows us to take a
countable disjoint family (By,)ren of Borel sets in X such that Ugey By =
X and Vk € N, v(By) < co. Thus, for all k € N, the case already proved
applies to A N By, which yields u(A N Bg) > tv(A N By). By the fact
that both u LA and v L_A are Borel measures, it then follows that
P(A) = pen (AN By) >t 7, V(AN By) =tv(A). O

COROLLARY 3.27. Let p and v be open o-finite Borel reqular mea-
sures on a metric space X such that v has the symmetric Vitalt prop-
erty. Then O™ (u,z) < oo for v-a.e. x € X.

PROOF. Let I := {x € X | O (u,x) = oo}. We must show that
v(I) = 0. Since u is open o-finite, we may take a sequence of open sets
(Ug)ken such that UgenUy = X and Vk € N, pu(Uy) < 0.

Fix k € Nand t > 0, and let A¥ := {z € U, | ©%(u,z) > t}.
Applying theorem 3.26 with AF in place of A, it follows that tv(AF) <
u(AY) < p(Uy) < oo. Since I N Uy = Ni=oAF, we then conclude that
vt >0, v(INU) < v(AF) <t 1u(Uy) =20, hence v(INU,) = 0. As
I = Ugen(I NUy), the thesis follows from the countable subadditivity
of v. U
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THEOREM 3.28 (general upper density theorem). Let u be a Borel
reqular measure on a metric space X, v an open o-finite Borel reqular
measure on X with the symmetric Vitali property, and A € o(u) with
u(A) < oo. Then ©*(p LLA,z) =0 for v-a.e. x € X \ A.

PROOF. For each t > 0, let S; :={zx € X\ A | 0" (u LA x) >t}
By proposition 1.36.(i), u LA is a finite Borel regular measure on X;
hence, we may apply theorem 3.26 with u LA in place of x, v and S;
in place of A, which yields tv(S;) < pu LLA(S;) = u(ANS;) = 0, since
ANS; =0. Thus, v(S;) =0, whence v({z € X \ A | 0 (u LA, z) >
0}) = v(UnenSi/n) = 0. O

THEOREM 3.29 (general density theorem). Let pu be an open o-
finite Borel reqular measure on a metric space X with symmetric Vitali
property and A € o(u). Then the density ©"(u LA, ) coincides p-a.e.
on X with x4, i.e.

p(ANB(z,7)) {1 for p-a.e. x € A,

O (u LA, z) =1 =
(p 7) 0 M(E(xﬂ")) 0 for p-a.e. z € X\ A.

ProoFr. It is an adaptation of the proof of corollary 3.9, using
theorem 3.28 instead of theorem 3.7.

Firstly, we prove the case in which u(X) < oo. Since p is con-
centrated on its support, by remark 3.20.2), it suffices to show that
OH(u LA, -) coincides p-a.e. on spt p with y4. Fix x € spt p and de-

fine f, g : (0,00) = [0,00] b r:mand TZM.
fr9:( ) = | ] by f(r) M(B(x7r)) g(r) u(]B(x,r))

Due to the fact that f(r) + g(r) = 1 and that liminf, ,o(f + g)(r) <
liminf, o f(r) +limsup,_,, g(r) < limsup,_o(f + g)(r), it follows that

(3.3) O (pn LA x) + 0% (n L(X \ A),z) =1,

and the same holds with X \ A in place of A.

On the other hand, since p is a finite Borel regular measure and
A € o(u), we may apply theorem 3.28 with v = p, which yields
O (u LLA,z) = 0 for pra.e. x € X \ A Then the fact that 0 <
Ot(u LLA,-) <O (u LLA,-) <1 implies that ©#(u LLA,x) = 0 for
p-a.e. x € X \ A. The same holds for X \ A in place of A, i.e.
OH(u L(X \ A),z) =0 for p-a.e. x € A. The last equality implies, in
view of (3.3), that ©#(u LLA,z) = 1 for p-a.e. * € AN spt u, which
concludes the proof in case pu(X) < oo.

In the general case, since p is open o-finite, we may cover X with
countably many open sets (Uy)ren such that VE € N, u(Uy) < oc.
For fixed k € N, it follows from proposition 1.36.(i) and from remark
3.20.(1) that u LUy is a finite Borel regular measure with SVP, to



3.2. DIFFERENTIATION THEOREMS 71

which the case already proved yields ©* Lui (p (U A),") = xa

(u LLUyg)-a.e. on X. Since Uy is open, the functions ©* I—Uk(u L(U.NA),-)
and ©*(p LA, -) coincide on Uy; hence, ©#(u LA, -) coincides with x4
pra.e. on Ug. As UgenUy, = X, we conclude that ©#(p LA, -) coincides
with x4 p-a.e. on X, as asserted. 0

COROLLARY 3.30 (general Lebesgue differentiation theorem). Let
i be an open o-finite Borel reqular measure on a metric space X with
symmetric Vitali property and f : X — C a p-measurable function
satisfying one of the following conditions:

i) f €Lt (u) or
ii) X is separable and f € L} _(p), i.e. Vo € X, Ir > 0, fB(M)]ﬂd,u <

loc
0.

Then, for p-a.e. x € X:

o o
(3.4) l%m/}g(w) fdp = f(z).

PrOOF. Note that, since f = [(Re f)T — (Re f)7] + ¢[(Im f)* —
(Im f)~], it suffices to prove the thesis for positive functions, i.e. we
may assume f : X — [0,00). Moreover, the fact that p is open o-
finite ensures the existence of a sequence (Uy)reny of open sets such
that UgenUy = X and Vk € N, p(Uy) < 0o; we may also assume that
[fd(p LU, = ka f du < oo in case hypothesis (ii) holds. Therefore,
if we prove the thesis for finite Borel regular measures with SVP and
hypothesis (i), it will follow that, for each k£ € N, (3.4) holds with
p LUy in place of p. In particular, for all £ € N, (3.4) holds (with
w) for pra.e. x € Uy, hence it holds for pra.e. x € X = UgenUi. We
may then assume that p(X) < oo and that hypothesis (i) holds, i.e.
feLli(n).

Fix k € N. The fact that pu is a finite Borel regular measure allows us
to apply Lusin’s theorem 1.117, which yields a closed subset F C X
such that pu(X \ Fy) < 1/k and f|p, is continuous. Since p has the
symmetric Vitali property, so does pu L_Fj; hence, by remark 3.20,
p L F}, is concentrated on its support. In particular, if Ny, := F,N (X \
spt u LLFy,) = {z € F}, | 3r > 0, u(Fx NB(z,7)) = 0}, then u(N;) = 0.
For each z € Fy, \ Ny, for each r > 0, we have 0 < pu(F, NB(z,7)) <
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1(B(z,r)), so that
1
- du =
1(B(z,7)) /me%(x,r)f g
u(Fk N B(w,r)) 1
_ . du.
1(B(z,7)) w(F, NB(z,7)) /FkﬂlB(x,r) i
;L(FkﬁIB(Z,T)) r—0
M(B(x,r))
)fdu —

(3.5)

From the general density theorem 3.29, for p-a.e. x € Fy,

S S
,u(FkﬂB(x,r))
f(z). It then follows from (3.5) that, adjoining a p-null set to Ny if
necessary, Vr € Fy \ Ny,

1, and the continuity of f|g, ensures Vo € Fj, Il B

1 r—0
(3.6) e [ A ),
,LL(]B(I, T)) F.NB(z,r)
We contend that, for p-a.e. x € Fj,
1 r—0
(3.7) _ / fdu — 0.
M(B(l’, 7”)) B(z,r)\ F

Indeed, let v be the Borel regular measure on X given by f du, i.e. the
extension of the measure A € Bx — [, fdu given by theorem 1.8.
Since Ff = X \ F}, has finite v-measure (because f € L'(u)), we can
apply the general upper density theorem 3.28 with v in place of u,
in place of v and F¥ in place of A, thus proving our contention.

It then follows from (3.6) and (3.7) that, adjoining another p-null
set to Ny if necessary, Vo € Fj, \ Ni, (3.4) holds. Therefore, as k € N
was arbitrarily taken and X \ UgenFj is p-null, (3.4) holds for x in the
complement of the p-null set (UgenNg) U (X \ UkenFr) and we are done.

O

COROLLARY 3.31 (Lebesgue Points). Let X be a separable metric
space, p an open o-finite Borel reqular measure on X with symmetric
Vitali property, 1 < p < oo and f € L (n), ie. VYo € X,3r >

0, fB(x T)]f|p dp < oo. Then, for pu-a.e. v € X,

1
(3.8) lim —/ |f(y) = f(z)]P du(y) = 0.
r—0 ,U(B(I', ’l“)) B(z,r)
PrOOF. Let {r; | i € N} be a countable dense subset of C. It
follows from corollary 3.30 that, for every ¢ € N, there exists a p-null

set A; such that, for all x € A,

1
lim— / =P du = (@) - il
TAOM(B({L‘J“)) B(z,r)
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Then the above equality holds for all © € N and for all # in the com-
plement of the p-null set A := U;enA;.

Fix 2 € A° and € > 0. There exists ¢ € N such that |f(x) —r;| <e.
Then

1
_ P <
2 (B(.) /B(x’r)lf(w f(@) P du(y) <
2r-1
- _ . |P L p d
< ] o, () = = FP) o) <
2Pt P p—1 P
< m/ﬁ(zﬂﬁ(y) —rilP du(y) + 27 f(z) — ril”,
so that
; 1 P op—1 . |P D P
lmsup e / L HS@P ) <2271 @) < e
Since € > 0 was arbitrarily taken, the thesis follows. U

DEFINITION 3.32 (Lebesgue Points). With the same notation from
the previous corollary, a point x € X for which (3.8) holds is called
Lebesgue point of f with respect to p.

It is clear that every point of continuity of f is a Lebesgue point of
f

If X = R" and p = L, the limit in (3.8) can be taken along
all closed balls B containing z (not necessarily centered at x) with
diam B — 0:

COROLLARY 3.33 (Lebesgue points with noncentered balls). Let
1 <p<ooand f el (L"). Then, for each Lebesgue point x of f
with respect to L™ (in partzcular for L"-a.e. x € R™),

m{ }ﬁn /'f DI dL*y) =

where the limit is taken over all closed balls B containing x with diam B —
0.

PROOF For each closed ball B containing x, we have:

/ 0) = Fa)P dL™(y) <

< 5 /<m W) = F@P AL () =
n 1 o
=2 Lr (IB%(x, diam B)) /B(w,diam B)lf(y) — f(x)|PdL™(y)
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and then the thesis follows from corollary 3.31. U

Our next step is to prove a version of the general comparison density
theorem 3.26 for lower densities.

Firstly we introduce for Borel outer measures the notions of abso-
lute continuity and mutual singularity which were introduced in 1.92
for measures on a o-algebra M.

DEFINITION 3.34 (absolute continuity and mutual singularity). Let
1 and v be Borel measures on a topological space X. We say that:

1) p is absolutely continuous with respect to v (notation: p < v) if
VA C X, v(A) = 0 implies u(A) = 0.
2) p and v are mutually singular (notation: p 1 v) if there exists

A € $x such that p is concentrated on A and v is concentrated on
X\ A

REMARK 3.35. Note that p L v iff u|g, L v|g, in the sense of
definition 1.92. Besides, it is clear that, if y is a Borel measure and
v is a Borel regular measure on a topological space X, then y < v
iff VA € Bx, v(A) = 0 implies u(A) = 0. Thus, if v is Borel regular,
then p < v iff p|g, < v|z, in the sense of definition 1.92.

We now prove a version of the Lebesgue decomposition theorem
1.101 for outer measures. The lemma below may be obtained as a
direct consequence of the previous remark and theorem 1.101, but we
give a direct proof.

LEMMA 3.36 (Lebesgue decomposition theorem). Let i be a o-finite
Borel measure and v a Borel reqular measure on a metric space X.
Then there exists B € Bx such that v is concentrated on B° and
uw LB < v, so that

(LD) p=plLB+plLBY plLBlv,pulB <
Moreover:

1) B € Bx satisfying (LD) is unique up to p-null sets, i.e. if B' € Bx
also satisfies (LD), then BA B’ is p-null.

2) the decomposition (LD) is unique in the sense that, if u = ps + lig
with ps L v and pg < v, then pus = u LB and p, = p L B°.

DEFINITION 3.37. With the notation above, we call u LB the sin-
gular part and p L B¢ the absolutely continuous part of p with respect
to v.

PROOF. 1) Assume p finite. Let F := {F € Bx | v(F) = 0}
and « := sup{u(F) | F € F}, so that 0 < a < p(X) < co. We
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contend that this sup is attained. Indeed, take a sequence (F,),en
in F such that pu(F,) — « and define B := U,enFy,. Then B € Ay
and v(B) = 0 (since each F,, is v-null), so that B € F. Since
Vn e N, u(F,) < u(B) and u(F,) — «, it follows o < p(B), hence
a = u(B).

We contend that u B¢ <« v. Indeed, if that is not the case,
the Borel regularity of v and remark 3.35 imply the existence of
A € Bx such that v(A) = 0 and u L_B(A) > 0; hence BU A €
Fand pf(BUA) = pu(B) + u(B°NA) = a+pulB(A) > a,
which contradicts the definition of a. The contention is then proved,
so that v is concentrated on B¢ and p L_B¢ < v. Besides, since
p LB is trivially concentrated on B, we have u LB | v and the
decomposition (LD) holds.

In the general case, since u is o-finite, we can take an increasing
sequence (A, )neny in o(p) such that UpenA, = X and Vn € N,
p(A,) < oo. For each n € N, p LA, is a finite Borel measure,
to which the previous item can be applied, yielding B, € ABx
such that v is concentrated on B¢ and pu LA, N B < v. Let
B :=UpenB,, € #x. Then v(B) =0, i.e. v is concentrated on B¢
we contend that u L B¢ < v, which yields the validity of decompo-
sition (LD). Indeed, if F' € Zx isv-null, ¥n € N, u LLA, N BS(F) =
(A, N BENF) = 0, hence p(A, N (NpenBS) N F) = 0. Since
(A, N (NpenBE) N F)neN is a sequence in o(u) which increases to
((ﬂneNBg) ﬂF) = B°NF, the continuity from below 1.11 applied to
w yields p L B¢(F) = pu(B¢ N F) = 0, which proves our contention.
Let B' € #Ax such that (LD) also holds with B’ in place of B.
Then pu LB\ B’ is concentrated on B and absolutely continuous
with respect to v (which is null on B), hence u LB\ B’ is the
null measure. Similarly, p L_B’\ B is null, and so is p LLBA B’ =
pw LB\ B 4+ u LB\ B,ie u(BAB') =0, as asserted.
Let v = g+ pg with pg L v and p, < v. Let B € $x such that u,
is concentrated on B’ and v is concentrated on (B’)°. Then pu, < v
is also concentrated on (B’)¢; thus, for all A C X, us(A) = pus(AN
B') = u(AN B) = p LB/(4) and jia(A) = (AN (B')) = (A1
(B')¢) = p L(B)°(A). That is, po = p LB and ps = p L (B')".
In particular, (LD) holds with B’ in place of B; by the previous
item, it follows that u(BA B’) = 0, hence pu, = p LB = u LB
and u, = p L(B")° = p L B¢, as asserted.

U
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THEOREM 3.38 (comparison theorem for lower densities). Let u
and v be open o-finite Borel reqular measures on a metric space X,
t>0and A C X withVx € A, ©%(u,z) < t.

i) If u has SVP, then u(A) <tv(A).
ii) If v has SVP and B is given by lemma 3.30, so that (LD) holds,
then w(A\ B) < tv(A).

PRrROOF. It is similar to the proof of theorem 3.26.

(1)

Firstly, we make a reduction: it is enough to prove the case in
which both p(A) and v(A) are finite. Indeed, suppose that the
thesis holds in that case. In the general case, since both p and
v are o-finite, there exists a disjoint sequence (B )xen of Borel
sets in X such that u(By,) < oo, v(By,) < oo and X = Ugey By.
Thus, for each k£ € N, the thesis holds for By N A in place of
A, so that, for all k € N, (BN A) < tv(ByNA) in case i)
and pu(By N A\ B) <tv(BrNA)in case ii). By the fact that
both u LA and v L_ A are Borel measures, it then follows that
W(A) =D en (Br MA) <ty nv(BrNA) =tv(A) in case
i), and p(A\ B) = >,y i(BrNA\B) <t>, yV(BiNA) =
tv(A) in case ii).

Assume, therefore, ;(A) < oo and v(A) < co.
It is enough to prove part i) for A C spt pu. Indeed, suppose
that the thesis holds in that case. Since p is o-finite and
has SVP, it follows from remark 3.20 that p is concentrated
on its support; thus, for arbitrary A it follows that pu(A) =
u(Anspt u) <tv(ANspt p) <tv(A) and we are done.

Assume, therefore, A C spt u. Fix 7 > ¢ and an open
set U D A. Since, Vo € A, ©”(u,z) = 1iminfr%%
<t < 7, it follows that Vx € A, Vr > 0, 30 < p < r such
u(B(w,p))
V(]B(:):,p))
that ,u(IB%(Jc, p)) > 0, since x € spt p; hence, in order for the
quotient to be < 7, according to our extended arithmetic con-
vention in 3.12, the denominator cannot be 0). It then follows
that F := {B | 3z € A,Ir > 0,B = B(z,r),n(B(z,7)) <
Tv(B(z,r)),B C U} is a strongly fine cover of A. Since
1(A) < oo and p has the symmetric Vitali property, we may
take a countable disjoint subfamily G C F such that u(A\

that

< 7, so that p(B(z,p)) < 7v(B(z,p)) (note
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UG) = 0. Therefore, by countable subadditivity,

p(A) < p(A\NUG) + > u(B) < 7> v(B) =
Beg Beg
=1v(UG) < 1v(U)

Since v is open o-finite Borel regular, theorem 1.23 may be
applied and yields 7v(A) = inf{rv(U) | U D A open} > u(A)
and, taking 7 — t, part i) is proved.

(3) We now prove ii). Take B € Zx given by lemma 3.36, so
that (LD) holds. Note that, since the measure p L_ B¢ is abso-
lutely continuous with respect to v, it clearly has SVP; besides,
it is trivially open o-finite, it is Borel regular by proposition
1.36.(i), and Vx € A:

OY(n LB ) = li:gﬂn_)igf - bﬁ;(fix)’)r)) <
. p(B(z,7))
= )

We may therefore apply part i) with g L B¢ in place of p,
yielding u(A\ B) = u LLB°(A) <twv(A), as asserted.

= O{(n,x) < t.

O

THEOREM 3.39 (differentiation theorem for Borel measures on met-
ric spaces). Let p and v be open o-finite Borel reqular measures on a

metric space X. Suppose that X is separable or that v is finite on
closed balls of X.

i) The set Y :={z € X | 0% (u,x) = ©%(u,x)} is Borel measurable
and ©"(u,-) : Y — [0,00] is Borelian.
ii) If v has SVP, Yy :=={x € Y | ©"(u,x) < 0o} is a Borel measurable
subset of X whose complement is v-null.
ii1) If both u and v have SVP, n(Y°) = v(Y°) = 0.

PROOF.

1) If v is finite on closed balls, part (i) follows from corollary 3.17; if
X is separable, part (i) is a direct consequence of exercise 3.16.

2) We now prove part (iii). It suffices to prove the case in which
u(X) < oo and v(X) < co. Indeed, assuming that the thesis holds
in this case, in the general case we can take a sequence (Ug)en
of open sets such that X = UgenUy and VE € N, u(Uy) < o0
and v(Ug) < oo. The thesis then holds, for each k& € N, for
the finite Borel regular measures with SVP u LU, and v LU,
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in place of p and v, respectively. Thus, for each & € N, since
0 (. ) = 0 LUi( LU, ) and ©2(p,) = 07 LUk (1 LU, )
on the open set Uy, it follows that u(Y°NUy) = 0 = v(Y° N Uy),
whence p(Y¢) =0 =v(Y°), as asserted.

Assume, therefore, that both 4 and v are finite. Let 0 < a <

b<ooand Y, :={re X |0Y(ux) <aand O (u,z) > b}. Since
both p and v are open o-finite Borel regular measures with SVP,
we may apply theorems 3.26 and 3.38 to conclude that bv(Y,,) <
M(Ya,b) and :u(Y;z,b) < ay(}/a,b)a so that N(Ya,b) < aV<Ya,b) < %M(}/a,b)-
Since ¢ < 1 and u(Yap) < oo, it follows that u(Y,) = 0, hence
V(Yap) = 0. AsY = WU{Y,, |0 <a<b<oo,aeQbeQ},it
follows that u(Y¢) = v(Y¢) = 0, as asserted.
3) We prove part (ii). It is clear from part (i) that Yy = {z € YV |
©Y(p, x) < oo} is Borel measurable. By the same reduction made
in the previous item, we may assume that both p and v are fi-
nite. Take B € %Bx given by lemma 3.36, so that (LD) holds.
Note that p L B¢ is a finite Borel regular measure on X with SVP.
Applying part (iii) with g L B¢ in place of u, we conclude that
{re X |0 (u LB x)# 0" LB x)} is v-null. On the other
hand, as pu(B) < oo, we may apply theorem 3.28 with B in place
of A, yielding ©*(u LLB,z) = 0 for v-a.e. = € B° That im-
plies O (u LB x) = ©*(u,z) and O%(u LB, x) = OY(u,x)
for v-a.e. x € B¢ It then follows that YN B¢ = {& € B¢ |
O (u,z) # OY(u,x)} differs from {x € B¢ | ©%(u LB x) #
©Y(pn LB, )} by a v-null set; thus, since the latter set is v-null, so
is the former. Since v is concentrated on B¢, we then conclude that
v(Y¢) =v(Y°Nn B°) = 0. Finally, by corollary 3.27, F:= {z € X |
©*(u,r) < oo} has v-null complement; as Yy = YN F, we conclude
that Yy = YU F* is v-null, as asserted.

O

THEOREM 3.40 (Lebesgue-Besicovitch-Radon-Nikodym differentia-
tion theorem). Let u and v be open o-finite Borel reqular measures on

a metric space X. Suppose that X is separable or that v is finite on
closed balls of X, and that v has SVP.

i) Let p = ps+ g be the Lebesque decomposition of p with respect to
v, i.e. iy =p LB and p, = p LB, where B € Bx is given by
lemma 3.36. Then, for all A € ABx,

39) na(4) = [ € () dv(a),
so that, for all A € Bx, p(A) = [,0"(u, x) dv(z) + ps(A).
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it) If p also has SVP, in lemma 3.36 we can take B' = {x € X |
©"(u,z) = oo} in place of B.

PROOF. 1) Note that the integral in (3.9) makes sense, since, by
theorem 3.39.(ii), ©"(u,-) is a positive Borel measurable function
defined on the complement of a v-null set.

Let A = ©” (i, -) dv be the Borel regular measure on X defined
by the second member in (3.9), i.e. the extension of the measure
Ae Bx — [,0"(n,x)dv(z) given by theorem 1.8. We must show
that p, = A. Since both measures are Borel regular, it suffices to
show that they coincide on Borel sets.

Let A € By, fix t > 1 and take Y} given by 3.39.(ii), so that
v(BUYF) = 0. We contend that both A and p, are concentrated
on S :={r € B°NY; | ©(u,x) > 0} € Ax. Indeed, since
S¢=BUYfU{r € B°NY; | ©"(u,x) = 0}, it is clear that
A(S¢) = 0. On the other hand applying theorem 3.38.(ii) with
{r € B°NY; | ©(p,x) = 0} in place of A and ¢ = 0, it follows
that p,({z € B°NY; | ©(n,z) = 0}) = p({z € B°NY; |
©¥(p,z) = 0}) =0 and, as p,(B U Y¥) =0 (because p, < v), we
conclude that 1, (S¢) = 0.

Define, Vk € Z, Ay == {x € ANS | tF < O"(u,z) < tht1} €
PBx. Since ANS = Upey Ag, we have:

HalA) = 1a(A N S) = (AN S) = D7 (A,
(3.10) her
AMA) = MANS) =D AMAp).
k€EZ
On the other hand, for all £ € Z:

§ 3.26 3.38.(44) 1
tu(Ar) < p(Ay) < (A,
<

tFu(Ar) < MAL) < FTu(Ay).
From (3.10) and (3.11) we then conclude that:

A) = p(A) <ty tu(Ay) < tA(A)

w

(3.11)

kEZ kEeZ
=D MAR) <Y tFU(A) < tpe(A).
kEZ kEZ

Since t > 1 was arbitrarily taken, we can make t | 1 to conclude
pa(A) < AA) and M(A) < p,(A), hence p,(A) = A(A), as asserted.
ii) Since B’ C Y§, it follows from theorem 3.39.(ii) that v(B') = 0,

i.e. v is concentrated on (B’)¢. Therefore, it is enough to prove
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that u L (B')° < v. Indeed, let A C X such that v(A) = 0.
We must show that p L(B')?(A) = p((B')°N A) = 0. Since
(B = {x € X | ©(,7) < 00} = Unenlz € X | 0%(u,2) < n},
it suffices to show that Vn € N, p(An{z € X | ©%(u,z) < n}) = 0.
But, as u has SVP, we may apply theorem 3.38.(i), which yields
pAn{z e X | ©%u,2) <n}) <mw(An{ze X | O0(u1x) <
n}) < nv(A) =0, whence the thesis.

U

COROLLARY 3.41. With the same hypothesis from theorem 35.40),
d(“a|.93x)
dvlsy) -

©"(u, ) coincides v-a.e. with the Radon-Nikodym derivative

PROOF. It is a direct consequence of (3.9) and the uniqueness of
the Radon-Nikodym derivative stated in theorem 1.103. U



CHAPTER 4

R"-valued Radon Measures

4.1. Linear functionals on spaces of continuous functions

In this section we fix a locally compact Hausdorff space X, which
will be assumed o-compact, unless otherwise specified. We aim to study
the representation of continuous linear functionals on certain spaces of
continuous functions on X by means of vector valued Radon measures.

NoTATION. We denote by

e C_(X,R™) the space of continuous functions f : X — R™ with
spt f compact;

e Cy(X,R™) the space of continuous functions f : X — R™ which
vanish at infinity, i.e. such that Ve > 0, 4K C X compact such
that || f|| <eon X\ K.

e C, (X,RR") the space of bounded continuous functions f : X —
R™.

Endowed with the norm of uniform convergence, i.e. | f|. =
sup{||f(z)|| | € X}, C,(X,R"™) is a Banach space. As it can be read-
ily verified by means of Urysohn’s lemma for locally compact Hausdorft
spaces (see lemma 4.5, below), Cy(X,RR") is the closure of C_(X,R") in
C,(X,R™); in particular, Cy(X,R"™) is itself a Banach space with the
norm of uniform convergence.

DEFINITION 4.1 (R"-valued Radon measures). We say that a linear
functional p : C.(X,R") — R is an R™-valued Radon measure on X if,
for each compact K C X, the restriction of u to CK(X,R") := {f €
C(X,R"™) | spt f C K}, endowed with ||-|,, is linear continuous; that
is, if 4Ck > 0 such that

(LF cont) sup{p - f | f € CC(X,RY), [ fllu <1} < Ck.

If the condition above holds with a constant C' > 0 which does not
depend on K, i.e. if p is linear continuous on C_(X,R"™) endowed with
I||l, we call u a finite R"-valued Radon measure on X.
REMARK 4.2.
81
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1)

2)

4. RYN-VALUED RADON MEASURES

We will identify R™-valued Radon measures on X with set func-
tions on X, as the name “measure” indicates, after we prove Riesz
representation theorem for Radon measures 4.9.

The definition adopted for an R"-valued Radon measure on X is
equivalent to saying that p : C(X,R") — R is linear contin-
uous with respect to the natural topological vector space topol-
ogy on C_(X,R™), which is an inductive limit of Fréchet spaces
(an LF space for short). It is actually the countable strict in-
ductive limit (thanks to the o-compactness of X) of the Banach
spaces { (CX(X,R"),[]l.) | K C X compact}; its topology is the
strongest locally convex topology on C (X, R™) which makes all in-
clusions CK(X,R") — C_(X,R"™) continuous, for K C X compact.
With such a topology, given a locally convex space Y, a linear map
C.(X,R") — Y is continuous iff VK C X compact, its restriction
to CK(X,R") is continuous (as we defined in the case Y = R). We
don’t suppose the reader to have any prior knowledge on locally
convex spaces, but if he or she wants to delve into some of the de-
tails which may be left behind the scenes, we suggest: [Con90],
chapter IV, for a brief overview of locally convex spaces; [Osb14],
for a gentle introduction to locally convex spaces; [K69], [SW99],
[Tre06] or [Bou87] for the heavy stuff.

For those fluent in locally convex spaces: the LF topology of C_(X, R™)
introduced in the previous item coincides with the product topol-
ogy of the LF spaces C_(X,R), i.e. we may identify C_(X,R") =
C.(X,R)™ as topological vector spaces. Indeed, the continuity of
C(X,R") — C(X,R)", f+ (f1,..., fa), is clear; the continuity
of its inverse can be verified using the facts that it maps bounded
sets to bounded sets, C.(X,R") is locally convex and C_(X,R)" is
bornological.

If X is an open set in some Euclidean space, C(X,R)" with
its LF topology (i.e. the topology induced by the family of Fréchet
spaces {f € C°(X,R)" | spt f C K}, for each K C X compact) has
a continuous dense inclusion in C (X, R") = C_(X,R)". That means
that the dual of C_(X,R)"™ may be identified with a linear subspace
of the dual of C(X,R)", i.e. every R"-valued Radon measure on
X is an R™-valued Schwartz distribution on X.

EXERCISE 4.3 (R"-valued Radon measures on open sets of Eu-

clidean spaces).

a)

Let X be a locally compact separable metric space and (Uy)ken
be an increasing sequence of relatively compact open subsets of X
such that UgenUy = X. Then a linear map p : C(X,R") — R is
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continuous, i.e. it is an R™-valued Radon measure on X, iff Vk € N,

1l (Cc(Uk,R”),||~||u) is continuous (we identify C (U, R™) with the linear

subspace of C_(X,R") formed by the functions with support in Uy).
b) Let U be an open subset of R™. Then CX(U,R") is sequentially
dense in (C (U, R™), ||[l)-

HinT. Use the standard mollifier 1.112, proposition 1.108 and
theorem 1.111.

¢) Let X be an open subset of R™ and (Uy)ken be an increasing se-
quence of relatively compact open subsets of X such that UpenUy =
X. Let p: C(X,R") — R be a linear map such that Vk € N,

| (Cgo (Uk,R"),H-Hu) is continuous. Then p may be uniquely extended

to a continuous linear map C_(X,R") — R.
HinT. Use the two previous items.

REMARK 4.4 (R™-valued Radon measures on open sets of Euclidean
spaces). In view of part ¢) of the previous exercise, we may identify R™-
valued Radon measures on open subsets X of Euclidean spaces with
linear functionals p : CX(X,R") — R such that, for each compact
subset K C X, the restriction of u to {f € C(X,R)" | spt f C K}
is continuous with respect to the topology of uniform convergence (i.e.
given by the norm ||-[|,).

We recall more preliminaries from Real Analysis in order to prove
the version of Riesz representation theorem for R"-valued Radon mea-
sures 4.9 below.

NOTATION. Let X be a locally compact Hausdorff space, U C X
open and f a function on X. The notation f < U means that 0 < f <
1, f € C(X,R) and spt f C U.

LEMMA 4.5 (Urysohn’s lemma for LCH). If X is a locally compact

Hausdorff space, U C X open and K C U compact, then there exists
f € CAX,R) such that xx < f < U.

THEOREM 4.6 (Tietze's extension theorem for LCH). If X is a
locally compact space, K C X compact and f : K — R continuous,
then f admits a continuous extension fv: X — R. Moreover, we may
take f with_compact support and, if [ is bounded, we may also take f
such that || fllu = || flu-

THEOREM 4.7 (Riesz representation theorem for positive linear
functionals). Let X be a locally compact Hausdorff space and L : C_(X,R) —
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R a positive linear functional, i.e. L is linear and L - f > 0 whenever
f > 0. Then there exists a unique Radon measure n on X which rep-
resents L, i.e. Vf € C.(X,R), L- f = [ fdn. Moreover, on open sets
1 s given by

n(U) =sup{L-f|f=<U}

For the proof of 4.5, 4.6 (which are direct consequences of the cor-
responding versions of those theorems for normal spaces) and 4.7 we
refer the reader, for instance, to [Fol99] or [Rud87].

REMARK 4.8. Every positive linear functional on C_(X,R) is an

R-valued Radon measure on X, i.e. positivity implies continuity on
C.(X,R). Indeed, given K C X compact, take & € C_(X,R) given by
lemma 4.5 such that yx < ® < X. For all f € CX(X,R) with f # 0,

we have L < @, sothatq)i > 0and ®+ - € C.(X,R). Hence

11T ||fH 11T
0< L(@j: i ) = L(®)+ &0 ||f|| , which implies |L(f)| < L(®)|| f]|. The

continuity condition (LF cont) is then satisfied with Cx := L(®).

THEOREM 4.9 (Riesz representation theorem for Radon measures).
Let X be a o-compact locally compact Hausdorff space and p : C_(X,R"™)
R an R"-valued Radon measure on X. Then there exists a unique
Radon measure A on X and a Borel measurable map v : X — R™ unique
up to A-null sets such that ||v|| =1 A-a.e. on X and Vf € C(X,R"),

(4.1) o f = / (f. v dA

where (-,-) denotes the Euclidean inner product in R™. Moreover,
i) VU C X open,
(4.2) ANU) =sup{p- [ | f € C(X,R"), [ fIl < U}

i) p is a finite R"-valued Radon measure iff X is a finite Radon mea-
sure; if that is the case, ||ullc, xrn) = MX).

REMARK 4.10. Note that, in (4.2), sup{u-f | f € C.(X,R"), || f]| <
Ul =sup{|p- f| | f € CAX,R"),||f]| < U}. Indeed, if f € C(X,R")
and || f|| < U, so does —f, and p- (—f) = —p - f, hence either p - f or
- (—f) coincides with |u - f].

PROOF.

1) (Existence) Let CH(X):= {f € C.(X,R) | f > 0}. Define L :
C2(X) = [0,00) by J o> supla- 6 | 6 € Co(X, R, [|6]] < f}. Note
that L is well-defined, i.e. the sup is indeed > 0 (since p -0 = 0)
and finite, due to the continuity condition (LF (ont) it f # 0,
Vo € C(X,R™) with ||¢|| < f, we have ¢ := (X,R™)
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and HwHu = H?”Z < 17 hence M- ¢ S C’spt o Le. 20 ¢ < Cspt f”f“ua
showing that L(f) < Cu £ fllu-

We contend that L is additive and 1-homogeneous, i.e. Vf, g €
CH(X), Ve >0, L(f +9) = L(f) + L(g) and L(cf) = cL(f). The
1-homogeneity is clear, since, for ¢ = 0 the equality is trivial and for
c>0and f € CI(X), we have ||¢]| < cf iff [[c1¢|| < f, so that {u-
616 €C X, RY | o]l <cf} =clu-6]6€C(X.RY | Jlo]l < f}.
To prove the additivity, let f, g € CH(X). If p,¢ € C(X,R") satisfy
|6] < £ and ] < g, then ¢+ € C (X, R") and 6+ < f+g,
sothat -+ p-v =p-(¢p+ 1) < L(f + g), and taking the sup
over all such ¢ and ¢ we conclude that L(f) + L(g) < L(f +g). It
remains to prove the reverse inequality. Given ¢ € C_(X,R") such
that ||| < f + g, define:

- ; 9 :
by = 7 ® ?ff+g >0, by 70 %ff+g >0,
0 iff +9=0, 0 iff +g=0.

Note that, for i = 1,2, ¢; is clearly continuous on the open set
{f 4+ g > 0}; besides if xy € X is such that (f + g)(z¢) = 0 and
e > 0 is given, there exists an open neighborhood V' of xy on which
f+g <e hence ||¢|| < eon V, whence ||¢;|| < e on V| thus proving
the continuity of ¢; at z9. Hence ¢; is continuous and {||¢;|| > 0} C
{f+g > 0}; taking closures we conclude that spt ¢; C spt (f+g) €
X. Then ¢1,¢» € C.(X,R?), [[o1] < f, [|¢2]] < g and ¢1 + ¢ = ¢,
sothat - =p- o1+ p- 2 < L(f)+ L(g). Taking the sup over all
such ¢, we conclude that L(f+g) < L(f)+ L(g) and our contention
is proved.

We now extend L to a positive linear functional on C_(X,R). For
f € C(X,R), we may write f = fT — f~, where fT = max{f,0} €
CH(X) and f~ = max{—f,0} € C*(X); define L- f := L(f") —
L(f~) € R (which coincides with the original definition if f = f* €
CH(X)). If ce Rand f € C(X,R), the fact that L - (c¢f) =cL- f
follows from the definition of L and from the equalities (¢f)" = c¢f*
and (¢f)” =cf  if ¢ > 0; (¢f)t = —cf™ and (¢f)” = —cf* if
¢ < 0. On the other hand, if f,g € C.(X,R) and h = f + g, then
ht+f~4+¢g =h + f"+ g"; applying L to both members and
using the additivity of L on CI(X), it follows that L-h = L- f+L-g,
thus proving the linearity of L. If f € C(X,R) and f > 0, then
f=/fTeCH(X),sothat L-f = L(f*) > 0; therefore L is a positive
linear functional on C_(X,R).

We may then apply theorem 4.7 to L, which ensures the existence
of a unique Radon measure n on X which represents L. Thus, for
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every f € CH(X), we have

(43)  L-f=suplu-¢| e CLRY, 6] < [} = / £ dn.

2)

For 1 < i < n, define p; : C(X,R) = R by u; - f := pu- (fe;).
Since ||£fe;l| = |f| € CH(X), it follows from (4.3) that, for all
f € CAX,R), s (£f) < sup{p- 6 | & € C(X,R"), 8] < |f]} =
[1f1dn, so that |w; - f| < [|f]dn. Thus, since C_(X,R) is dense
on L*(n) (by proposition 1.78; we consider LP spaces of real valued
functions), u; extends to a bounded linear function on L!(n), still de-
noted by p;. Asn is o-finite (because 7 is a Radon measure on X and
X is o-compact), we may apply Riesz representation theorem 1.79
for the dual of L! to conclude that there exists g; € L°°(n) which rep-
resents j;, i.e. such that Vf € L*(n) (in particular, Vf € C_(X,R)),
wi- f = [ fgidn. It follows from corollary 1.118 that g; coincides
n-a.e. with a Borelian function; since this Borelian function is es-
sentially bounded, it may be modified in n-null Borel set, yielding
a bounded Borelian function in the same L* equivalence class. We

may therefore assume that g; is a bounded Borelian function.
For all f =" | fie; € C.(X,R"),

M f ZM fzez Z/‘LZ fz_
—Z/fzgzdn—/ f,g)dn,

where g = (g1,...,9,) : X — R" is a bounded Borelian map. To
complete the proof of the existence part of the theorem, we now take
V= ﬁ in the Borel set where g # 0 and 0 on its complement, and

A = ||g||n, i.e. the extension given by theorem 1.8 of the measure
on Bx defined by A € Bx — [,llglldn. Then v : X — R" is
Borelian, by proposition 1.50 with A; := {g # 0} and A, := Af,
and [|v|| = 1 A-a.e., since \(A2) = 0. The fact that the measure
Ae #Bx — [,llglldn is a Radon measure on Ay is a consequence
of lemma 4.11, below, with ||g| in place of f and 7 in place of u.
It then follows from remark 1.29.(ii) that A is a Radon measure on
X. Since, for all f € C(X,R"), u-f= [({f.g)dn= [{f,v)d\, ie.
(4.1) holds, so the existence part is proved.

(Uniqueness and proof of (4.2)) Suppose that (4.1) holds with a
Radon measure A and a Borel measurable map v : X — R" with
llv]| = 1 A-almost everywhere. Modifying v on a A-null Borel set,
if necessary, we may assume that equality holds everywhere, i.e.
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Ve € X, |lv(z)|] = 1. Given U C X open, denote by |u|(U) the
second member of (4.2), i.e.

ul(U) i=sup{p- [ [ f € CX,RY), |fl| < U}.

Forall f € C_(X,R")such that || f|| < U, we have u-f = [(f,v)d\
Jo(fsv)ydX < [l fIldA < A(U); hence, taking the sup in the first

member, we conclude that

(4.4) |l (U) < A(U).

spt fCU

We now prove the reverse inequality (hence the equality) in (4.4),
which then implies (4.2). Firstly, assume that A(U) < oo. Fix
e > 0. We may apply Lusin’s theorem 1.117 to obtain a compact
set K C U such that A\(U \ K) < € and v|g continuous. Then we
may apply Tietze’s extension theorem 4.6 to each component of v|,
yielding f : X — R” continuous such that f|x = v|x. Multiplying
f by a convenient cut function, we may assume spt f C U and
Ifll. < 14 e Indeed, since ||v]| = 1, by continuity of f we may
take an open neighborhood V' C U of K such that ||f|y|l. < 1+e,
and then we take ¢ € C_(X,R) given by Urysohn’s lemma 4.5 such
that yx < ¢ <V, so that ¢of € C(X,R"), spt ¢f C V C U and
loflle < 1+ € we then substitute f¢ for f. It therefore follows
that:

i) [(fivydh = [ (fv)dr = fU\K<f7V> dA + [ (f,v)dA. Since
[ (fiv)dh = [ (v,v)dX = AN(K) > A(U)—e and |fU\K<f, v)ydA| <
fU\K||f|| dX < || fllu MU\K) < (1+4¢€)e, it follows that [(f,v) dA >
—(14+€e+ANU) —e=ANU) —€(2 +¢).

ii) On the other hand, [(f,v)d\ = ,u f=Ifllup

—— is one of the competitors

in the deﬁmtlon of |u|(U), i.e. IIfH € C (X, R"™) and HfHH < U.

From (i) and (ii) above we conclude that A(U) < e(24¢€)+ (1 +
€)|p|(U). Since € > 0 was arbitrarily taken, we may send € — 0 to
conclude that A(U) < |u|(U), thus proving the reverse inequality
(hence the equality) in (4.4) if A(U) < oo.

In the general case, for an arbitrary open set U C X, due to
o-compactness of X, we may take an increasing sequence (U, ),en
of open subsets of X such that Vn € N, U,, € U and U, yU, = U
(to obtain such a sequence, take a sequence (K, ),en of compact sets
which increases to U, then for each n € N take an open set V,, such
that K,, C V,, € U and define U,, := U ,V}). Since, for each n € N,
MU,) < oo (because U, is compact and A is Radon, hence finite on

T <+
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compact sets), we may apply the case already proved to conclude
that A(U,) = |u|(U,). Applying the continuity from below 1.11 to
A, it then follows that A(U) = sup,,en|p|(Un) = sup,ensup{p - f |
feC(X,R"),||fll < U,}. We contend that the second member in
the latter equality is |u[(U) = sup{u- f | f € CAX,R"), | f]| < U},
which yields the asserted equality in (4.4). Indeed, for each n € N,
[ul(Un) < |pl(U), thus sup,cylp|(Un) < |p[(U). On the other
hand, let f be one of the competitors in the definition of |u|(U),
ie. fe C(X,R") and ||f|| < U. Since spt f C U is compact, it
can be covered by finitely many of the U,’s; thus, since (U,)nen is
increasing, there exists n € N such that spt f C U,. It therefore fol-
lows that || f|| < U,, i.e. f is one of the competitors in the definition
of |p|(U,), hence p - f < |u|(Uyn) < sup,enlpe|(Un). Taking the sup
of v+ f over all such f, we conclude that |u|(U) < sup,en|p|(Un),
hence the equality holds, thus proving our contention.

We have thus proved that (4.2) holds, so that A is uniquely de-
termined on open sets by |u|. Since Radon measures are uniquely
determined by their values on open sets, we have proved the unique-
ness of \.

We now prove the uniqueness of v. Suppose that v/ : X — R"
is another Borelian map such that ||| = 1 A-a.e. and (4.1) holds
with ¢/ in place of v. Modifying both v and v/ on a A-null Borel
set, we may assume that ||v]| = 1 and ||¢/|| = 1. Then, for all
F € C(X,R"), [(f,v—v)dX\=0. Let U C X open with A(U) < oo
and fix € > 0. Once again we apply Lusin’s theorem 1.117 to obtain
a compact set K C U such that A(U \ K) < € and (v — V)|
continuous. Then we may apply Tietze’s extension theorem 4.6 to
each component of (v —1/)|k, yielding f : X — R™ continuous such
that f|x = (v —1V/)|k. Since ||v — V||, < 2, as before, multiplying f
by a convenient cut function if necessary, we may assume spt f C U
and ||f|l. <2+ e. Thus

O:/(f,u—u’>d)\:/U(f,1/—u’>d)\:

:/ (f,z/—z/>d/\+/||y—z/||2d)\.
U\K K

Since |fU\K<f,V — VYA < |[fllully = V[ AU\ K) < (2+€) - 2
and [ |lv —V|PdX > [, |lv — V[?dX — 4e, it then follows that
Jollv =v/|I? dX\ < 4e+(24€) - 2e. Hence, sending € — 0 we conclude
that [, |lv — v/[*dX = 0, which implies v = 1/ A-a.e. on U. As
X is o-compact, we may cover X with countably many relatively
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compact open sets (U,)nen, which are M-finite, since A is Radon
(that is, X is open o-finite). Therefore, as Vn € N, v = v/ X\-a.e. on
U,, it follows that v = v/ A-a.e. on U,enU, = X, thus proving that
v is unique up to A-null sets, as asserted.

It remains to prove assertion ii). Indeed, by (4.2), the norm of p
as a linear function on the normed space (C.(X,R"), [|-||.) is given
by |[ull = sup{p- f | f € C(X,R"), [[fll <1} = A(X), so that
w is a bounded linear functional iff A(X) < oo. If that is the case,
as C.(X,R") is dense on (Cy(X,R"), |||lu), 4 extends to a unique
bounded linear functional on Co(X, R") with ||u[|c,(xrn) = MX),
thus proving ii).

U

LEMMA 4.11. Let X be a locally compact Hausdorff space, f : X —
[0, 00) bounded Borelian and p1 a o-finite Radon measure on Bx (in
the sense of remark 1.29.ii). Then X\ = fu : Bx — [0,00] given by
A [, fdu is a Radon measure on Bx.

PROOF. It is clear that A = fu is a measure on % x which is finite
on compact subsets of X, since f is bounded and p is Radon (hence
finite on such subsets). We must show that A is outer regular on Borel
sets and inner regular on open subsets of X (actually it is inner regular
on all Borel sets). That is a consequence of the og-compactness of u
and of the fact that A < u:

1) Let B € #Bx. Note that, if p is finite on B, so is A = fpu, since f is
bounded.

Assume that p finite on B. For each n € N, since u(B) =
inf{u(U) | U D B open} and u(B) < oo, we may take an open set
U, D B such that (U, \ B) < % Substituting U,, with N, U;, we
may assume that the sequence (U,),en thus defined is decreasing.
Then NyenlU, D B and u((ﬂneNUn) \ B) = 0; since A < p, it then
follows that A is null on (NuenUy,) \ B, so that A(B) = AMNyenUn).
On the other hand, since u(U;) < oo (because p is finite both on
B and U; \ B), as noted above we also have A(U;) < oo; apply-
ing the continuity from above 1.11 to A, we then conclude that
inf,en A(Uyp) = lim A(U,) = AMNMpenU,) = A(B), thus proving the
outer regularity of A on B if u(B) < oo.

In the general case, using the fact that p is o-finite, we may
write B = U,enB, as a countable union of Borel sets with finite
p-measure (hence with finite Ad-measure). Given € > 0, for each
n € N, we may choose, in view of the fact that A\(B,) < oo and
that A is outer regular on B,, by the case proved above, an open set
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U, D B, such that \(U, \ B,) < 2 ". Put U := U,enU,, so that
U D Bopen. As U\ B C Upen(Un \ By), it follows by countable
subadditivity that A(U \ B) < ¢, thus proving the exterior regularity
of A on B.

Let B € #x. We will show that A is inner regular on B.

Assume that p(B) < co. Since p is Radon, it follows from exer-
cise 1.31 that p is inner regular on B; as u(B) < oo, for each n € N,
there exists K, C B compact such that (B \ K,) < 1. Substitut-
ing K, with U, K;, we may assume that (K, ),en thus defined is
increasing. Then U,enK,, C B and pu(B \ UpenK,) = 05 as A < p,
it then follows A\(B \ UpenK,) = 0. Thus, applying the continu-
ity from below 1.11 to A\, we conclude that \(B) = AN(UpenK,) =
lim A\(K,,) = sup,,ey A(K,), which proves the interior regularity of A
on B if u(B) < oc.

In the general case, by the fact that p is o-finite, we may take
an increasing sequence (B, )nen in Ax such that U,enB, = B and
Vn € N, u(B,) < oo (thus A(B,,) < c0). By the case proved above,
for each n € N, X is inner regular on B,,; hence, since A(B,) < oo, we
may take a compact K,, C B, such that A(B,\ K,,) < <. Therefore,
lim A(K,,) = lim A(B,) = A(B), where in the last equality we have
applied the continuity from below to A, showing that A\ is inner
regular on B, as asserted.

O

In theorem 4.9, we may drop the o-compactness hypothesis on X if
is a finite R"-valued Radon measure. That is, we obtain the following

version of the theorem:

THEOREM 4.12 (Riesz representation theorem for finite Radon mea-

sures). Let X be a locally compact Hausdorff space and p : C(X,R") —

R

a finite R"-valued Radon measure on X. Then there exists a unique

finite Radon measure X on X and a Borel measurable map v : X — R"

unique up to A\-null sets such that |v|]| = 1 A-a.e. on X and Vf €
C.(X,R"),

pef= [

where (-, ) denotes the Fuclidean inner product in R™. Moreover,

0

i) VU C X open,
ANU) =sup{p- f | fe€C(X,R"),[fIl < U}
i) HMHCO(X,W)* = A(X).

The proof is the same, as:
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i) In the existence part, we only used the o-compactness condition
to ensure that the restriction of A to #x is o-finite (in order to
be able to apply Riesz representation theorem 1.79 for the dual of
L'()\) and lemma 4.11), but A is finite in case of u finite (since, if
(1 is finite, the positive linear functional L defined in the beginning
of the proof is bounded, hence A\(X) = ||L|| < oo by the formula
to compute the measure which represents the linear functional on
open sets given in theorem 4.7).

i) In the uniqueness part and in the proof of (4.2), we used the o-
compactness condition only in case A(U) = oo; but, as pointed in
the previous item, A is finite in case of pu finite, so that we don’t
need the o-compactness either.

DEFINITION 4.13 (total variation and polar decomposition). Let p

be an R"-valued Radon measure on a o-compact locally compact Haus-
dorff space X. With the same notation of theorem 4.9, X is called the
total variation of u, and the pair (v, \) is called the polar decomposition
of u. Henceforth, we will use the notation |u|:= A to denote the total
variation of u, and

n=vu|

with the meaning that (v, |u|) is the polar decomposition of .

EXAMPLE 4.14. Let X be a o-compact locally compact Hausdorft

space.

1)

Let o be a locally finite Borel measure on X. Then p induces a
positive linear functional £ on C_(X,R) (which is necessarily con-
tinuous, by remark 4.8), given by fi- f := [ fdu. If 4 is a Radon
measure, then g = 1 - p is the polar decomposition of i (by the
uniqueness of the polar decomposition); in particular, p is the total
variation of ji.
Similarly, let v be a signed measure on #x whose total variation
|v| is locally finite. Then v induces a continuous linear functional
v on C.(X,R) given by - f := [ fdv. Indeed, it is clear that ©
is a well-defined linear functional on C_(X,R), and the continuity
follows from the triangle inequality 1.99.e): VK C X compact and
Vf e CEX), o fI < [Ifldlv] = [ilfldlv] < [w|(K)] f]lu, hence &
is bounded on CK(X).

We may take Borelian function h : X — R such that |h| = 1 and
v = h|v|. Indeed, since v* L v, we may take disjoint Borel sets
P and N such that X = PUN, v is concentrated on P and v~ is
concentrated on N. Thus, v* = xp|v| and v~ = xy|v|, so that v =
vt —v~ = (xp— xn)|v| and we take h := xp — xn. If || is Radon,
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it follows from the uniqueness of the polar decomposition of & that
its polar decomposition is = h|v| (we identify |v| with a Radon

outer measure on X, cf. remark 1.29). In particular, |7| = |v|.
Besides, it follows from the uniqueness of the Jordan decomposition
1.94 that, as measures on By, vt = ht|y| and v~ = h~|v|. Since

either v or v~ if finite, we conclude that either h™ € L(|v|) or
h~ € LY(|v|), i.e. his |v|-integrable. Thus, in order for a continuous
linear functional p on C_(X,R) to be induced by a signed measure
on Ax whose total variation is Radon, it is necessary that p have
polar decomposition p = h|u| with h |u|-integrable (which means
that not every continuous linear functional on C_(X,R) is obtained
in this way if X is not compact).

3) Let X = R and I be the positive linear functional defined on
C.(X,R) by the Riemann integral, i.e. I - f := fab f(z)dx for a < b
such that spt f C [a,b]. The polar decomposition of I is [ =1-L".
In particular, that could have been taken as the definition of the
Lebesgue measure, i.e. it is the total variation of the positive linear
functional induced by the Riemann integral.

PROPOSITION 4.15 (properties of the total variation, part I). Let
1 and v be R"-valued Radon measures on a o-compact locally compact
Hausdorff space X and ¢ € R. Then:

i) |p+v| < |ul+ v, with equality if [u| L [v].
ii) |ep| = |cf|pl.

That is, the total variation of R"-valued Radon measures has the
same properties stated in 1.100.b) for the total variation of signed mea-
sures on a o-algebra of subsets of X.

PROOF. Let U C X open. It follows from (4.2) and remark 4.10
that:

1) [p4v|(U) = sup{p-f+v-f | fe C(X,R"), |[f] <1} < sup{pu-f|
fe C(X,RY),[IfI < 1} +sup{v- f | f e C(X,RY), [l <1} =
|1l (U) + [v[(U).

2) |epl(U) = supfle||p- fI | f € Co(X,R™), [ f] < 1} = |efsup{|p- ]|
fe C(XRY), I < 1} = el |pl(U).

For an arbitrary set A C X, we now use the outer regularity on A of
the Radon measures |y + v|, || and |v|. Note that, for arbitrary open
sets U,V containing A, the open set U NV contains A and |u|(U) +
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(V) > |p|(UNV)+|v|(UNV), which justifies the equality (*) below:

by 1)

|+ v[(A) = inf{|u +v[(U) | U D A open} <
< inf{|ul(U) + W(U) | U > A open} =
= inf{|u|(U) + |v|(V) | U,V D A open} =
= inf{|p|(U) | U O A open} + inf{|v|(V) | V DO A open} =
= [pl(A) + [v[(A),

which proves the inequality in part i).
Similarly,

lcu|(A) = inf{[cu|(U) | U O A open} by 2)

thus proving part ii).

It remains to prove the equality in part i) if || L |v|. Indeed, in that
case, there exist disjoint Borel sets A, B C X such that X = AU B, |y
concentrated on A and |v| concentrated on B. Let (n,, |¢|) and (n,, |v|)
be the polar decompositions of ;1 and v, respectively. We have, for all
feC(X,R"):

(o) f=p g e f= [ dlul+ [ (fom)dv] =

- /(ﬁ Xan, + xsnw) d(Jp] + [v]).

Since ||xan, + x| = 1 (|u] + |v|)-a.e., it follows that the polar
decomposition of p+v is (xan,+xsnw, |1|+|v]); in particular, |u+v| =
|| + |v|, as asserted. O

DEFINITION 4.16 (integration with respect to R"-valued Radon
measures). Let x4 be an R"-valued Radon measure on a o-compact lo-
cally compact Hausdorff space X, with polar decomposition p = v/|ul.

i) A vector Borelian map f : X — R" is called summable with respect
to pu if it is summable with respect to ||, i.e. if f € L*(Ju|,R") =
L (|u])™. For such f, we define

[+ aui= [trv)dnler

ii) An scalar Borelian map f : X — R is called summable with respect
to  if it is summable with respect to |u|, i.e. if f € LY(|u|). For
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such f, we define

[ran= [svdia = ([ foda... [ o)) e

REMARK 4.17.

1) Note that both integrals in the definition above make sense, since
[(f, )] < IIfIl € LA(ul) if f vector-valued and |[fv[| = [f] € L*(|ul)
if f scalar-valued.

2) Since |u| is a Radon measure, we have C_(X,R") C L(|u|,R");
the inclusion is actually dense, in view of proposition 1.78. It is
clear that the integral defined in i) extends p : C.(X,R") — R, i.e.

Ve C(X,R"),
/f@ﬂzwf

3) The integrals defined above satisfy the usual linearity and conver-
gence properties, which are inherited from the corresponding prop-
erties for the integral with respect to |u|. So are following versions
of the triangle inequality:

[ £-aul< il and [ rau< [if1dnl

for f € LY(Ju|,R™) or f € L*(|u|), respectively.

We now aim to identify R"-valued Radon measures with set func-
tions. Firstly we introduce the notion of R"-valued measures as set
functions.

DEFINITION 4.18 (R"-valued measure on a o-algebra). Let X be a
set and M a o-algebra of subsets of X. We say that amap u: M — R"
is an R"-valued measure on M if
VML) u(0) = 0;

VM2) u is o-additive, i.e. for all countable disjoint family (A, )nen in

M7
nENA ZM

neN
with the meaning that the series is absolutely convergent (or,
equivalently, that each component of n — pu(A,) is summable
with respect to the counting measure on N) and the sum is

M(UnGNAn) .

DEFINITION 4.19 (R™-valued Radon measures as set functions). Let
X be a o-compact locally compact Hausdorff space. We denote by %%
the set of Borel subsets of X which are relatively compact. We define:
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i) a finite R"-valued Radon measure set function on X is an R™-
valued measure on £ x in the sense of definition 4.18.

i) an R"-valued Radon measure set function on X is a set function
p: B — R™ such that, for all K C X compact, its restriction
to B C B is a finite R"-valued Radon measure set function on
K, ie. plg, : Bk — R is an R"-valued measure on A in the
sense of definition 4.18.

We denote by M(X)" or M(X,R") the set of finite R"-valued

Radon measure set functions on X and by Mie(X)" or Mie(X,R")
the set of R™valued Radon measure set functions on X. It is clear
that those are real linear spaces, i.e. M(X,R") is a linear subspace of
(R™)#x and Me.(X,R™) is a linear subspace of (R")?x.

1)

REMARK 4.20.

The nomenclature established in the previous definition is provi-
sional. That is, for a moment we want to use different names for
R™-valued Radon measures as linear functionals on spaces of contin-
uous functions and for R"-valued Radon measures as set functions.
However, we will see shortly that, if X is second countable, i.e. if X
is a locally compact separable metrizable space (which is the case
of interest in subsequent developments), a (finite) R™-valued Radon
measure set function on X may be canonically identified with a
(finite) R"-valued Radon measure on X (the latter in the sense of
definition 4.1), and conversely. Making these identifications, we will
treat those objects as one and the same thing, so that we may aban-
don this provisional nomenclature.

Each p € M(X,R") determines an element of M..(X,R") by re-
striction of p : Bx — R™ to A%. The fact that X is o-compact
allows to decompose each B € #x as a countable disjoint union of
elements of %% ; thus, by o-additivity, u is uniquely determined by
its restriction to %%, i.e. the association p € M(X,R") = p|z, €
Moo (X, R™) is linear 1-1 and allows us to identify M (X, R") with a
linear subspace of Mj,.(X,R™). By means of this identification, we
consider, henceforth, M(X,R") as a linear subspace of M,.(X, R").

DEFINITION 4.21 (induced R"-valued Radon measure set functions).

Let i be an R"-valued Radon measure on a o-compact locally compact
Hausdorff space X. The R"-valued Radon measure set function in-
duced by pu is the set function fi : A5 — R" defined, for all A € A%,

If

by

f(A) ::/XAd,uER".

i is finite, we define ji : Zx — R" by the same formula.
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Note that the definition above makes sense, since x4 € L*(|u|) if
A€ B orif Ae Bx and p finite (i.e. if |u| is finite, by theorem 4.9).

The fact that [ is actually an R"-valued Radon measure set function
is proved in the proposition below.

PROPOSITION 4.22 (induced R™-valued Radon measure set func-
tions). With the notation from the previous definition:

i) fu is a (finite) R™-valued Radon measure set function on X if p is
a (finite) R™-valued Radon measure on X.

ii) The maps I : C(X,R™)" — Mjoo(X,R") and I : Co(X,R")* —
M(X,R™) defined by p — i are linear 1-1 and commute with the
inclusions, i.e. the following diagram is commutative:

C.(X, R —L o My (X, R")

J J

Co(X,R")* —L— M(X,R")

Proor. Let K C X compact. We assert that g : Bx — R”
is an R™-valued measure on Ak (in the sense of definition 4.18). It
is clear that (@) = 0. Let (Ay)nen be a disjoint sequence of Borel
measurable subsets of K, and A = U,enyA,. For each n € N, let
G =D 11 XA, Then ¢, — xav pointwise, and the convergence is
dominated, since ||¢, | < xa € L}(|u|) (because A € X and |u| is finite
on compact sets). Applying the dominated convergence theorem 1.64
componentwise, it follows that [ ¢,vd|u| — [ xavdlpl = @(A). As
[onvdlpl =>70_, [ xavdlp]l = >0, i(Ag), the assertion is proved.
Hence, [i is an R™-valued Radon measure set function on X if p is an
R"™-valued Radon measure on X. The same argument may be used to
prove that i : Bx — R™ is an R™-valued measure on Zx (i.e. a finite
R"-valued Radon measure set function on X) if y is finite.

We next prove that [ is linear. Let p and v be R"-valued Radon
measures on X and c € R.

To prove that I(p+v) = I(p) + I(v), we must compare all three of
the polar decompositions p = nq|p|, v = na|v| and p+v = N|p+v|. In
order to accomplish that, note that A := |u|+|v| is a Radon measure on
X, by exercise 1.30, and all three of the measures |u+v|, |u| and |v| are
absolutely continuous with respect to A (recall that |p 4+ v| < |u|+|v/,
from proposition 4.15). Since the restrictions to #x of all measures
involved are o-finite (because they are Radon and X is o-compact),
we may take Radon-Nikodym derivatives of those restrictions (theorem
1.103) and apply the chain rule for such derivatives (proposition 1.107),
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which yields, for all f € C(X,R"):

e f = /fnldu“”/f g,
d
v f = /fn2d||“°7/f A an,

hence

d d
o) f= [t A,y ax =

d\u\ dlv|
+n d|p| dIVI
:/<f |n dw +n2d|u| |>| N +n ‘d/\

(we define the quotient to be, for instance, 0 where the denominator
is 0). Note that, since |u| < A and |v| < A, we have ‘d‘“‘ | <1 Mae.

and |d|”| | <1 Ma.e., whence ‘nld“" + ngy d'”‘ 2| < 2 Mae.; modifying
those Borelian functlons if necessary, on a )\ null Borel set we may
assume that they are all bounded. Thus, from lemma 4.11, d;’;‘ A, dd|)\‘ A
and ’n dpl -y N9 d‘ | |)\ are Radon measures on Ay; therefore, from
remark 1 29 the extensmns (denoted with the same notation) of those
measures given by theorem 1.8 are outer Radon measures on X. It
then follows from the uniqueness of the polar decompositions of u, v

and o + v that

i = 240,
dlv
v =Wl
i+ v| = |m C'f;' +n d'”' =
dlp| M
N = ‘Zldﬁ iz2£‘ |+ v|—ae

27dx
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We thus have, for all A € %%:

TET / Ndlu+v] =

dlv|

At ny |yl drvr
/‘n du—{_ndyl}‘ 1d)\ +n |d)\_

dlp| |y
_/( gy )=

By T

_/nld)\ dX + Qd)\ d\ =

— [l + [ madlvl = )+ o)
A A

thus showing that I(px + v) = I(u) + I(v). Similarly, if ¢ # 0 and
= nq|p| is the polar decomposition of pu, it follows that, for all
7€ CUX,R™), () - f = e [ {f.m) dlul = [ (f,5en ()no)lellp]. Thus,
if cu = nglev| is the polar decomposition of cp, it follows from the
uniqueness of such decomposition that ny = sgn (¢)n; and |cv| = |¢||v|
(which had already been proved in proposition 4.15.(ii)). Therefore,
for all A € A%,

(A = [ nadlen] = [ sn (@m (el =
= / sgn (¢)|c|ny d|pu| = cfi(A),
A

thus proving that I(cu) = cl(p).

The commutativity of the diagram in part ii) is immediate from the
definitions. It remains to prove that I : C_(X,R™)* — Mie(X,R") is
1-1 (which then implies that I : Co(X,R")* — M(X,R") is 1-1 in view
of the asserted commutativity).

Let p and v be R"-valued Radon measures such that i = 7, with
respective polar decompositions p = nq|u| and p = ne|v|. We have,
for all A € A%, [ xanid|p| = [ xan2d|v|. By linearity of the inte-
grals, the latter equality also holds if we substitute y4 with a sim-
ple function ¢ = Zle a;x4, such that V1 < ¢ < k, a; € R and
A, € B if a; # 0. For any f € C(X,R), we may take a se-
quence (¢, )men of such simple functions which converges pointwise
to f and Ym € N, |¢,,| < |f]; that follows from proposition 1.53.iii)
(note that, writing a simple function ¢ in the standard representa-
tion, ie. ¢ = D1, iXp-1(ay) for Im¢ = {a1,...,a,} with a; # a;
if © # j, then |¢| < |f| implies ¢~'(a;) C spt f if a; # 0, hence
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¢ Ha;) € B if a; # 0). Hence ¢,,ny — fny and ¢pne — fno
pointwise, and the convergence is dominated with respect to both |u|
and |v], since ||¢pmnill = |om| < |f] € LX(Ju]) N LY(Jv]). Applying the
dominated convergence theorem 1.64 componentwise, it follows that
Writing the latter equality componentwise, if n; = E?Zl nlej, we con-
clude that, for all f € C(X,R)and 1 < j <n, [ fnld|u| = [ fnddlv|.
Therefore, for all f € C_(X,R"),

u-fz/f-n1d|u|=
—Z/f] L dlp)e; =
—Z/f] Jdlvl)e; =

=/f-n2d|v|:u-f,

thus 1 = v, showing that I : C(X,R")" — Mi.(X,R") is 1-1, as
asserted.
U

Conversely, every R™-valued Radon measure set function on a o-
compact locally compact Hausdorff space X induces an R"-valued Radon
measure on X.

DEFINITION 4.23 (induced R"-valued Radon measures). Let u be
an R™-valued Radon measure set function on a o-compact locally com-
pact Hausdorff space X. The R"-valued Radon measure induced by p
is the map i : C_(X,R") — R defined, for all f € C_(X,R"), by

ﬂ-fzzi/Kfidw,

where the integrals in the second member are taken with respect to
signed measures v;, 1 < ¢ < n, obtained as the the restrictions of the
components p; of u to By, where K € %5 contains spt f.

Note that, by definition 4.19, u|z, = (v1,...,vn) : Bx — R" is an
R"-valued measure on H; thus, for 1 < i < n, v; is a finite signed
measure on the measure space (K, ) in the sense of definition 1.89.
We may then take the integrals in the sense of definition 1.97, since f
is bounded (hence f|x € L}(|y;|) for 1 <i < n).
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That fi- f is well-defined (i.e. the definition does not depend on the
relatively compact Borel set K D spt f) and linear on f will be proved
as part of the next proposition.

PROPOSITION 4.24. With the notation from the previous definition:

i) i : C.(X,R™) — R is well-defined and linear continuous, i.e. it is
an R"-valued Radon measure on X. Moreover, [i is finite if so is
i, i.e. fi: Co(X,R") — R is linear continuous if p is finite.

ii) The maps J : Mpe(X,R") — C(X,R")* and J : M(X,R") —
Co(X,R™)" defined by p — fi are linear, commute with inclusions
and invert I (defined in proposition J.22) on the left, i.e. Y R™-
valued Radon measure,

X

L= pu.

PROOF. We firstly show that, given f € C(X,R"™), fi- f is well-
defined, i.e. the definition does not depend on the relatively compact
Borel set K D spt f. Indeed, let, V1 < i < n, 1; : x — R and
v 1 By — R denote the i™ components of the restrictions of p
to B and HBgp ¢, respectively (which are finite signed measures). It
follows from the uniqueness of the Jordan decomposition 1.94 that
the positive and negative parts of 1 coincide with the restrictions of
the positive and negative parts of v;, respectively; thus, for 1 < i <
n, [y FAv = [ FAW ) s s = [ ;£ A()F, showing that the
definition of /i - f does not depend on K, as asserted.

To show that i : C_(X,R™) — R is linear continuous, it suffices to
show that, for each K C X compact, the restriction i : CX(X,R") — R
is linear continuous in the normed space (CK(X,R"),||-||l.) (see defini-
tion 4.1). That follows from the fact that, if ulg, = (v1,...,v0),
filcx(x,mn) is given by f Yoy fK fidy;, which is clearly linear in
CX(X,R") (by the linearity of the integrals) and |fi- f| < >0, [, | fil d|vs
Ol (K) | fllw (where we used the triangle inequality from exercise
1.99.(e)), which yields the asserted continuity.

If p is finite, ie. if g = (u1,...,p1n) : Bx — R™ is an R"-valued
measure on Xy, each component pu; of p is a finite signed measure
on ABx and the same argument used in the first paragraph of this
proof to show that fi- f is well-defined may be applied to conclude that
Ve CAX,RY), o-f =31 [ fidp;. Therefore, applying the triangle
inequality once more, it follows that |- f| < (i, [l (X)) f]lu, thus
proving that /i : (C.(X,R"), |-|.) — R is linear continuous; hence, by
the density of C_(X,R") in Cy(X,R"), & may be uniquely extended
to a continuous linear functional i : Cy(X,R") — R with norm <

Z?:1|Ni|(X)‘
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The fact that J : M (X,R") — C(X,R™)" is linear follows
directly from its definition and from exercise 1.100 parts e) and f).
Since J : M(X,R") — Cy(X,R")" was defined by restriction of J :
Mioe (X, R") — C(X,R™)" to M(X,R"), it is also linear and the com-
mutativity with the inclusions follows by definition.

It remains to show that Jol coincides with the identity of C_(X, R™)
(hence it also coincides with the identity of Cy(X,R™), thanks to the
commutativity of I and J with the inclusions).

Let u € C(X,R")" be an R"-valued Radon measure with polar
decomposition p = N|u|, where N = (Ny,..., N,). We must show
that o = p. It follows from definition 4.21 that, for each A € %%,
a(A) = fANdM. Thus, for each K C X compact, for 1 < i < n,
the ™" component of the R"-valued measure [i|4, on By is the finite
signed measure V;|u| on (K, Bf). The positive and negative parts of
its Jordan decomposition are N; |u|, N, || : Bx — R, respectively
(since N;|u| = N |u| — N |p| and N;7|u| L N, |p| as measures on the
measurable space (K, #k)). It then follows from definition 4.23 that,
if f e C(X,R") and spt f C K,

@.f:;/l(fiduviw:
:;/Kfid(NﬂuD—;/Kfid(Ni_WD:
:;/Kfijvjd|u|—;/[(fﬂ\f[d|ul=
-y | Vil -

— [Nyl = £

Therefore, by the arbitrariness of K and f, we conclude that /i = g,
as asserted. 0

We will see next that, if X is a locally compact separable metric
space, J defined above also inverts I on the right, i.e. Io.J is the identity
of the corresponding domains. That is, I : C_(X,R")" — M,.(X,R")
and I : Co(X,R")" = M(X,R") are surjective isomorphisms, so that
we may identify C_(X, R")* = M,(X,R") and Co(X,R")" = M(X,R").

PrRoOPOSITION 4.25. Let X be a locally compact separable metric
space, I and J defined in propositions /.22 and 4.24, respectively.
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Then I o J is the identity of Mioo(X,R"), and so is its restriction
to M(X,R").

Proor. Take p : B5 — R™ in My(X,R"™). We must show that
= p. It suffices to show that, for an arbitrary relatively compact
open set U C X, the restrictions of x and /i coincide on By C % (for
the union of such %y coincides with %%, i.e. every element of A% is
contained in some relatively compact open set). Fix such a relatively
compact open set U and let |z, = (j1, -, fn), ftlzy = (i1, - - - fin)-
We must therefore prove that, for 1 < i < n, the finite signed measures
p; and f1; coincide on the measurable space (U, %y ).

Fix 1 <7 < n. Note that, since U is a locally compact separable
metric space, and since the total variations of both p; and /i; are finite
positive Borel measures on (U, Zy) (in particular, they are finite on
compact subsets of U), it follows from remark 1.33 that |;| and |/i;] are
positive Radon measures on #y. Thus, in order to prove that p; = ﬁi,
it suffices to show, in view of lemma 4.26 below with U in place of X,
that Vf € C.(U,R), [, fduw = [, fdf,.

Fix f € C(U,R) and let F' := fe; € C(U,R") C C(X,R"). It
follows from definition 4.23 that

(45) ioF = [ faw

On the other hand, let the polar decomposition of i € C_(X,R")"
be i = N|i|, where N = (Ny,...,N,). By definition 4.21, for each
A e B, i(A) = [, Nd|ji|. Thus, the i*" component of the R"-valued

measure fi|g, on Ay is the finite signed measure N;|ji| on (U, By). It
then follows that

ﬁ.F:/(F,N>d]/2]=/UfNid’m:

:/deﬁi.

Comparing (4.5) and (4.6), we conclude that [, fdu; = [, fdju,
as we wanted to show.

(4.6)

O

LEMMA 4.26. Let X be a o-compact locally compact Hausdorff space
and p,v signed measures on Bx whose total variations |p| and |v| are

Radon measures on Bx. Then p = v iff Vf € C(X,R), [ fdu =
[ fdv.

Note that both integrals make sense, since both |u| and |v| are
Radon, hence C_(X,R) C L(u) NLY(v).
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PROOF. It suffices to prove (<), since the reverse implication is
trivial.

Suppose that Vf € C.(X,R), [ fdu= [ fdv.

1) We contend that there exist Borelian functions h,,h, : X — R
such that |h,| = |h,| = 1 and p = h,|p|, v = h,|v|. Indeed, since
uwt L p~, we may take disjoint Borel sets P and N such that X =
PUN, ™ is concentrated on P and p~ is concentrated on N. Thus,
pt = xplpl and p= = xnlpl, so that g = p™ —p= = (xp — xn)lul,
thus proving the contention for p with h, := xp — xn; we do the
same for v.

2) The linear functional L defined on C_(X,R) by f — [ fdu = [ fdv
is continuous, since, by the fact that |u| is finite on compact sets
and by the triangle inequality 1.99.e), for every K C X compact

and for every f € CE(X,R), |[ fdul < [lfldlul < |pl(E)[f]l
By the previous item, we have, for all f € C_(X,R),

Lof= [ fau= [ 1-bidul,
L-f:/fdyz/f-h,,d|u|.

Since |u| and |v| are positive Radon measures on #x (which, by
remark 1.29, correspond to outer Radon measures on X, denoted
with the same notation), we conclude that both h,|u| and h,|v| are
polar decompositions for L. Hence, by the uniqueness of the polar
decomposition stated in theorem 4.9 (with n = 1), it follows that
\p| = |v| and h, = h, |p|-a.e., which implies @ = h,|p| = hy|v| = v.

O

COROLLARY 4.27. If X s a locally compact separable metric space,
then I and J defined in propositions 4.22 and /.24, respectively, are
surjective isomorphisms, inverses of each other.

PROOF. It is a consequence of propositions 4.22; 4.24 and 4.25. [

REMARK 4.28. If X is a locally compact separable metric space,
we may therefore identify C_(X,R™)" = My.(X,R") and Co(X,R")" =
M(X,R™) by means of the linear isomorphisms of the previous corol-
lary. With these identifications in mind, we will henceforth abandon
our provisional nomenclature and drop the hats and checks from the
notation, treating an R™-valued Radon measure p and the correspond-
ing R™-valued Radon measure set function fi as being one and the same
object.
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COROLLARY 4.29. If X is a locally compact separable metric space,
M(X,R") is a Banach space with the norm ||u| := |p|(X).

PROOF. It is a consequence of the identification Cy(X, R™)" = M(X,R")
and of theorem 4.9.ii), which asserts that the operator norm of u €
Co(X, R™)™ is [ (X). O

EXERCISE 4.30 (properties of the total variation, part II). Let X
be a locally compact separable metric space and p an R"-valued Radon
measure on X. Define, for all E € Bx:
i) pa(E) = sup{3 " |u(Ep)ll | m € N; VI < k <m, By, € B, |ul(Er) <
oQ; Uzlzl E. C E}
ii) pa(E) = sup{d_,cnlln(Ey)| | VK € N, E), € Bx, |ul(Er) < 00; Ugen B =
iii) pi3(E) = sup{ [ f- du| f € L} (|u[,R"), || f]| < 1}.
iv) pa(E) = sup{ [ f- du| f € C(X,R"), || f[| < 1}.
Then p1(E) = pa(E) = ps(E) = pa(E) = |l (E).

4.2. Operations with R"-valued Radon measures

We generalize to R"-valued Radon measures the operations for pos-
itive measures introduced in definitions 1.13 and 1.14.

DEFINITION 4.31 (restrictions of R"-valued Radon measures). Let
X be a locally compact separable metric space, u € C_(X,R")" an R"-
valued Radon measure and g : X — R a bounded Borelian function on
X. We define the restriction of p to g, denoted by i g, as the contin-
uous linear functional on C (X, R") given by u L_g- f := [(fg,v)d|y|
if (v, |u|) is the polar decomposition of f.

NOTATION. If X is a positive measure on X and h € LT()), we
introduce the alternative notation A L_h to denote the measure on
X which has been denoted so far by h\, i.e. the extension given by
theorem 1.8 of the measure on o(\) given by A — [, hdX. This
alternative notation is motivated by the following remark.

REMARK 4.32. With the notation from the previous definition:

1) Note that u L_g is indeed a well-defined continuous linear func-
tional: VK C X compact and Vf € CK(X,R"), fg € L*(Ju]), p Lg
is clearly linear in f and, by the triangle inequality (remark 4.17.3),
| Lg - fI < |ul(E)llgllul| f]lu, hence g is continuous.

2) The polar decomposition of p L_g is (%, lgl|pe]), where we define

%7 = 0 on the Borel set {g = 0}. That follows from the fact that

lg|| 1] is a positive Radon measure on X (by lemma 4.11) and from
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the uniqueness of the polar decomposition. In particular, using the
notation above, we have

I gl = ul L|gl.

If 1 is a positive Radon measure on X (which we identify with
the element of C_(X,R)" whose polar decomposition is (1, u)) and
A € ABx, then u L x4 coincides with the positive Radon measure
p LA (that this positive measure is Radon follows from proposition
1.36). We extend this notation for an arbitrary u € C_(X,R")", i.e.
we use the notation pu LA in place of i Ly 4. It then follows from
the previous item that

jw LA| = |u] LA

We may similarly define p L.g € C(X,R")" for u € C(X,R)"
and g : X — R" bounded Borelian: that is the continuous linear
functional f € C(X,R") — [(f,g)vd|u| if (v,|p|) is the polar
decomposition of p. Then (ﬁ, llg|||12]) is the polar decomposition

of u LLg. In particular,

I Lg| = [u| L|lgl]-

Note that, with this definition, if u € C_(X,R")" has polar de-
composition (v, |ul), then p = |pu| Lv.
We may also define p L_g for g € Li (i) using the same formula.
Note that, for all K C X compact and for all f € CK(X,R"), |u Lg-
71 = ficlFg.v) dlul] < (fclgl i1 f]. whence the continuity of
i Lg. As before, the polar decomposition of p L_g is (%, 9]l ),
which follows from the uniqueness of the polar decomposition and
from the fact that |g||u| is a positive Radon measure on By (by the
fact that it is finite on compact subsets of X and by remark 1.33).
Thus, as before,

I gl = |pl L]gl.

As a final generalization of the restriction operation, we may define
p LT € C(X,R™)" for p € C.(X,R")" and T € Li, (|u], LR™,R"))
by f € C(X,R™) — [(T - f,v)d|u|, where (v,|u|) is the polar
decomposition of u. As before, it follows from the triangle in-
equality that, for all K C X compact and for all f € CX(X,R™),
i T - f] < (S IT1 A ]| f]lwr hence g LT is indeed a continu-
ous linear functional. Note that, defining 7% : X — L(R™ R™) by

x+— T(x)", i.e. the adjoint of T, we have, Vf € C_(X,R™):

T
uLTﬁszfwmmaﬂﬂﬁ;ﬁmWwww.
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Since ||7*-v|| d|p| is a positive Radon measure on X, it follows as be-
fore from the uniqueness of the polar decomposition that ( 2 VH T

v|||pl) is the polar decomposition of p LLT'. In particular,
e LT = [ LT - v

EXERCISE 4.33 (Lebesgue decomposition and Radon-Nikodym de-
rivative for R"-valued Radon measures). Let X be a locally compact
separable metric space 1 € C(X,R™)" and \ a positive Radon measure
on X. We say that

e i L Aif |u] L X in the sense of definition 3.34;
o 1 < \if |u| < X in the sense of 3.34.

Then:

a) (Lebesgue decomposition) There exist unique R"-valued Radon mea-
Sures fiq, pts on X such that ps L A, g < N\, pt = s + plg-

b) (Radon-Nikodym derivative) If © < A, there exists a unique (up
to A-null sets) Borelian map f : X — R" with f € LL_()\) and

= AL f. We call f the Radon-Nikodym derivative of p with
respect to A and denote it by Z—‘/\L

EXERCISE 4.34 (fundamental lemma of the Calculus of Variations).
Let X be an open set in R™. If u : C(X,R™) — R is an R"-valued
Radon measure on X such that p- f =0 for all f € C(X,R"), then

= 0. In particular, if g € L} _(£™|x,R™) and

[ (raracm =0

for all f € C°(X,R"), then g =0 L™-a.e. on X.

DEFINITION 4.35 (trace of R"-valued Radon measures). Let X be
a locally compact separable metric space and A C X a locally compact
subspace of X (i.e the intersection of an open with a closed subset
of X). If p is an R™-valued Radon measure on X with polar decom-
position (v, |u|), we define an R"-valued Radon measure i[4 on A by
[ € C(AR") — [(f,v)d|u|, where f: X — R"is the extension of f
by 0 in the complement of A.

PROPOSITION 4.36. Let X be a locally compact separable metric
space, A C X a locally compact subspace and p € C(X,R")" with po-
lar decomposition (v, |u|). Then p|a is a well-defined R™-valued Radon
measure on A and it is finite if so is . Moreover, the polar decomposi-
tion of pla is (v|a, |p|‘A), where |,u||A denotes the trace of |u| on A in
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the sense of definition 1.15. In particular, if i is a positive Radon mea-
sure on X, the trace of 1 on A in the sense of definition 4.35 coincides
with the trace in the sense of definition 1.135.

PrRoOF. Note that f is a bounded Borel measurable function and
vanishes on the complement of a compact subset of A (which is also
a compact subset of X, since the inclusion is continuous and X is
Hausdorff), hence f € L*(|u|) and the integral makes sense, i.e. 4 -
f is well-defined and clearly linear in f. Moreover, for all K C A
compact and f € CK(A,R"), we have, by the triangle inequality ‘M’ A
f| = [ {f,v) dlpl| < | (K)|| f]|u, hence g4 is continuous, ie. pla €
C (A, R")".

For all f € C.(A,R"), it follows from exercise 1.69 that u|s - f =
Sl = [Ty dlal = fFvladdal],. where ||, denotes
the trace of [u| on A in the sense of definition 1.13. Since |u||, is a
positive Radon measure on %4 (it is a Borelian measure by proposition
1.15.ii and it is finite on compact subsets of A, hence it is Radon by
remark 1.33), and since v|4 is Borelian with |[v]|4]] = 1 |,LL||A—a.e., it
follows that the polar decomposition of p| 4 is (v], || )+ In particular,
| al = |,u\|A. Hence, if 41 is finite (i.e. if |u| is a positive finite Radon
measure), so is p|4 (since its total variation is finite). O

We next introduce the pushforward operation for R"-valued Radon
measures by transposition. For that purpose, and for those who are
not acquainted with locally convex spaces and LF topologies, we make
an ad hoc definition of continuity which generalizes the notion of con-
tinuity introduced in definition 4.1 (and coincides with the notion of
continuity with respect to the locally convex topologies of the spaces
involved, cf. remark 4.2).

DEFINITION 4.37 (continuity of linear maps on C_(X,R")). Let X
and Y be locally compact separable metric spaces.

i) We say that A C C_(X,R") is bounded it there exists K C X
compact such that A C CK(X,R") and A is bounded in the latter
space (i.e. it bounded as a subset of the Banach space CK(X,R")).

ii) We say that a sequence (x,)neny in C.(X,R™) converges to x €
C.(X,R™) if there exists K C X compact such that the image of
the sequence is contained in CK(X,R"?), z € CX(X,R") and x,, — x
in CK(X,R").

iii) We say that a linear map 7" : C_(X,R™) — C_(Y,R™) is continuous
if one of the following equivalent conditions hold:
e T(A) is bounded whenever A C C_(X,R") is bounded.
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e T(x,) — 0 whenever (z,)nen is a sequence in C_(X,R") such
that x,, — 0.

REMARK 4.38. That the two conditions in part iii) of the above
definition are indeed equivalent to continuity in the LF topology of
the spaces involved, cf. remark 4.2, is a consequence of the fact that
LF spaces are bornological. Actually, in the above definition, we could
replace the codomain of T by any locally convex space; in particular,
those conditions may also be used to characterize continuity of linear
functionals C_(X,R") — R.

PROPOSITION 4.39. Let X and Y be locally compact separable met-
ric spaces and T : C(X,R") — C(Y,R™) a linear map.

i) If T' is continuous and p is an R™-valued Radon measure on 'Y,
then o T is an R"-valued Radon measure on X.

it) If T is continuous with respect to the Cy topology (i.e. the topology
induced by ||-||.) on both domain and codomain, and p is a finite
R™-valued Radon measure on Y, then poT s a finite R"-valued
Radon measure on X.

PRrROOF. It is immediate from the definitions. O

DEFINITION 4.40. With the notation from the previous proposition,
we define the transpose of T, T* : C_(Y,R™)" — C_(X,R")" in case (i)
or T : Co(Y,R™)" — Co(X,R™)" in case (ii), by T* - pp:=poT.

ExXAMPLE 4.41. Let X be a locally compact separable metric space.

1) Let T : X — L(R™R") be a continuous map. We define T :
C.(X,R™) — C(X,R") by (T - f)(x) := T(x) - f(x). Then T is
clearly linear and, for all K C X compact and f € CK(X,R™), we
have T - f € CK(X,R™) and || - fllu < | T|klullf]lu, which implies
the continuity of T. The transpose of T is given by p — u LT,
where p LT was defined in part 6) of remark 4.32 (but the situation
in that remark is more general, since it the continuity of 7" is not
required).

2) Let U C X open. The inclusion C(U,R™) C C(X,R"™) (which
maps f € C_(U,R™) to its extension by 0 on the complement of U)
is clearly continuous; its transpose coincides with g — u|y, where
il is the trace of p on U in the sense of definition 4.35. For a
general locally compact subspace A C X, we cannot define the trace
by means of transposition, since, in general, there is no canonical
inclusion C_(A,R") C C.(X,R").

PROPOSITION 4.42. Let X and Y be locally compact separable met-
ric spaces and f : X — Y a continuous proper map. Then both
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(of) : CY,R") — C(X,R") and (of) : Co(Y, R") = Co(X,R") given
by g — go f are well-defined and linear continuous.

PRrOOF. If g € C_(Y,R"), then spt(go f) C f~'(spt g), which is
compact, since f is proper, hence go f € C(X,R"). If g € C,(Y,R")
and € > 0, there exists K C Y compact such that K¢ C {||g]] < €}.
Since f is proper, f~'(K) is compact and f~1(K)¢ = f~}YK°) C
{llgo fll < €}, hence go f € Cy(X,R™). Thus, both (of) : C.(Y,R") —
C(X,R™) and (of) : Co(Y,R") — Cy(X,R") are well-defined and
clearly linear. It remains to prove their continuity. Indeed, for all K C
Y compact and for all g € CK(Y,R"), we have go f € Cf:l(K)(X, R™)
and ||go f|l. < ||gl|«, which implies the continuity of (of) : C.(Y,R") —
C.(X,R"™), and the continuity of (of) : Co(Y,R") — Cy(X,R") follows
by the same argument. O

DEFINITION 4.43. With the notation from definition 4.42, the trans-
poses (of)" @ C(X,R")" — C(Y,R")" and (of)" : Co(X,R™)" —
Co(Y,R™)" are called pushforward by f and denoted by fu:p— fyupu.

PROPOSITION 4.44. Let X and Y be locally compact separable met-
ric spaces, f : X — Y a continuous proper map and ju € C (X, R™)"
with polar decomposition (vx, |u|). Suppose that there exists a Borelian
map vy @Y — R™ such that vy o f = vx. Then the polar decomposi-
tion of fup is (vy, fx|p]), where fu|p| is the pushforward of |p| by f in
the sense of the definition 1.14. In particular, if p is a positive Radon
measure on X, the pushforward of u by f in the sense of definition
4.48 coincides with the pushforward in the sense of definition 1.1/.

PrOOF. For all g € C_(Y,R"), we have:
fon-g=n-(gof) = [(go L) dul =
= [tgo foow o syl <=
= /<g,w) dfylpl,

where fu|u| is the pushforward of |p| by f in the sense of the definition
1.14. Since f4|p is a positive Radon measure on Y, by proposition 1.37,
and since [~ ({{lwy|] # 1}) < {llvx|l # 1} is [ulnull (ie. {[loy] #
1} is fy|p|-null), we conclude that the polar decomposition of fup is
(vy, f4|p]), as asserted.

In particular, if p is a positive Radon measure on X, the polar
decomposition of i (using the notation of definition 4.23 for clarity) is
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(1, 1), so that we can take vy = 1, hence the polar decomposition of
fafiis (1, fup), whence the thesis. O

EXERCISE 4.45. Let X and Y be locally compact separable metric
spaces, T': X — L(R™, R"™) continuous, f : X — Y a continuous proper
map and g an R"-valued Radon measure on X. Suppose that there
exists S : Y — L(R™ R") such that So f = T. Then fu(u LT) =
f#p LS. In particular, if f is an homeomorphism, then fu(u L.T) =
fun L fuT, where fuT :=To f~1

REMARK 4.46. We may define the pushforward with respect to
more general maps. For instance, let X and Y be locally compact
separable metric spaces, u € C(X,R")" with polar decomposition
(v,|p]) and f: X — Y a Borelian map such that VK C Y compact,
| (f7H(K)) < co. We define fyup: C.(Y,R™) — R by

g /<90f7V>d|u|‘

Note that the integral makes sense, since ||go f|| € L(|u|) (because it is
a bounded Borelian map which vanishes in the complement of the |u|-
finite set f~!(spt g)). Moreover, fyu is clearly linear and, for all K C Y’
compact and for all g € CK(Y,R"), | fup-g| = |ff_1(K)(gof, v)d|p|| <
|1 (f7HEK)) || gllus hence fap € C(Y,R™)", ie. fyp is indeed an R™-
valued Radon measure on Y. If f is a continuous proper map, the
latter pushforward coincides with the one defined by transposition in
definition 4.43. As before, we may find the polar decomposition of fuu
from the polar decomposition (vx, |u|) if there exists a Borelian map
vy : Y — R" such that vy o f = vx. For that purpose, we take fu|u| in
the sense of remark 1.38, which is a positive Radon measure on Y, and

repeat the same computations in the proof of the previous proposition,
for g € C(Y,R"):

fapn-g= /<90f,Vx>d\u| =
~ [tge oo pyd =
= /<g7w> dfplul,

where fu|u| is the pushforward of |u| by f in the sense of remark 1.38.
Since fy|p| is a Radon measure on Y and ||vy| =1 fy|ul-a.e. onY,
we conclude that the polar decomposition of fupu is (vy, fu|p|).
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4.3. Weak-star convergence

DEFINITION 4.47. Let X be a locally compact separable metric
space. We say that

i) a sequence (pg)reny in C (X, R™)" is weakly-star convergent to p €
C.(X,R™)" (notation: ) if, for all f € C.(X,R"), [ f- dux —
[ du;

ii) a sequence (p)reny in Co( X, R™)" is weakly-star convergent in the

sense of finite measures to p € Co(X,R")* (notation: pp=tp) if,
for all f € Co(X,R™), [ f- dup — [ f- dp.

REMARK 4.48.

1) Some authors use the nomenclature locally weakly star convergent
and weakly star convergent for our definitions above in i) and ii),
respectively.

2) We have used different names to distinguish one from the other, but
both types of convergence above are actually the same notion, i.e.
convergence of sequences with respect to weak star topologies: the
first type in the weak-star dual of C (X, R™) and the second in the
weak-star dual of Cy(X,R"™). Note that, in general, none of these
weak-star topologies is first-countable, so that we may have to use
nets or filters to handle general topological problems. However, note
that, thanks to the Banach-Alaoglu theorem and to the separability
of Co(X,R"), strongly bounded subsets of Co(X,R")" are relatively
compact and metrizable in the weak-star topology of Cy(X,R"™).

PROPOSITION 4.49 (relation between weak-star convergence and
weak-star convergence in the sense of finite measures). Let X be a lo-
cally compact separable metric space, (jux)ren a sequence in C (X, R™)"
and p € C(X,R™)*. The following conditions are equivalent:

Z) Kk i/ub and SqueN|Mk|(X) < 0.
it) (pr)ken s a sequence in Cy(X, ]R”)*, 1€ Co(X, Rn)* and ﬁ\,u'

PROOF.

(i = ii): For every f € C(X,R") such that |[f]l. <1, pu- f =
lim pg - f < liminf ] (X) < supgen|n] (X) < oo; taking the
sup over all such f, we conclude that |p|(X) < liminf |pu|(X) <
00, i.e. pu € Cy(X,R™)*. Moreover, given g € Co(X,R") and
e > 0, we may take f € C_(X,R"™) such that ||f — gll. < €
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hence, for all k € N,
g — gl <lpw-g— o fl4 e f—p-fl+lp-f—p gl <
< el (XN = gllu + [ - [ = - f1+ 1l (XN f = gllu <
< 2esup|ug|(X) + [pe - f—p- f-
keN

Taking k — oo, it follows that lim sup|p-g—p-g| < 2esupgen| ] (X);
by the arbitrariness of the ¢ > 0 taken, it then follows that
limsupl|j, - g — - gl =0, i.e. pg-g— - g, whence g, = p.

(ii = i): For all ¢ € Co(X,R™), pug - g — u - g; in particular,
that holds for g € C_(X,R") and, by the principle of uniform
boundedness, supyey|ix](X) < oo (recall that the operator
norm of py, € Co(X,R™)" is || (X)).

O

PROPOSITION 4.50. Let X and Y be locally compact separable met-
ric spaces and T : C(X,R") — C_(Y,R™) linear continuous. Then
Tt : C(Y,R™)" — C(X,R™)" preserves weak-star convergence of se-
quences. The same holds for weak-star convergence in the sense of
finite measures if T' is continuous with respect to the C, topologies.

PRrROOF. It is immediate from the definitions. O

REMARK 4.51.

1) Actually, with the same hypothesis from the previous proposition ,
Tt : C(Y,R™)" — C(X,R™)" and T* : Co(Y,R™)" — Co(X,R")"
are continuous with respect to the corresponding weak-star topolo-
gies.

2) In particular, this proposition applies to the operations with R"-
valued Radon measures which may be defined by transpositions:
the restriction p — p LT with T : X — L(R™,R") continuous
(example 4.41.1), the trace on open sets p — puly with U C X open
(example 4.41.2) and the pushforward by a continuous proper map
(definition 4.43 and proposition 4.44).

EXERCISE 4.52.

a) Let (zx)ren be a sequence in R™ convergent to z € R™. Then
Oy L 6,

b) (concentration of mass) Let (ux)ren be the sequence of positive
Radon measures on R™ given by (Vk € N)u, := k"L™ L(0,k71)".
Then pu, = 6.

¢) (spreading of mass) Let (ux)ren be the sequence of positive Radon
measures on R" given by (Vk € N)y = 257,:1 k~'0,,/5. Then
Mk ﬁﬁl |_(0, 1).
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d) Let (ur)keny be a sequence of signed Radon measures on R" (i.e.
signed measures on Zrn whose total variation is Radon) and p a
signed Radon measure on R” such that p; — . It is not necessarily
true that pf = put, = = or x| =|pl.

PROPOSITION 4.53 (foliations by Borel sets for positive Radon mea-
sures). Let X be a locally compact separable metric space, p a positive

Radon measure on X and (Eq)aca a disjoint family of Borel sets in X.
Then {a € A | u(E,) > 0} is countable.

PROOF. Since X can be covered by countably many relatively com-
pact open sets, it suffices to show that, for each relatively compact open
set U, the thesis holds for the finite Radon measure v := y L_U. For
each A" C A finite, Y 4 V(Es) = v(Uaear Eq) < v(X) < oo. Tt then
follows that o € A — v(E,) is summable with respect to the counting
measure, hence {a € A | v(E,) > 0} is countable, as asserted. O

THEOREM 4.54 (characterization of weak-star convergence for pos-
itive Radon measures). Let X be a locally compact separable metric
space, (pg)ken @ Sequence of positive Radon measures in X and pu a
positive Radon measure in X. The following conditions are equivalent:

i) = pu.
it) For all K C X compact and for all U C X open,

p(K) > limsup pup(K)  and p(U) < liminf ug(U).
iii) For all E' € %% such that p(0E) =0, u(E) — pu(E).

Moreover, if jy —p and x € spt p, there exists n € N and a se-
quence (zy)g>n 1 X such that Yk > n, xy € spt ux and xj — x.

PROOF.

(i=ii) For each f € C(U,R) with |f| < 1, p- f = limpuy - f
liminf p4,(U). Taking the sup over all such f, it follows that u(U)
lim inf 1, (U).

Note that u(K) = inf{- f | f € C.(X,R),xx < f < 1} (the
inequality < is clear and the reverse inequality follows from the outer
regularity of p in K and from the Urysohn lemma 4.5). For each f €
C.(X,R) such that xx < f <1, p-f =limpg- f > limsup [ xx dpg =
lim sup py (K). Taking the inf over all such f, we conclude that pu(K) >
lim sup px (K).

(ii=ii) Let E € %% such that p(0F) = 0. Applying (ii) for the
compact set K = FE and for the open set U = E°, it follows that
w(E) = p(E) > limsup p(E) > limsup p(E) and p(E) = p(E°) <
liminf i, (E°) < liminf py(E), whence p(E) = lim py(E), as asserted.

<
<
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(ili=1) We must show that, for every f € C(X,R), px - f — p- f.
Since an arbitrary f € C(X,R) can be written as f = f* — f~ with
£ >0in C(X,R), it suffices to consider the case f > 0. So, fix f >0
in C.(X,R).

Since f is continuous with compact support, for every t > 0 the
set {f > t} is open relatively compact and d{f > t} C {f = t}.
We may apply proposition 4.53 to the disjoint family of Borel sets
({f = t})i>0 to conclude that there exists a countable set I C (0, 00)
such that pu({f =t}) =0 for t € (0,00) \ I; hence pu(0{f > t}) =0 for
t € (0,00) \ I. It then follows from (iii) that, for every t € (0,00) \ I,
mwe({f > t}) = p({f > t}).

Define Vk € N, F, Fy, : (0,00) — [0, 00) by Fy(t) := up({f > t}) and
F(t) == p({f > t}). Then F, F} are Borelian (since they are decreasing
functions) and, as we saw in the previous paragraph, Fy, — F pointwise
in (0,00)\ I, i.e. F, = F L'-a.e. (since countable sets have Lebesgue
measure 0). We contend that the convergence is dominated. Indeed,
VE € N, Vt > 0, Fi(t) < pr(spt f)xp,171.](t); hence, if we show that
C 1= supyey pk(spt f) < oo, then the sequence Fj will be dominated
by the £'-summable function C'x,s|.], thus proving our contention.

In order to show that supycy p(spt f) < oo, take a relatively com-
pact open set U D K := spt f and, denoting by d the distance in X,
let VO < € < d(K,U°), U, :={x € X | d(z, K) < €}; applying proposi-
tion 4.53 to the Radon measure p and the disjoint family of Borel sets
(OUe)o<e<a(k,ue), we conclude that there exists 0 < e < d(K,U°) such
that ;(0U.) = 0. Since U, is open and relatively compact (because it is
contained in U), it then follows from (iii) that ux(Ue) — p(U.). Hence
SUPgen Mk (spt f) < supgen ik (Ue) < 00, as asserted.

Finally, by the dominated convergence theorem 1.64 and by the
layer-cake formula 1.87 (note that p,py are o-finite, since they are
Radon and X is o-compact), we have:

0

—>/000Fd£1=/fdu=u-f,

as we wanted to show.

Finally, suppose that py, — p and let 2 € spt . We claim that Ve >
0, there exists n € N such that Vk > n, U(x, €)Nspt pux # 0. Arguing by
contradiction, suppose that there exists € > 0 and a sequence (k,)nen
in N such that k, — oo and U(xz,€) Nspt g, = 0. It then follows
from ii) that p(U(z,€)) < liminfu,(U(z,€)) < lim gy, (U(z,€)) = 0,
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hence 11(U(z,€)) = 0, which contradicts the fact that = € spt x and
proves the claim. We now apply the claim for ¢ = ¢ € N, yielding a
sequence (n;)en, which we may assume to be strictly increasing. Then,
for each ¢ € N, we may choose x,,, Tn,41,...,Tn,,,—1 such that z; €
U(z,1/i) Nspt p; for n; < j < n;4q, thus yielding a sequence () j>n,
in X such that Vj > ny, z; € spt u; and z; — .

O

EXERCISE 4.55. Let X be a locally compact separable metric space,
(g )ken @ sequence of positive Radon measures on X and p a positive
Radon measure on X. Suppose that py —p and for every r > 0,
lim supy_, .. inf{, (U(z, 7)) | « € spt py} > 0. If (24)ken is a conver-
gent sequence in X with Vk € N, x; € spt pg, then limxy € spt p.

EXERCISE 4.56 (narrow convergence). We say that a sequence (1) gen
in Co(X,R™)" is narrowly convergent to p € Co(X,R")" (notation:
=) if, for all f € Co(X,R™), [ f- dux — [ f+ du, where C,(X,R")
denotes the Banach space of bounded continuous functions X — R”"
(endowed with the norm of uniform convergence ||-||,,). That is, ju, —< p
if it converges to p in the weak-star dual of C,(X,R").

If (pr)ken is a sequence of positive finite Radon measures on X and

w1 is a positive finite Radon measure on X, then gy, —< u iff u(X) —
u(X) and VA C X open, u(A) < liminf i (A).

HINT. To prove that the stated condition implies puy, ==y, it suf-
fices to show that [ gduy — [gdu for g € Co(X,R) with 0 < g <1
(since Cy(X,R) is the linear span of such g). Prove that [gdu <
liminf [ g dp, using the layer-cake formula 1.87 to compute the inte-
grals and Fatou’s lemma. The same holds for 1 — ¢g in the place of

g.

PROPOSITION 4.57 (weak convergence and total variation, part I).
Let X be a locally compact separable metric space and (p)ren @ Se-
quence in C_(X,R™)" weakly-star convergent to yu € C_(X,R")". Then,
for every A C X open, |u|(A) < liminf|ug|(A).

PROOF. For every f € C(X,R") with spt f C A and [|f]| < 1, we
have g - f = lim py, - f < liminf|puy|(A). Taking the sup over all such f
yields the thesis. O

PROPOSITION 4.58 (weak convergence and total variation, part II).
Let X be a locally compact separable metric space and (p)gen @ Se-
quence in C_(X,R™)" weakly-star convergent to p € C_(X,R")".



116 4. RN-VALUED RADON MEASURES

i) If v is a positive Radon measure on X and |ux| = v, then VE C X,
\u|(E) < v(E). Moreover, if E € %% and v(0E) = 0, then
i(E) > u(E)

i) 1 [il(X) = [l (X) < oo, then ] “LJu| (actually |1
the sense of exercise /.56).

* nc
LN

pl i

PROOF.

i) It suffices, by outer regularity, to prove the inequality for £ C X
open. Let A C X open with A € E, and take f € C(X,R)
such that x4 < f <1 and spt f C F (which exists, by Urysohn’s
lemma 4.5). Then

4.57
Hl(A4) < liminflug|(A) <

< liminf/fd\uﬂ uk:_\ylim/fdy <
<v(E).

Since, by inner regularity, |u|(E) = sup{|u|(K) | K C E compact} =
sup{|p|(A) | A C E open, A € E'}, taking the sup in the inequality
above yields |u|(E) < v(FE), as asserted.

Suppose that F € %% with v(0F) = 0. Fix € > 0. It follows
from lemma 4.59 below that there exists K C X compact and
A C X open such that A € E C K° and v(K \ A) < e. Take
f € C.(X,R) such that xyz < f < 1 and spt f C K°. We then
have, for all k£ € N:

[ £ = m(B)| < [1F = xeldlal < el 4)
[ £ = uB)] < K\ A) < o5\ 2
Thus,
j(B) = (B < | [ 1= m(B) +| [ f =B+ | [ e~ [ 1au] <
< lal(K\ )+ v\ A) + | [ fogu— [ ran)
Since limg oo | [ f dpe — [ f du| = 0 and, by the fact that K \ A

is compact, |px| = v and theorem 4.54.ii), limsup|ue|(K \ 4) <
v(K \ A), it follows that

lim sup|px(E) — p(E)| < 2v(K \ A) < 2e.
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By the arbitrariness of the € > 0 taken, we conclude that p(F) —
pu(E), as asserted.

ii) It follows from proposition 4.57 that, for all A C X open, |u|(A) <
lim inf|ug|(A). Since || (X) — |u/(X) < oo, we may assume, ex-
cluding the first terms of the sequence if necessary, that |u|(X) <
oo for all k € N. Tt then follows from exercise 4.56 that || =|ul;

in particular, || ).
O

LEMMA 4.59. Let X be a locally compact Hausdorff space, |1 a pos-
itive Radon measure on X and E € B such that n(OF) = 0. Then,
for every € > 0, there is a compact set K C X and an open set A C X
such that AC E €@ K° and u(K \ A) < e.

PROOF. Fix € > 0. Since F € X, we may take a compact set
K C X such that £ € K° and v(K \ E) < €/2. Indeed, by outer
regularity, there exists U D E open such that v(U \ E) < ¢/2; take
a relatively compact open set V such that £ C V € U (which exists,
since F is compact) and put K := V. Then £ € K° and, as v(0F) = 0,
we have v(K \ E) = v(K \ E) < v(U\ E) < ¢/2.

Similarly, by inner regularity there exists a compact set C' C E°
such that pu(E°\ C) < €/2. Take a relatively compact open set A C X
such that C € A € E°. Since pu(0F) = 0, we have u(E \ A) =
p(E°\A) < p(E°\ C) < €¢/2. Finally, since K\ A = (K \ E)U(FE\ A),
the thesis follows. t

EXERCISE 4.60. Let X be a locally compact separable metric space,
(1j)jen a sequence of R"-valued Radon measures on X weakly-star
convergent to an R™-valued Radon measure g on X and (V,)men an
increasing sequence of relatively compact open subsets of X such that
X = UpenVin. Suppose that Vm € N, lim;,oo|p;|(Vin) = |0|(Vin)-
Then [p;] =|ul.

THEOREM 4.61 (De La Vallée Poussin). Let X be a locally compact
separable metric space and (ug)ken be a sequence of finite R™-valued
Radon measures on X such that sup{|ug|(X) | k£ € N} < oco. Then
there exists a finite R"-valued Radon measure 1 on X and a subse-
quence (fu,;)jen of (x)ren such that pu, L. Moreover, |p|(X) <
lim inf|z, [ (X).

ProOOF. The first assertion is a direct consequence of the fact that
strongly closed balls in Cy(X,R™)" are compact and metrizable in the
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weak-star topology (hence sequentially compact): the compactness fol-
lows from Banach-Alaoglu theorem, and the metrizability follows from
the fact that Cy(X,R") is a separable Banach space.

The second assertion is a consequence of the first and of proposition
4.57. O

REMARK 4.62. The second assertion in the previous proposition is
also a consequence of the fact that, for any Banach space Y, the norm
||I-]| of Y* is weakly-star lower semicontinuous, since ||-|| = sup{(y, ) |
y € Y, |ly|| < 1} is the sup of a family of weakly-star continuous func-
tions.

COROLLARY 4.63. Let X be a locally compact separable metric space
and (pr)ken be a sequence of R™-valued Radon measures on X such
that, for any K C X compact, sup{|ux|(K) | k € N} < oco. Then there
exists an R™-valued Radon measure 1 on X and a subsequence (i, ) jen

of (kk)ken such that g, = p.

PROOF. Let (V;,)men be an increasing sequence of relatively com-
pact open subsets of X such that U,,cnV,, = X. We apply De La
Vallée Poussin’s theorem 4.61 to each of the traces (ug|v,, Jken, m € N,
and then we use a diagonal argument:

)

‘ = |,ukHV1 (by proposition 4.36) and supy,cn || (V1) <
supkeNmkl(Vl) < 00, there exists vy € CO(Vl,]R”)* and a subse-
quence p' = (ul)ren of (1ux)x such that ul|y, = '

2) Suppose that we have defined subsequences u' ,...,u of (pu)ken
and v; € Co(V;,R™)" for 1 < j < i such that p/ is a subsequence
of /=1 for 2 < j < i and Mk’vj Ly, for 1 < j < i. We reapply
to pu' the argument of the previous item to find a subsequence p***
if p' and v;y1 € Cy(Vig1, R™)" such that MZ+1|%+1 L vitr. Induc-
tively, we have thus defined a sequence (u');eny of subsequences of
the original sequence (jux)ren and a sequence (v;);en with Vi € N,
v; € CO(V;,RTL)*

3) Take the subsequence (Ag)ren of (pr)ken given by Ay := uf. For all

i € N, (Ar)ren is a subsequence of pf, hence Ai|v; - 2{ .. In particular,
given f € C(X,R™) and ¢ € N such that spt f € V;, we have

nef = [ £ dn=

hence v : C_(X,R") — R given by f — lim X - f (= v; - f for any
i € N such that spt f € V;) is a well-defined linear functional. It
is continuous, i.e. v € C_(X,R")", since, for each K C X compact,

k—
Vi OOVi'f?
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we can take i € N such that K € V;, hence v|cx(x rn) = Vilcx(xrn)-
Since A\, — v, the thesis follows.
O






CHAPTER 5

Area and Coarea Formulas

In this chapter we study Lipschitz maps R™ — R and two gener-
alizations of the change of variables formula 1.82: the area formula, for
n < m, and the coarea formula (which is also an extension of Fubini-
Tonelli’s theorem), for n > m. Both theorems have the same statement
for n = m.

5.1. Lipschitz maps on R"

Recall that, given metric spaces X and Y, amap f: X — Y is
called Lipschitz if there exists C' > 0 such that Vz,y € X, dy (f(), f(y)) <
Cdx(z,y). If f is Lipschitz, there exists a smallest such constant C,

namely
(f(=), f())

: dy
Lip f := sup{ dx(2.9)

|z £y e X},

called Lipschitz constant of f.
In this section we derive some basic properties of Lipschitz maps
R™ — R™.

5.1.1. Extensions of Lipschitz maps. Let ACR"and f: A —
R™ a Lipschitz map. As we will see in subsequent developments, it is
useful to be able to extend f to a Lipschitz map with the same Lipschitz
constant defined on all of R”. The theorems stated below ensure the
existence of such extensions.

Firstly, we consider the case m = 1:

THEOREM 5.1 (McShane’s lemma). Let AC R" and f: A—- R a
Lipschitz map. Define F' : R™ — R by:
(5.1) F(z):=inf{f(a)+ Lipf |z —al | a € A}.
Then F extends f and Lip F = Lip f.

That F' is well defined (i.e. the second member in the previous
equality is > —oo, so that F' indeed takes values in R) will be seen as
part of the proof.

The geometric idea behind formula (5.1) is the following: g : X — R
is a Lipschitz function on the metric space X iff there exists C' > 0

121



122 5. AREA AND COAREA FORMULAS

such that gr g = {(z,g(z)) | # € X} C X x R lies in the intersection
of all cones {(z,y) € X xR | |y —g(a)| < C|lz—al|} for a € X. If that
is the case, the least such C' is the Lipschitz constant of g.

PROOF.

1) The formula in the statement of the theorem defines F' : R" —
[—00,00). We shall prove that Im F' C R.

2) If x € A, it is clear that the infimum in (5.1) is attained for a = z,
since Va € A, f(z) — f(a) < |f(x) — f(a)] < Lip f|lz — a||, hence
f(z) <inf{f(a) +Lip f - ||z — a| | a € A}. Thus, F(z) = f(z), i.e.
F extends f.

3) Ifz,y e R"and a € A, F(z) < f(a)+Lip f-||lz—al < f(a)+Lip f-
lly —al| +Lip f - || —y||. Taking the infimum of the second member
over all a € A, we conclude that F(z) < F(y) + Lip f - ||z —y|. In
particular, if x € A, we conclude that F(y) > f(z)—Lip f-||lz—y| >
—oo for all y € R™, hence Im F' C R.

Exchanging x and y, we also have F'(y) < F(z)+Lip f - ||z — ||,
so that |F(xz) — F(y)| < Lip f - || — y||. Hence, F' is Lipschitz with
Lipschitz constant < Lip f; since it extends f, its Lipschitz constant
must be Lip f.

O

For a Lipschitz map f = (f1,..., fm) : A C R” — R™, we may ap-
ply McShane’s lemma to each component of f, yielding a map F =
(Fy,...,Fy) : R" — R™ which extends f with Lipschitz constant
Lip P < /mLip f. It is possible, however, to obtain an extension
which has the same Lipschitz constant as f:

THEOREM 5.2 (Kirszbraun’s theorem). Let A C R" and f : A —
R™ a Lipschitz map. Then there exists a Lipschitz extension f : R" —
R™ of f such that Lip F' = Lip f.

PROOF. We refer the reader to [Magl2], page 69. O

5.1.2. Rademacher’s theorem. We prove in this subsection that
every Lipschitz function on R" is differentiable in the sense of Fréchet
L"-a.e. on R™. Besides, its a.e. defined partial derivatives coincide
with its weak partial derivatives, introduced below.

If © is an open subset of R® and X € C!(©2,R"), then a direct
application of the Fundamental Theorem of Calculus combined with
Fubini-Tonelli’s theorem yields

/div XdL" =0.
Q
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If w e CHQ) and ¢ € CL(Q,R™), the previous equality applied to
X = up yields the elementary Gauss-Green’s identity in divergence
form:

/(VU, o) dL" = — / udiv ¢ dL".
Q

That motivates, for less regular u, let us say u € Li_(L"]q), the
introduction of the distributional gmdzent of u (that is, the gradient
of u in the sense of the theory of Schwartz distributions) as the linear
functional Vu : C(Q,R") — R given by the second member in the
previous equality, i.e.

Vu- = —/udiv pdLl".
Q

Similarly, for 1 < i < n, the distributional i-th partial derivative of u
is the linear functional a“ : C(Q) — R given by

ou o Op "
<axi ) = / upt de

Whenever those linear functionals are representable as integration of ¢
against an L{_ function on €, we say that u admits weak gradient or
weak partial derivatives:

DEFINITION 5.3 (weak derivatives and gradients). Let (2 be an open
subset of R™ and u € L}, (L"|q). We say that:

i) For 1 <i < n, u has weak i-th partial derivative v; € Li, (L"|q) if

Vo € C(Q),
/vigpdﬁn = —/ O¢ dc".
Q Q axl

ii) u has weak gradient v € L} (L"|q,R") if Yy € C(Q,R™),

(5.2) /(v,gp) dLm = —/udiv pdL".
Q Q

We denote the weak derivatives by the same notations used for the
classical derivatives, i.e. g“ for the ¢-th weak partial derivative and Vu
for the weak gradient of u, if they exist; if distinction is needed, we use

“%;_‘ 7 or “VYu” for the Weak partial derlvatlves and gradient.

EXERCISE 5.4 (weak gradients, bis). Weak gradients may be also
characterized by means of Gauss-Green identity in gradient form. That



124 5. AREA AND COAREA FORMULAS

is, let © be an open subset of R" and u € L} (L£"|q); then u admits

loc

weak gradient v € L, (L"|q, R") iff Vo € C(Q),

loc

(5.3) /(pvdﬁn = —/uV@dﬁ”.
Q 0

EXERCISE 5.5. Let Q be an open subset of R", u € LiL_(£"|q) and

loc

1 <i < n. If there exists % € Ligc(£7]a), then Vo € CH(Q),

loc

Mu n 00
/ani pdLl" = /Quaxi dc".

PROPOSITION 5.6. Let Q be an open subset of R™ and u € L _(L"|q).

loc

i) If the weak partial derivatives or weak gradient of u exist, they are
unique up to L™-null sets.

i) u has weak gradient v = (vy,...,v,) € LL (L"|q,R™) iff V1 < i <
n, u has i-th weak partial derivative v; € Lt _(L"|q).

loc
PRrooOF. Part i) follows from the fundamental lemma of the calculus
of variations 4.34 and part ii) is immediate from exercise 5.4. U

It is clear that, if u € C}(Q), the classical and weak gradients of u
coincide. The converse holds in the following sense: if u € L} _(L"|q)

has weak gradient v € C(Q,R"), then u € C}(Q). We postpone the
proof of this fact to exercise 6.22 in chapter 6.

PROPOSITION 5.7 (vanishing weak gradient). Let @ C R™ be a con-
nected open set and u € Li, (L"]q) such thatVp € C2(Q), [uVedL" =

loc
0. Then u coincides L™-a.e. with a constant function.

PROOF. 1) For each € > 0, let Q. := {z € R" | B(x,¢) C Q} =
{z € R™ | d(x,Q°) > €}, so that ()0 is a family of open subsets
of €2 which increases to €2 as € | 0.

Let (¢¢)i>0 be the standard mollifier in R™. Given € > 0, let
ue : R" — R be given by wu, :uon@anduﬁz()onﬂ%”\
Q2. Since Q.5 C Q, it follows that u. € L (L") (because, for

loc

each compact K C R", [ |udL" = fKOQ—/Q|u|d£” < 00, since

K N € is a compact subset of Q). Take g. := ®ej2 * ue. Then, by
proposition 1.108, g. € C*(R™) and Vg, = (V¢,/2) * u.. Therefore,
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since spt ¢./2 C B./2, we have, Vo € Q.
Vao) = [ Vol — p)u) L) -
—— [ Vloute —uac” -

3}+]B€/2CQE/2

_ / Vibs(e — u, dL”
z+IB§€/2

= _/QV[¢€/2($ —)]udL" =0,

where the last equality is justified by the fact that spt ¢¢o(x —-) C
r+ By C Q, so that ¢o(x —-) € CF(2). That is, Vg, = 0 in
the open set €).; by elementary Calculus, it then follows that ¢, is a
constant function in each connected component of €.

We contend that g. is convergent to u in Li (L"]q) as € — 0, i.e.
for each compact K C Q, ||ge — ul/ien)) — 0. Indeed, given
K C Q compact, let ¢ := %d(K, Q). Then, VO < € < €, both
ge = G2 *ue and ¢js *u, coincide in each x € Q, D K with

Joim P bes2(x — y)u(y) dL(y). By exercise 1.115,

Gej2 * Ugy ej>0 Ue,
in L _(L£"); therefore, we conclude that g.|x — ue,lx = u|x in
LY(L"|x), thus proving our contention.

Let (en)nen be a sequence in (0, 00) with €, | 0. It follows from the
contention in the previous item that (g, := g, )nen 1S convergent
to u in L} (L"|q); therefore, for each compact K C €, there exists
a subsequence of (g,)nen Which converges L£"-a.e. on K to u|g.
Since () is o-compact, we may take a sequence of compact subsets
which increases to ) and apply a diagonal argument to obtain a
subsequence of (gn)neny Which converges L™-a.e. on Q to u. We
denote such subsequence with the same notation (g,)nen-

Let B be an arbitrary open ball with B € . Since B is compact
and (€, )nen increases to 0 as n T oo, there exists N € N such
that B C Q, for all n > N. Since B is connected, it follows from
part 1) that g, is constant on B for every n > N. We then conclude
from part 3) that (g, )nen is pointwise convergent on B to a constant
function. By the arbitrariness of the open ball B &€ (2, it follows
that (g, )nen converges pointwise on € to a locally constant function
g : 0 = R; but, since € is connected, g must be a constant function.
As (gn)nen converges pointwise to g and converges pointwise L£"-a.e.
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to wu, it finally follows that u = ¢ L"-a.e., i.e. u coincides L™-a.e.
with a constant function, as we wanted to show.

4

DEFINITION 5.8 (Sobolev spaces and functions). Let {2 be an open
subset of R”, u: 2 =+ R and 1 < p < co. We say that

i) wis a (1,p)-Sobolev function if u € LP(L"|q) and, V1 < i < n, u
Ou

has weak partial derivatives J* € LP(L"|q). We use the notation
WLP(Q) to denote the space of (1,p)-Sobolev functions on 2.

ii) w is a local (1,p)-Sobolev function if u € L} (L"q) and, V1 <
i < n, u has weak partial derivatives g—; € L} (L"q). We use
the notation WEP(Q) to denote the space of local (1,p)-Sobolev
functions on (2.

It is immediate from the definitions that WP(Q) and WHP(Q) are
linear subspaces of R®, and the weak partial derivatives and weak gra-
dient are linear on these spaces. We further develop the basic theory of
weak derivatives and Sobolev spaces in chapter 6. For the moment, we
prove that Lipschitz functions on R™ belong to WIIO’SO(R”), but firstly
we introduce some notation.

Let u : R" — R and 7 € S"!. For h € R\ {0}, we denote by
T : R — R the incremental ratio of u in the direction 7:

u(z + hr) — u(z)
. )
Note that, by the invariance of the Lebesgue measure under trans-
lations, if u € LL (R"), v : R® — R bounded L£"-measurable with

loc

compact support and h € R\ {0}:

/ (@ + hr)o(z) AL (z) = / w(@)o(z — hr) AL (@),

Thu(z) =

hence
(5.4) /Thu(x)v(x) dL™(z) = — /u(a:)Thv(x) dL™(x).

PROPOSITION 5.9. Let f : R® — R be a Lipschitz function. Then
f e WhS(RM).

loc

PRrROOF. It is clear that f € L2 (L™). We show that f has weak
gradient in L>(L", R™).

Let 7 € S" ! and (hg)ren a sequence in (0,00) convergent to 0.
Then Vk € N, ||, fllo < Lip f. Since L}(L") is a separable Banach
space with L}(£")" = L*°(L") (in view of Riesz representation theorem
1.79), it follows from Banach-Alaoglu theorem that the closed balls in
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L>(L"™) are compact and metrizable in the weak-star topology. Hence,
passing to a subsequence, if necessary, we may assume that there exists
gr € L®(L") such that 7, f = g,, i.e. for all v € L}(L"),

(5.5) / v, f AL P25 / vg, L™

Note that, Vo € C*(R™), Vk € N, 7_,, ¢ has support in the compact
set K := spt ¢ + B(0,supyey hi). Thus, Vo € R”, f(z)1_p,p(z) —
f(x)Ve(x) - 7 and the convergence is dominated, since, by the mean
value inequality, Vk € N, |f7—p, ¢ < [[Volloo |fl xx € LY(L™). That
justifies the application of the dominated convergence theorem in the
last equality below, V¢ € C2(R"):

/gfc,pdﬁn = hm/ThkfgpdE"
:—hm/fT_hk acr '

(o4

- / fVe-rdL".
Taking 7 = e;, 1 <7 < n, we conclude that f has weak partial deriva-
tives g, € L=(L™). O

Let U C R™ open and f : U — R. Recall that f is differentiable at
xo € U in the sense of Fréchet if there exists A € L(R™,R) such that

hmf(IO‘f'h)—f(%)—A'h

Jim 0 =0

If that is the case, f has first order partial derivatives at x(, A satisfying
the above condition is unique and coincides with (V f(zo), ) : R* — R;
A is called Fréchet derivative of f at xq and denoted by D f (o).

Equivalently, f is differentiable at z( if it satisfies the condition
stated in the exercise below. We will use the following two exercises in
the proof of Rademacher’s theorem.

EXERCISE 5.10 (characterization of Fréchet differentiability). Let
U C R*” open and f : U — R. Then f is differentiable at zy € U
iff there exists A € L(R",R) and there exists r > 0 such that

L fao ) = fa)

t—0t t

uniformly in v € rS"!. If so,

e the above condition holds for all » > 0 (i.e. if it holds for some
r > 0, then it holds for all r > 0);
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o A=Df(zo).

EXERCISE 5.11 (weak gradients under scaling and translations).
Let € R", h > 0, T : R" — R” given by 7+ z+h7 and u € W, (R").
Then uo T € Wil (R?) and V¥(uo T)(7) = h V¥ u(z + h7).

loc

THEOREM 5.12 (Rademacher’s theorem). Let f : R" — R be Lip-
schitz. Then f is differentiable in the sense of Fréchet L™-a.e. and
Vf=VYf L"a.e.

PROOF. Recall that f € Wllo’fo, by proposition 5.9, so that VY f €
Lo (L™, R") C L} (£, R™). Furthermore, by corollary 3.31 applied to
each component of V¥ f € LL (L™, R"), L"-almost every z € R" is a
Lebesgue point of V¥ f; fix such a Lebesgue point x € R". We will
show that f is differentiable at z and V f(z) = V" f(z).

For each h > 0, let g, : R® — R be given by

f(x+h7) = f(x)
h :

gn(T) =

By exercise 5.10, the thesis follows once we show that g, (7) converges
to VY f(x) - 7 uniformly with respect to 7 on S"71.
Note that Yh > 0, g, is Lipschitz with Lip g, < Lip f and g,(0) = 0.
Let (hg)ren be a sequence in (0, 00) convergent to 0. We have:

1) By proposition 5.9, g, € WE°(R™). Besides, by the linearity of the

loc
weak gradient and exercise 5.11, V7 € R™:

VY agn (1) = V" f(x + h1).

Hence, the fact that = is a Lebesgue point of V¥ f implies that

(/ 'VW%@7—VWﬂ@Mh=i/ V" f(@+ hr) = V" f(a)]dr 2"
U(0,1)

U(0,1)
1
= [ Vi) =V f@)ldy o,
U(z,h)

L.e. V¥ gy converges to the constant function V¥ f(z) in L*(L"|y(0,1)
as h — 0.

2) (gn)n>o0 is equicontinuous and pointwise bounded. It then follows
from the Arzela-Ascoli theorem that there exists g : R” — R and a
subsequence (hy;)jen of (hx)ren such that g; := Gh, = 9 uniformly
on compact subsets of R". In particular, ¢ is Lipschitz with Lip g <
Lip f and ¢(0) = 0.
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3) Ve € C(U(0, 1)),
/ng pdL" = —/g Vepdl" =
= — lim /gj Veodl" =
]HOO

= lim [ V¥g; pdL" =

J—00

I/VW f(x) o(y) dy.

Thus, from the fundamental lemma of the Calculus of Variations
4.34, it follows that V¥ g(y) = V¥ f(x) for L™-a.e. y € U(0, 1).

4) Define go : R" — R by go(7) = g(7) — V¥ f(z) - 7. Then gy is
Lipschitz and, by the previous item, V" gy = 0 on U(0,1). Since
U(0, 1) is connected, it follows from proposition 5.7 that gy coincides
L"a.e. on U(0,1) with a constant function. As go is continuous
and ¢o(0) = 0, we conclude that gy is identically null on U(0,1)
and, by continuity, identically null on B(0,1). Thus, V7 € B(0, 1),
g(t) = V¥ f(x) - 7. Hence, g;(7) — VY f(z) - 7 uniformly with
respect to 7 € B(0,1). Since the sequence (hy)ren convergent to
0 was arbitrarily taken, we have shown that every such sequence
admits a subsequence (hy;, )jen such that g; = Yy, converges to g in

the metric space (C(B,), ||-|l.), which implies that lim,_, g, = ¢ in
the same metric space. In particular,

i J@+hT) = (@)
h—0*+ h

=V f(x) 1

uniformly with respect to 7 € S"~ ! C B,,.

By exercise 5.10, it follows that f is differentiable at  and V f(z) =
V¥ f(z), as we wanted to show. O

EXERCISE 5.13. Let f : R" — R be Lipschitz. The set D; of points
where f is differentiable in the sense of Fréchet is Borel measurable and
Df: Dy — L(R™,R) is Borelian.

COROLLARY 5.14. If Q C R"™ open and f : Q0 — R is locally Lips-
chitz, then f is L"|q-a.e. differentiable in the sense of Fréchet.

PROOF. We may cover 2 with a countable family (Uy)gen of open
subsets of € such that Vk € N, f|y, is Lipschitz. For each k € N,
we may extend f|y, to a Lipschitz function f; : R® — R, which is
differentiable £™-a.e. on R™ in view of Rademacher’s theorem. As
differentiability is a local notion, we conclude that f|y, is differentiable
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on the complement of a £"-null set S, C Ug. Then f is differentiable
on the complement of the £™-null set S = UpenSk. O

REMARK 5.15. We postpone to 6.16 in chapter 6, after we prove
the locality of the weak derivative, the proof that that f : Q@ — R
locally Lipschitz has weak gradient V¥ f € LY. (£"|q), which coincides
L g-a.e. with Vf.

COROLLARY 5.16. If Q@ C R™ open and f : Q@ — R™ s locally
Lipschitz, then f is L"|g-a.e. differentiable in the sense of Fréchet.

PRrROOF. Apply the previous corollary to each component of f. [

COROLLARY 5.17.

i) Let f : R™ — R™ be locally Lipschitz and Zy := {x € R" | f(z) =
0}. Then Df(x) =0 for L™-a.e. x € Zy.

it) Let f,g : R" — R"™ be locally Lipschitz and Y = {x € R" |
g(f(z)) =x}. Then Dg(f(x)) o Df(z) = idgn for L™-a.e. z €Y.

PROOF.

1) It suffices to prove part i) for m = 1 (in the general case, we argue
componentwise).
2) Note that Z; € #gn. Let x € Z; such that 3D f(z) and
L (ZNB(z,7))

}g% E”(B(m,r)) =1

In view of Rademacher’s theorem 5.16 and of theorem 3.29 (with
L™ in place of 1 and Z¢ in place of A), L™-a.e. x € Z; satisfies the
above conditions. Therefore, part i) will be proved once we show
that Vf(z) = 0.

Suppose that Vf(z) = a € R"\ {0}. Define S := {v € S |
(a,v) > %|lal|}. Note that S is an open neighborhood of a/||a| in
S*=t. For each r > 0, we define S, := {tv |0 <t < r,v € S} C
B(0,r), so that S, = rS;.

By exercise 5.10,

i L@+ 1) = S (@)

t—0 t

= <a> U>

uniformly on v € S*~!. It then follows, by the definition of S, that
there exists R > 0 such that, VO <t < R and Vv € S,
fle+tv)  flz+tv) — f(z)

1
= - 0.
t DI >l >
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In particular, VO < r < R, f > 0 on x + S,, i.e. Z;NB(x,r) C
B(z,7)\ (z +S,). Consequently, V0 < r < R,
L (Zf N E(m,r)) < L (B(m,r) \ (z+ ST)) 1.4
L£r(B(z,r) L (B(xz,r))
L"(51)

a(n

—1-

Y

~—

whence
LMZ;NB n
lim sup ( ! (x,r)) <1- £ (Sl).
r—0 L (B(xz,7)) a(n)
L£(51)

In view of our choice of x, the latter inequality implies 1— ) 2 1,

hence £"(S;) = 0. As S; has nonempty interior, we have reached a
contradiction, thus showing that V f(x) # 0 cannot occur.

3) To prove part ii), let F' := go f —idgn. Then F is locally Lipschitz
and Y = Zp; it then follows from part i) that D(g o f)(z) — idgn =
DF(x) = 0 for L™a.e. x € Y. Therefore, part ii) will be proved
once we show that D(go f)(z) = Dg(f(z))oDg(z) for L-a.e. z €Y.

Let Dy := {z € R" | ADf(x)}, Dy := {z € R" | IDg(x)}, and
X =Y Dy fYD,). Then Y \ X = (Y \ D) U (Y \ f71(D,)).
If € Y\ f71(D,), then f(z) € R"\ D,, hence z = g(f(z)) €
g(R™\ D,). Therefore, Y\ f~1(D,) C g(R™\ D,), so that

YAX C(R*\ Dy) Ug(R™\ Dy).

Since both R™\ D and R™\ D, are L™-null sets (in view of Rademacher’s
theorem 5.17), and since the image of a £"-null set by a locally Lip-
schitz map is £"-null, it follows that Y\ X is £"-null. On the other
hand, Vz € X, 3D f(x) and 3Dg(f(x)), hence the chain rule ensures
that 3D(g o f)(z) = Dg(f(z)) o Dg(z).

U

5.1.3. Linear maps and Jacobians. In this subsection we recall
some linear algebra and introduce pertinent notations that will be used
in the two main theorems which name this chapter.

DEFINITION 5.18. Let V and W be finite-dimensional Hilbert spaces.

i) A linear map O : V — W is called an orthogonal injection if Va,y €
V, (O-z,0-y) = (x,y). We denote the set of orthogonal injections
V — W by O(V,W); we abbreviate O(n,m):= O(R",R™) and
O(n) := O(n,n).

ii) Let T': V — W be a linear map. We denote by T™* the adjoint of
T with respect to the inner products on V and W, i.e. the unique
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linear map such that Vo € V,Vy e W, (z,T* - y) = (T - z,y). If
V =Wand T = T%, we call T self-adjoint or symmetric. We
denote by Sym(V) the set of symmetric linear maps in L(V); we
abbreviate Sym(n):= Sym(R").

iii) We say that a linear map T : V — V is positive if it is symmetric
and Vo € V, (T - z,z) > 0.

Note that O(V,W) = if dimV > dim W.

Recall that, for any symmetric linear map 7" on a finite-dimensional
Hilbert space V, there exists an orthonormal basis of V formed by eigen-
vectors of T'. Equivalently, there exist unique c¢q,..., ¢ € R pairwise
distinct and unique Py, ..., P, € L(V) such that V1 <14,j < k, P, = P,
P? =P, PP, =0ifi # j, Zle P, =idy and T = Zle ¢;P;; the ¢;’s
are the eigenvalues of T" and the P;’s are the orthogonal projections on
the corresponding eigenspaces. The decomposition T = Zle P is
called the spectral resolution of T'.

THEOREM 5.19 (existence of square roots). IfV is a finite-dimensional

Hilbert space and P € L(V) is a positive operator, there exists a unique
positive operator N € L(V) such that N> = P.

NOTATION. We denote N by v/P.

PROOF. Let P = Zle c;E; be the spectral resolution of P. The
positiveness of P implies ¢; > 0 for 1 < i < k. Define N := Ele Vel
then N is positive and N? = P, thus proving the existence. On the

other hand, suppose that M is another positive operator such that
M? = P. Let the spectral resolution of M be M = >7_ d;F;. Then

P = M? = YJ_ d?F,. By the uniqueness of the spectral resolution
of P, it then follows that j = k and, reordering the d;’s if necessary,
c; = d? for 1 < i < k, thus proving the uniqueness. O

THEOREM 5.20 (polar decomposition). LetV and W be finite-dimensional
Hilbert spaces and L : NN — W be a linear map.
i) If dimV < dimW, there exists a positive S € Sym(V) and O €
O(V, W) such that
L=0oS.
Moreover, in the above decomposition, S € Sym(V) positive is
unique, and so is O € O(V,W) if L is injective.
it) If dimV > dim'W, there ezists a positive S € Sym(W) and O €
O(W,V) such that
L=S00".
Moreover, in the above decomposition, S € Sym(W) positive is
unique, and so is O € O(W,V) if L is surjective.
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PRrooF. Part ii) follows from part i) applied to L* : W — V, so it
is enough to prove part i).

1) (uniqueness) Suppose that there exists S € Sym(V) and O € O(V, W)
such that L = O o S. Then, since O*O = idy, it follows that
L*L = S?. As L*L is positive, we conclude that S is the (unique)
positive square root of L*L given by theorem 5.19. Moreover, if L is
injective, so is S, hence S is invertible and we must have O = LoS~!.

2) (existence) Let S := v/ L*L. For each v € V, we must have O-5-v =
L-v. Thus, define O on the range of S by O-w := L-v if v € V is such
that S-v =w. If v € V is another vector such that S - v = w, we
must have || L-(v—0")||? = (L*L-(v—v"), v—20") = (§*(v—0'),v—0") =
0, hence L-v = L-v', which shows that O is well-defined on the range
of S. Besides, it is clearly linear and satisfies Vv € V, L-v = O-S-v.
If w,w" € Im S and v,v" € V are such that S-v =w, S-v' =w', we
have:

(O -w,0-w)=(L-v,L-)=

L*L-v,v") = (S* - v,0) =

=(S 0,50 = (w,w'),
hence O : Im S — W is orthogonal. Finally, since dimV < dim W,
we have dim(Im S)* < dim(O - Im S)*, hence we may extend O to
an orthogonal injection on V (take any orthonormal set in (Im S)*

and map it to an orthonormal set on (O - Im S)*), thus yielding
O € O(V,W) such that O o S = L.

= (
=

0

DEFINITION 5.21 (Jacobian of a linear map). Let V and W be finite-
dimensional Hilbert spaces and L € L(V, W), with polar decomposition

OoSifdimV <dimW or SoO* if dimV > dim W, cf. theorem 5.20.
We define the Jacobian [L] of L by:
[L] = |det S|.
REMARK 5.22.
1) Note that [L] is well-defined, by the uniqueness of S in the polar

decomposition.
2) Tt is clear that

[L] = [L'] = Vdet L*L if dimV < dimW
B Tl Vdet LI if dimV > dimW.
The next theorem provides a useful formula for computing the Ja-

cobian of a linear map L : V — W between finite-dimensional Hilbert
spaces.
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THEOREM 5.23 (Binet-Cauchy formula). Let V and W be finite-
dimensional Hilbert spaces with n = dimV < dimW = m. If L €
L(V,W), then

[Zl= | ) (detB)

Bep(m,n)

where p(m,n) is the set of n X n minors in some matrix representation
of L with respect to orthonormal bases on V and W.

Choosing orthonormal bases on V and W, we identify V = R" and
W = R™. We will use the following notation:

NOTATION. Let n < m.

1) We denote by:
e &(m,n) the set of all maps {1,...,n} — {1,...,m}.
e X(m,n) := {A € ®(m,n) | A1-1}. We abbreviate ¥, :=
Y(n,n) (i.e the set of permutaions of {1,...,n}).
o A(m n):={X € X(m,n) | A Strlctly 1ncreasmg}
2) For A € A(m,n), let Sy = (exq) | 1 < i <n) C R™ and P, €
L(R™,Sy) the orthogonal projection onto Sy, i.e. Py(xy,...,xy) =
(TA@)s - Tam))-

ProoFr. With the above notation in force, we must prove that

[Z]= D (detPyoL)”.

AEA(m,n)

Let (L;j)mxn be the matrix of L with respect to the standard bases
of R™ and R™. Then the matrix (A;;)nxn, of A := L*L € L(R™) with
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respect to the standard basis is given by A;; = > 7" | Ly;Ly;. Therefore:

n

[L]? = det A = Z sgn (o) H Ao () Z sgn (o) H Z LiiLko(iy =

oEY, i=1 oEY 1=1 k=1
S IICID Dl | R
o€Xy, pe®(m,n) i=1
- Z sgn (o) Z ﬁLw(i)iLw(i)a(z’) E(m’N):UAGAgW e
oEX, peX(m,n) i=1
= Z sgn (o Z Z HL,\oe(z) Lot (i) o (i
o€Xy AEA(m,n) 0€X, i=1
= Z sgn (o Z Z H Lxoo(i),iLxot(i),o(i) =
o€X, AEA(m,n) 08, {7, J1<j<n}
=) sen(o) > > HLAm,efl(j)LA (j).000-1(j) =
oEYX, AEA(m,n) 0€X, j=1

= Z Z Z sgn (o H A@),00) LXi),000() =

AeA(m,n) 0€S, o€,

=2 2. ) s

AeA(m,n) 0€X, {o=pod—1|peX,}

= Z Z ngn - sgn ()

AEA(m,n) 0€X, pEX, =1
= > (Do sem®) Lawew)” =
AEA(m,n) 0, i=1

= ) (detPyoL),

AEA(m,n)

sgn (o)=sgn (p)-sgn (0)

=

Lxgiy,00) Lai),o00()
1

I:1= T

Ligy o)Ly o) =

where the equality (x) is justified by the fact that, if ¢ € ®(m,n) is
not injective, then

0

REMARK 5.24. Theorem 5.23 may also be obtained as a corollary
of the Pythagorean theorem. Indeed, with the notation preceding the
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above proof in force, let V1 < i < n, v; ;==L -¢; = ZZ‘:l Lye, € R™.
Consider the n-vector

(5.6) V=0 A AV, = Z (detP,\OL)e,\E/\Rm,

AeA(m,n)

where ey 1= exa) A+ Aeam) € A" R™.
The Euclidean inner product on R™ induces an inner product on
A"R™ for which {ey | A € A(m,n)} is an orthonormal basis (cf.

[Fed69], page 32, or [dL65], page 113). For decomposable n-vectors
W=wy A wp, 2=2N- Az, € \N"R™ we have
(w, z) = det ((w;, zj>)1§m.§n.

Therefore, computing ||v]|?

[L]* = det L*L = det ((L*L - i ), .o\, =
=det((L-e;, L- ej))lgi,jgn -
= (v, ) OO
= Z (det Py o L)
A€A(m,n)

by the Pythagorean theorem:

DEFINITION 5.25 (Jacobian of Lipschitz maps). Let f : R" — R™
be Lipschitz. It follows from Rademacher’s theorem 5.12 (applied com-
ponentwise) and from exercise 5.13 that f is differentiable in the com-
plement of a Borel set of £"-null measure and x — Df(x) is Borelian
L"-a.e. defined.

We define, for each point x where f is differentiable, the Jacobian
of f at z,

Jf(x) = [Df ()],

so that Jf is a Borelian function defined on the complement of a Borel
subset of R™ of £™-null measure.

EXERCISE 5.26. With the notation above, check that Jf is indeed
Borelian.

NOTATION. For a Lipschitz map f : R — R™, we will use hence-
forth the following notation:

e Dpi={zx € R"[3Df(x)};
o Jii={z €D |Jf(x)>0}
° J}):: {r € Dy | Jf(x) =0}.
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5.2. The area formula
In this section we assume n < m.

LEMMA 5.27 (Area Formula, linear case). If L : R® — R™ is linear
and n < m, then VA C R",

(5.7) H"(L(A)) = [L]L*(A).

PROOF. Let L = O o S be a polar decomposition of L, cf. theorem
5.20, where S € Sym(n) positive and O € O(n,m). Then [L] = |det S|.
We have:

1) If [L] = 0, then det.S = 0, so that dimIm L = dimIm S < n —
1. It then follows from exercise 2.23 that H-dim ImL < n — 1,
hence H"(L(R™)) = 0, whence VA C R", H"(L(A)) = 0 and both
members of (5.7) are zero.

2) If [L] > 0, then det S > 0 and O : R* — R™ is a linear isometry
into R™. It then follows from corollary 2.5 that, for each closed ball
B(z,r) C R™

H" (L(B(m,r))) B H" (O o S(B(z, T)))
E”(IB%(:C,'/’)) B E"(B(x,r))

’H”(S(B(w r))) 221
(5.8) - L7 (B(z,r)) -

< (B(z ’T))> 1.81.4)

£ (B, )

= |det S| = [L].

Define VA C R", v(A) := H"(L(A)). We contend that v is a
Radon measure on R"” and v < £". Indeed,

e [ : R" — R™ is a linear isomorphism onto Im L. In partic-
ular, L : R® — Im L is a homeomorphism (endowing Im L
with the relative topology), hence the pushforward operation
Ly defines a bijection between Borel measures on R™ and Borel
measures on Im L, with inverse L‘l#; moreover, it is clear that
this bijection restricts to a bijection between Borel regular mea-
sures. Since H"|y 1 is a Borel regular measure (which can be
checked directly in view of the Borel regularity of H" on R™,
or from the fact that the trace H" |y, coincides with the m-

dimensional Hausdorff measure of Im L as a metric subspace of
R™, by proposition 2.4.1), it follows that v = L™ 4 (H"|im 1) is
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a Borel regular measure on R". Besides, VK C R" compact,
it follows from proposition 2.4.3) that v(K) = H"(L(K)) <
(Lip L)"H"(K) = (Lip L)"L™(K) < oco. That is, v is a locally
finite Borel regular measure on R", hence it is Radon by exer-
cise 1.32.

o If A C R™is L™null, then it follows from proposition 2.4.3) that
V(A) = H(L(A)) < (LipL"H"(A) = (Lip L)"£"(4) = 0,
hence v < L", thus proving our contention.

It follows from (5.8) that Vo € R™, ©”(L", x) = [L]. Recall that,
from proposition 3.23, every Borel measure on R™ has the symmetric
Vitaly property, so that theorem 3.40 applies to Radon measures on
R™, from which we conclude that, VA € $Bgn,

V(A) = /A OY(L",x)dL M (x) = [L]L"(A).

By Borel regularity, both members must coincide for all A C R",
i.e. H"(L(A)) = [L]L"(A), as we wanted to show.

n

EXERCISE 5.28. Let T € L(R",R™), n < m.

a) If R € L(R™), then [T o R] = [T][R].

b) [T] < ||T||™. If T is 1-1, then ||T7||7™ < [T] < ||T||™

c) If m <k and R € L(R™,R¥), then [Ro T] < |R||"[T]. If R is 1-1,
then [|[R=H|™"[T] < [Ro T] < [|R|"[T7].

LEMMA 5.29. Let f : R"™ — R™ be Lipschitz, with n < m, and
A C R™ L"-measurable. Then:

i) f(A) is H™-measurable.
ii) The function N(f|a) : R™ — [0, 00] given by y — HO(AN f~{y})
s H"-measurable.

i) Jpm HO(AO f7Hy}) dH" (y) < (Lip f)"L"(A).

DEFINITION 5.30 (multiplicity function). With the notation from
the previous lemma, N(f|4) : y — H°(AN f~Hy}) is called the mul-
tiplicity function of f|a.

REMARK 5.31. Concerning part a) of the previous lemma, for con-
tinuous images of Borel sets we have the following theorem. If X is a
complete, separable metric space, Y a Hausdorff topological space, u a
Borel measure on Y and f: X — Y continuous, then VA € &y, f(A)
is p-measurable — see [Fed69], paragraph 2.2.13. Actually, VA € Ay,
f(A) is a Suslin set. This result is pertinent to the so-called descrip-
tive set theory, for which we refer the interested reader to [Sri98] or
[Mos09].
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PROOF.

i) Since L£" is o-finite, we may take a sequence (Ag)ren in (L")
such that Yk € N, L"(Ay) < oo and UgenAr = A. Then f(A) =
Ukenf(Ag), so that f(A) € o(H") once we show that Vk € N,
f(Ag) € o(H™). It is therefore enough to prove the case in which
L"(A) < oo. Since L" is a Radon measure and R"™ is g-compact,
we may take (by exercise 1.31) an increasing sequence (K;);en of
compact subsets of A such that £"(K;) — L"(A). Since A €
o(L") and L"(A) < oo, it follows that L"(A \ K;) — 0, hence
LA\ UienK;) = 0. Therefore, by proposition 2.4.3), we conclude
that H"(f(A\ UienK;)) < (Lip f)"L"(A \ UjenK;) = 0. Since
Vi € N, f(K;) is compact, it follows that Ujenf(K;) € PBrm C
o(H"). As f(A) \ Uienf(K;) C f(A\ UienK;), we conclude that
f(A)\ Uienf(K;) is H"-null, i.e. f(A) is the union of a Borel set
with an H"-null set, thus f(A) € o(H"™).

ii) We may take a sequence (F;);en such that

o Vie N, F, = (F;)jeN is a disjoint family of Borel subsets of
R" with Vj € N, diam Fj < 1/i and Ujey Fj = R™;
e Vi € N, each F/"! is a subset of some F} (so that each F} is a
disjoint union of some of the terms of F;,1).
Let (g;)ien be the sequence of functions R™ — [0, 0o] defined
by, Vi € N,

gi ‘= Z Xf(AnF?)
jeN

(the idea is that, for each ¢ € N and y € R™, ¢;(y) is the number

of terms of F; which intersect AN f~'{y}; intuitively, g; increases

pointwise to the multiplicity function). The thesis then follows
once we show that each g; is H"-measurable and (g;);en increases
pointwise to the multiplicity function N(f|4) (which implies the

‘H"-measurability of the latter function in view of theorem 1.41.iv).

That is done along the following steps:

1) Vi,j €N, AN F} € o(L"), hence X f(anFi) 1 H"-measurable by
part i). Thus, Vi € N, g; := >, X j(anks) 18 H"-measurable by
theorem 1.41.iv).

2) (gi)ien is pointwise increasing. Indeed, Yy € R™ and i € N,
for each j € N such that AN f~'{y} cuts F}, i.e. such that
Xf(Aij)(y) = 1, the fact that F} is a union of terms of Fi;
implies the existence of k = k;(j) € N such that F;*' C F}
(thus k;(j) # ki(5') if j # j', i.e. ki is 1-1) and AN f~1{y} cuts
Fit e Xf(AmFliJrl)(y) = 1. Then, defining N; := {j € N |
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AN fHy} N F} # 0}, we have
9i(y) = D Xpeanrn(¥) = D Xgeanrn(y) =

jeN JEN;

k; is 1-1
=D Xjuanrip) W) =
JEN; '
< ZXf(AmFJ?“)(?J) = gi+1(y)-
jEN

3) Vi € N, g; < N(f]a). Indeed, since F; is a disjoint family, for
ally € R™, An fY{y} = Ujen AN fH{y} N FjZ As Vj €
N, H'(ANn f~H{y} N F}) > Xj(anrn(y), it then follows that
N(fla)y) = HO(AN fTHy}) = X (AN [Ty N F) =
ZJEN Xf(AﬂF]?)(y) = g:(y).

4) Vy € R™, Vk € N such that & < N(f|a)(y), there exists ¢ €
N such that g;(y) > k. Indeed, since N(f|4)(y) = H°(AN
fHy}) > k, we may choose k distinct points zy,...,z, €
AN f~Yy}. Take i € N such that ||z, — z,]| > 1/i for 1 <
p < q < k. Since the terms of F; are disjoint with diameters
< 1/i, it follows that V1 < p < k, x,, belong to exactly one of
the terms of F;, say F;(p), with p — j(p) 1-1. Then g;(y) =
3 e Xt (8) = X renee Xeanes, () = ki as asserted.

iii) Let (g;)ien be the same sequence of functions R — [0, oo| from the

previous item, so that Vy € R™, g;(y) T N(f|a)(y). It follows from
the monotone convergence theorem 1.62 that:

N(fla)(y) dH"(y) = lim [ g(y)dH"(y) =

RmM 1—00 R™
. 24.3)
= lim > H"(f(ANF))) <
1—00 =
< liminf Y "(Lip f)"L"(AN F}) =
11— 00 =y
= (Lip f)"L"(A).

O

DEFINITION 5.32. Let f : R" — R™ be a Lipschitz map with n < m
and t > 1. We say that (E,S) is a t-linearization for f if E € PBgn
and S € Sym(n) N GL(R") satisfy:

i) Vx € E, f is differentiable at x and Jf(z) > 0;
i) Vo,y € E 7S w = Syl < 1 () = Sl < IS -2 = S-yl;
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iii) Vo € E, Vv € R", t7Y|S - v|| < ||IDf(z) - v| < t]|S - v].

PROPOSITION 5.33. Let f : R® — R™ be a Lipschitz map with
n<m,t>1, E€ Bgrn such that condition i) in definition 5.52 holds
and S € Sym(n) N GL(R"™). Then (E,S) is a t-linearization for f
iff f|g is 1-1 with Lipschitz inverse and satisfies:

ii’) Lip flp o S™' <t and LipS o (f|g)™' <¢;
iii’) Vo € E, |Df(z) o S7Y| <t and ||[SoDf(z)t| < t.

PrOOF. If (E,S) is a t-linearization for f, then:
1) flg is 1-1 in view of the first inequality in ii);
2) flg oS! is Lipschitz, with Lip f|g oS~ < ¢, in view of the second
inequality in ii) with S™!(z’) in place of z and S~!(3/) in place of y;
3) So(f|g)~!is Lipschitz, with Lip So (f|g)~* < t, in view of the first
inequality in ii) with f~!(2’) in place of x and f~1(y/) in place of y;
4) similarly, the second inequality in iii) implies ||Df(x)oS™!|| < ¢ and
the first inequality in iii) implies ||S o Df(z)7Y| < ¢;
5) since S7! and S o (f|g)~! are both Lipschitz, so is (f|g)™'=S"1o
(So (fle)).
Thus we have proved that f|g is 1-1 with Lipschitz inverse and satisfies
conditions ii’) and iii’).
With a similar argument, if f|z is 1-1 with Lipschitz inverse, then
conditions ii’) and iii’) imply ii) and iii), respectively, in definition 5.32,
thus proving the converse implication. O

COROLLARY 5.34. Let f : R® — R™ be a Lipschitz map with n <
m, t > 1 and (E,S) a t-linearization for f. Then Vx € E,

(5.9) t7|det S| < Jf(z) < t"|det S|,
PROOF.
Jf (@) = [Df ()] det S7]|det | “ ="
= [Df(z) o S7']|det S|.

Hence, from exercise 5.28.b) with Df(z) o S™! in place of T and from
proposition 5.33.iii"), the thesis follows. O

THEOREM 5.35 (Lipschitz linearization, [Fed69]). Let f : R" —
R™ be a Lipschitz map with n < m, t > 1 and J;r = {z € R" |
ADf(x) and Jf(x) > 0} (which is a Borel set, by exercises 5.13 and
5.26). Then there exists a countable disjoint family (Ex)gen in PBgrn
such that J]T = Upen Ex and, Yk € N, there exists Sy € Sym(n) N
GL(R™) such that (Ey, Sy) is a t-linearization for f.
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PROOF. Fix € > O such that t ' +€¢ <1 < t—¢ Let S be a

countable dense subset of Sym(n) N GL(R™) and G a countable dense
subset of J;. For all S € S, k € Nand ¢ € G, we define E(S,k,c) :=

B(c

¢, ) N F(S k), where F(S,k) C Jf is the set of all z € J; such

that':
F1) Yo € R", (t7 + ¢)[|S - v < [Df(z) - ||§( IS - vll;
F2) Vv € R" such that ||v|| < k7% [|f(z +v) — f(z) = Df(z) - v]| <

€S - vl
Since Df is Borelian (by exercise 5.13), it is clear that F(S,k) €

Prn, hence E(S,k,c) € Bgn. Furthermore,

)

For all S € S, kENandceg, Ve, y € E(S,k,c),

1) - @) < HDﬂ) <—xw+4w-@—xwi?ws« — )],
IU@%—ﬂ@HZHDﬂ@-@—wW—dW~(—xw tWS( — ).

Therefore, the condition ii) in definition 5.32 is satisfied for (E (S,k,c), S )
Besides, in view of F1), condition iii) in the same definition is triv-
ially satisfied, so that (E (S, k,c), S) is a t-linearization for f.
We contend that J} is the union of the countable family { E(S, k, ¢) |
S eS8, keN,ceG}. Once we prove this contention, we enumerate
this family as (Ej)ren and we take the disjoint sequence (Ej)ren
given by Ej, := E}, \ Uf;llf?i, thus reaching the thesis in view of the
previous item.

To prove the contention, fix = € J;{ and let the polar decom-
position of Df(z) be Df(x) = P, o S,, with P, € O(n,m) and
S, € Sym(n). Note that, since Df(x) is 1-1, so is S,, i.e. S, €

I The idea is the following:

e We want to ensure ii) and iii) in definition 5.32. In order to ensure iii)
we might take F1) with ¢ instead of ¢ — ¢; however, with ¢ — € it will work
as well and, as we shall see, we need a little “space” for the estimate in
the next step.

e To ensure ii), we need to use somehow the differentiability of f. Assume
that v,y € E C J]T with diam (E) < 1/k sufficiently small (to be chosen).
We then have

fy) = f(x) =Df(x) - (y — =) + Ra(y — ).
Thus, in order to obtain the desired inequalities in ii) to || f (y) — f (x)]|, say
the second one, we must control the norms of both terms in the second
member. As ||[Df(x)-(y—z)|| < (t—¢€)||S-ax—S5-y| if F1) holds, we
must ensure that |R,(y — z)|| < €||S-x—S-y|| =¢€]|S- (y—z)| with 1/k
sufficiently small.
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GL(R™). Moreover, since S is dense in Sym(n) N GL(R™), we may
take a sequence (S;);en in S convergent to S,; hence, by continuity,
S,087 " — idgs and S;0 S — idgs. Taking 7 sufficiently large, we
then conclude that there exists S € S such that

1S, 087 | <t—e and [SoS,' <t '+e L.
It then follows that, Vo € R™,
IDf(z) - vll = 1Ps - Ss - vll = [1Se - vll = [(S2871)S - ]| <
< 1SSTHIIS -]l < (8 = )lIS - v,
(IS vl = (¢ + )l (SS;1)Ss - vl <
< @+ lSST S - vll < 11Ss - vl = IDf () - v]l.

That is, F1) is satisfied. Moreover, by the differentiability of f at
x, there exists R(x,-) : R" — [0,00) continuous and null at v = 0,
such that Vv € R™:

If(z+v) = f(z) = Df(2) - vll = R(z,v)|lv] = Rz, v)||S7'S - v]| <
< R(z,0)|STHIIS - ll.

Since lim,_,o R(z,v) = R(x,0) = 0, we may take k& € N sufficiently
large so that R(z,v)||S™Y| < e for ||v|| < k™!, hence F2) is satisfied
for this choice of k. We then conclude that = € F(S,k). Finally,
since G is dense in JJT, there exists ¢ € G such that ¢ € Uz, 5) <
z € Ulc, 5;), so that © € E(S, k, ¢) = B(c, 5 )NF(S, k), thus proving
our contention.

U

THEOREM 5.36 (Area Formula). Let f : R™ — R™ be Lipschitz,
n < m. Then, for all A € o(L"),

/A spaer= [ wan ) a )

Proor. If £L"(A) = 0, the first member is trivially null, and so is
the second member in view of lemma 5.29.iii). Therefore, in view of
Rademacher’s theorem 5.12, we may assume that A C Dy = {x € R" |
IDf(x)}. Let Jf = {x € Dy | Jf(x) > 0} and J} = {x € Dy | Jf(x) =
0}, so that Dy = J; U.J}.

1) Case1l: AC J;r. Fix t > 1. Let (Ex)ren be a sequence in Bgrn given
by the Lipschitz linearization theorem 5.35, i.e. such that J;r =

Uken Ex and, for each k € N, there exists Sy € Sym(n) N GL(R")
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such that (Ej, Sg) is a t-linearization for f. Then, Vk € N,

H"(f(ANEy)) =H"(fls, 0 S o Su(AN Ey)) 2§4
(5.10) . . 5.33.4i")
< (Lip flg, o Sy )"H™ (Sk(AN By)) <
< H" (Sp(AN Ey)),
and
n . n 1 2.4
H' (S(ANEy)) =H"(Sko (flg,) " o (AN Ey)) <
o1 < (Lip Sy (J1e) VW (AN B)) <
<t"H"(f(AN Ey)),

On the other hand, it follows from corollary 5.34 that, Vk € N,
Vx € Ey,

(5.12) 8] < Jf (@) < [l

Therefore, Vk € N:

—2nqn (5.10) —nam 5.27
HYN(F(ANE)) < ¢ "H"(Se(ANEy)) =

(5.12)
=t"[Sk]L(ANEL) <

(5.12)

(5.13) S/AnEka(x) dc(z) <

5.27

< t"[S]LM(ANEE) =

(5.11)
— "H(SW(AN Ey)) <

< t"H" (f(AN Ey))

Since, Vk € N, f|g, is 1-1 (by proposition 5.33), we have Yy €
R™ HY (AN E: N f~Hy}) = Xsaney (y), so that [g,, HO(AN E, N
fHy}) dH"(y) = H"(f(ANE})). Therefore, from (5.13) and from

the monotone convergence theorem 1.62, we conclude that:
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R™ keN

(5.13)

_ S TR (f(ANEY) <

1.62 . (o (
S%ZNAOEka(I)d,c (z) = /AJf( ) dL"(x)
<D PHYfANEY) =
keN
=Y [ RN AN BN ) aH ()
= ¢2n y HO(AN fH{y}) dH" (y),

thus t 72" [, HO(ANf~Hy}) dH"(y) < [, IfdLm <2 [o,, HO(AN
fHy}) dH™(y). Takingt | 1, it follows that [, HO(Aﬂf*I{y}) dH™(y) =

fA JfdL"™, as asserted.

Case 2: A C JJ. Then [, JfdL" = 0; we must show that [H(AN
fHy}) dH"(y) = 0. We may assume that £"(A) < co (since the
general case is obtained from this and from the monotone conver-

gence theorem, writing A = U,en A,, with Vn € N, A, € o(L")

and L"(A,,) < oo, which is possible thanks to the o-finiteness of the
Lebesgue measure).

Fix 0 < € < 1. Define g : R* — R™" = R™ x R" by g(x) :=
(f(x),ex). Then g is Lipschitz 1-1 and Vz € D, = Dy, Dg(z) =
(Df(z),€eidr=) € L(R",R™ x R").

We contend that there exists C' = C(n, m, Lip f) > 0 (in partic-
ular, C' does not depend on €) such that Vx € A, 0 < Jg(z) < Ce.
Assuming this contention, we have, denoting by pr; : R™ xR" — R™

5.13)

<
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the projection on the first factor:
2.4.3)
H(F(A) = H (pry 0 9(A)) <
< (Lip pry)"H" (9(A))

= [ WG ) dr ()

g 1-1 and Lippr;=1

Rm+n
contention
= / Jgdcr <
A
< CeL™(A).

Thus, since 0 < € < 1 was arbitrarily taken and we assumed
L(A) < oo, it follows that H"(f(4)) = 0. As the multiplic-
ity function N(f]a) : R* — R, y — H(AnN f~Yy}), is sup-
ported on f(A), it then follows that [H(AN f~Hy})dH"(y) =
Jey HOAN fH{y}) dH"™(y) = 0, as asserted.

It remains to prove the contention. Since Vo € D, = Dy,
Dg(z) = (Df(z),€eidgs) € L(R",R™ x R"), the Jacobian matrix
of Dg(x) is the (m + n) x n matrix written in block form:

(5.14) oyt = (1)),

By the Binet-Cauchy formula 5.23, (Jg(m)) ? is the sum of the squares
of the n X n-minors of the above matrix. In particular taking
the minor corresponding the the last n rows, we conclude that
Ve € D, = Dy, Jg(z) > € > 0. On the other hand, to obtain
an upper bound for that sum:
e Note that the i-th row of the matrix [Df(z)] is V f*(z), where f?
is the i-th component of f in the standard basis of R™; the norm
of this row is therefore ||V fi(x)|| = ||Df*(z)|| < Lip f* < Lip f.
e The sum of the squares of the n x n minors of [Dg(z)] may be
written as M; + M,, where the terms in M; are the squares
of the n x n minors with rows in [Df(z)], i.e. M; = (Jf(x))z,
and the terms in M, are the squares of the other minors, i.e.
n X n minors which have at least one row in €/,,. Since € < 1
and the rows in [Df(x)] are bounded in norm by Lip f, each
minor of the latter type is bounded by € - max{1, (Lip f)"'}.
Since there are (m:") — (:’Z) summands in My, My < ((m:”) —
("™))€? - max{1, (Lip f)"~'}?. Hence, Vz € D, = Dy:

n

(o))" < )"+ (") = (1)) ma aip g

n
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In particular, if z € A C J9, we conclude that Jg(z) < Ce,
where

C = \/ (mi ”) — (ff) max{1, (Lip f)"~'},

thus proving our contention.
3) General case: A C Dy. It is a direct consequence of cases 1 and 2:

/deﬁ”:/ de£"+/ Jfdcr =
A AmJ;r AnJY

= [ HAnJT 0 fHy)dH y) + | H(AN TN fHy)) dH (y) =

R™ Rm

= [ HUANfH{y}) dH" ().

R™m

O

COROLLARY 5.37. If f : R® — R™ s Lipschitz, n < m, then for

H'-a.e. y € R™, f~Hy} is countable.
5.28.b)

PRrROOF. Since Vx € Dy, Jf(x) < |[[Df(z)||* < (Lip f)", it fol-
lows from the area formula 5.36 that, VK C R™ compact, me HO(K N
fHy}) dH"(y) = [, If dL™ < oo. Then, YK C R™ compact, for H"-
a.e. y € R™ HO(KNfHy}) < oo. Since R" is o-compact, it then fol-
lows that for H™-a.e. y € R", VK C R" compact, H'(KNf~{y}) < oo.
For such y, f~*{y}NK is finite for each compact K C R", hence f~!{y}
is countable. d

COROLLARY 5.38 (Change of variables formula). Let f : R" — R™
be Lipschitz, n < m. Then for all g : R* — R L"-measurable with
g > 0 or g summable,

[ airac=[ (3 g@)anww,
B aer )

PROOF. Suppose that ¢ > 0. By exercise 1.54, there exists a se-
quence (A;);en in o(L") such that

9= Z %XA,-‘
=1

Let ¢ : R™ — [0,00] be given by ¢(y) 1= 3 cs-1(,, 9(z). Given
y € R™, we may compute »_ .1, g(z) by means of the monotone
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convergence theorem (with respect to the counting measure on f~!{y}):
MCT 1.62

S oam= Y Y ) L

z€f = {y} zef~1{y} iEN
1
=27 2 xa=

ieN ' zefi{y)

= 3 HA )

1€N

Since, for each i € N, the multiplicity function N(f|a,) : y — H(A; N
F~Hy}) is H™-measurable, by lemma 5.29.ii), we therefore conclude
that ¢ is ‘H"-measurable and > 0. Besides, using the monotone con-

vergence theorem once more and the area formula, we have:

W(y) dH" (y) = /m Z %’HO(A,- A F YY) dH (y) MCT 1.62

'EN

=S [ ) 2
ieN

_Z / Jf dgn ML
€N

:/ Z_.XAide»Cn:/ glface,
" en R

thus proving the case in which g > 0.

If g : R — R is L™-summable, we write g = g7 — g~ and apply the
case already proved to g™ and ¢, from which the thesis follows.
O

COROLLARY 5.39. Let f : R"™ — R™ be Lipschitz 1-1, n < m.

i) VA e o(L™), H"(f(A)) = [,If dL™. In particular, we have

(5.15) fa(Lr LJf) =H" LImf

(equality as Borel reqular outer measures on R™ ).
i) If g : R* — R is L"-measurable with g > 0 or g € LY(L"), then
fImngf_l dH" = [5. gIf dL™. In particular, if g : Im f — [0, c0]

1s Borelian, then
(5.16) / gdH”z/gofdeﬁ”.
Im f

Proor. If fis 1-1,
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i) VA € o(L"), Yy € R™, H°(AN f~Hy}) = xpu)(y). Hence,
H"(f(A)) = [,IfdL" as a direct consequence of the area for-
mula 5.36. The proof of (5.15) is done along the following steps:

e H" LLIm f is a Borel regular outer measure. Indeed, since
Im f = Uyenf(By) is o-compact, hence Borelian, we may
apply proposition 1.36.1).

o fu.(L" L_Jf)isaBorel regular outer measure. Indeed, £ L_Jf
is a Radon measure on R", in view of lemma 4.11; hence
fu(L™ L_Jf) is a Borel outer measure on R™, since VU C R™
open, f~}(U) is open by the continuity of f, thus £" L_Jf-
measurable, so that U is fu(L" L_Jf)-measurable in view of
proposition 1.15.iii). It remains to prove the Borel regular-
ity of fu(L™ LLJf). Given T' C R™, the fact that £ L_Jf is
Radon ensures the existence of a sequence of open sets (Uy )ken
in R" such that Vk € N, U, D f~Y(T) and inf{L" LJf(Uy) |
keN}=Lr LIf(f(T)). Since Vk € N, Uy, is o-compact,
so is f(Uy) (because f is continuous, hence it maps compact
sets to compact sets), thus f(Uy) € HBrm. Take Vk € N,
By = f(U) U(R™\Im f) € Bgn. ThenVk € N, By O T
and, as f~Y(By) = U, inf{fu(L" LIf)(Br) | ¥ € N} =
L LIf(fHT)) = fa(L™ LIf)(T), which implies the Borel
regularity of f,(L" L_Jf), as asserted.

e In view of the two previous items, it suffices to show that
H" LIm f and fu(L™ LLJf) coincide in each B € PBgm. In-
deed,

—

*

' Llm f(B) = H"(Im f 1 B) = H" ({17 (B)]) “

~

:/ IfdLr = fu(Cm LIf)(B),
1)

where the equality (%) is due to the area formula applied to
(Vy € R™)xsi0-1my(y) = HO(FH(B) N f~{y}) (because f is
1-1).

i) Vy € R™,

_JgofMy) wyelmf
xe;{y}g(x) - {0 y € R™\ I f.

It then follows from corollary 5.38 that [, r9of “LAH" = [h.gdfdL.
If g : Im f — [0, 00| is Borelian, we may apply the latter equality
to g o f in place of g, thus yielding (5.16).
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O

EXAMPLE 5.40 (applications of the area formula).

1) (length of a curve) Let —oco < a < b < oo and 7 : [a,b] — R™ be
Lipschitz 1-1. We may extend v to a Lipschitz function on R, which
we still denote by 7. Note that, for all ¢ in the set D, of the points
of differentiability of +,

(@) = IV @I

It then follows from the change of variables formula 5.38 with g =
X[a,b] that

b -
/ I ()l dt = / Ny JydL!
a R
- / (S () dHi(y) =

m 1
zey~Hy}

= /R . Xy (a) (¥) dH (y) =

=H'(7([a,b]))-

2) (area of a graph) Let g : R® — R be Lipschitz and f : R* — R"™! be
given by f(z) := (z,g(x)). Then f is Lipschitz 1-1 and, computing
by means of the Binet-Cauchy formula 5.23, Vo € Dy = D,,

Jf(z) = v1+[[Vg(x)[.

For each U C R™ open, it follows from corollary 5.39.i) that the
“surface area” of the graph of g over U, I' =T'(¢;U) := {(x,g(x)) |
x e U} = f(U), is given by:

H”(F):/UdeL”:/U\/lJrHVg(x)H?dx.

EXERCISE 5.41 (Area Formula for locally Lipschitz maps). The
area formula and its corollaries remain valid for locally Lipschitz maps
defined on open subsets of R™. That is, let n < m, 2 C R™ open and
f € — R™ locally Lipschitz.

a) (area formula) For all £"-measurable A C €2, the multiplicity func-
tion N(f]a) : R™ — [0,00], y — H°(AN f~H{y}), is H"-measurable
and

[araer = [ weansthane)
A R™
b) For H"-a.e. y € R™, f~{y} is countable.
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¢) (change of variables formula) If g : 2 — R is £"|g-measurable and
g>0orgelLYL"q), then

/ngdE” /m > @) an’(y),

zef~ Yy}

meaning that the integral in the second member makes sense and the
equality holds. In particular, if f is 1-1, it follows that fQ glfdLr =

fImfg o fHdH™.

The classical C' change of variables formula 1.82 may be obtained
as a corollary of part ¢) of the previous exercise. The classical formula
actually holds with much weaker hypotheses on the change of variables
¢ : U — R™ with U C R" open; it suffices, for instance, that ¢ be a 1-1
Cl-map (it need not be a diffeomorphism).

EXERCISE 5.42 (Hausdorff dimension and Lebesgue measure of a
k-dimensional Riemannian submanifold of R™). For any smooth em-
bedded k-Riemannian submanifold M C R", the measure induced by
the Riemannian metric on M (i.e. the Lebesgue measure of M) coin-
cides with the trace H*|y. Conclude that H-dim M = k and, if M is
closed (i.e. topologically closed), H* L_M is a Radon measure on R".

5.3. The coarea formula

In this section we assume n > m. The coarea formula is a powerful
generalization of Fubini-Tonelli’s theorem 1.84.

LEMMA 5.43 (Coarea formula, linear case). Let L : R" — R™ be
linear, n > m, A € o(L"). Then:
i) N(L|a) : R™ — [0, 00] given by N(L|a)(y) := H""™(AN L™ {y})
18 L™-measurable.

ii)
(5.17) H AN L y)) AL (y) = [LILY(A)

Rm
PRrROOF. Let O € O(m,n) and S € Sym(m) be given by theorem
5.20, i.e. such that L = S o O* is a polar decomposition of L.

(1) Case 1: dimIm L < m. Then, for L™-a.e. y € R™, L™ {y} =
0, thus N(L|a)(y) = H*™(ANL '{y}) = 0. That is, N(L|4)
is null £™-a.e., hence it is L™-measurable. On the other hand,
since InL = Im S, we have [L] = |det S| = 0. Therefore,
both members of (5.17) are null.
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(2) Case 2: L =P :R*"=R™ x R"™™ — R™ is the projection on
the first factor (hence O = P* and S = idgm). Fix y € R™ and
let pry : R" = R™ x R"™™ — R"™™ be the projection on the
second factor. Then the restriction pry : P~'{y} — R"™™ is an
isometry which maps AN P~'{y} to the y-section A, C R"™™
(see notation preceding Fubini-Tonelli’s theorem 1.84). There-
fore, from proposition 2.4 parts i) and ii) and from theorem
2.21, we conclude that N(P|4)(y) = H"™(AN P H{y}) =
H™(A,) = L"™(Ay). Hence, from Fubini-Tonelli’s theo-
rem 1.84.ii) applied to the product measure £™ x L™~ (which
coincides with £, in view of example 1.86), we conclude that
N(P|4) is L™-measurable and [g,, N(P|4)dL™ = L"(A), thus
proving (5.17) (since [P] = 1).

(3) Case 3: L : R" — R™ surjective. Note that, since Im L =
Im S, we have S € Sym(m) N GL(R™).

We contend that there exists ) € O(n) such that O* =
Po @, where P : R" = R™ x R"™™ — R™ is the projection
on the first factor, as in the previous item. Indeed, extend
O € O(m,n) to a linear isometry S : R = R™ x R"™™ — R"
and define () := S*. Since P* : R™ — R™ x R"™™ is the
inclusion on the first factor, we have S o P* = O, hence O* =
PoS*=Po(@, as we wanted.

With @ € O(n) given by the contention proved above, we
have, Vy € R™,

N(L|a)(y) = H"™(AN L Hy}) =
=H""(AN(SoPoQ) {y}) =

=H"(Q Q)N PTH{S T (y)}])
=H"(QEA)NPH{S T (y)}) =
= N(Ploeay) 0 S7H(y).
That is, N(L|a) = N(P|ge)) o S™'. By the previous item,
N(P|gay) is L™-measurable, and S~' is continuous, hence

Borelian; it then follows that the composition N(L|4) = N(P|gay)o
S~1is £L™-measurable and > 0. Moreover,

2.4.2)

| MU0 A" 0) = [ N(Plow) 057 ) dm ()

Rm
= |det S| [ N(Plgea)dL™ =
Rm

Qe0(n

— |det S|£™(Q(A)) Y2 [L]£(A),
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thus proving (5.17).
U

In the next lemma we make computations with the upper integral
introduced in exercise 1.68.

LEMMA 5.44. Let n,m € N, f : R" — R™ be Lipschitz. Then,
Vk,l € [0,00) and VA C R",

" -1 ! a(k)a(l) . lg rk+
[ AN £ () < ST L YR )

Note that we neither assume n > m nor the measurability of A
in the statement of the lemma above. This is a particular case from
Federer’s theorem 2.10.25 in [Fed69]; the theorem actually holds for
any Lipschitz map f : X — Y between metric spaces X and Y. We
will prove only the case [ = m, for which it is possible to make a simpler
argument, adapted from [EG91], thanks to the isodiametric inequality
2.19. Only this case will be needed in the proof of the coarea formula.

PROOF FOR THE CASE [ = m. Foreach j € N, by proposition 2.4.4)

there exists (B! );en cover of A by closed sets with diameters < 1/j such
that

(5.18) 3" alk +m) (C“%Bf)'”m < HHT(A) + &

= 1/ K]
ieN ! J
Vi, 7 € N, define

; diam B\
g = 04@')(7) Xf(BI):

Since f(B!) is o-compact (because B! is closed, hence o-compact, and
f is continuous), hence Borel measurable, gf is Borelian and > 0, and
SO is D oy gl : R™ — [0,00]. Moreover, for each y € R™ and j € N,
AN f~'{y} is contained in the union of the balls of (B);ey which cut
f~Yy}, ie. such that y € f(B?). It then follows that, Vy € R™,

HE (AN F ) <) g ).

1€N



154 5. AREA AND COAREA FORMULAS

Therefore,

CHEAN f ) AL y) =

Rm

* L monotonicity of [
— [t an ey S
R

m]‘)OO
m 1.68.b)
< —
_/mhjrgégfzgz )dL™ (y)
Fatou 1.63
:/ lim inf Y ~ g7 (y) dL™( <
R JT0 SN
<hminf/ G (y) dLm (y) MOL2
J—00 m ieN
_h]rgg)lf%/mgl y)dL _

isodiametric 2.19

diam B/\* ;
_hjlglogf; ( )E (f(BH) <

< hjm_)inga(k)(dm%Bg) a(m)<diamTf(Bg))m <

a(k)a(m) Giom B
< m(Llp o hjrgg)lf ZGEN alk+m) (T
a(ba(m) . a2 1Y _
< o PO hmmf(?{m (A )+}) _
alk+m) (Lip f)"#H™™(A)

)

k+m (5.18)
<

O

LEMMA 5.45. Let f : R™ — R™ be Lipschitz, n > m, A € o(L").

Then:

i) For L™-a.e. y € R™, AN f~Hy} is H" ™ -measurable.
i) N(fla) : R™ — [0,00] given by N(f|a)(y) :== H"™(AN f~{y})

18 L™-measurable.

PROOF.

1) Case 1: A is compact. Fix t > 0. For each i € N, let U; be defined
as the set of points y € R™ such that there exist finitely many open
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sets (9;)1<j<k satisfying the following conditions:

An f~Hy} CU_,S;,

diam S,; < l.,Vl <7<k,
(5.19) P>

2)

. n—m
Z?Zl &(n—m)(%) <t+ 1

Claim #1: Vi € N, U; is open. Indeed, let y € U;. Take (S;)1<j<k
satisfying the conditions (5.19). We contend that there exists r > 0
such that AN f~1(U(y,r)) C UE_, S}, from which we conclude that
U(y,r) C U;, thus proving the claim. The contention is a direct
consequence of the fact that A is compact and f is continuous: if
there were no such r > 0, we could take a sequence (yp)pey in R™
convergent to y such that Vh € N, there exists z;, € f~Hyn} N
A\ Ui<j<iSj. Since A\ Ui<j<xS; is compact, there would be a
subsequence of (zp,)pen, which we assume to be (zp)pen itself up
to changing the notation, such that z;, — = € A\ Ui<j<xS;. By
continuity, we conclude that f(z) = lim f(x)) = limy, = y, hence
z € f~H{y} \ Ui<j<kS;, thus yielding a contradiction which proves
our contention.

Claim #2: {y € R™ | H"™(AnN f~{y}) < t} = NienU;, hence
it is a Borel set. Since {y € R™ | H"™(AN f~H{y}) <t} =0
for t < 0, the claim then implies that N(f|4) is Borelian if A is
compact. Since Yy € R™ AN f~{y} is compact, hence Borelian,
we achieve the proof of case 1 once we show the claim.

Proof of claim #2:

e Assume that H" ™ (AN f~'{y}) < t. Then, V§ > 0, Hj ™ (AN
fHy}) < t. Given i € N, choose 6 € (0,1). In view of
proposition 2.4.4), there exists a countable cover G of ANf~*{y}
by open subsets of R with diameters < § such that ) ¢ 5 a(n—

m) <W> <t 1. Since AN f~'{y} is compact, we may
take a finite subcover (5;)1<;<x of G satisfying (5.19), so that
y € U;. As i € N is arbitrary, it then follows that y € N;enU;.

e Conversely, if Vi € N, y € U;, then (5.19) ensures that H?/‘im(Am

Yyl < t+ %; hence, taking ¢ — oo, we conclude that

WA ) <t
Case 2: A is o-compact (in particular, that holds if A is open).
Then Yy € R™, AN f~'y} is o-compact, hence Borelian. More-
over, we may take an increasing sequence (K;);en of compact subsets
of A whose union is A, so that Vy € R™, the sequence of Borel sets
(K; N f~Yy})ien increases to AN f~*{y}. Then, applying the con-
tinuity from below 1.11 for H"~™ it follows that N(f|k,) increases
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pointwise to N(f|4); from case 1 and from theorem 1.41.iv) we
therefore conclude that N(f|4) is Borelian.
Case 3: L"(A) = 0. It follows from lemma 5.44 with k& = n —
m and | = m, and from theorem 2.21, that [g, N(f|a)dL™ =
. Hence, from exercise 1.68.a), N(f] A) is L™-measurable and
me (fla)dL™ = 0, so that N(f|4) is L™-a.e. null. That is,
for Lm-a.e. y € R™, H"™(AN f~{y}) = 0, which implies that
AN f~Yy} is H" ™-measurable.
Case 4: L"(A) < oo. Since L™ is a Radon measure, we may take
a decreasing sequence (Uy)ren of open sets containing A such that
inf{L"(Ug) | k € N} = L"(A). Hence, taking B := NgenUi € Brn,
we have L™"(B) = L"(A) < oo; as A is L™-measurable, we conclude
that £*"(B \ A) = 0. In particular, it follows from case 3 that,
for L™-a.e. y € R™, (B\ A) N f~Yy} is H* ™-null. For such y,
AnfHy} = (BN HyH)\ (B\A)NfH{y}) is H" ™-measurable
and H"™(B N f~Hy}) = H*™(AN f~Hy}), thus showing that
N(f|la) = N(f|g) L™-a.e., so that case 4 will be done once we prove
that N(f|p) is L™-measurable. Indeed,

e for cach y € R™ and k € N, U, N f~*{y} is Borelian and the
sequence (U N f~Hy}ren decreases to BN f~{y};

e since L"(A) < oo and L"(Uy) | L"(A), we may assume that
L"(Uy) < oo (discarding the first terms of the sequence (Uy)ken,
if necessary). It then follows from lemma 5.44 With k=n—
m and | = m that [p,. N(f|o,)dL™ = [on. N(flp,)dL™ <
oo. Hence, for L™-a.e. y E R™ N(flo,)(y) = H"™U, N
f~Hy}) < oo; for such y, we may apply the continuity from
above 1.11 to conclude that N(f|y,)(y) 4 N(f|g)(y). That
is N(f|y,) decreases L™-a.e. to N(f|p). It then follows that
N(f|p) is L™-measurable (in view of case 2 and of theorem
1.41.iv), as asserted.

General case. By the o-finiteness of £", we may write A = Upen Ag,
where Vk € N, Ay € (L") and L"(Ag) < oo. Then AN f~Hy} =
Uren(Ar N f~Hy}). It follows from case 4 that, for L™-a.e. y €
R™, Vk € N, A, N f~{y} is H" ™-measurable; hence, for such v,
AN fH{y} is H"~"-measurable and N(f]4)(y) = > ey N (f1a) ()
by the o-additivity of H"~™. Then N(f|a) is L™-measurable, in
view of case 4 and theorem 1.41.iv).

U

LEMMA 5.46 (Lipschitz linearization, part II). Lett > 1, h: R* —

R" Lipschitz and J,} = {x € Dy, | Jh(x) > 0}. Then there exists a
countable disjoint family (Ey)ken in ,%’J; such that L"(J," \ UrenEy) =
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0 and, Vk € N, h|g, is 1-1 and there exists Sy € Sym(n) N GL(R")
satisfying

i) Lip S, ' o h|g, <t and Lip(h|g,) ™ o Sk < t;

i) Vz € Ey, ||S; " o Dh(z)|| <t and ||Dh(z)~! o Si|| < ¢.

REMARK 5.47. With the notation from the previous lemma:

1) Conditions i) and ii) are equivalent to, respectively:
i") Va,y € h(Ey),

S (=)l < M(hle) ™ (@) = (Ale) " W < IS - (@ = y)ll;

ii") Vo € By, Vo € R, ¢t71S, " - o|| < ||Dh(x)~t o] < ¢S, -]
The proof is immediate and similar to the argument used in propo-
sition 5.33.

2) Condition i) implies that h|g, has Lipschitz inverse, since (h|g, )" =
[(hlg,) "t o Sk oS!, whence Lip(h|g, )™t < t||S; .
3) Condition ii) implies that, Vo € Ej:

(5.20) t7"|det Sg| < Jh(x) < t"|det Skl.
Indeed,

5.28.a)

Jh(z) = |det Si||det S, ' |[[Dh(z)] "=
= |det Sg|[S; ' o Dh(x)],

hence (5.20) follows from ii) and from exercise 5.28.b) with S} ' o
Dh(z) in place of T

PROOF.

1) Let (F)ren be a countable disjoint family in ZBg. such that J;} =
Ugen Fr and VEk € N, h| F, 1s 1-1 with Lipschitz inverse. The existence
of such a family follows from theorem 5.35 and proposition 5.33 with
h in place of f.

2) Fix k € N. As (h|g,)"' : h(F;) — R" is Lipschitz, by theorem
5.1 (or theorem 5.2) it may be extended to a Lipschitz map hy :

R" — R"™. Since h(Fy) C {x € R* | ho hg(z) = x}, it follows

from corollary 5.17 with hy in place of f and h in place of g that

Dh(hi(z)) o Dhy(z) = idgn for L -a.e. z € h(F}). Thus, defining

Yy, == {z € R" | 3Dhy(z), IDh(hi(z)), Dh(hy(x)) o Dhy(z) = idgn }

then Y, € PBrn (in view of exercise 5.13) and h(Fy) \ Yj is L -null.
Besides, Va € Yy, Jh(hi(x)) - Jhy(x) = 1, so that Jhy(z) > 0, hence
Y. C J}—L:
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3) Applying the Lipschitz linearization theorem 5.35 to hy, there exists
a countable disjoint family (Géf) jen in Arn and a sequence (Ré“) jeN
in Sym(n) N GL(R") such that J;7 = Ujen G¥ and Vj € N, (G, R})
is a t-linearization for hy. Define, for each j € N,

Ef = Finh N (GENYy) € Brn and  SF:= (RY)™' € Sym(n)NGL(R").

We will prove that the countable family (E]k, S]’C) kjen satisfies con-
ditions stated in the theorem.

4) It is clear that (EJ)y e is a disjoint family in e%’J;r and Vk,j € N,
h| g is 1-1 with Lipschitz inverse, since E¥ C F*. Namely, (h|g)™"
is the restriction of hy to h(E}) = h(Fy) NG NY.

5) We contend that J;7 \ UgnenEr; is L£-null. Indeed, since J;5 =
Uken F, it suffices to show that, for each k € N, Fy \ UjeNEj’»C is
L™null. Since h|p, is bi-Lipschitz onto h(F}), the latter condition
is equivalent to h(Fy \ UjenEY) being £"-null. As

h(Fi \ UjenEY) = h(Fy \ [Fe N A7 (Ve N UjenGH)]) =
=h(F\h (Ve JH)) =
=Y}
= h(F) \ Vs,

the contention follows from part 2).

6) Vk,j € N, hy|gr extends (h|ge)™! (by part 4), hence (hg|ge) ™! ex-
tends h|gr. Therefore, Vk,j € N,
Lip(S§)~" o hlgr = Lip R} o hl g < Lip R o (hufgr) ™ < t,
Lip(hlps) ™" 0 S = Lip(h|px) ™ o (R) ™ < Lip g o (R) ™ < t,
where the last inequalities in both lines are justified by the fact that
(Gg?, R;“) is a t-linearization for h; and by proposition 5.33. Thus,
Vk,j € N, condition i) in the statement of the lemma is fulfilled by
(EY, RY).

7) Vk,j € N, Vz € EF, we have h(z) € G¥NY}, and & = hy(h(z)); in
particular, by the definition of Yy, Dh(x) o Dhy,(h(z)) = idgn, i.e.
Dh(z) = Dhy(h(x)) ~". Tt then follows that, Vk,j € N, Va € E:

1(S¥)~" o Dh(x)|| = || RE o Dhy (h(z)) || <,
IDh(z) " o S¥|| = |IDh(h(x)) o (RE)™| < t,

where the last inequalities in both lines are justified by the fact that
(Gé?, Rf) is a t-linearization for h; and by proposition 5.33. Thus,
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Vk,j € N, condition ii) in the statement of the lemma is fulfilled by
(Ej'?, Rf), which concludes the proof.

O

THEOREM 5.48 (Coarea formula). Let f : R" — R™ be Lipschitz,
n > m. Then, for each L"-measurable A C R",

(5.21) /Ade,C" = /m H (AN fHy}) dL™(y).

REMARK 5.49.

1) Recall that N(f|a) : y — H"™(AN f~{y}) is L™-measurable, by
lemma 5.45, so that the integral in the second member of the coarea
formula makes sense.

2) If f:R"=R™ x R — R™ is the projection on the first factor,
we have Jf = 1 and the coarea formula reduces to Fubini-Tonelli’s
theorem 1.84. The general case may be interpreted, therefore, as a
“curvilinear” generalization of Fubini-Tonelli’s theorem.

3) If n = m, the coarea formula coincides with the area formula 5.36.

4) If we take the Borel set A := (R™\D)UJ} = {z € R" | IDf(x) or Jf(x) =
0} in the coarea formula, we conclude that H""™(A N f~{y}) =0
for L™-a.e. y € R™. That may be interpreted as a measure theo-
retic version of Morse-Sard’s theorem: L£™-a.e. y € R™ is a measure
theoretic “regular value” of f, in the sense that, up to H"™™ null
sets, f~'{y} lies in the set J; of points where D f has maximal rank.

PROOF.

1) If A C R"\ Dy, then £L"(A) = 0 by Rademacher’s theorem 5.12,
hence the first member in (5.21) is null, and so is the second in view
of lemma 5.44 with &k = n —m and [ = m. Therefore, it suffices
to show (5.21) for A € Dy = JfUJJ. Since both members are

additive on o(L"™), it suffices to consider the cases A C JJ?L and
AcCJ}.

2) Case 1: A C J;. For each A € A(n,n —m), define hy : R* —
R™ x R"™™ by

ha(z) = (f(2), PA(2)),

where Py is the orthogonal projection onto (e, .., exn—m))
R"~™. For all x € Dy, = Dy, we have Dhy(z) = (Df(z), P))
L(R™); therefore, Jhy(z) > 0 iff z € J7, where

Jje\ = {ZE € J;— | P>\|keer(a:) is 1-1 }

For each x € J;, there exists A € A(n, n—m) such that ker D f(z)
is transversal to (ex), ..., exmn-m)) = R"™™ (hence z € J}‘) That

m
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is, JJT = UreA(n,n—m) JJ?\. Therefore, we may decompose A as a dis-
joint union A = Urep(nnm) A, with Ay C J]’c\ L"-measurable. By
the additivity of both members of (5.21) on L£", it then suffices
to show the equality for each A). We may therefore assume that
AC J} =J, foragiven A € A(n,n —m).

For simplicity of notation, we put h := h) : R® — R". Let ¢ : R* =
R™ x R*™™™ — R™ be the projection on the first factor, so that
f=qoh.

Fix t > 1. Apply lemma 5.46 to h in order to obtain a disjoint
countable family (Ej)en in %+ and a sequence (Si)ren € Sym(n)N
GL(R") such that £"(J;" \ Ureny Ex) = 0 and Vk € N, h|g, is 1-1
and conditions i), ii) in the statement of the lemma are fulfilled. Let
Vk € N, Ay, := ANE}, € o(L"™), so that A\ Uen Ay, is £™null (since
AcC ).

We contend that, Vk € N, Va € A,

(5.22) t7"[q o Sk] < Jf(x) <t™[q o Sk].

Indeed, since f = qgoh, Df(x) = goDh(z) = qo Sy o (Sk_l o Dh(x)).
Thus, defining C' := S, ' o Dh(x), we have g o S, = Df(x) o C1,
whence (qo Si)" = (C71)" o Df(z)". Therefore, applying exercise
5.28.c) with Df(z)" : R™ — R" in place of T and (C~1)" € GL(R")
in place of R, and noting that (C~1)" = (C*)~! and that the transpo-
sition (-)" preserves Jacobians and is a linear isometry, we conclude
that

IC17™ 3f (@) < [go Sl < IC7H™ If (),

hence
1) from lemma 5.46
If (@) < (11" g 0 Skl < t"q o Si],
1 1) from lemma 5.46
Jf(z) = [C77" g 0 Skl > ™" g o S,

thus proving our contention.
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4) Vk € N,

p2n / CHTAD YY) AL () =
= / CHTT((S 0 hla) T o St o hlay (AN R g y) AL (y) =

= [ (st o i) e o (4D N (a0 S ) dEm) <

5.46.1)

< [Lip(hla,) " o Sy t72n / CHT(S o h(Ak) N (g0 Sy THyY) L™ () <

<t [ 1S o h(A) N (g0 S) T Hy)) AL (y) 2
Rm
2.4.3)

=t"""[qo Sk]]ﬁn( Lo h(Ak)) <

5.46.4)

<t "[go Skl (Lip St o hla,)"L"(Ar) <

(5.22)
<t "[go S]L"(Ar) <

5.22)

(
< / Jracn <
A

2.4.3)

S tm[[q O Sk]]E”(Ak) = tm[[q O Sk]]ﬁn<(h|;1i @) Sk) o (Sk_l o hlAk)(Ak)) S

5.46.7)

< tm[[q O Sk]] (Llp h|A ) Sk)"L”( O h‘Ak (Ak)) S
<™ g o SKIL™(Sp o hla, (Ar)) =

= g / CHTT(S o h(Ar) N (g0 5k) THy}) L™ (y) =
= / CHT[(S 0 hla) o (hlay 0 Su) (S o h(Ak) N (g0 Sk~ {ub) ] AL™ () =

_ gmen / CHS o bl (A N ALl ()] AL () =

2.4.3)

:tm+”/m7-l" "S5 o hlay (AN f Y] AL (y) <

5.46.1)

S tm+n(Llp Sk—l o h|Ak)n—m/ Hn_m(Ak N f—l{y}) dﬁm(y) S

<& [ 1T (AN Ty AL (y).

Rm



162 5. AREA AND COAREA FORMULAS

In particular, Vk € N,

e [ wren s naene) < [ arde <
(5.23) w A
<[ HTT( AN Y AL ().
Rm
5) It follows from lemma 5.45 that, for £"-a.e. y € R™ Vk € N,
AN f~Hy} is H" ™-measurable, so that H" ™" (Ureny AN f~Hy}) =
> owen H' (A 0 f7{y}). It then follows from the monotone con-

vergence theorem 1.62 that
(5.24)

H( O AN AL ) = Y [ HT ANy AL ().
R keN /R™
6) We contend that
(5.25)
WO A0 )AL ) = [ H AN ) ALt ).

Rm Rm™

Indeed, since Upeny A, C A, the inequality “<” trivially holds in
(5.25). On the other hand, by subadditivity we have, Yy € R™,
H (AN Hy}) < H ™ (Uken AcNf~H{y})+H"™ ((A\Uken Ar)N
S7Hy}), whence [o,, H""™(ANf"Hy}) AL™(y) < [gm H"™(Uren ArN
FHy) AL () + fam H ™ ((A\Uren A)NFHy}) dL™(y). As A\
Uren A, 1s £L™-null (by part 3), it follows from lemma 5.44 with k =
n—mand ! = m that [, H" "™ ((A\Uen Ax)Nf{y}) dL™(y) = 0,
thus proving the reverse inequality and our contention follows.

It then follows from (5.24) and (5.25) that

(5.26)
[ mans anaene) =X [ e ) acn )

7) Since A\ Ugen Ay is L-null, we have

(5.27) / Jfder = / Jfdem MOEE Y / Jface.
A Uren A keN Y Ak
Thus, from (5.27), (5.26) and (5.23), we finally conclude that
e [ nan i) < [ 1rae <
A

Rm™

<o [ wrman g ) aen ),
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Since t > 1 was arbitrarily taken, making ¢ | 1 it follows that

H AN F ) AL (y) = / Jfdcr,
Rm™ A

which concludes the proof of case 1.
Case 2: A C JJQ.

Note that both members in (5.21) are o-additive on o (L") (for
the second member, that is a consequence of lemma 5.45 and of the
monotone convergence theorem 1.62). By the o-finiteness of L, we
may therefore assume that £"(A) < oo.

Fix € > 0 and define g : R" x R™ — R™ by g(z,y) := f(z) + ey,
q: R"xR™ — R” and p : R® x R™ — R™ the projections on
the first and second factors, respectively. Then ¢ is Lipschitz and
V(z,y) € D, = Dy x R™, Dg(z,y) = Df(x) o ¢ + ep. Hence, the
transpose of the Jacobian matrix [Dg(x,y)] is the (n+m) xm matrix
written in block form as

gty = (P1),

el,,

i.e. it is of the same form of (5.14), exchanging m with n. Since
the i-th row of the matrix [Df(x)"] is the i-th partial derivative of
f at x, i.e. Df(x) - e;, the norm of such row is < Lip f. Therefore,
with exactly the same argument used in page 146 (case 2 of the area
formula), i.e. using Binet-Cauchy formula 5.23, we conclude that,
V(z,y) € Dy =Dy x R™,

Jg(z,y) > €™ >0,

(oo’ < QF@) + (") = (1)) maxt, i)y

m

In particular, if (z,y) € A x R™ C J} x R™, we conclude that
Jg(z,y) < C¢, where

C = \/<” ;m) - (Z) max{1, (Lip f)™'}.

Hence, V (z,y) € AXR™ 0 < Jg(z,y) < Ce; in particular, AXR™ C
J;7, so that we may apply case 1 with g in place of f and any £"™-
measurable subset of A x R™ in place of A.

Recall that, by lemma 5.45, the map N(f|4) : R™ — [0, 00] given
by N(fla)(y) = H* ™A N f~{y}) is L™-measurable. Since 7 :
R™ x R™ — R™ given by n(y, w) := y — ew is linear and surjective,
it is measurable as a map (R?™ = R™ x R™, Lpom) — (R™, Lrmn)
(because it may be factored as 7 = ¢ o 1, where 1 € GL(R*™)
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and ¢ : R™ x R™ — R™ is the projection on the first factor, and
linear isomorphisms preserve the Lebesgue o-algebra). Therefore,
the composite map N(f|4) on is > 0 and L£*"-measurable, and
so is the map R™ x R™ — [0,00] given by (y,w) — Xs01)(w) -
N(fla)(y—ew). As L™ = L™ x L™ (by example 1.86), that justifies
the application of Fubini-Tonelli’'s theorem 1.84 in the computation

below:
(5.28)
YweR™, [ HT(ANFHy)) AL (y) £
o
= [ AN fHy —ew})dL™(y) =
1

= CHTTMAN [Ty - ew}) L™ (y) AL (w) =

B(0,1

XB(0,1) CHTTAN fT 1{y —ew}) dL™(y) AL™(w) Fubini 1.84

m

Xe(o,)(w) - H" (AN f~H{y — ew}) dL™ (w) L™ (y) =

m

m

/ ) =T (AN 7y — ew}) x {w}) AL™ ) L™ (),

m

Where the last equality is due to corollary 2.5 with the isometry
R™ — R™ x R™ given by = — (x,w).

10) Note that, if z € R" and w,y € R™, we have (z € A and g(z,w) =
y) iff (x € Aand f(z) =y—ew) iff z € AN f~H{y—ew}. Therefore,
defining B := A x B(0,1) C R™ x R™, the following equality holds:

B » o if w ¢ B(0,1)
Bng {y}np {w}—{<Amf_1{y_€w})x{w} if w e B(0,1).

Thus, V(y, w) € R™ x R™,

Xe(.) (w) K" (AN~ Hy—ew}) x{w}) = H"""(Bng{y}np~{w}).
It then follows from (5.28) that

[ wman i acn) -

“Hyynp H{w}) dL™ (w) L™ (y).

m m

To continue this computation, we apply lemma 5.44 to the inner
integral, with BN g '{y} € o(L""™) in place of 4, p : R" x R™ —
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R™ in place of f, k =n —m and | = m, which yields

[ man s phacn) <

_ 1 a(n —m)a(m) H(B O g {y}) AL (y) by case 1

a(m) a(n) Rm

_ a(n_m) / Jgd£n+m pa28
B

a(n)

aln —m)

< Ce- L™ (B) =

a(n)
_ a(n —m)a(m) Ce- L£7(A).

a(n)

Since L"(A) < oo (by the reduction in the first part of step 8)
and € > 0 was arbitrarily taken, making € | 0 yields

/ AN ) AL () = 0 = /A Jfdcn,

which concludes the proof of case 2 and the thesis follows.

O

COROLLARY 5.50 (curvilinear Fubini-Tonelli’s theorem). Let f :
R™ — R™ be Lipschitz, n > m. Then for all g : R" — R L"-measurable
with g > 0 or g summable,

R A /f e A (1)) AL™ ()

meaning that the iterated integrals in second member make sense and
the equality holds.

PROOF. Suppose that g > 0. By exercise 1.54, there exists a se-
quence (A;);en in (L") such that

9= Z %XAZ“
=1

Hence, for all y € R™,

1
9 X = D TXAn M-
i=1
It follows from lemma 5.45 that, for £L™-a.e. y € R™, Vi € N, x a;np-1(}
is H""-measurable; for such y, theorem 1.41 ensures that g - x ;-1
is ‘H" ™-measurable and > 0, so that the inner integral in the second
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member of (5.29) makes sense. Moreover, still for y satisfying the above
condition, it follows from the monotone convergence theorem 1.62 that

[ 96@) @) aHr @) = 3 A £ ),

Since the second member of the above equality defines a £L™-measurable
function R™ — [0,00] (in view of lemma 5.45 and theorem 1.41),
we conclude that the £™-a.e. defined positive function y — [ g(x)
Xf-1{y}(x) dH"™™(x) is L™-measurable and

/m (/f_l{y}g(x) d?—[”_m(x)) dL™(y) =

[e.e]

— /m Z %H"m(Ai N F YY) AL (y) MCT 1.62

=1

—Z CHT( AN Ty} AL ()
:Z* XAideﬁnMCTzl.GQ
z/
=1
:/ZgXAideE":/ gJfacr,
i=1 R

thus proving the case in which g > 0. For g : R® — R L"-summable,
we apply the case just proved to the positive and negative parts of
g. U

CAF 5.48

EXERCISE 5.51 (Coarea Formula for locally Lipschitz maps). The
coarea formula and its corollary remain valid for locally Lipschitz maps
defined on open subsets of R™. That is, let n > m, 2 C R™ open and
f:Q — R™ locally Lipschitz.

a) (coarea formula) For all £L"-measurable A C €,
e for LM-a.e. y € R™ f~H{y} N A is H" ™-measurable;
e the function N(f|4) : R™ — [0,00], y — H"™(AN f~Hy}), is
L™-measurable and

[ aracr= [ arman sy acn)

b) (curvilinear Fubini-Tonelli’s theorem) If g : 2 — R is £"|g-measurable
and g > 0 or g € L}(L"|q), then

Jossacr=[ ([ smawrm)ac)
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meaning that the iterated integrals in the second member make
sense and the equality holds.

5.3.1. Applications of the coarea formula.

PROPOSITION 5.52 (polar coordinates). If g : R* — R is L"-
measurable and g > 0 or g € LY(L"™), then

(5.30) / gdL”:/ (/ gd’]—["’l) dr.
n 0 8B(0,r)

PROOF. Let f : R® — R be given by f(x) = ||z|. Then f is
Lipschitz and Vo € Dy = R"\ {0}, Vf(z) = x/||z||, hence Jf(z) =
|V f(z)|]| = 1. Since Vr € R, f~1{r} = 0B(0,r) (in particular, = () for
r < 0), (5.30) is a direct consequence of corollary 5.50. O

PROPOSITION 5.53. Let 2 C R"™ open and f : Q@ — R be locally
Lipschitz. Then

Jiesiac = [ =mar

PROOF. It is a direct consequence of exercise 5.51.a), with A = Q,
taking into account that Jf = ||V f]|. O






CHAPTER 6

Sobolev Spaces

In this chapter we study some basic theory of Sobolev spaces WP ()
and Wllof(Q) on open sets 2 C R™. Our primary purpose is to develop
some background for the study of functions of bounded variation and
Cacciopoli sets in the subsequent chapters. For a more extensive treat-
ment on this subject, we refer the reader to standard textbooks — for
instance, [Maz11] or [AF03].

Recall the definitions of weak derivatives and sobolev functions in-
troduced in the previous chapter in 5.3 and 5.8. In order to introduce
vector space topologies on the spaces WHP(Q) and Wllo’f(Q), we make
the following definition:

DEFINITION 6.1. Let @ C R”™ open and f € WrI(Q), ie. f €

loc

Li.(£"]q) admits weak partial derivatives of first order. We define

o for 1 < p < oo, || fllwre)= (folfP+ IV fI[PAL™) P € [0, o0];
o for p = 00, || fllwreo():= H\f| + HVfH”LOO(Q) € [0, oo].

Thus, with the notation above, V1 < p < oo, f € WHP(Q) iff || fllwre) <
00, and it is clear that ||-|wie(q) is & seminorm on W'P(€2). Similarly
to the discussion on LP spaces, the linear subspace N := {f € W'P(Q) |
| fllwre) = 0} of WHP(Q) consists of the measurable functions on (2
which are null almost everywhere. Therefore, the quotient WHP(Q2) /N
consists of classes of equivalence of functions in WHP(Q) which coincide
almost everywhere, and ||-|lwir() is a norm on this quotient, which
is complete by the following proposition. As in remark 1.61, we shall
henceforth overload the notation “WP(€)” which will be used both
with its original meaning and also to denote the aforementioned quo-
tient space.

PROPOSITION 6.2. Let Q C R™ open. For 1 < p < oo, WhP(Q)
is a Banach space (for p = 2, it is a Hilbert space). It is reflexive for
1 < p< oo and it is separable for 1 < p < oco.

169
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PROOF. Let H := LP(L"|q) xLP(L"|q, R™), which is a Banach space
with the norm

1/p
(fg|f|p + ||F||pdﬁ"> for 1 < p < oo,
H|f|+ ||F||H|_OO(Q) fOI“p:OO.

The fact that H is indeed a Banach space, reflexive for 1 < p < oo and
separable for 1 < p < oo follows from the corresponding properties of
the spaces LP(L"|q) and LP(L"|q,R") = LP(L"|g)" and from the fact
that the topology of H is the product topology. Moreover, for p = 2, the
norm defined above is induced by the inner product {((f, F'), (g, G)) :=
(f, 9zeni) + (Fs G)iz(gn|orn), hence it is a Hilbert space in that case.

We contend that the graph of the weak gradient operator V" :
WEP(Q) — LP(L"|q, R™) is a closed subspace of H. Indeed, let (uy, vy )ren
be a sequence in gr V" such that (ug,v;) — (u,v) € H. We must show
that u is weakly differentiable and V¥ u = v. Indeed, Yy € CX(Q2,R"),
Vk € N,

I, B =

/uk div pdL" = —/(vk,@ dcn.
0 Q

Since uy — w in LP(L"|q) and vy — v in in LP(L"|q,R™), the above
equality holds with u in place of u; and v in place of v, thus proving
our contention.

As a closed subspace of H, gr V" is also a Banach space (Hilbert
for p = 2), reflexive for 1 < p < oo and separable for 1 < p < co. Since
the projection on the first factor gr V¥ — WP(Q) is a linear isometry
onto WP(Q) endowed with the norm defined in 6.1 (in other words,
that norm is the “graph norm”), the thesis follows. O

PROPOSITION 6.3. Let 1 < p < 0o, Q2 C R"™ open and (ug)ren @
sequence in WP(Q).
i) If (ug)gen is LP-convergent to u € LP(L"|q) and (Vug)ken is LP-
convergent to v € LP(L"|q,R™), then u € WHP(Q) and V¥ u = v.
it) If 1 < p < 00, (ug)gen @s LP-convergent to u € LP(L"|q) and the
sequence (Vuy)ren is bounded in LP(L"]q,R™), then u € WLP(Q).

Proor. With the notation from the previous proof, the first asser-
tion is a direct consequence of the fact that gr V¥ is closed in H.

As to the second assertion, let 1 < p < oo and ¢ the conjugate
exponent of p. It follows from the Riesz representation theorem 1.79
that LP(L"|q,R™) is the dual of LY(L"|q, R™); hence, by the fact that
L9(L"]q, R™) is separable (since 1 < ¢ < co) and by the Banach-Alaoglu
theorem, strongly closed balls in LP(L"|q,R™) are sequentially com-
pact in the weak-star topology. Thus, passing to a subsequence if
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necessary, we may assume that (Vug)ren is weakly-star convergent to
v € LP(L"]q,R™). In particular, for every ¢ € CX(Q),

/ udiv o dL" = lim [ wpdiv pdL" =
Q

k—o0 Q

=—lim [ (Vug,¢)dL" =

k—o0 0

—— [ weraer

thus showing that u is weakly differentiable and V¥ u = v € LP(L"|q, R"),
hence u € WHP(Q). O

In order to establish the locality of the weak derivative, we recall
from Advanced Calculus the construction of smooth partitions of unity
(skip to theorem 6.13 if you don’t need to recall that stuff).

DEFINITION 6.4 (point-finite and locally finite families). Let X be
a topological space. We say that a family (F,)aca of subsets of X is
e point-finite if Vo € X, {a € A | x € F,} is finite;
e locally finite if Vx € X, there exists a neighborhood V of x
such that {a € A |V N F, # 0} is finite.

REMARK 6.5. Let X be a topological space.

1) If X is second countable and (F,)aeca is a locally finite family of
subsets of X, then A is countable, since we may cover X by count-
ably many open sets, each of which intersects subsets in the family
for at most finitely many indices.

2) It is clear that every locally finite family of subsets of X is point-
finite.

3) It is also clear that, if K C X is compact and (Fy)aca is a locally
finite family of subsets of X, then {a € A | K N F,, # 0} is finite.

DEFINITION 6.6 (smooth partitions of unity on open sets of R").
Let © C R™ open. A smooth partition of unity of Q is a family (£,)aca
such that:

PUL) Va € A, &, € C®(Q,[0,1]) and (spt &u)aca is a locally finite
family of subsets of €

PU2) V2 € Q, Y c4&a(z) = 1.

If F is an open cover of ), we say that a smooth partition of unity

(€a)aca of Q is subordinate to F if Va € A, there exists U € F such

that spt &, C U.

With the notation above, note that, Vx € €, the sum in PU2) is
finite. Actually, thanks to PU1), there exists a neighborhood V' C Q
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of z such that Ay := {a € A |spt {, NV # 0} is finite; hence, Vy € V|

Yoacabaly) = ZaeAV £a(y) is a finite sum.
We will need the following theorem from General Topology:

THEOREM 6.7 (shrinking lemma). Let X be a normal topological
space and (Uy)aca a point-finite open cover of X. Then there exists an
open cover (Vo )aeca of X such that, Yoo € A, V,, C U,.

PROOF. We refer the reader to [Eng89], theorem 1.5.18, page 44.
O

THEOREM 6.8 (existence of partitions of unity on open sets of R").
Let Q C R™ open and (Uy)aca a locally finite open cover of Q0 with
Va € A, U, € ). Then there exists a smooth partition of unity (£ )aca
of 2 such that, Va € A, spt &, € U,.

PROOF. Apply the shrinking lemma 6.7 to the locally finite (hence
point-finite) open cover (U, )aca of {2 endowed with the relative topol-
ogy. We obtain an open cover (V)aca of € such that, Va € A,
VQQ = V,NQ C U,; in particular, since U, € Q, V, = VQQ is a
compact subset of U,. Then, for each o € A, we may apply the differ-
entiable Urysohn’s lemma 1.114 to obtain v, € C(U,, [0, 1]) such that
1o =1 on V,. Since (Spt 1 )aca is a locally finite family of subsets of
Q, Y =3 caWa is a real-valued smooth function on €2; it is strictly
positive, because (V,,)aca cover Q. Define, Va € A,

Ya
o i = —.
(2
Then Ya € A, &, € CX(Q), spt &, € U, (Spt &u)aca is locally finite
family of subsets of 2 and Vo € ©, Y, &a(x) = 1. O

COROLLARY 6.9. Let Q C R™ be open and F an open cover of Q.
Then there exists a partition of unity ({a)aca of Q0 subordinate to F
such that Vo € A, spt &, is compact.

PrRoOF. Take a refinement of F formed by open sets with compact
closures in €2 and then a locally finite open refinement G of the latter
cover, which exists, due the paracompactness of 2. Then apply theorem
6.8 to 2 with the cover G. O

COROLLARY 6.10. Let K C R™ be compact and (U;)1<i<n @ cover
of K by open subsets of R". Then there exists (& )1<i<y such that

VI<i<N,&eCU,[0,1]) and N & =1 on K.

PROOF. Let 2 := U;<,<yU; and apply the previous corollary to
obtain a smooth partition of unity (7,)aca of Q subordinate to the



6. SOBOLEV SPACES 173

cover (U;)1<i<n such that Vo € A, spt 1, is compact. Since (Spt 7a)aca
is a locally finite family of subsets of €2 and K is a compact subset of
Q, the set Ax :={a € A|spt noNK # 0} is finite. Since the partition
of unity is subordinate to (U;)1<i<n, for each @ € Ax we may choose
i(a) € {1,..., N} such spt 1, C Uj(a). Define, for 1 <i < N,

Si = Z Na,

{acAk|i(a)=i}

recalling that the sum over the empty family is 0.

O

COROLLARY 6.11. Let Q2 C R™ be open and F an open cover of ().
Then there ezists a partition of unity ({y)ver of € strictly subordinate

to F, i.e. such that for all V € F, spt & C V.

In general, it is not possible to choose such a strictly subordinate
partition of unit with compact supports, i.e. for each V € F, the
support of &, may be not compact.

Proor. We may apply corollary 6.9 to obtain a smooth partition
of unity (7q)aca of € subordinate to the cover F such that Va € A,
spt 7, is compact. For each a € A we may choose V(a) € F such
spt 7o C V(). Define, for V € F,

éV = Z Na-

{a€A|V (a)=V}

Since the above sum is locally finite, for each V' € F, &, is smooth
with 0 < &, < 1 and EVeng = 1 on Q. Moreover, as the family
(spt Ma)aca is locally finite, for all V' € F, Uy (q)=v spt Ny C V is
closed in €2 (because it is the union of a locally finite family of closed
subsets of §2), hence spt & = Uy (a)=v spt vy C V. That is, (&v)ver
is a smooth partition of unity of 2 with spt &, C V forall V e F. [

EXERCISE 6.12 (differentiable Urysohn’s lemma, part II). Let Fj
and Fi be disjoint closed subsets of R™. There exists a smooth function
¢ € C°(R") such that £ =0 on Fy and £ =1 on F}.

THEOREM 6.13 (locality of the weak derivative). Let Q@ C R, f €
L (L"q) and F C 2% an open cover of Q0. Then f admits weak partial
derivatives of first order on Q iff YU € F, flu admits weak partial
derivatives of first order on U. Moreover, weak derivatives commute
with restrictions.

LEMMA 6.14. Let U C R"™ open, 1 < p < oo and £ € CX(U).
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i) If f € L) (L"), then & - f (defined as 0 on R™\ U) belongs to

LP(L™).
i) If f € WEP(U), then & - f € WYP(R™) and, V1 < i < n,
aW W
(aé“ f) _ 85 s 8 f
xl ’L

PROOF.

i) £ - f is clearly L£"-measurable (for instance, by proposition 1.50).

If1<p<oo, [gul€ fIPAL™ < &I [y | fIP L™ < o00; if p = oo,
1€+ flloo < NElull FllLoe ) o) < 00

ii) For all 1 <i < mn, it follows from the previous item that both £ - f

and g := g—gfi S+ %{ belong to LP(L™). It therefore suffices
to show that £ - f admits weak ¢-th partial derivative equal to g.
Indeed, Vo € CX(R™),

[en gfac= [ (B2 - 25 p)ae -

3% 8(131
- o™ f ¢ .

:_/ g-odl",

as asserted.

4

PROOF OF THEOREM 6.13. The implication “=" and the fact that

weak derivatives commute with restrictions are clear. We must prove
the converse implication, i.e. if 1 < i < mn and YU € F, f|y admits
weak i-th partial derivative 0;(f|y) € LE (L"), then f admits weak
1-th partial derivative on ).

1)

We may assume that F is locally finite and YU € F, U € (.
Indeed, in the general case, take a locally finite open refinement G
of F such that VU € G, U € Q. For each V € G, there exists U € F
such that V' C U, since f|y admits weak i-th partial derivative
Oi(flv) € LL (L"), it follows that f|y = (f|y)|y admits weak i-th
partial derivative, so that we may replace F by G.
Take a smooth partition of unity (§y)yer of Q, given by theorem
6.8, such that VV € F, & € C(V). We contend that g :=
ZVG}' &oi(flv) € L (L"q). Indeed, g is clearly L£L"-measurable
and, for each compact K C (2, there are finitely many Vi,...,Vy €
F which intersect K, so that |g|xx < Zjvzl &v,|0:(flv,)| € LY(L™)
by lemma 6.14.1), thus proving our contention.
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3) Let p € C°(£2). Since spt ¢ is compact, there are finitely many
Vi,..., VN € F which intersect K. We then have

N
/Qg(’pd/; _;/ﬂfa‘@(ﬂvj)wdﬁ _
N
:;/Vj@i(ﬂw)'(fﬂp)dﬁ _
N
= - L O(&p) AL =
;/ijh@ (&) dL
N
SN RRUCEIEE

N
— [ 1o gerde -
Q o

Z—Af@@mﬁ,

thus proving that 0} f = g on (.
O

COROLLARY 6.15. Let Q C R® open, 1 < p<oocand f: Q2 — R
Lebesgue measurable. Then f € WP(Q) iff for all open V € Q, f|y €
WP (V).

PrRoOOF. The implication “=" is clear, in view of the fact that weak
derivatives commute with restrictions. Conversely, assume that for all
open V € Q, fly € WEP(V). In particular, for all open V & Q,
flv € LP(L"|v), hence f € L} (L"q) C Li,(L"]q). It then follows
from theorem 6.13 that IV f € L (L"|q, R"™); besides, for all open
Ve (Vv =VY(flv) € LP(L"]y,R™). That is, f € L) (L"]q)

and V¥ f € L? (L"q,R"), i.e. f € WEP(Q). O

loc loc

COROLLARY 6.16. Let 2 C R™ open and f : Q0 — R"™ locally Lip-
schitz. Then f € Wl’OO(Q), f is differentiable in the sense of Fréchet

loc

L-a.e. onQ and V™ f =V f L"-a.e. on ().

PRrROOF. We have already proved in corollary 5.14 that f is differ-
entiable in the sense of Fréchet £"-a.e. on €). It therefore suffices to
show, in view of the locality of both the weak derivative 6.13 and of the
classical Fréchet derivative, that for each open V' € 2 on which f has
Lipschitz restriction, fly, € WH*(V) and V¥ f = Vf L"%a.e. on V.



176 6. SOBOLEV SPACES

Indeed, by McShane’s theorem 5.1 we may extend f|y to a Lipschitz
map R™ — R, for which proposition 5.9 and theorem 5.12 apply. [

6.1. Approximation by smooth functions, part 1

In this section we fix an open set 2 C R™. Our goal is to derive
theorems on approximation of Sobolev functions on 2 by smooth func-
tions. In order to accomplish that, it will be convenient to generalize
the operation of convolution with the standard mollifier (¢;);~¢ to func-
tions f : 2 — R. One possible approach is to proceed like we did in
the proof of proposition 5.7. Another approach, which we adopt here,
is to define the regularized functions f; = ¢; * f on smaller subsets €);
of €, cf. definition 6.17 below. We call the reader’s attention to the
fact that, in general, it is not possible to simply extend f by zero on
R™ \ Q and then regularize the extension f: it might be the case that
f & LL_(R"), so that “¢,* f ” would not be defined.

loc

DEFINITION 6.17. For each t > 0, let
QO :={z e R"|B(z,t) C Q} = {z € R" | d(z,Q°) > t},

so that (€)= is a family of open subsets of €2 which increases to {2 as
tl0.

Let (¢;)i>0 be the standard mollifier in R™. For each ¢ > 0 and
feLll.(Lq), we define f; : Q; — R by, Vo € Q,

Fi@) = (o5 ) () = / F(9)bele — y) AL ().

B(x,t)

We call f; the t-approzimation or t-reqularization of f.

Note that: 1) fi(z) is well-defined since, for x € Q;, B(z,t) C ; 2)
if 9 = R", then €2, = R"” for all ¢ > 0.

NoTATION. If f: Q — R, we denote by f : R® — R the extension
of f by zero on R™ \ Q.

In order to simplify the notation, sometimes we omit the bar from
the extension, whenever no confusion arises.

DEFINITION 6.18 (convergence in the sense of LP and W\P). Let

loc loc

1 <p< oo, f:Q — R L'%measurable and, for each k£ € N, let
fr :dom f, C 2 — R be L"-measurable.

e We say that (fi)ken converges to f in the sense of LY (L"|q)

loc

(notation: “fy — finL{ _(L"|q)”) if, for all open V' & €, there

loc

exists kg € N (possibly depending on V') such that Vk > ko,
V C dom fi and || fx — fllecrpy) — 0.



6.1. APPROXIMATION BY SMOOTH FUNCTIONS, PART I 177
e If Vk € N, dom f is open, f and f; belong to Li_ on their
domains and admit weak partial derivatives of first order, we
say that (fi)ren converges to f in the sense of W:P(Q) (no-

loc

tation: “f, — f in WEP(Q)?) if, for all open V & €, there

loc

exists kg € N (possibly depending on V') such that Yk > ko,
V C dom f; and ||fk — f”Wl,p(V) — 0.

p

loc OT in the

We make similar definitions of convergence in the sense of L

sense of W|loE for a family (fe)cso in place of (fx)ren-

REMARK 6.19. Concerning the previous definition:

(1) What we have in mind is the family (f;);~o of the regularized
functions of some f € LL_(£"|q), cf. definition 6.18.

loc
(2) For a sequence (fi)ren in Lj (L"|q) and f € L} (L"]q), the
convergence defined above coincides with the convergence in
the natural topology of L} (L£"|q), which is a Fréchet space
topology induced by the family of seminorms {||-||Le(zn),) |
V € Q open}.

(3) Similarly, for a sequence (fi)ren in WP(Q) and f € WEP(Q),
the convergence defined above coincides with the convergence
in the natural topology of Wllc;f__’ (Q), which is a Fréchet space
topology induced by the family of seminorms {||-|lwie(vy | V €
2 open}.

THEOREM 6.20 (mollifiers, part II). Let f € LL (L"|q), (¢c)eso the

standard mollifier and f. = ¢ * f : Qe — R the e-approzimation of f,
cf. definition 6.17.

i) Ve >0, fo € C°(LQ,).
i) Ve > 0, Vo € CAQ,), [ fepdLm = [ fo.dL™
i) lime_o fo(z) = f(z) if x € Q is a Lebesgue point of f; in particular,
fe— f L"-a.e. on Q.
w) If f € C(Q), fe— f uniformly on compact subsets of §).
v) If f € L) _(L"q) for some 1 < p < oo, then f. — [ in the sense

loc

of L} (L"|q).

loc

vi) If f € WEP(Q) for some 1 < p < 0o, then Ve > 0,V1 < i < n,

loc
Ofe o f o f
oz, o, (axi ).

on €.
vii) In particular, if f € Wllof:’(Q) for some 1 < p < oo, then f. — [ in

the sense of W2P(Q).
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We interpret the theorem above by saying that the e-regularized
functions of f approximate f in the “natural topology” of its class of
regularity.

PROOF.

i) That is a direct consequence of the dominated convergence theo-
rem, like we argued in the proof of proposition 1.108.j). Indeed, let
zo € Q. and 7 > 0 such that U(zg, ) C Q.. Then, Vo € U(xg,r),

/cbex— y)dL7(y),

where K := B(zg,7 + €) € Q. It then follows that, for each multi-
index o € Z, the integral which results from the second member
above by derivation under the integral sign (to be justified) is

/aa 6@ — ) f(y) AL (),

whose integrand is dominated in absolute value by [|0%¢e||.|f]] x €
LY(L"|k). Therefore, we may differentiate successively under the
integral sign by means of the dominated convergence theorem, cf.
proposition 1.67, to conclude that Vo € U(xzo,r), Vo € Z7,

30°(f. /8a (z —y)fly)dL (y).

Since zy € {2, was arbitrarily taken, we have proved that f. has

partial derivatives of all orders on all points of €)..
ii) If e > 0 and ¢ € C%(€.), we have:

/feQOd,C” :/ 90(x>/9f(y)¢e(x i y) dy dx Fubigl.&l
spt ¢

=/Qf(y) e =)l dedy *O=

z/Qf(y) t be(y — x)p(z) dv dy =

- / £ () eely) dy,
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where the application of Fubini’s theorem is justified by the fact
that

/t Q|f(y)| coe(x —y) - |e(x)| AL x L™)(z,y) Tonelli 1.84
= [l [ e@lody - aray <

< el ll el / )l dy < oo
spt o+B(0,¢)

iii) Let x € Q be a Lebesgue point of f. Take 6 > 0 such that x € Q.
Then, V0 < e < §:

fl@) — flz) = / L Sl ) F] L) =

_ / ( Lo =Y\ fy) - f@)]dL (),

) en €

so that

1

[fe(w)=f(@)] < 1]l a(n)'m

/R L w-r@lace) Fo

iv) Let K be a compact subset of Q. Take § > 0 such that K5 :=
K+B(0,6) € Q. Let F:= f - xk, : R — R. Since f is bounded on
K (because f is continuous and Ks C €2 is compact), F' € L>(L");
moreover, since f coincides with F' on Kj, F' is continuous on
(K5)°. Tt then follows from theorem 1.111.iii) that ¢ *x F' — F
uniformly on compact subsets of (Ks)°. On the other hand, as
Flk, = flk,, we conclude that, VO < € < 0, ¢.xF = f. on K,
whence f. — f uniformly on K.

v) Let K be a compact subset of €. Take 0 > 0 such that K; :=
K +B(0,0) € Q. Let F = f-xk, : R* - R. Since K; is a
compact subset of €, f|x, € LP(L"|k,), which implies F' € LP(L").
It then follows from theorem 1.111.i) that ¢.* F' — F in LP(L").
On the other hand, as F|x, = f|x,, we conclude that, V0 < ¢ < 0,
¢ F' = fo on K, whence || fe — fl|Lo(zcnc) — 0.
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vi) Ve > 0,V1 <4 < n,Vp € C(9),
O 1 (i) Op | ., 1108
B, dLr = /fgbe*axi dL” =
O( e * n
e
[P
= /@xi wedL" =

=[G eae

thus showing that 8f‘ = (an> .

8Ii
One alternatlve to the above proof is to use the formula ob-
tained in (i) for 8f€ , le. Vo € Q,

%@):/ﬂﬁ(x—ymy)dy:

[ela )| Fly)dy TTEET

:_/éiy
/cbe - an( )dy =

_Qse ()

i

(L") by part v) and V1 < i < n, g—ﬁ = <%’:)6 —

vii) fe— fin L}

9f in LP

ox; loc

loc
(L™]q) by parts vi) and v).
U

COROLLARY 6.21. Let 1 < p < 00, (¢¢)i=0 the standard mollifier
and f € WYP(R™). Then:
i) Ve >0, fo= ¢ f € C°(R") NWEP(R™) and f. — f in WHP(R™)
as € — 0.
it) There exists a sequence (fi)ren in CX(R™) such that fr, — f in
WEP(R™).

Proor. It follows from theorem 6.20 with 2 = R" that f. €
C®(R™) and V(f.) = (VY f)e. Since f € LP(L") and V¥ f € LP(L", R"),
it follows from Young’s inequality 1.108.g) that f. € LP(L™) and (V" f). €
LP(L™ R™), hence f. € WYP(R™). Finally, from theorem 1.111.i), f. —
fin LP(R™) and V(f.) = (VY f)e = V¥ f in LP(R™), thus showing that
. = f in WEP(R™),
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It remains to prove the second assertion. Let Vk € N, g :=
o1k % f € C°(R™) N WEP(R™), so that g, — f in WHP(R™) by part
i). Choose ¢ € C(R",[0,1]) such that ( =1 on B(0,1) and spt ( C
U(0,2) (which exists, thanks to exercise 1.114). Define, Vk € N,
Gk € C(U(0,2k)) by Ci(z) := ((z/k), and f, := (- gr. Then Vk € N,
fx € C®(R"). We will prove that f;, — f in WHP(R™).

1) For all u € LP(L"), ¢t - u — w in LP(L™). Indeed, |u — () - u[P — 0
pointwise and |u — ¢, - ulP < 2P|u|P € L}(L"), hence the dominated
convergence theorem 1.64 yields the assertion.

2) Since f — fi = (f = G- f) + G - (f — gr), we have [|f — fill, <
1 = G- fllp + [1Gellullf = gkll, = O, since |Gl <1, [[f = G- fll, = O
by the previous item and || f — gxll, < [[f — grllwie@n) — 0.

3) Vo € R",
V(@) = V(@) - gi(z) + G(x) - Vg(z) =
= 2 VC(/b)  gu(e) + Gule) - V(o).
Hence,
VY Fa) — Vfil) =V f (@)~ Gulo) VY f(a)+
F Q)T F() — Vorla)] - 1 VC(/R) - gu(a),

so that
w w w w 1
IV F =V filly < V" =G V" Fllp Gl VY f =V gillp - [V Cllull gl

Since [[V* f — G V" fll, = 0 by item 1), [[V* f — Vgill, < |[f —
grllwre@ny — 0 and, as [[gill, = [|o1m* fll, < [[f]lp by Young’s
inequality 1.108.g), +[[V{|lullgell, — 0, it follows that [|[V* f —
Vfill, = 0. We have thus proved that f, — f in LP(R") (by
the previous item) and V f — V¥ f in LP(L",R"); that is, fr — f
in WLP(R™),

O

EXERCISE 6.22. If u € C}(Q), the classical and weak gradients of
u coincide. The converse holds in the following sense: if u € LiL (Q)

has weak gradient v € C(2,R"), then u coincides L™-a.e. in  with a
function @ € CH(Q).

EXERCISE 6.23 (Friedrichs’s theorem). Let 1 < p < oo. If u €
WLP(Q), there exists a sequence (ug)rey in C°(R™) such that uy|q — u
in LP(L"|q) and Vuglg — V% u in L) _(L"|q, R™).

loc
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THEOREM 6.24 (Meyers-Serrin’s theorem). Let 1 < p < oo and
u € WHP(Q). There exists a sequence (ug)gen n C°(Q) NWLP(Q) such
that uy — u in WHP(Q).

PROOF.

1) Let (Ug)ken be a locally finite open cover of  such that Vk € N,
Ui € Q2. Take a smooth partition of unity (& )ren of Q, with Vk € N,
spt & € Uy, given by theorem 6.8.

2) Fix e > 0 and k € N. Let (¢¢)¢~0 be the standard mollifier in R”. It
follows from lemma 6.14.ii) that &, - u € WHP(R"), with spt & -u C
spt & € Ug. We may therefore apply proposition 1.108.d) and
corollary 6.21.1) to obtain t; sufficiently small so that ¢;, *(& - u) €
C*(R™) N WEP(R™) has compact support in Uy and ||¢y, *(& - u) —
& - ul|wrerny < 27", Define u. : @ — R by

o

Ue 1= Z[¢tk (& - u)] |-

k=1

Note that the above sum is locally finite, since (Spt b1, *(gk'u))keN is
a locally finite family of subsets of © (because Vk € N, spt ¢, (& -
u) € Uy). Hence, u, € C°()'. Similarly, we have locally finite
sums

o0

ue—u =Y (¢, #(& - u) — & - u)

k=1

(6.1) -
V(e —u) =Y V" (¢y, *(& - u) — & - ),

where the second equality holds because both members coincide on
each relatively compact open subset V' & €2 (because on V' the sum
is finite and the weak gradient is linear).

3) It follows from (6.1), definition 6.1 and from Minkowski’s inequality
for integrals 1.88 (with u = £"|q and v the counting measure on N)

Ihote that (spt o1y, *(Ek - u))keN is a locally finite family of subsets of Q (with
the relative topology), but not, in general, a locally finite family of subsets of R™,
hence we cannot define a smooth function on R™ using the same formula.
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that

e = ulluisznigy < Y lldu, #( - ) = & - ullisienyg) <
k=1
<D N+ - 1) = & - ullwise) <€
k=1
IV (e = w)lluszniay < D IV (o #(6k - ) = &k 1) [lioenga) <
k=1

< Nu, # (& - 1) = & - ullwreio) < e.
k=1

We therefore conclude that u, € WHP(Q) and u, — u in WHP(Q) as
e — 0.

O

EXERCISE 6.25. Let €2 be an open subset of R”, 1 < p < oo and
f € LP(L"|q). Then the following conditions are equivalent:

i) feWr(Q).
ii) There exists a constant C' > 0 such that, for all ¢ € C°(2) and

all 1 <i<mn,
.

where p’ is the conjugate exponent of p.
iii) There exists a constant C' > 0 such that, for all relatively compact
open w € 2 and all h € R with ||h|| < d(w, Q2°),

17 f = flleeerr) < ClAll-

Moreover, we can take C' = ||V f||Lo(zn|o) in (ii) and (iii), and if Q =
R™ we have

< Ol @)

|70f = flltoeny S AIVY Flleen) 1Al
for all h € R"™.

6.2. Product and Chain Rules

THEOREM 6.26 (Product rule). Let € be an open set in R™ and u,v
be real functions on € satisfying one of the following conditions:

i) ue Wol(Q) and v e CHQ);

loc

i) u,v € WL (Q) N LS (L7 q).

loc
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Then uv € W5k (Q) and
(6.2) V¥(uwv) =uV¥v+0 VW

PRrROOF. Note that, assuming either i) or ii), the second member in
(6.2) belongs to LL _(L"|q). In view of the locality of the weak derivative

6.13, it therefore suffices to show that, for each open V' & 2, uv has
weak gradient on V' given by (6.2).

1) Suppose that i) holds. For each 0 < e < d(V,Q°), we denote by
u. € C®(€,) the e-approximation of u, cf. definition 6.17. Note that
both v and Vv are bounded on V; it then follows from theorem 6.20
that:

o uv € LY(L"]y) and u.v — wv in LY(L"]y) as € — 0;

e V(uw) = uVv+ovVu, € L}(L"|y,R") and V(u.v) = uVo +
vVu in LY(L"|y, R™).

Hence, applying proposition 6.3.i), we conclude that uv has weak
gradient on V' given by (6.2), as asserted.

2) Suppose that ii) holds. For each 0 < ¢ < d(V,Q°), we denote by
ve € C(£,) the e-approximation of v. It follows from part i) with
v, in place of v that uv. € WHH(V) and V¥ (uv.) = uVu, + v. V¥ u.
Besides:

e since u € L*(L"|y) and v, — v in L}(L"|y) (by theorem
6.20.v), it follows that uv. — uv in L*(L"|y);

e since Vo, = (VVv). — V¥v in L}(L"y,R") (by theorem
6.20.vi and 6.20.v, respectively) and u € L*(L"]y), we also
have uVv, — u V" v in LY(L"|y, R");

e v, — v L"%a.e. onV (by 6.20.iii), hence v. V¥ u — v V" u — 0
L™-a.e. on V. The latter convergence is dominated, since, fixing
0 < e <d(V,Q°, for all 0 < € < €:

Ve=ee * U

e 9 = 0 V" ) < (Joellimqw + ol ) 19 ul] <

< 2foll o [V ul € L(L|v).

V+]B(0,eo)) |
It then follows from the dominated convergence theorem 1.64
(taking ¢ — 0 along an arbitrary sequence) that v, V¥ u —
v VVu in LY(L"]y, R™).

Therefore, uv, — uv in LY(L"]y) and V¥ (uv.) = u V¥ v+v V¥ u

in L*(L"|y,, R™); the thesis then follows from proposition 6.3.1).

COROLLARY 6.27. Let €2 be an open set in R", 1 < p < oo and
u,v € WHP(Q) N L>®(L"]q). Then uv € WHP(Q) N L>(L"]q).
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Recall that, for a map F' defined on an open set of R", we use the
notation D for the set of points in which F' is Fréchet-differentiable.

THEOREM 6.28 (Chain rule). Let 2 be an open set in R™, f €
WELHQ) and F : R — R Lipschitz with R\ Dp countable. Define

loc

F'=0 onR\ Dgp. Then Fo f e WEHQ) and

loc
VY (Fof)y=(Fof) V"
PrROOF.

1) The thesis holds if f € C*(Q).

Since f is locally Lipschitz, so is F o f. It then follows from
corollary 6.16 that F'o f is differentiable in the sense of Fréchet £"-
a.e. on Q, FofeWsX(Q) cWg(Q) and V¥(F o f) = V(F o f)
L™a.e. on ). Hence, it suffices to show that

(6.3) V(Fof)=(Fof) Vf
L"-a.e. on §2. The latter equality holds on f~1(Dp) by the classical
chain rule; we must show that it holds £L"-a.e. on f~'(R\ Dp).
Indeed, for each t € R™\ Dp, the second member of (6.3) is null on
fH{t} (since we defined F = 0 on R\ Dp) and the first member
is null £L"-a.e. on f~'{t} by corollary 5.17, thus showing that (6.3)
holds £™-a.e. on f~'{t}. Since R"\ D is countable, we conclude
that (6.3) holds £"-a.e. on f~'(R"\ Dp), as asserted.
2) General case: let f € W21 (Q). Note that
o Vo € Q |Fof(x)] <|[Fo f(x)— F(O)|+[F(0)] < (Lip F) -
£()| + |F(O)], hence F o f € LL (£/0);
o [(F'o f)- 9" f]| < (Lip F) - [V ] € L, (£7]92), hence (F' o
f)- v f e L (L)
In view of the locality of the weak derivative, it therefore suffices to
show that, for each open V' & 2, F' o f has weak derivative on V
given by (F’' o f)- V¥ f.

Let (¢¢)i>0 be the standard mollifier on R™. Let 0 < ¢ <
d(V,Q°) and (ex)ren a sequence in |0, €] with € | 0. With the
notation from definition 6.17 in force, let Vk € N, fi = f., =
G, x [ € C®(Q,). It follows from theorem 6.20 that f, — f in
WHL(V), fy — f L™ae. on V and V fy = (VY f), = V" f L"-a.e.
on V.

Fix ¢ € C(V). Since Vk € N, f,, € C}(V), it follows from part
1) of the proof that, Vk € N:

(6.4) —/VFoka(pdE” = /V(F'ofk)-kago ac”.

The thesis then follows once we prove the following claims:
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o Claim 1: [, Fo f; VodL" — [, Fo fVpdL™.
e Claim 2: fV(F’ofk)~kago dL™ — [, (F'o f)-VfedLr

PROOF OF cLAIM 1: We have:
i) Vk €N, [[F o fi, Vool < [(Lip F)| fi| + [F(O) ]IVl u;

N

gk:=
i) Fof,Vp — Fo fVy L"ae. onV;
i) g — g = [(Lip F)|f] + [F(0) [ V]l £-ae. on V;
iv) [, grdL" = [, gdL" < oo (because fp — f in L*(L"]y)).
An application of the generalized dominated convergence theorem
1.66 concludes the proof. O

PROOF OF CLAIM 2: We have:
i) VE €N, [|(F"o fi) - Vil < (Lip F)|lllul|V fil;
i) (Flofy) Vicp— (Fof)-Vfoe L”ﬁg.e. on V;
iii) gr — g := (Lip F)||¢|[[|VY f|| L™-a.e. on V;
iv) [, grdL" = [, gdL" < oo (because Vfi, — V¥ fin LY(L"]y,R")).
An application of the generalized dominated convergence theorem
1.66 concludes the proof. O

g

COROLLARY 6.29. Let Q be an open set in R, f € W2H(Q) and
F : R — R sectionally C* on each compact subinterval of R, with
F' € L=(R). Define F'=0 on R\ Dp. Then Fo f € W-i(Q) and

VY(Fof)=(Fof) V"f

PROOF. The hypothesis on F' implies F' Lipschitz with R \ Dpg
countable. O

COROLLARY 6.30. Let Q2 be an open set in R", f € WHP(Q) and
F :R — R Lipschitz with R\ Dg countable. Define F' =0 on R\ Dp.
If L(Q) = oo, assume that F(0) = 0. Then F o f € WYP(Q) and

VY(Fof)=(Fof) V"f

PROOF. Since [|(F'of)-V" f|| < (Lip f)||V" f| € LP(L"|o,R") and
|Fof| < (Lip F)|f]+|F(0)| € LP(Q), it follows that Fof € WLP(Q). O
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COROLLARY 6.31. Let Q be an open set in R and f € WEL(Q).
Then f+, f=,|f] € WaH(Q) and

loc

T Avh L"-a.e. on{f >0}
AV f+ - {0 L"-a.e. on {f < O},

wa_:{—vwf L"-a.e. on {f <0}

0 L"-a.e. on {f >0},
A\ L"-a.e. on {f >0}
VYfl=<0 L"-a.e. on {f =0}

-V f L"-a.e. on {f <0}.

PROOF. Apply theorem 6.28 to F o f, where F is given by, respec-
tively, idg -X[0,00), — IdR "X(=o0,0) and [-|. O

COROLLARY 6.32. Let Q be an open set in R™ and f € WL(Q).
Then VY f =0 L™-a.e. on {f =0}.

PRrROOF. Apply the previous corollary and the linearity of the weak
derivative to f = f* — f~. O

6.3. Approximation by smooth functions, part 11

We resume the discussion started on section 6.1 on the approxi-
mation of Sobolev functions. With regard to Meyers-Serrin’s theorem
6.24, for instance, we may obtain better approximation results if we
impose some regularity on 0f). For instance, if ) is a Lipschitz do-
main, in the sense of following definition, we will prove that Sobolev

functions on 2 may be approximated by functions in C*>(€2).

NoTATION. We will use the following notation for cylinders on
products of Euclidean spaces R” = RF x R"*. Let p : RF x R"* — R¥
and ¢ : R¥ x R** — R"~* be the projections on the first and second
factors, respectively. Given x € R", 0 < r, h < oo, we define the open
and closed cylinders with center z, radius r and half-height h:

o C(z,r,h):=U(p-2,7) x U(q-z,h) C R¥ x R*F,

o C(z,m,h) :=B(p-z,7) x B(q-x,h) = C(z,r,h).
We use abbreviated notations C(x,r) := C(z,r,7) and C(z,7) :=
C(z,r,7).

DEFINITION 6.33 (Lipschitz domains®). Let n > 2, U C R" =
R™1 x R open and Q C U an open subset of U. We say that € is

2there is a weaker notion of “Lipschitz domain” which we do not consider here;
our definition corresponds to what sometimes is called a strong Lipschitz domain.
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a Lipschitz domain® in U if for all x € 0YQ = 00N U (i.e. x in the
topological boundary of © in U), there exist:
1) a rigid motion ® € SE(n) with ®(0) = ;
2) f:R" ! — R Lipschitz with f(0) = 0;
3) C(0,7,h) C R™ ! x R open cylinder
satisfying the following conditions (see figure 1):
o C:=®(C(0,r,h)) CU;
e &(gr fNC(0,7,h)) =C NN
° @(epis fnC(o,r, h)) =CnNAQ,
where epis f = {(z,y) € R" ! xR |y > f(x)} is the strict epigraph of
I

FIGURE 1. Lipschitz Domain

THEOREM 6.34 (Global approximation by smooth functions). Let
Q C R" be a Lipschitz domain. If 1 < p < oo and f € WhHP(Q),
there exists (fi)ren in WHP(Q) N C®(Q) such that fr — f in WHP(Q).
Moreover, if f € WHP(Q) N C(Q), the sequence (fi)ren may be chosen
so that it also converges to f uniformly on Q.

We devote the remaining of this section to the proof of the theorem
above, which will be done along the following lemmas.

LEMMA 6.35. Let Q C R™ open, 1 < p < oo, f € WHP(Q) and
§ € C°(R™) with spt £ C Q and ||€]|wree@ny < 00. Then & - f (defined
as 0 on R™\ Q) belongs to WHP(R™) and VY (¢ f) = (VE)- f+E£- V™ f.

3our Lipschitz domains need not be connected, despite the usual meaning of

the term “domain”, i.e. an open connected set.
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Note that it is not required that spt & be compact.

PROOF. It is clear that £- f € LP(L") and g := (V&) - f+&-VV f €
LP(L™, R™), thanks to the hypothesis ||£||w1.orny < 00. Then it suffices
to show that V¥ (¢ - f) exists and coincides with g. Indeed, it follows
from theorem 6.26 that ¢ - f € WL1(Q) and that its weak gradient on ©
coincides with g. The same holds for the restriction of ¢ - f to the open
set R™\spt & (because £ = 0 on this open set). Since QUR™\spt £ = R",
the thesis follows from the locality of the weak derivative 6.13. O

LEMMA 6.36. Let T : R"™' — R Lipschitz, h > 0 and o := (Lip ")+
2. Then d(gr I',gr (I' — h)) > L.

PROOF. Let P = (z,I'(z)) € gr ' and Q = (y,T'(y) —h) € gr (I' —
h). If ||P — Q| = ¢, then ||z — y[| < ¢, hence [T'(z) — ['(y)| < (Lip)e.
Thus, putting R = (y,T'(y)), IR — P|| < [lz — yl| + |[T(z) — T(y)| <
(1 + LipI)e. That implies, by the triangle inequality, h = |R — Q|| <
|R— P||+||P— Q| <(2+ LipT')e. We therefore conclude that

h
||P_Q||:€2_7
(8%

which implies, by the arbitrariness of P € gr I and Q € gr (I" — h),
that d(gr [er(I'— h)) > % O

NOTATION. Given I': R*! - R, Q :=epis ' = {(v/,y,) € R"! x
R |y, > T'(¢/)} and h > 0, we denote by €2_;, the strict epigraph of
L —h,ie Qp=epis(T—h)={(,y.) ER"I' xR |y, >T(y)—h}.

NoTATION. If A C R™ and f : A — R, we denote by spt f the
closure in A of {z € A | f(x) # 0} (i.e the usual notation for the
support of f) and by spt f its closure in R™.

LEMMA 6.37. With the notation above in force, let ' : R"~! — R
Lipschitz. For each h > 0, there exists U € C*(R") N WY*(R") such
that 0 < U <1, ¥ =1 0on andspt ¥ C Q_y.

PROOF. Let (¢e)eso be the standard mollifier. Fix 0 < € < 4 and
define ¥ := ¢ *xq_,,. It is clear that ¥ € C*(R") and 0 < ¥ < 1.
Moreover:

1) For all z € Q, B(z,€) C Q2 by lemma 6.36, which implies ¥ = 1

on Q;

2) spt ¥ C spt Xa_, ,+B0,e) = Q2 + B(0,€) C Q_p, by lemma 6.36

applied to I' — % in place of I';

3) It follows from proposition 1.108 parts g) and j) that |VV|, =

(Vo) ¥ xa_, 5l < [Voe|li < 0o, hence ¥ € W (R™).

hj2°
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O

LEMMA 6.38. With the notation above in force, let ' : Rt — R
Lipschitz, Q) = epis I' and 1 < p < o0. Let f: Q) — R and, for each
h>0,7nf:Q =R be given by x — f(z+ h). Then:

i) if f € LP(L"Q), then T_pf € LP(L"q_,) and (T_nf)la — [ in
LP(L"]q) as h — 0.
i) if f € WHP(Q), then T_nf € WHP(Q_p) and (7_nf)la — f in

WP(Q) as h — 0.

i) if f is uniformly continuous, so is T_pf and (7_pf)|la — f uni-

formly as h — 0.

PROOF. (1) It is clear that 7_,f € LP(L"|q_,). Moreover, us-
ing a bar to denote extensions by zero, 7_, f = 7_, f converges
to f in LP(L") by lemma 1.110, which implies (7_,f)|q — f
in LP(L"]q) as h — 0.
(2) It is clear that 7_, maps WEl(Q) to WEL(Q_,) and that 7,

loc loc
commutes with weak derivatives. Hence, by the previous item,

if fe WHP(Q), then VYV 7 f =7, VY f — V¥ fin LP(L"|q, R™)
as h — 0, from which we conclude that 7_5, f € WHP(Q_;,) and
(T_hf)|Q — f in Wl’p(Q).
(3) It is immediate from the definition of uniform continuity.
U

LEMMA 6.39. With the notation above in force, let T' : R — R
Lipschitz and Q) = epis I'. Then, Ve > 0, V1 < p < oo:

i) If f € WHP(Q), there exists g € CZ°(R™) such that || glo—f|lwre) <
€.

i) If f € WYP(Q) and f is bounded and uniformly continuous, there
exists g € C(R™) satisfying both ||gla — f|lwie) < € and | glo —
fllu <e.

In both cases, if U C R™ is open and the closure in R™ of spt f is a
compact subset of U, we can take g € CX(U) satisfying the conditions
stated above.

PROOF. Let f € W'P(QQ). Fix € > 0. By lemma 6.38, we may take
h > 0 such that ||[7_,f — fllwie@) < €/2. Besides, if f is uniformly
continuous, by the same lemma we may choose h > 0 so that ||7_,f —
fllu < €/2 also holds on €.

Apply lemma 6.37 to obtain ¥ € C®(R") N WH>(R") such that
0< U <1,VU=1o0nQandspt¥ C Q. It follows from lemma
6.35 with Q_j; in place of 2 and 7_,f in place of f that ¥ .- 7_,f
belongs to WP(R"). Since ¥ = 1 on Q, ¥ - 7_,f and 7_,f have the
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same restrictions to €2; therefore, ||V - 7_5f — flwir) < €/2 and, if f
uniformly continuous, we also have ||V - 7, f — f|l. < €/2 on €.

To prove part i), apply corollary 6.21.ii) to obtain g € C2°(R") such
that ||g — U - 7_, f[lwiegn) < €/2, which yields ||glo — fllwie(g) < €.

To prove part ii), let (¢;)¢~o be the standard mollifier. We contend
that U-7_, f : R" — R is bounded and uniformly continuous. Assuming
this contention, to be proved below, we may apply theorem 1.111.ii)
to obtain ¢ > 0 sufficiently small so that ||¢p;*« W -7, f — V-7 f]l. <
€/2; besides, taking a smaller ¢ if necessary, corollary 6.21.i) yields
eV - 7 f — W - 7_p, fllwremny < €/2. We therefore reach the thesis
with g 1= ¢y %W - 7_p, f € C®(R").

Proof of the contention in the previous paragraph: as f is bounded
and uniformly continuous, so is 7_,f : Q_p — R. Then ¥ -7 ,f is
clearly bounded; it remains to show that it is uniformly continuous.
Note that ¥ is uniformly continuous, since it is smooth with bounded
derivative, hence it is Lipschitz. As U -7, f is continuous (because so
are its restrictions to the open sets {2 and R" \ spt W) with support
contained in spt ¥, and Vz,y € spt ¥,

V() - Tonf(2) = V(y) - T-nf(y)| <
< [W@)|7-nf(2) = T-nf W)+ [nf W) V(z) = U(y)] <
S Wl f (2) = 7nf W] + 1l ¥ (2) = ©(y)],

we conclude that W - 7, f is uniformly continuous, as asserted.
Finally, if U C R" is open and the closure in R™ of spt f is a

compact subset of U, take g € C*(R) satisfying i) or ii) for a given
e >0and ¢ € C°(R") with 0 < ( < 1,spt( C U and ( = 1 on
the closure in R"™ of spt f. Define g := (g € C>°(U). Since (f = f,
we have g — f = ((¢ — f), hence (by theorem 6.26) V¥(g — f) =
V¢-(g—f)+C- V(g — f) on Q, which implies

* llg = fllwre) < IClwree@nllg = fllwre) < lIClwes @

e in case ii), [lglo = fllu < [IC][ullgle = fllu <€
Since € > 0 was arbitrarily taken, the statements in i) and ii) are
fulfilled with ¢ in place of g. 0

LEMMA 6.40. Let 1 < p < oo, U C R" open, & € SE(n) a rigid
motion and V = ®(U). The map (o®) : f— fod is:
1) a linear isometry LP(V) — LP(U) with inverse (o®~1);
2) a linear isometry WHP (V') — WHP(U) with inverse (o®~!);
3) a linear isometry C, (V) — C,(U) with inverse (o®1).

PROOF. Part 3) is immediate and part 1) is an immediate con-
sequence of ®4L" = L™ (since the Lebesgue measure is invariant by
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translations and rotations). Part 2) follows from part 1) and from the
fact that weak derivatives commute with (o®), as it can be directly
checked.

0]

LEMMA 6.41. Let Q2 C R™ open, f € C(Q) and £ € C(R"™). Then
& f Q= R is uniformly continuous.

PROOF. We may extend f to a continuous function @ — R, which
on its turn may be extended, in view of Tietze’s extension theorem to
a continuous function f : R® — R. Then ¢ - f € C_(R") C C o(R") is

uniformly continuous by lemma 1.109, and so is its restriction (£ f ) lo =
E-f: Q=R

PROOF OF THEOREM 6.34. Let (U;);>o be a countable open cover
of R”, where Uy = R"\ Q, U; = Q and, for each i > 2, U; is obtained
by rigid motion of a cylinder centered at 0 € R™ as in definition 6.33,
i.e. there exists a rigid motion ®; € SE(n) with ®;(0) = z; € 90 and
there exists 7;,h; > 0 and ['; : R"! — R Lipschitz with T';(0) = 0
such that U; = @, ((C(O,n-, hi)), (IJi(gr I, N C(0, ry, hz)) = U; N 0N and
(I)i (epis Fz N C(O, Ti, hl)) = Uz N €.

Let (Vi)ren be a locally finite refinement of (U;);en formed by rel-
atively compact open subsets of R, and (£ )ren @ smooth partition of
unity of R™ such that for each k € N, spt & & Vi, given by theorem
6.8. Note that, for each k& € N, the fact that { € C°(R") and the
product rule 6.26 imply that:

o & - f € WHP(Q) and spt & - f C spt & € Vi;
e if f belongs to C(Q), it follows from lemma 6.41 that &, - f :
) — R is uniformly continuous.

Fix e > 0.

1) Claim: for each k € N, there exists gy € C2°(V}) such that ||gx|q—&k-
fllwie) < 27%e. Moreover, if f € C(Q), we may take g € C“(Vk)
so that Hgk|g — & - fllwie) < 27%e and [|gilo — flle < 27%€

Indeed, there exists 7 G N such that V, C U, .

o If iy, = 0, & - f is the null function on and we may take
gL = 0.

olfip, =1, spt& €@ Vi C Uy = Q, hence & - f € WHP(R™)
by lemma 6.35 and spt &, - f € Vi. Besides, if f € C(Q),
& - f € C(R™). Then, if (¢)i>0 is the standard mollifier,
by corollary 6.21 there exists t > 0 sufficiently small so that
G %(&r - f) € C2 (Vi) and (| #(&e - f) — &k - fllwrweny < 27%€
If f € C(Q), the fact that & - f € C.(R") and theorem 1.111.ii)
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ensure the existence of a smaller ¢ > 0 such that we also have
e %(Ek - f) = & - fllo@ny < 27Fe. Put g := ¢ #(& - f).

o Ifix > 2, (& - [) o ®; € WWP(C(0, 73, hi,) Nepis Iy, ) (by
lemma 6.40) and spt (& - f) o ®;, C ®; ' (spt &) € @, (Vi) C
C(0, 74, , hi,). Hence (& f)o®;, € WHP(epis T, ). Furthermore,
if f € C(Q), as we saw above & - f is uniformly continuous on
2, hence its restriction to U;, N2 is bounded (because it may
be continuously extended to the compact set U;, M (2, on which
it is therefore bounded) and uniformly continuous, and so is
(gk . f) o q)lk : C(O,’f’ik, h’lk) N epis sz — R.

We contend that (& - f) o ®;, : epis I';, — R is bounded and
uniformly continuous. Indeed, it is clearly bounded, since it
is null on the complement of the cylinder C(0, 7, , h;,) and its
restriction to C(0,r;,,h;,) N epis I';, is bounded. Moreover,
since spt (& - f) o ®;, € C(0,7;,, h;, ) and the restriction (& -
f)o®;, : C(0,r;, h;)Nepis I';, = R is uniformly continuous,
given € > 0, we may take 0 < § < g := d(spt (& - f) o ®;, R™\
C(0,74,, hi,)) such that, putting F' := (& - f) o ®;,, Va,y €
epis I';, N C(0,7;,, hy,) with ||z — y|| < 0, we have |F(z) —
F(y)| < e. The same holds for all z,y € epis I';, with ||z —y| <
d because, if x € R"\ C(0,7,,h;,) and ||z — y|| < §, then
y € R*\ spt (& - f) o ®y,, hence F(x) = F(y) = 0. Thus, the
contention is proved.

Applying lemma 6.39 with (& - f) o ®;, in place of f and
@;}(Vk) in place of U, we obtain g; € C® (@;l(Vk)) such that
[Gnlepis i, — (€& f) © Py lwrp(epis T, ) < 27%€ and, if f € C(Q),
19k lepis 1, — (& - f) © @y [lu < 27%e. Thus, in view of lemma

6.40, g, := g © (IDi_kl proves the claim.
2) Let g := > 500k Since Vk € N, g € C2(V;) and (Vj)pen is a
locally finite open cover of R", the sum which defines g is locally
finite and g € C*(R"). Besides, since f = > ,.,& - f, we have

lglo = fllwre) < Xisollgrla = & - fllwie ) < 2€ and, if f € C(9),
lgle = fllu < 2 ksollgrla — & - fllu < 2e.

O

REMARK 6.42. With the same hypothesis and notation from theo-
rem 6.34, we have actually proved that there exists (fi)reny in WHP(Q)N
C*°(R") such that f, — f in WYP(Q), which also converges to f uni-
formly on Q if f € WHP(Q) N C(9).
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COROLLARY 6.43. Let Q2 C R" be a Lipschitz domain. If1 < p < oo
and f € WHP(Q), there exists (fi)ren in C°(R™) such that filo — f in
WLP(Q). Moreover, if f € WHP(Q2) N C(Q), the sequence (fi)ren may
be chosen so that it also converges to f uniformly on compact subsets

of Q.

PROOF. As it was noted in remark 6.42, there exists a sequence
(gk)ken in C®(R™) such that (VE)gilo € WHP(Q) and gilq — f in
WLP(Q), and such that (gi|g) also converges uniformly to f if f €
WLP(Q) N C(Q).

We now adapt the argument from part ii) of corollary 6.21. Choose
¢ € C*(R™[0,1]) such that ¢ = 1 on B(0,1) and spt ¢ C U(0,2).
Define, Vk € N, ¢}, € C (U(O, Qk)) by (k(z) := ((z/k), and fi := (k- gx.-
Then Vk € N, f € C°(R"). We will prove that fy|o — f in WHP(Q).
We omit restrictions for simplicity of notation; the p-norms are taken
with respect to L"|q.

1) For all uw € LP(L"|q), (x-u — uwin LP(L"|q). Indeed, |u—(x-ul? — 0
pointwise and |u— ¢, - ulP < 2P|ulP € L}(L"]q), hence the dominated
convergence theorem 1.64 yields the assertion.

2) Since f — fi = (f — G f) + G - (f — gx), we have [[f — fill, <
1F =G Fllp + 1GulL F = gelly = 0, since |Gl < 1, [1f = Ge- fllp = 0
by the previous item and || f — gill, < ||f — grllwie) — 0.

3) Vx € R™,
Vfe(x) = V() - gr(x) + Cr(z) - Vgr(z) =

B % -V((z/k) - gr(2) + () - Vgr().

Hence, Vx € (),
VY f(@) = Vfilz) = V¥ fx) = Gulx) V" f2)+
+ Ge(@)[VY f(x) = Vgi(z)] — % -VC(z/k) - gr(z),

so that

w w w w 1
IV F=V filly < V" f =G V" Fllp Gl VY =V gillp - [V Cllull gl

Since [[V* f — GV fll, = 0 by item 1), V" f — Vgl < I/ -
gkllwie) — 0 and, as (gx)ren is bounded in LP(L"[q) (because it is
convergent in WHP(€2), hence in in LP(£"(q)), £[|VCllullgrll, — 0, it
follows that |VY f — V fi|l, — 0. We have thus proved that f;, — f
in LP(L"|q) (by the previous item) and V fi, — V" f in LP(L"|q, R");
that is, fr — f in WP(Q), as asserted.
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Finally, if f € W'P(Q) N C(Q), (filg)ken converges to f uniformly

on compact subsets of €2, bacause so does (gx)ren, and for each k € N,
fx = gr on B(0, k). O

6.4. Lipschitz functions and Wh>

THEOREM 6.44. Let € C R™ be open and f : Q@ — R. Then
f e WE™(Q) if. and only if, f coincides L-a.e. on Q with a locally

loc

Lipschitz function.

ProoF. We have already proved in corollary 6.16 that, if f is locally
Lipschitz, than f € W,22°(€2) (moreover, it is Fréchet-differentiable £"-
a.e. and its Fréchet derivative coincides L"-a.e. with its weak gradient).

It remains to prove the converse. Suppose that f € Wllofo(Q) It
suffices to show that, for each relatively compact convex open subset
V € Q, f|v coincides L"-a.e. with a Lipschitz function, since {2 may
be covered by countably many such convex open sets. Let W & €2
open such that V&€ W. Let ¢y := d(V,W¢) and (¢;);>0 the standard
mollifier. Then, for every 0 < € < €y, fe = ¢ * f € C°(V) and for each

r eV,
6.20.vi) w "
IVfe(@)| = HB()Vtﬂw¢®—yﬁw(wH§
<AV flleseeniw)-
Thus, putting C' := [|V" f||Lec(zn)yy), We have sup{||V fe||Le(cn
€ <6} < C < oo. Therefore, for all z,y € V and 0 < € < €g:

) — f@)] = | / V(x4 1ty — ) - (y — 2) AL (2)] <
<Cly—«l.

Hence, denoting by Ly the set of Lebesgue points of f, it follows from
theorem 6.20.iii) that, taking € | 0, for all z,y € VN Ly,

[f(y) = f(@)] < Clly — =],
i.e. flp,nv is Lipschitz. We may therefore extend this restriction to
a Lipschitz function on V' (even on R™). Since L*(V \ Ly) = 0, we
have proved that f coincides £"-a.e. on V with a Lipschitz function,
as asserted. 0

|0 <

[v)

6.5. Traces and Extensions

We prove below a version of the Gauss-Green theorem for epigraphs
of Lipschitz functions which will be needed to prove theorems on traces
and extensions of Sobolev functions. This theorem will be generalized



196 6. SOBOLEV SPACES

in chapter 7, theorem 7.18; it is essentially a consequence of the area
formula.

THEOREM 6.45 (Gauss-Green theorem for Lipschitz epigraphs). Let
n>2, f:R"" — R Lipschitz and 2 := epis f (hence O = gr f).
Then

i) H*1 LLOQ is a Radon measure on R";
ii) there exists a Borel measurable unit vector field v : 00 — R,
unique up to H" 1 L_OQ-null sets, such that, for all ¢ € CL(R"),

(6.5) /chdﬁ”:/ v dH" 1,
Q o0

or, equivalently, such that, for all ¢ € CL(R™ R"),

(6.6) / div o dL" = / o -vdH"
Q 00

PROOF. Let I' : R*™! — R® = R" ! xR be given by z (x, f(m))
Then T' is Lipschitz 1-1 and ImI" = gr f = 0. Thus, from corol-
lary 5.39.i), it follows that H" ' LLoQ = Ty(L" ! LLJT), whence
H" 1 0N is a Radon measure on R™ (because it is Borel regular and
finite on compact sets, as one can see directly from the above formula).

It remains to prove the existence and uniqueness up to H" ! L_0Q-
null sets of v : 9 — R™ Borel measurable with ||v| = 1 such that
(6.6) or, equivalently, (6.5) holds. Indeed, for each = = (2/, (")) €
['(Dy) C 99, where Dy C R™! is the differentiability set of f, let

(Vf(x,)7_1)
6.7 v(r) = )
oD ) VIV f(a)]?

and let v be any constant unit vector field on 92\ I'(Dy). Since Dy €
PBgn-1, V [ is Borelian on Dy and L"(R" '\ D) = 0 (by exercise 5.13
and by Rademacher’s theorem), it follows that v is Borelian, ||v|| =1
and OQ\I'(Dy) is H™ 1 LLoQ-null, so that v is given H" ' L_9Q-a.e. by
(6.7). We will prove that (6.5) holds with such v. If v/ is another such
Borel unit vector field, then (v, H" ' LLOQ) and (v, H" ! LLORQ) are
polar decompositions of the same R"-valued Radon measure, so that
v =1 H"! Ld0-a.e. by the uniqueness of the polar decomposition.

Given 6 > 0, let Fs be the open strip of amplitude 26 along the
graph of [ (see figure 2), i.e. Fy:={x = (2/,2,) € R" | |z, — f(2')| <
d}. We approximate the characteristic function yq of 2 = epis f by a
Lipschitz function fs defined as 1 on epi (f + d), 0 on hyp (fs), and by
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linear interpolation on Fj, i.e. for all z = (2/,z,) € R" ' x R,

o > f(2') + 6,
z, < f(2) =6,
26) 7z, — (f(2') — 9)] x € Fy.

O =

fs(z) ==

—~

It is then clear that 0 < f5 < 1, Lip f5 = (20) ' (1+Lip f) and f5 — xq
pointwise on R"™! \ gr f as § | 0; in particular, f5 — yxq L£"-a.e. on
R™, since L™(gr f) = 0 (for instance, as an immediate consequence of
Fubini’s theorem). Furthermore, by a direct computation, the classical
gradient of fs exists on L"-a.e. x = (2/,x,) € R" and is given by:

L. if z, > f(z')+dorx, < f(z')—9
Vis(@) = {(25)1(—Vf(x’), 1) if x € Fs and 2’ € Dy.

F1GURE 2. Gauss-Green theorem for epigraphs
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We now compute, given ¢ € C(R") and taking a sequence (0 )ren
in (0, 00) with d5, | 0:
5'5’f5k Lipschitz

/ Veder PR qim / f5.Vdl" =
Q k—oco

A4 f5k :Vf(;k by 5.12

= —lim [ o V" f; dLC"

k—o0

: 1 Fubini 1.84
=-—1 —(=Vf(2"),1)dL" =

Jlim o o(x) 25k( f(z'),1)dL™(x)

1 f(&")+6
= lim (Vf(2),-1) —/ (2, t)dL™(t) AL (') =
k—oo Jpn—1 25k f(z') =5

bounded

—_— ] f(")+5g
~ fim (Vi) 1) / ol 1) AL (1) AL ()

f(@') =6

~~
compact S ||<P||u

::/. (Vftﬂ%—4)¢(f7f@g)d£n+%xqJﬂfﬁwﬁfﬁﬁﬁﬂﬁ
Rn—1

- /]R’ﬂl ‘P(F(?/))V(F(y)) JI'(y) dﬁ"il(y) area formula 5.39.i)

= / ovdH"
o0N

thus proving (6.5). O

J/

k—o0 PrRn—1 spt ©» 25k
N——— N

DEFINITION 6.46. With the notation from the previous theorem, v
is called outer unit normal to Of).

REMARK 6.47. With the notation from the previous theorem, we
have actually proved that, up to H" L_9Q-null sets, on each point point
x = (3:’ , f(a! )) in 02 = gr f whose abscissa x’ is a differentiability point
of f,

Vi), -1

(6.8) v(z) = (V/), 1) :
VI V)P

In particular, if f is C!, v coincides with the usual outer unit normal

from Differential Geometry.

THEOREM 6.48 (Trace theorem for Sobolev functions on Lipschitz
epigraphs). Let n > 2, T : R"! — R Lipschitz, Q := epis ' and
1 <p<oo. Then:

i) There exists a unique bounded linear operator T : WP(Q) —
LP(H" Y aq) such that, for all f € CLR™), T - (fla) = floa-

DCT 1.64
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ii) The Gauss-Green formula holds for all f € WY(Q), i.e. denoting
by v the unit outer normal to OS2,

(6.9) /QVWfdm:/mT-f vdH"

with a stmilar equality in divergence form. Furthermore, for all
f e WHP(Q) and ¢ € CLHR", R"),

(6.10) /Qfdiv pdl = —/Q(wa,go) d£”+/aQT-f (o, v) AH™ .

PROOF. 1) Let (ey, ..., e,) be the standard basis of R" = R"! xR.
Since, for all x € Dr, |VI'(z)]] < LipT, it follows from (6.8) that,
for all x € Dr,

1

1+ (LipT)2
In particular, putting C' := /1 + (Lip I')2, we conclude that
(6.11) 1<C(—ep- V)

H 1 L oQ-a.e. on O9.

2) Given € > 0, let 5. : R — R be given by B.(t) := (t> + ¢%)/2 — .
Note that 5. € C*(R), . > 0, Bc(t) increases to [t| as € | 0 and
<1

3) Fix f € C}(R™). Then . o f € CYR"™) (since S.(0) = 0, hence
spt Be o f C spt f). We compute:

_en'VZ

_, 611 1 (66)
/ B.o fAH" < —0/ (Beo fen,v)dHntE
o0 90 S—~—
€CL(R",R")
0
——C [ gl Gof 1L <
ann ——
=Blof FL;
<c / B @IV @)l L (2)
<c / IV £ den.
Q

Since (. o f increases pointwise to | f| as € | 0, we may therefore
apply the monotone convergence theorem 1.62 to conclude that

(6.12) |fldH" ! < C/HVfHdL”.
o0 Q
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In particular, since C!(R") is dense in WH1(Q) by lemma 6.39.i),
f € CHR™) — f|sq may be uniquely extended to a bounded linear
function WH(Q) — LY (H"!|sq), thus proving part i) for p = 1.
For 1 < p < oo, given f € C}(R"), note that |f|P € CL(R") (since
|-[P € CY(R) for p > 1 and it is null on 0) and V(|f[?) = p|f[P~" -
sgn f - Vf by the chain rule. We may therefore apply (6.12) with
| f|P in place of f; denoting by ¢ € (1,00) the conjugate exponent to
p, we compute:

PaHt < / IV (f)] der =
o0

- [ Uilghd ar” <
~———

”fop] [‘f|q(p 1)} /SH fllp LF1P

<c [19srac+ 22 [ ipac
Q

We therefore conclude that HfHLp(anle) < C(n,p,LipD) || fllwre(e)
since CL(R") is dense in WHP(Q), by lemma 6.39.i), the linear map
f € CHR™) — f|sq may be uniquely extended to a bounded linear
function WP (Q) — LP(H"!|sq), thus proving part i) for 1 < p <
0.

It remains to prove part ii). Let f € WH(Q). By lemma 6.39.1),
we may take a sequence (fy)ren in C°(R™) such that f, — f in
W1(Q). Tt then follows, by the continuity of the trace operator,
that fylon =T - fx = T - f in LY(H"!|sq). On the other hand, for
each k € N, it follows from the Gauss-Green theorem (6.5) that

/kadznz fevdHm L
Q

o9
Hence, taking & — oo, we obtain (6.9).

Similarly, if f € WP(Q) and ¢ € CL(R", R™), we may apply once
more lemma 6.39.1) to obtain a sequence (fi)gen in C°(R™) such that
fr — fin WHP(Q). Tt then follows, by the continuity of the trace
operator, that fiyloo =T - fx — T - f in LP(H"!5q). On the other
hand, for each k € N an application of (6.6) to f;, - ¢ € CL(R™, R")
yields

/ frediv odl" = —/(ka, p)ydL" + felo, v)dH™ L.
Q Q

o9
Since spt ¢ is compact, we have frdiv ¢ — fdiv ¢, (Vfr,p) —
(VY f, o) and fi{o,v) — T flp,v) in L1; therefore, taking k — oo
in the last equality yields (6.10).
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O

REMARK 6.49. With the notation from the previous theorem, for
p = 1 it follows from 6.12 and from the density of C(R") in WH1((Q)
that the inequality

[ <c 9 ac
o0 Q
holds for all f € WHH(Q), where C := /1 + (LipT)2.

COROLLARY 6.50 (Trace theorem for Sobolev functions on Lip-
schitz epigraphs)._ With the hypothesis from the previous theorem, if
fFeWP(Q)NC(Q), then T - f = floq.

PRrooF. It follows from corollary 6.43 that there exists (fx)gren in
C>®(R™) such that filo — f in WYP(Q) and (fi)ren converges to f
uniformly on compact subsets of 2. Then feloa=T fr =T fin
LP(H™ o) and filan — flaq uniformly on compact subsets of 052,
which implies T"- f = flsq. O

The theorem below, which generalizes theorem 6.48 for Lipschitz
domains on R™ with bounded frontier, may be skipped on a first read-
ing. We shall need theorem 7.18, which ensures that every Lipschitz
domain €2 C R" is a set of locally finite perimeter. The material covered
in chapter 7 up to its first section 7.1 is independent of the remaining
parts of this chapter, so that the reader may study it now if he wishes
to better understand the following theorem.

THEOREM 6.51 (Trace theorem for Sobolev functions on Lipschitz
domains). Let n > 2, Q C R" a Lipschitz domain with 02 bounded,
and 1 < p < oo. Then:

i) There exists a unique bounded linear operator T : WP(Q) —
LP(H" Y aq) such that, for all f € CLR™), T - (fla) = floa-

i) The Gauss-Green formula holds for all f € WHY(Q), i.e. denoting
by v the unit outer normal to OS), cf. definition 7.12,

(6.13) /QVWde”:/ T-fvdH" ",

o0N

with a similar equality in divergence form. Furthermore, for all
[ € WHP(Q) and ¢ € CL(R™,R"),

(6.14) /Qfdiv pdLl" = —/Q(wa,go) d£”+/aQT-f (o, vy dH" .

PROOF.
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1) For each z € 012, there exists an open set U, C R" such that z € U,
and U, is obtained by rigid motion of a cylinder centered at 0 € R"
as in definition 6.33, i.e. there exists a rigid motion ® € SE(n) with
®(0) = z and there exists 7,h > 0 and I' : R"~! — R Lipschitz with
I'(0) = 0 such that U, = ®(C(0,r, h)), ®(gr TNC(0,7, h)) = U,NON
and @ (epis I' N C(0,r, h)) = U, N Q.

2) From the open cover (U,).ecs0 of the compact set 92 C R", we may
extract a finite subcover (U;)i1<;<n. For each 1 < i < N, let the
corresponding objects defined in the previous item be denoted with
a subscript 7, so that ®; ((C(O, i, hz)) =U;.

Let Uy := Q and U_; := Q°, so that (U;)—1<i<n is a finite open
cover of R™. We may apply corollary 6.11 to obtain a smooth par-
tition of unity (&)-1<;<ny of R” with spt & C U; for —1 < i < N.
Besides, for ¢ > 1, as spt & C U; € R, it follows that spt &; is a
compact subset of U;.

3) Fix f € CL(R") and 1 < p < oo. We contend that, for 1 <1i < N,
there exists C; = C;(n, p, LipI;) such that

(& f)loallLern—11a0) < Cill&illwroe @y || fllwreq)-

Indeed, we have:

G = [ jafpan -
o0 20NU;
= /|£if‘pd(Hn1 L@@i(epis Fz)) lemma 7.17

= /|fz‘f|pd(q)i# (H"! Ldepis I)) ex 110

thm. 6.48

= [l&n)owira(e Loeis 1)

< CPII(E,F) o B, |1” o
= Y ||(€l ) ° ||W1 p(epls ;NC(0,r;, hz))

product rule 6.26

= UG ) = e W) =

U;nQ
< CPNE .o oy 1L [Rpno -

That C; depends only on n, p and Lip I'; follows from part 4) of the
proof of theorem 6.48. Our contention is then proved.
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4) Since floo = >, (& f)]on, we have

N 3
1 flolloe—110m) < 3 N FloallLo@em11pm <
i=1

N
< (2 Gilgllwas @) 1 flwao)-
i=1

The above inequality shows that the linear map f € {f|lo | f €
CLR™} — floa € LP(H"'|sq) is continuous with respect to the
WP (Q) relative topology on {flo | f € CL(R™)}. Since the latter
subspace is dense in WP(Q), by corollary 6.43, we conclude that
there exists a unique continuous linear map WP(Q2) — LP(H"!|50)
which extends the map f — flaq on {f|a | f € CL(R")}. Assertion
i) is therefore proved.

5) In view of theorem 7.18, (6.13) holds for f € CZ(R™). Given f €
WH(Q), by corollary 6.43 there exists a sequence ( f;)ien in C°(R™)
such that filq — f in WL1(Q); hence, by continuity of the trace
operator, filoo =T - f; = T - f in LY(H" !sq). Therefore,

1—00

/wad£” — lim [ VfdL" =
Q Q

=lim | fivdH" =

i—=oo [90
- / T-fvdn,
)
thus proving assertion ii).

6) Equality (6.13) in divergence form reads

/Qdiv fdﬁ"z/@g(T-f,wd’H"_l,

for all f € WH(Q,R"). Therefore, given f € WHP(Q) and ¢ €
CL(R™ R™), (6.14) follows from the previous equality and from the
product rule 6.26 applied to f¢ componentwise, which yields div (f¢) =
fdivo+ (VY f o).

U

COROLLARY 6.52 (Trace theorem for Sobolev functions on Lip-
schitz domains)._Wz’th the hypothesis from the previous theorem, if
fe Wl’p(Q) N C(Q), then T - f = flaQ

ProoOF. It is identical to the proof of corollary 6.50. 0
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DEFINITION 6.53 (Extension by reflection with respect to Lipschitz
graphs). Let n > 2, T : R"! — R Lipschitz and Q := epis . We
identify R” = R* ! x R.

1) The map ®r : R® — R" given by («/,z,) — (2/,[(2') — (2, —

I'(z)) = («/,2I'(2') — z,) is called reflection with respect to T'.

2) Given f:R"™ — R, the function fr := f o ®r is said to be obtained

by f by reflection with respect to I'.

3) Given f: Q — R, the extension of f by reflection with respect to T
is the function Er f : R" — R given by

) f(x) if 1 €Q
EFf(x)'_{fo@r(x) if = € Q°.

THEOREM 6.54 (Extension by reflection for Sobolev functions on
Lipschitz epigraphs). Let n > 2, T : R*! — R Lipschitz, ) := epig T
and 1 < p < co. Then there exists a unique extension operator E :
WP(Q) — WLP(R™), i.e. a bounded linear operator with (E f)|q = f
for all f € WHP(Q), such that, for all f € CHR™), E(fla) = Er(flg)
(i.e. the extension of flg by reflection with respect to T').

PROOF.

1) It suffices to prove that the extension by reflection Er is a bounded
linear operator defined on the subspace CL(R")|q = {fla | f €
CL(R™)} of WLP(Q), taking values in WYP(R™). Indeed, if that is the
case, since C1(R")|q is dense in WHP(Q) by lemma 6.39.i), Ep may
be uniquely extended to a bounded linear operator E : WP(Q) —
WLP(R™). Then E satisfies (E f)|q = f for all f € WP(Q) because,
as the restriction R : WHP(R™) — WLP(Q) (i.e. given by f — f|q) is
linear continuous, the composite RoE : WP(Q) — WLP(Q) is linear
continuous and coincides with the identity on the dense subspace
CL(R™)|q, hence Ro E is the identity. We then reach the thesis, i.e.
E is an extension operator which uniquely extends Er.

We must therefore prove that there exists C' > 0 such that,
for each f € C{(R"), Er(flg) € W'P(R") and |[Er(f[g)[lwie@n) <
C|| fllwie); then Ep : CHR™)[q — WEP(R") is a well defined map
and its linearity is clear, hence it is a bounded linear operator.

2) For all x = (o', x,), y = (¥, yn) € R", we have

|Pr(2) = @r(y)]| = || (2" = ¥/, 2[T(2") = T(y)] = (w0 — ya)) || <
< 2" =yl + 2Lip ll2" — ¢/l + |20 — g <
< 2(Lip I+ Dz — v,
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hence ®r is Lipschitz with Lip®, < 2(LipI' + 1). It then fol-
lows from Rademacher’s theorem 5.12 that $r is L™-a.e. Fréchet-

differentiable. Moreover, for all € Dg,. (thus for £L"-a.e. z in
R™),

6.15 [DPr(z)|| < Lip®r < 2(Lipl" +1)

(6.15) JOr(z) < (Lip®r)" < 2"(LipI' + 1)".

3) Fix f € C}(R"). Since both f and ®r are Lipschitz, sois fr = fo®r.
It then follows that both Er(flg)lg = flg and Er(flg)|ac = fF|Qc are
Lipschitz. Hence Ep(f|q) is Lipschitz since, if z € Q and y € Q°, the
closed segment [z,y|, being connected, must intersect J€2 at some
point z; therefore

Er(flq)(z) — Er(flg)(y)| <
< |Er(fla) () — Er(fla)(2)| + [Er(flg)(2) — Er(fla)(y)] <
(Lip f)llz — 2| + (Lip fr)llz —yl| <
< max{Lip f, Lip fr} ([l — 2] + ||z = yl]) =
= max{Lip f, Lip fr}||z — ¥,

from which we conclude that Lip Er(f|g) < max{Lip f,Lip fr} <
00.

In particular, from Rademacher’s theorem it follows that Ep(f|q)
is L™a.e. Fréchet-differentiable and its classical gradient coincides
with its weak gradient L£"-almost everywhere. Since 02 = gr I' is
L"-null, and since Er(f|qg) coincides with f on the open set 2 and
with fr = f o ®p on the open set Q°, we conclude that the weak
gradient of Ep(f|q) is given L"-a.e. by

y B Vf(z) if v € Q)
v [Er(fle)](=) = {pr(x) =Dor(2)" - Vf(Pr(z))  ifx€Q NDa,

where D®r(z)" denotes the adjoint of D®r(z) with respect to the
standard inner product of R™. In particular, since Vz € Dg,,
|D®r(x)"|| = ||IDPr(z)|] < 2(LipT + 1) by (6.15), it follows that

6.16) ||[VY[Er(fla)]]| < xa - IV + xge - 2(LipT + D[|(Vf) o @r|

L"-a.e. on R".
4) We estimate the LP norms of both Ep(f|g) and of its weak gradient:
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(6.17)
or
Er(flg)f dL" = Pacr o dpPdL"
[ Etwrac = [1apacr+ [ o

=& and AF 5.39.1i)

6.15

(6.15)
= [1sracr+ [ |raecacn <
Q Q
< [2"(LipT + 1)"+1]/|f]pd£”.
Q

Similarly, it follows from (6.16) that
(6.18

)
/RnHVW[EF(fIQ)} [Fac" <

: /”vf”pdﬁ" +2°(LipI" + 1)”/ (V) o dr|fPdLr ™ 2
Q ac

ot
w

9.i1)

6.15

(
= [Ivsirac +2ipr + 1y [ v senac s
Q Q
< [2MP(LipT + 1) + 1]/||Vf|ypdm.
Q

From (6.17) and (6.18), we therefore conclude that Er(f|g) €
WLP(R™) and, with C := [2"*P(Lip T+1)""P+1]7, || Er(flq) lwie@n) <
Cll fllwre -

U

Recall our convention from remark 1.57, i.e. we consider essential
supports only.

COROLLARY 6.55 (Extension by reflection for Sobolev functions on
Lipschitz epigraphs). With the notation from the previous theorem, if
f € WYP(Q) and the closure of spt f in R™ is a compact subset of an
open set V. C R™, then spt E f € V UV, where Vi = Op(V).

ProOOF. Let W C R™ be a relatively compact open set such that
spt f € W € V. We may take, by lemma 6.39, a sequence (gi)ren in
C(W) such that gi|o — f in WHP(Q). Then E g, — E f in WHP(R™).
Since Vk € N, E g, = Er g has compact support in W U Wr, it follows
that, for all p € C*(W U WFC), f Efpdl" = limkﬁoongkgodE” =
0. It then follows from the fundamental lemma of the Calculus of
Variations 4.34 that E f = 0 £"-a.e. on W UWr , so that spt E f C
WUWr=WUWr € VUV, as asserted. OJ
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THEOREM 6.56 (Extension of Sobolev functions on Lipschitz do-

mains). Let n > 2, Q C R" a Lipschitz domain with 02 bounded and
1 < p < co. Then there exists an extension operator E : W'P(Q) —
WLP(R™).  Moreover, if Q is bounded and V C R™ is an open set
such that Q € V, we may choose E so that, for all f € W-P(Q),
spt (E2 f) e V.

1)

PROOF.

For each = € 012, there exists an open set U, C R" such that x € U,
and U, is obtained by rigid motion of a cylinder centered at 0 € R”
as in definition 6.33, i.e. there exists a rigid motion ® € SE(n) with
®(0) = z and there exists 7,h > 0 and T' : R"~! — R Lipschitz with
I'(0) = O such that U, = ®(C(0,r,h)), ®(gr TNC(0,7, h)) = U,NIN
and @(epis 'nC(o,r, h)) =U,NQ. If Qis bounded and V C R"
is an open set such that 2 € V, we may take smaller r and h
so that U, C V. Moreover, since I' is continuous and I'(0) = 0,
taking smaller r if necessary we may assume that |I'(y)| < h/4 for
y € U(0,r) C R"!; with that assumption, using the notation from
the previous corollary, we have C(0,7/2,h/2) U C(0,7/2,h/2)r C
C(0,7,h). Let W, := ®(C(0,7/2,h/2)) € U,.

From the open cover (W,),caq of the compact set 0S2, we may ex-
tract a finite subcover (W;);<;<y. For each 1 <i < N, let the cor-
responding objects defined in the previous item be denoted with a
subscript 4, so that ®;(C(0,7;/2, h;/2)) = W;, ®;(C(0,7;, hy)) = U;
|Fl| < h1/4 on U(O,'f’z) C R 1,

Let W := Qand W_; := Q, so that (Wi)-1<i<n is an open cover
of R". We may apply corollary 6.11 to obtain a smooth partition of
unity (&;)_1<i<ny of unity of R” with spt § C W, for —1 < i < N.
Besides, for 1 <7 < N, as spt & C W; € R”, it follows that spt &;
is a compact subset of W;.

We now define a sequence (E;)o<;<ny of bounded linear opera-
tors WHP(Q2) — WLP(R™) whose sum will be the desired extension
operator.

For i = 0. For each f € WP(Q), let Eo(f) := & - f- We contend
that & € WH*(R™). Indeed, & € L®(R™) (because 0 < & < 1)
and, since Z'fi() & =1 on €, we have V) = —Zij\il V¢ on (),
hence Vlo € L>®(Q,R") (because & € C®(R™) ¢ WH(R") for
1 <i < N). Asspt & C €, our contention is proved. Therefore,
& € C°(R™) NWL2(R"), with spt & C ; an application of lemma
6.35 yields Eo(f) = & - f € WHP(R™) and VY[Eo(f)] = (V&) - f +
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& - (VY f). Hence

IEo(F)lIoiemy < Mf lleienia)
[V ooy < I€ollwroeqny (I Ioenia) + 1YY Flioqeriamn),

thus showing that Ey : WHP(Q) — WLP(R™) is a well defined bounded
linear operator.

4) For 1 <i < N. We define E; : WHP(Q2) — WLP(R") as the composite
of the following sequence of continuous linear maps:

Lﬁi , (o®;) , . e
WHP(Q) —5 Wi (W; N Q) — W& (C(0,7:/2, hi/2) Nepis T;) =
0y WEP(epis T;) —55 WEP(R™) 225 wie(Rm),

where W%(’S(Wi NQ):={f e WP(IW;NQ) | spt f € W} is a linear

subspace of WHP(W,; N Q), Wé’cp) (C(0,7:/2,h;/2) Nepis I;) == {f €

WP (C(0,r;/2, h;/2) Nepis T;) | spt f € C(0,7;/2,h;/2)} is a linear

subspace of WP ((C(O, ri/2, h;/2) Nepis FZ-), and the linear maps are

described below:

a) L¢, is the multiplication by . The fact that { € C*(R") and
the product rule 6.26 imply that, for each f € WYP(Q), & - f €
WHP(Q) and spt & - f C spt & €@ W;, so that Lg, : WHP(Q) —
W(l’CFS(I/VZ» N Q) is a well-defined linear map. Since VV(¢; - f) =
(sz) : f + fl VA f, we have

e (NlIeowiney < [1€llullfller@
IV [Le; (Dl o w ey < NVEillullf Nl + 1ill IV Flle @),

hence L, is continuous.

b) By lemma 6.40, (o®;) : W:P(W; N Q) — WP(C(0,7;/2, h;/2) N
epis I';) is a surjective linear isometry and maps W:(l’cp)(Wi N Q)
onto W(I’CF; (C(0,7:/2, h;/2)Nepis T;), since spt fo®; = ®; " (spt f).
Hence (0®;) : Wg’c”) (W:inQ) — W%’C‘S (C(0,73/2, h;/2) Nepis T;) is
a surjective linear isometry.

¢) eo : W& (C(0,7:/2, hi/2) Nepis T;) — WP (epis T;) is the exten-
sion by 0. Note that, for each [ € W(l’cp) ((C(O, /2, hi/2)Nepis Fi),

e ¢o(f) € LP(epis I';) and

lleo(F) e epis vy = ”fHLP(C(O,Ti/Q,hi/Q)ﬂepis Fi);
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e since epig I'; is the union of the open sets C(0,7;/2, h;/2)N
epis I'; and epis I'; \ spt f, and since eo(f) has weak gra-
dients on both open sets (as on the latter its restriction is
null), by the locality of the weak derivative 6.13 we con-
clude that eg(f) has weak gradient given by V*“[eo(f)] =
eo(VY f) € LP(epis I';, R™) and

IV*[eo()]lILeepis Tormy = VY fH ( C(0,7:/2,h:/2)Nepis T; Rn)'

We therefore conclude that ey is a well defined linear isometry

into WP (epis T}).

d) E: WhP(epis T;) — WHP(R™) is the extension by reflection with
respect to I', cf. theorem 6.54, hence it is linear continuous.
e) (o®; 1) : WHP(R™) — WLP(R™) is a surjective linear isometry, cf.
lemma 6.40.
It follows from the two previous items that E® := Zi]\io E; is a
well defined bounded linear operator WhP(Q) — WLP(R™). We
shall prove that (a) it is an extension operator, i.e. for each f €
WP(Q), (E® f)lo = f and (b) in the case © bounded, for each
f e WWP(Q), spt (E? f) € V (recall that V is given in the statement
of the theorem).

Fix 1 < i < N and f € WYP(Q). Since the closure in R
of the support of (& - f) o ®; € W%’Cp) (C(O,ri/Z,hi/Q) N epis I‘i)
is a compact subset of C(0,7;/2, h;/2), and since C(0,r;/2, h;/2) U
C(0,7;/2,h;/2)r, C C(0,7;, h;), cf. the end of part 1) of the proof,
it follows from corollary 6.55 that spt E[(&; - f) o ®;] € C(0,r;, h;).
Thus, spt (E; f) = ®;(spt E[(& - f) 0 @4]) € ®:i(C(0,75,h4)) = Us.
We then conclude that:

e E, f=0L"ae onQ\U;

e ifx c U;NQ, & (x) € C(0,ry,h;) Nepis [';, hence E[(&; - f) o
@i o @7 (x) = (& - f)) 0 @i 0 @7 (2) = (& f)().

We have thus proved that (E;f)|q =& - f L"-a.e. on Q. Therefore,

L"-a.e. on (2,

N

(E? o= (B fla=

i;()
=Y &-f=1
1=0

since SN (& =1 on Q. That is, as elements of W'P(2), (E f)|q
f, as asserted. Furthermore, in the case 2 bounded, spt (Eq f) =
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spt(§o-f) €@ Q C Voand, for 1 <i < N, spt(E; f) € Uy C V,
whence spt (E? f) € U, spt (E; f) € V, which concludes the proof.
U

REMARK 6.57. With the same proof and notation above, in the case
in which € is unbounded and V' C R" is an open set which contains
), we may choose E* so that, for all f € WP(Q), spt (E® f) € V, but
not necessarily compact.

6.6. Sobolev Inequalities

In this section, for 1 < p < oo we want to find continuous injections
of WHP(R™) into L9(L") for some g. We divide the problem into cases:
1 <p<n,n<p<ooand the limit case p = n.

6.6.1. Case 1 <p < n.

DEFINITION 6.58. Let 1 < p < n. We define the Sobolev conjugate
exponent p* to p by

11 1
p* p on
that is
* np
p = .
n—p

THEOREM 6.59 (Sobolev-Gagliardo-Nirenberg inequality). Let 1 <
p < n. Then there exists a constant C = C(n,p) such that, for all
feGR),
1 fllps < CIV £lp-

REMARK 6.60. For 1 < p < n, there can exist only one ¢ € [1, ]
for which Sobolev’s inequality holds: it is precisely the Sobolev con-
jugate to p. That can be deduced by a scaling argument: suppose
that ¢ € [1,00] and that for all f € CL{R"), |fll, < C|Vf], for
some constant C' = C(n,p). Fix f € CY{R") and A > 0. Then
fr given by z — f(Az) belongs to C(R") and V fy(x) = AV f(A\z),
so that ||fally = A9 fll, and [|[VA], = NPV £]l,- Therefore,
I £3llg < CIVAS)Ilp is equivalent to [ f]l, < CX'=/PH/a||V f]|,. The
latter inequality must hold for all f € CL(R™) and A > 0; if the expo-
nent of A is not 0, sending A to 0 or to co yields a contradiction. Hence
l—n/p+n/qg=0,ie. 1/g=1/p—1/n.

NOTATION. Let x = (z1,...,2,) € R". For 1 < i < n, we denote
by ; € R*! the point obtained by deleting the i-th coordinate of z,
ie. ;= (:Cl, ey L1, Ly 1y - - ,iCn) e R 1.
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LEMMA 6.61. Let n > 2 and f1,..., fn : R"' — [0, 00| Borelian
functions on R"™'. Define f: R" — [0, 00] by

=[] @
i=1

Then f is Borelian on R™ and

[ fllirgeny < H||fz

In particular, f € LX(L") if f; € L"H(L"Y) for 1 <i < n.

PROOF. For 1 < i < n, let pr;, : R® — R"! be the projection
x +— Z;, which is continuous, hence Borelian; then f; o pr; is Borelian,
and so is the product f =[], fi o pr;.

We prove the asserted inequality by induction on n:

1) For n = 2,

Lnlcnl

Tonelli 1.84

\Um=/ﬁ@ﬂﬁmmﬁ@um) 1

— [ fitas)daa [ falw) don = i1l 2l
2) Induction step. Suppose that the inequality holds for n. We identify

R""! = R" x R and use the notation x = (2/,z,,;) for x € R""!.
Fix z,,1 € R. It follows from Holder’s inequality 1.73 that

ntl Hélder 1.73

/f(ml,...,xn,xn+1)d£”(x1,..., /I_IfZ ;) dL (xq, ..., ) <

< || fasilln /Hfz L dcn (T1,. ., 2 )}l/n’7

where n' = —"= is the conjugate exponent of n. By the induction

hypothesis with f* (-, 2,41) in place of f;, we have:

/H fz z dﬁn 3:1, o ,:L’n) < H[/ fi(ini)n/(n—l) dﬁn_l<:;"i)]1/(n_1)'
i=1

It then follows from the two previous equalities that

l/ﬂmwuwmaﬂnw%mwu,><nnﬂm /ﬂ ()" AL ()
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The equality above holds for an arbitrarily fixed x,.1 € R. There-
fore, integrating both members on x,, 1 and applying Tonelli’s the-
orem, we obtain:

/de"Jr1 / f(z1, .. Ty Tngr) AL (21, ... ) ALY (204) <
Rn”

/ Il / Fi(E)m AL @] AL () =

en. Holder 1.74
—||fn+1||n/H/fz B ALY @Y AL (@) <

n— 1/n Tonelli
sllfn+1||n // Fil@)" AL (@) AL ()] O
n 1/n
= lnall I /fz £ AL (@) V" =
n+1
i=1
thus proving the induction step.
O

PROOF OF THEOREM 6.59. Let f € C}(R"). For 1 < ¢ < n and
for all x = (z1,...,2,) € R™

f(x) :/ 89{- (T1,. o T, b Ty, - -y ) dE

hence

>0
]f(x)]ﬁ/ ’ f (:El,...,xi,l,t,xiﬂ,...,xn)‘dt.

—oo le

It then follows that

n n B -
|f @)l SH[/R‘ f' (331>---,xi—1,t,x,~+1,...,xn)‘dt]l/( b,
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We therefore conclude from lemma 6.61 that

/'f’n/(nl) dc" H / / oL xl,...,(’Ei,l,t,.fL'i+1,..., |dtd :|1/n 2 Tonelh
Rn—1 i

/HVfIIdﬁ” D /IIVfHdE" /e

||E: ||:: I

which proves the thesis for p =1 with C' = 1.

For 1 < p < oo, let f € C}(R") and g := |f|?, with v > 1 to be
chosen later. Note that g € CL(R") and Vg = v -sgn f-|f[""!- V.
We may therefore apply to ¢g the inequality already proved, i.e. with
p = 1, which yields

on " n-l (r—1) ,, Holder
=aer) T <o [1A0 Vs s

<A 17 T 1 1

We choose ~ satisfying

mo (v =Dp
n—1 p—1

)

i.e.
-1
_(n=Yp _,
n—p
Then
. _np mo_ (y=Dp

p:n—p:n—l p—1

We then conclude that

TL

dﬁ" VSl

which yields the thesis with C' = v = y(n, p).
U

COROLLARY 6.62. For 1 < p < n, WHP(R") C LP (R") and the
Sobolev-Gagliardo-Nirenberq inequality 6.59 holds for all f € WHP(R™).
In particular, the inclusion WHP(R™) C LP"(R™) is continuous.
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PROOF. Let f € WHP(R™). By corollary 6.21, there exists a se-
quence (fi)reny in C°(R™) such that f;, — f in f € WHP(R™). Pass-
ing to a subsequence, we may assume that f, — f L"-almost ev-
erywhere. On the other hand, by theorem 6.59, for all j,k € N,
1 = fellr < CIVE = Vil < ClUf5 = fellwee@e). That is, (fr)ren
is a Cauchy sequence in LP"(£"). Hence it is convergent in LP (L"),
and since it converges L"-a.e. fo f, we conclude that f € LP"(£") and
fx — [ in LP"(L"). Therefore, since for all k € N, || fx|l,» < C|V fellp,
taking the limit as & — oo in both members yields

[fllp> < CIV™ Fllp,

as asserted. O

COROLLARY 6.63. Let 1 < p < n and Q C R" a Lipschitz do-
main with 9Q bounded. Then WYP(Q) C LP"(L"|q) with continuous
inclusion.

PROOF. Let E : WhP(Q)) — WLP(R™) be an extension operator,
cf. theorem 6.56, and C' = C(n,p) given by the Sobolev-Gagliardo-
Nirenberg inequality 6.59. Then, for all f € WHP(Q),

Il (2nie) < B fllies (ony <
< CIF*E llier ) < CIE fllwnoqany <
< ClEN lwre -

U

The Poincaré’s inequality, proved below, is a kind of local version
of the Sobolev-Gagliardo-Nirenberg inequality 6.59, 6.62.

LEMMA 6.64. Let X, Y be metric spaces and f : X — Y bi-
Lipschitz with Lip f~! = (Lip f)~'. Then, for all s > 0 and A C X,

H*(f(A)) = (Lip f)*H*(A), i.e. f~',H* = (Lip f)"H".
PROOF.
H(f(A)) < (Lip f)"H*(A) <
(Lip £)°(Lip f71)*H*(f(A)) = H*(£(4)).

<
<

n

LEMMA 6.65. For each 1 < p < oo, there exists a constant C' =
C(n,p) such that, for all B(z,r) C R", f € C}{(R") and z € B(z,r),

| liw-r@pray <o [ wsply - dy
B(x,r)

B(x,r)
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PROOF. 1) For y, z € B(x,r), we have

f(y)—f(Z)Z/O %f(ert(y—Z)) dt:/o Vf(z+ty—=2))-(y—=z)dt.

Then

p Holder

£0) = 1 < == ([ 195G+t —2) )
<=+ [ IVt =) P

For s > 0, H"! LLOB(z,s) is a finite Radon measure - the trace
7-[“_1]3]5;(275) actually coincides with the usual Lebesgue measure of
the sphere, cf. exercise 5.42. We may therefore apply Fubini-
Tonelli’s theorem to the product measure £!' @ (H"™! LOB(z,s))
in equality () of the following computation:

/ F) — F)f aH () <
B(z,r)NOB(z,s)

1
< / ly— =P / IV (= 4ty — )P dt di" () 2
B(z,r)NOB(z,s) 0

1
= gP

\

IVf(z+t(y — 2) I dH" (y) dt =

=9(y)

XB((1—t)z+tz,tr)NoB(z,ts) © gV f)ogly)” dHn_l(y) dt =

0 JB(z,r)NoB(z,s)

1

c\o\
\\

XB((1—t)z+ta,tr)NOB(z,ts) ”(Vf) Hp d( g#anl ) dt =
——

=tl-nHn—1 by lemma 6.64

|
=y IV )P ap ) e
ot B((1—t) 2+ tx,tr) OB (=, ts)
|
<o [ e IV £ a2 ) dt =
0 B(z,r)NOB(z,ts)
LS|
_ gl / / IV F(w)||? dH " (w) dt =
0 (ts)nil B(r,r)ﬁaIB(z,ts)‘ ( )

1
—smer ] IV H @) = 2" e )
0 JB(z,r)NOB(z,ts)

B((1—t)z+tz,tr)CB(z,r)
<
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The latter integral may now be computed by means of the coarea
formula 5.50 with the Lipschitz map ¢ : R™ — R given by

w2

1
o(w) T Jo = 3 Lr-q.s., ¢ Ht} = 0B(z,ts)
which yields, for all s > 0,

/ 1)~ FR a1 () <
B(x,r)NOB(x,s)
<ot [ @) - 2L w) <
B(x,r)NB(z,s)

< g / ISP = 2]z ).

We now integrate both members of the inequality above from s =
0 to s = 2r, applying once more the coarea formula 5.52 for the
integral of the first member, which yields

/Igg(x’ ) N B(z, 2r) ‘f(y) - f(z)| dL™(y) <

N J

=B(z,r)
(2,,,.)n+p*1

—_— Vi(w)|P||lw— 2| dL™(w),
ST Lo ISP = az

whence the thesis with
2n7p+1

n—p+1

O

NOTATION. For f € L{ (L") we define the average (f),., = fB(z ny JaL”
of f on B(z,r) by

no._ 1 n

THEOREM 6.66 (Poincaré’s inequality). For 1 < p < n, there exists
a constant C = C(n,p) such that, for allB(z,r) and f € WP (U(z, 1)),

(f 11t ae)” or(f

B(x,r

1/p
IV flpdce) .
)

Equivalently,
1f = (Darllier @@y < CIV I

for some constant C’ = C’(n, p) (compare with the Sobolev-Gagliardo-
Nirenberg inequality 6.59).

LP™ (B(x,r))
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PrOOF. 1) Let f € C°(R™). For all B(x,r) C R", we compute

fﬁ |f = (fep"dL” =
B(z,r)

:][7

<

p Holder
dy <

]é Fly) — £(2)dz

B(z,r) (z,r)
p lemma 6.65
Foliw - e asa
B(x,r) J B(x,r)
Tn+p71 -n Fubini
<f ot [ VI - ) sy ™
Bar) ()" Jan
Crr~t

iy O ][ ly — 2" dy dz <
a(n) /IB(:E,T) B(x,r)
< 20m~p][ IV £(2)|P d.
B(x,r)

where, in the last inequality, we have estimated, for z € B(z, ),

[y < [ y—apray -
B(z,r) B(z,2r)
2r
:na(n)/ p " dp = 2rna(n).
0

2) Claim: there exists a constant C’ = C’(n,p) such that, for all g €
Ce(R™) and B(z,r) C R™,

<f183(x,r) ot d£n> " = <7~p ]][B(

Indeed:
a) For x = 0 and r = 1, we have, taking g := ¢|y(0,1) and E :
WP(U(0,1)) — WHP(R") an extension operator, cf. theorem

6.56:
</B(o,1)|g g d£n>1/p* = </Rn|E§
<c([ 19 Ealray) " <

< ClE[ [gllweeweay) =
——
=:C"=C"(n.p)

! n 1/p
—c([ gl +lglact)
U(0,1)

IVglPdcn + f

B(z,r

1/p
gl ac) .
)

z,r)

1/p* cor. 6.62
<

p*d£”>
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b) For arbitrary z € R™ and r > 0, let g € CZ(R") be given by
9(y) := g(ry + z), so that

fo 7 ae = o ac
B(0,1) B(z,r)

f mwﬁzf glPac
B(0,1) B(z,r)

f IV [P dL™ () = f 1PV g(ry + 2)|P AL (y) =
B(0,1) B(0,1)

= rp][ IVg|PdL",
B(z,r)

hence the claim follows from part a) applied to g in place of g.
3) Applying part 2) to g := f — (f)zr € C(R™), we obtain

(. 5=

<C(wf VAPaL £ 1f = (PP ac
B(x,r) B(z,r)

< c’(wf IV £ dem + QCnrp][
B(x,r) B(

< (C' +C'(2Cn) /) r<][
N ~~ d B(z,r)
=C(n,p)

thus reaching the thesis for f € CZ(R").

4) Let z € R", r > 0 and f € WYP(U(z,r)). By corollary 6.43,
there exists a sequence (f;)ieny in C(R™) such that f; — f in
le"(U(x,r)). For each 7 € N, it follows from the previous step
of the proof that

(f o)™ <oo(f.jospac)”

As i — oo, the second member of the inequality above has limit

1/
Cr(fB(m)va prdﬁ") * since Vf; = V¥ f in LP(U(,r), R"). We

1/p*
p* dﬁn) P ’

o dﬁ") 1/p* <

1/p by 1)
) <

1/
Ivsiract) ™

z,r)

1/
IV fIPact) ™,

contend that the first member has limit <fIB(x olf = (Fan
whence the thesis.

Indeed, applying the previous inequality with f; — f; in place of f;,
we conclude that the sequence { fi—(fi)a,r }ien is Cauchy in LP" (U(z, 7)),
hence convergent in that space. Its limit must be f — (f)., because
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(fi)ur — (f)zr and, passing to a subsequence if necessary, f; — f
L"a.e., hence f; — (fi)er — f — (f)zr L"-a.e., thus proving our con-
tention. ]

6.6.2. Case n < p.

DEFINITION 6.67 (Holder spaces). Let €2 be an open subset of R™
and 0 < v < 1. We say that f : Q — R is Holder continuous with
exponent v on € if there exists a constant C' > 0 such that, for all
x,y €8,

[f (@) = f)l < Clle =yl
Such functions form a linear subspace of R®?. We shall denote by

C%7(Q) the linear subspace of R® of all bounded Hélder continuous
functions on (2.

Note that, for v = 1, the definition above is equivalent to f being
Lipschitz.

DEFINITION 6.68 (Holder seminorm). Let € be an open subset of
R", 0 <y <1and f:Q— R" We define the C° seminorm of f by

[f]co,w(ﬁ) = SUP{VT’Z)_;;”W |z #y € Q} €|0,00].

With the notation above, note that f is Holder continuous with
exponent vy on € if, and only if, [f]con @) < oc.

PROPOSITION 6.69 (Holder spaces are Banach). Let €2 be an open
subset of R and 0 < v < 1. Then C°%7(Q) is a Banach space endowed
with the norm

[ fllcor@ = I fllu + [flcon@m)

DEFINITION 6.70. Let 2 be an open subset of R” and f : 2 — R.
We say that f*: Q — R is a version of f if f* = f L"-a.e. on (.

THEOREM 6.71 (Morrey’s inequality). Fizn < p < co.

i) There exists a constant C = C(n,p) such that, for all B(z,r) C R"
and all f € WP (U(z, 7)),

©19) ) - fel<or(f

B(x,r)

1/p
IV ace)
for L™-a.e. y,z in U(x,r).
i) If f € WLP(R™), then the limit
[ () == lm(f)z,

r—0



220 6. SOBOLEV SPACES

ezists for every x € R™ and f* is a Holder continuous version of
f with exponent v =1 —n/p, with

[ ]cov@mny < CIIVY flle@ny,
where C'= C(n,p) is the constant from part ).
REMARK 6.72. See theorem 6.44 for the case p = oo.

PROOF.

1) Let f € C}(R"). Taking C' = C(n,1) given by lemma 6.65 with
p = 1, we compute, for all B(xz,r) C R" and y, z € U(x, r),

) — £(2)] = f () — ()] dw <

B(x,r)
6.65
< {150 = S+ 17— Sl oS
C / - - Hélder
< " Vf(w —w||" "+l —w|| T dw <
o L Iy =l )

C p el 1
< —— —wlf "+ |z —w|P )P T dw ) ” / ViPder)”.
s (L Qs —ap oy Pran) T ([ gwsirac)

Since

221 Minkowski

R e K T I
B(z,r)

» p—1 p p—1
[ =ul) P aw) 7 ([ (= ul )P aw) 7 <
B(z,r) B(z,r)

p—1

/ (lly = wl'=")7 aw) ™ (/ (2 = wl' =) dw) 7 <
B(y,2r) B(z,2r)

+
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we obtain

1f(y) — f(2)| < C(n,p)r'—"/" </

B(z,r)
= cour(f,

1/p
IVFIPac”)

thus proving part i) for f € C}H(R").

Let 2 € R”, r > 0 and f € W' (U(z,r)). By corollary 6.43,
there exists a sequence (f;)ieny in CP(R™) such that f; — f in
Wl’P(U(a:, r)) Passing to a subsequence, if necessary, we may as-
sume that f; — f on the complement of a £"-null set N C U(x,r).
With C' = C(n, p) obtained in part 1), we have, for all i € N and all
y,z € Uz, 1),

1

Vsl act)” =

z,r)

1/p

) = feN=or(f, Ivsipac)

Taking ¢ — oo, it follows that (6.19) holds for all y, z € U(x,r) \ N,
which concludes the proof of part 1).

Let f € C}(R") and = # y in R". We take r = ||z — y|| and C' =
C'(n,p) obtained in step 1 of the proof, which yields the estimate

1f(@) = f(y)] < Cllw — y”l_”/p</

B(x,r)
< CIIV flle(en zmyllz =yl 7.

1/
IV /i ac) "<

Let f € WHP(R™). By corollary 6.21, there exists a sequence (f;)ien
in C>°(R") such that f; — f in WLP(R"). Passing to a subsequence,
if necessary, we may assume that f; — f on the complement of a
L™null set N C R™. By the previous step, for each ¢ € N and x # y
in R", we have

|f2(x) - fl<y>| S C||vfi“Lp(£n7Rn)||x _ yHl—n/p‘

Therefore, taking ¢ — co in the previous equality, we conclude that,
for z,y e R"\ N,

(6.20) [f(@) = FWI < CIVY Flleoen el =yl

In particular, f is uniformly continuous on R™ \ N, which is dense
in R" because N is L£™null (thus it has empty interior). Hence

flrm\n may be extended to a continuous function f : R" — R,

which therefore coincides with f L£"-a.e. on R", i.e. f is a version of
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f. By continuity, fsatisﬁes (6.20) for all z,y € R" i.e. fvis Holder
continuous with exponent 7 =1 — 1/n and

[flcon@ny < ClIVY fllo@n).-
Finally, for all z € R™ and all » > 0, (f)., = (f)x,r, because
J = f L£" almost everywhere. Since f is continuous, it follows that

Alim, 0(f)er = lim,o(f)zr = f(2), ie. f* = f, which concludes
the proof of part ii).

O

REMARK 6.73. With the notation from the previous theorem, for
n < p the map WYP(R") — C(R™) given by f ~— f* is injective: if
f*=g" then f = g L"-a.e., hence they represent the same equivalence
class in WLP(R™). Thus, identifying each element f of WhP(R") with
its continuous version f*, we obtain an inclusion W*P(R™) c C(R").
We shall see in the next corollary that we actually have a continuous
inclusion WP(R") C CO1-n/P(R™).

COROLLARY 6.74. Ifn < p < oo, then WHP(R™) C C®(R™), where
v =1—mn/p, with continuous inclusion.

PROOF.
1) Let f € CP(R") and fix x € R*. Taking C' = C(n,1) given by
lemma 6.65 with p = 1, we compute,
6.65

(@) s]é ) = 1]y + f ) dy <

(x,1)
C Holder

(z
< — \Y —z||' " dy + C(n, <
<o / STy =2l 4 O D s

(1=n)p "
< Cup)IV S e ( [ =l 5 dy) T o <

B(z

J/

-~

=C(n,p)<oo, since (11;%)17>_n

< C(n,p) || fllwre rny-

Taking the sup over x € R™ on the first member of the above in-
equality, it follows that f is bounded and

[ flle < C(n, D) fllwre@ny-

2) Let f € WHP(R™). By corollary 6.21, there exists a sequence (f;)ien
in C>°(R") such that f; — f in WHP(R™). Passing to a subsequence,
if necessary, we may assume that f; — f on the complement of a



6.7. COMPACTNESS 223

L"null set N C R™. By the previous step, for each ¢« € N and z in
R"™, we have

| fi(@)] < C(n, )| fillwre -

Therefore, taking ¢ — oo in the previous equality, we conclude that,
for x € R\ N,

[F (@) < C(n, p) [ fllwro@n)-

In view of part ii) of theorem 6.71, we therefore conclude that f*
is bounded and Hoélder continuous with exponent v = 1 —n/p, i.e.
f* e CO7(R"), with

||f*||C0ﬂ(R") < C(”vp)Hf”leP(]Rn)-
0

COROLLARY 6.75. Ifn < p < oo and 2 C R" is a Lipschitz domain
with O bounded, then WP(Q) C C®(Q), where v = 1 — n/p, with

continuous inclusion.

PROOF. Let E : WHP(Q) — WLP(R™) be an extension operator, cf.
theorem 6.56. The inclusion WHP(Q) € C%7(Q) is the composite of the
following sequence of continuous linear maps:

WP (Q) 5 WEP(R™) — CO7(R™) — CO(Q),

where the last arrow is the restriction f — f|q and the middle arrow
is the inclusion from the previous corollary. O

6.7. Compactness

LEMMA 6.76. Let 1 < p < n and 1 < q < p*, where p* is the
Sobolev conjugate of p. Let (f;)ien be a bounded sequence in WHP(R™).
Suppose that there is a relatively compact open set V- C R"™ such that,
for alli € N, spt f; @ V. Then there exists a subsequence (fi )ren of
(fi)i which is convergent in LY(L™).

Note that, for 1 < ¢ < p* and for each i € N, f; € L9(L"), in view
of Sobolev-Gagliardo-Nirenberg inequality 6.62 and of the fact that
spt f; € V. However, we cannot ensure the existence of a subsequence

as in the statement of the lemma for ¢ = p*.
We give two proofs for this lemma.

PROOF 1. Let (¢¢)es0 be the standard mollifier on R”. For each
e >0 and ¢ € N, we define

i = ¢ex fi € CO(R).
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Substituting V' with V' 4+ U(0,1), we may assume that, for all i € N
and for all 0 < e < 1,

spt ff € V.

1) Claim 1: ff — f; as € — 0 on L9(L"), uniformly on i € N.

Indeed:

a) Fix 0 < € < 1. For each i € N, by corollary 6.43 we may take

gi € CP(R™) such that ||f; — gillwie@n)y < €. Moreover, since
spt f; € V, we may assume spt g; € V.
For each + € N and x € R", we have

—1

52 600) — ) = [ loto =) ooty dy ="

B(0,¢)

— /]B(O 1)[91‘(35 —€2) — gi(2)]o(2) dz =

_ /R L) /0 1 % (g (x — tez)] dt dz —

1
= _/ qb(z)/ Vgi(x —tez) - ezdt dz.
B(0,1) 0
Thus

g5 = gills = / 165(2) — gi(a)| der <
Rn

1 .
< 6/ / ¢(z)/ IV gi(z — tez)|| dt dz da "2
1
_ e/ ¢(z)/ IVgi(z — tez)| dz dt dz dz =
]B(071) 0 Rn

. Holder
— o [ Vgldcr e ¢ / IVglldcr
R™ 174

< £V Vgl <
< L' V)F IVl + €.
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b) Hence, for each 7 € N, we have
Holder, Young 1.108.g) and a)
1fi = fillh < W7 = gillh + lgf — galls + llg = filla <
p=1 n p—1
<2L"V) 7 |\ fi = gilly + £7(V) 7 e(IV fillp +¢) <
<eL'(V)F (24 e+ VA, <
<eL™(V)'7 (3+sup{||V/ll,| i €N}).

=:C<x

c¢) It then follows from the interpolation inequality 1.77, with A €
(0, 1] given by % = A+ 1;3__*)\7 that, for each i € N,

€ € || fe 1-X 6.62
115 = fille < (1f5 = fille s = fillo ™ <
<(Co* VU=l <

1—X
< (2sup{| 9 fillplien})

< C"e)‘,

where C' = C*(2sup{||V fill, | i € N})l_/\ < 00, which concludes
the proof of claim 1.
2) Claim 2: for each 0 < € < 1 fixed, (ff);en is uniformly bounded and
equicontinuous.
Indeed, for all i € N, it follows from Young’s inequality 1.108.g)
that:

C
1£lloo = Nide* filloo < Nellcll fills < = < o0,

/

IV fille = Ve * fillso < IV @ellsoll fill <

whence the claim.
3) Claim 3: for each § > 0, there exists a subsequence (f;, )xen of (fi)i
such that

et < 00,

thUprij — fiellLaeny < 0.

J,k—o0

To prove claim 3, we firstly apply claim 1 to find 0 < € < 1 such
that, for all i € N, || ff — fil|ra(eny < 2.

Since spt ff € V € R” for all + € N, in view of claim 2 we
may apply Arzela-Ascoli’s theorem to find a subsequence (f;, )ren
such that f; is uniformly convergent on R". Since L"(V') < oo, this
subsequence is also convergent in L9(L"), so that

1imsup||ffj - ffk|||_q(£n) =0.

j,k—00
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Finally, since || fi; — fi, llg < lfi; = fi5lla + 1S5+ Filla + L5 — fallas
the claim follows.

4) We now apply claim 3 for § = 1/m, m € N, yielding for each m € N
a subsequence f™ = (f™)iex of (" Y)ien, with f© = (fi)ien, such
that, for all m € N,

1
limsupl[ ;" = fi"lluacen) < —

J,k—o0

The diagonal (f"),en is therefore a subsequence of (f;); which is
Cauchy in L9(L"), hence convergent in that space.

O

ProoOF 2. We apply the Kolmogorov-Riesz-Fréchet compactness
criterion 1.80.

Note that, in view of Sobolev-Gagliardo-Nirenberg inequality 6.62,
(fi)ien is bounded on LP"(L£™). Thus, since £™(V) < oo, it follows that,
for 1 < g < p*,

(6.21) sup{|| fillLacery | @ € N} < o0.

On the other hand, it follows from exercise 6.25 for p > 1 and from
exercise 7.38 for p = 1 that, for all h € R™ and all 7 € N,

Infi = filleoceny < [[B]l sup{lIV* fillio(emy [ € N} .
::C\’;OO
Thus, in view of Holder’s inequality, for all h € R™ and all i € N,

7 fi = fillgen < IRICLT(V) .

Therefore, applying the interpolation inequality 1.77, it follows that,
for 1 <g<p*,heR"andieN,

70 fi=fillaeny < BN (CLYV)T ) sup{||mfi — fi]

(.

:2\6’
where A € (0,1] is given by

Since

sup{[|7afi — filllo (cny | © € N} < 2sup{|| fi

we have C’ < oo and, since X\ > 0, we conclude that
(6.22) }lLiL%HThfi = filltaemy =0

uniformly in 7 € N.

LP* (£7) ‘ 1 € N} < 09,
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With (6.21) and (6.22) in force, we may apply the Kolmogorov-
Riesz-Fréchet compactness criterion 1.80 to F := {f; | i € N}. There-
fore, F|y has compact closure in LY(L"|y); since each f € F has sup-
port in V| we conclude that F has compact closure in L9(L"), whence
the thesis.

O

THEOREM 6.77 (Rellich-Kondrachov). Let Q be a bounded Lipschitz
domain in R", 1 < p <n and 1 < q < p*, where p* is the Sobolev
conjugate of p. Then

WHP(Q) € LY(L"]q),
i.e. WHP(Q) C L9(L"|q) with compact inclusion.

PROOF. We have continuous inclusions WP(Q) C LP (L"]q) C
LY(L"]q), the first in view of corollary 6.63 and the second in view
of the fact that £"(Q) < oo and of Hélder’s inequality.

Therefore, it suffices to show that each bounded sequence (f;);en in
WHP() has a subsequence which is convergent in L9(L£"|q).

Let V' be an open relatively compact subset of R™ such that ) €
V @ R™ and E : W'P(Q) — WLP(R") an extension operator, cf. the-
orem 6.56, such that spt E f € V for all f € WHP(Q). Then (E f;)ien
is a bounded sequence in WHP(R") with spt f; € V for all i € N. We
may therefore apply lemma 6.76 to obtain a subsequence (f;;);en such
that (E fi,)jen is convergent in L(L"). Since f; = E fi|q for all i € N,
we conclude that (f;;);en is convergent in L9(L"|q). O

COROLLARY 6.78. Let €2 be a bounded Lipschitz domain in R,
1 <p<nand (fi)ien a bounded sequence in WHP(QQ). Then there exists
a subsequence (fi;)jen of (fi)ien which is convergent in each L9(S2), for
1<qg<p’.

PROOF. Let (¢m)men be a sequence in [1,p*) which increases to
p*. For each m € N, we may apply theorem 6.77 to find a subsequence
I™ = (fM)ien of f™71 with fO = (f,)ien, such that f™ is convergent in
L (€2) (hence on L) for 1 < g < gy, since L*(Q2) < o0). The diag-
onal (f™)en is therefore a subsequence of (f;);eny which is convergent
in each L9(Q), for 1 < ¢ < p*. O

COROLLARY 6.79. Let Q) be a bounded Lipschitz domain in R,
1 <p<nand(fi)ien a bounded sequence in WHP(QQ). Then there exists
f e WHP(Q) and a subsequence (fi,)jen of (fi)iew such that fi; — f in
each L9(QY), for 1 < q < p*.
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PROOF. Let (f;;);en be a subsequence of (f;)iey which is convergent
in each L9(Q), for 1 < ¢ < p*, cf. corollary 6.78. We contend that its
limit f belongs to WP(2). Indeed, since 1 < p < p*, f € LP(Q) and
fi, = fin LP(Q). As (Vfi,)jen is bounded in LP(L"|q, R"), it follows
from proposition 6.3.ii) that f € WP(Q), as asserted. O

COROLLARY 6.80. Let €2 be a bounded Lipschitz domain in R™ and
(fi)ien a bounded sequence in WH(Q). Then there exists f € LY (L"]q)
and a subsequence (fi;)jen of (fi)ien such that fi;, — f in each L9(Q),
for1 <q <1~

PROOF. Let (f;;);en be a subsequence of (f;)ieny which is convergent
in each L9(92), for 1 < g < 1%, cf. corollary 6.78. We contend that
its limit f belongs to L' (L"|q). Indeed, since (fi,);en is bounded in
LY (L"]q) (because it is bounded in WP(€2) and corollary 6.63 may be
applied), it follows from Banach-Alaoglu’s theorem that there exists
a subsequence of (f;,);jen which is weak-star convergent to some g €
LY (L"]Q); since it also converges to f € L1(L"|q), we conclude that
f=g¢€LY (L"), as asserted. O



CHAPTER 7

Functions of Bounded Variation and Sets of Finite
Perimeter

Let €2 C R™ open. We define functions of bounded variation on 2 as
LiL. functions on  whose distributional gradient is an R"-valued Radon
measure on ). For that purpose, we make the following generalization
of the notion of weak derivatives introduced in 5.3:

DEFINITION 7.1 (weak derivatives and gradients, bis). Let Q be an
open subset of R and u € L} _(L"|q). We say that:

loc
i) For 1 < i < n, u has weak i-th partial derivative p; € Mo.(2,R) =
CQR)" i ¥ € C=(9),

/uﬁgp dﬁ”z—/gpdui.
o O Q

ii) whas weak gradient 1 € Mioo(Q,R") = C_(Q,R")" if Vo € CZ(Q,R"),

(7.1) /udiv godﬁ”:—/go- du.
Q Q

We use the same notations for weak derivatives introduced in definition
5.3.

REMARK 7.2. With the notation from the definition above, it fol-
lows from the definition of R"-valued Radon measures 4.1 and remark
4.4 that:

1) For 1 <i<n,u€LL (L"q) admits weak i-th partial derivative if,

loc

for each compact K C €, there exists Cx < oo such that

Oz
2) u € L (L") admits weak gradient if, for each compact K C ©Q,

loc
there exists C'x < oo such that

0
sup{/ U 14 dL™ | ¢ € CZ(Q),spt ¢ C K, [|¢|lu <1} < Ck.
Q i

sup{ [ wdiv pdL” | € CHQRY), st € K.l < 1} < Ci
Q

3) Weak partial derivatives or weak gradients, if exist, are unique.

229
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4) u € L _(L"]q) has weak gradient g = (g1, ..., ttn) € Mioe(2,R")
iff it has weak partial derivatives of first order p; € M,.(€2,R) for
1< <n.

5) If u € L} (L"]q) has weak i-th partial derivative v; € LiL_(L"]q) in
the sense of definition 5.3, then it has weak i-th partial derivative
L' Lv; € Mjoe(2,R) in the sense of definition 7.1. Thus, consid-
ering the injection Lii (£"|q) C Mioc(S2,R) given by v — L™ L v,
we see that definition 5.3 may be considered a particular case of
definition 7.1.

6) It is clear that the set of functions u € L} (£"|q) which admit weak

gradient is a linear subspace of LL_(£"|q) and that weak derivatives
and weak gradient are linear in this subspace. We denote it by

BVi0c(€2), cf. definition 7.5 below.

Exercises 5.4 and 5.5 admit the following counterparts for the ex-
tended notion of weak derivatives.

EXERCISE 7.3 (weak gradients, bis). Weak gradients may be also
characterized by means of Gauss-Green identity in gradient form. That
is, let © be an open subset of R" and u € L} (L£"|q); then u admits

loc

weak gradient 1 € M. (2, R") iff Vip € CZ(€2),
(7.2) / uVepdL" = —/ e du.
0 Q

EXERCISE 7.4. Let Q be an open subset of R”, u € L _(£"|q) and

loc

1 < i < n. If there exists p; = % € Mioe($%,R), then Vo € CZ(),

/u(‘?go dL”——/god/L,-
o O Q

DEFINITION 7.5. Let  be an open subset of R™.
i) We denote by BV),.(Q2) the set of functions u € LL_(£L"|q) which

loc
admit weak partial gradient V¥ u € Mo.(£2,R™). Such functions
are called of locally bounded variation on 2.

ii) We say that u is a function of bounded variation on Q if u €
LY(L"q) and u admits weak gradient V¥ u € M(Q,R"), i.e. its
weak gradient is a finite R"-valued Radon measure on 2. We
denote by BV(2) the set of functions of bounded variation on €.

iii) We say that £ C Q is a set of locally finite perimeter in ) if
XE € BVio(Q2). We say that E is a Caccioppoli set or a set of
finite perimeter in Q if yg € BVio(Q) and V¥ xg € M(Q,R").

EXAMPLE 7.6. Let © C R” open and f € W31 (). Tt follows from
remark 7.2.5) that f € BV),.(£2) and its measure-weak gradient is given
by L' LV f € Mio(2,R").
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The inclusion W1(Q) © BVioe(Q) is strict; for instance, if u =
X(0,00) 00 §2 = R, V" u coincides with the Dirac measure o € M(R,R),
so that V¥ u L £", hence u € BV(R) \ WEI(R).

loc

THEOREM 7.7 (locality of the weak derivative). Let 2 C R™ open,
f €Ll (L") and F C 2% an open cover of Q. Then f admits weak
partial deriatives of first order on Q iff YU € F, flu admits weak
partial derivatives of first order on U. Moreover, weak derivatives com-
mute with restrictions (for a Radon measure, “restriction” here means

“trace”).

LEMMA 7.8. Let U C R™ open.
i) If 1 € Mioe(Q,R") and f € L(|ul), then u Lf € M(R",R") and

i L f| = |ul LIS
it) If € € C°(U) and f € BV (U), then &- f (defined as 0 on R*\U)
belongs to BV(R™) and

VHE-f) =L L(fVE) + VT fLE

PROOF.

i) Let (v, |u]) be the polar decomposition of u. Then, for all ¢ €

C(R™R™), | Lf ol = [[o{ef,v)dlull < llellullfllegapy, thus
showing that u L f € M(R™ R™). Besides, the same computation

shows that, for all p € C((R",R"), u L f-o = [o. (¢, {7”‘) d(p L|f]),
hence the polar decomposition of p L_f is (%, pw | f]).

ii) It follows from lemma 6.14 that fVE € LY(L",R"). Let p :=
Lr L (fVE) + V™ f L& Then p € M(R™,R™) by the previous
item; it therefore suffices to show that £ - f admits weak gradient
equal to u. Indeed, YV € C°(R"),

/Rn(g'f)'v@dﬁn:/gf'(V(f’SO)—V§~go)dL":
:_/@def—/f'vf-godﬁnz
& Q

=—/ e dp,

as asserted.
O

PROOF OF THEOREM 7.7. The implication “=" and the fact that
weak derivatives commute with restrictions are clear. We must prove

the converse implication, i.e. if VU € F, f|y admits weak gradient
VY(flu) € Miee(U,R™), then f admits weak gradient on .
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1) We may assume that F is locally finite and VU € F, U € ). Indeed,
in the general case, take a locally finite open refinement G of F such
that VU € G, U € 2. For each V' € G, there exists U € F such that
V C U; since f|y admits weak gradient VY(f|y) € Mioc(U, R™), it
follows that f|y = (f|y)|v admits weak gradient, so that we may
replace F by G.

2) Take a smooth partition of unity (£y)yer of €, given by theo-
rem 6.8, such that VV € F, & € CX(V). We contend that
o= ver VV(flv) L& € Mioo(2,R"). Indeed, for each com-
pact K C €, there are finitely many Vi, ..., Vy € F which intersect
K, so that pi|ckorn) = Z;V:1 VY(flv,) L&y, is linear continuous by
lemma 7.8.1), thus proving our contention.

3) Let ¢ € C(Q,R™). Since spt ¢ is compact, there are finitely many
Vi,...,Vy € F which intersect K. We then have

N
/Qw-duzjg;/gfjso-dv (flv,) =
N
=;/Vj<fjso>-dv (fly,) =
N
=S Ay, -div(ge)den =
;/VJ V. 1V QO
N
=—j§_;/gf-dw<sjso>dc -

z—/Qf~diV(Z§j90)dﬁ"=

:-/f-diwdc",
Q

thus proving that V¥ f = p on €.
O

COROLLARY 7.9. Let 2 C R™ open and f : 2 — R Lebesgue mea-
surable. Then f € BVoc(Q2) iff for all open V € Q, f|y € BV(V).

PRrOOF. The implication “=" is clear, in view of the fact that weak
derivatives commute with restrictions. Conversely, assume that for
all open V- € Q, fly € BV(V). In particular, for all open V' € ,
flv € LY(L"]y), hence f € LL_(L"]q). It then follows from theorem 7.7

loc

that IVY f € Mype(Q, R™), thus f € BVjoe(9). 0
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PROPOSITION 7.10. Let Q be an open subset of R™. Then BV(Q)
1s a Banach space with the norm

(7.3) [ fllevie) = [ fllue + [V FI(9).

ProOF. It suffices to show that the graph of V¥ : BV(Q) —
M(Q,R™) = C,(2, R™)" is closed in the Banach space H := L'(L"|q) x
M(Q,R™). Indeed, let (ug,vg)ren be a sequence in gr V¥ such that

(ug,vg) = (u,v) € H. We must show that u is weakly differentiable
and V" u = v. Indeed, Vo € CX(Q,R"), Vk € N,

/ukdiv @dﬁ":—/gw duy.
Q Q

Since u, — u in LY(L"]q) and v, — v in in M(Q,R") (in particular,
v 2 v), the above equality holds with u in place of u; and v in place
of v, thus proving our contention. O

REMARK 7.11. If © is an open subset of R™, BV..(£2) admits a
Fréchet space topology induced by the family of seminorms {||-||gv(v) |
V € Q open}.

7.1. Gauss-Green Measures and Generalized Divergence
Theorem

DEFINITION 7.12 (Gauss-Green measure, exterior normal and perime-
ter measure of a set of locally finite perimeter). Let © be an open
subset of R” and E C 2 be a set of locally finite perimeter in €2, i.e.
such that xg € BVo(2) (in particular, if F is a Caccioppoli set in €2,
cf. definition 7.5). The R™-valued Radon measure pug := — V% xp €
Mo (2, R™) (attention to the minus sign) is called the Gauss-Green
measure of F.

Let (vg, |ug|) be the polar decomposition of up. We call the positive
Radon measure P(FE,-):= |ug| on Q the perimeter measure of E and
vg the exterior normal to E.

REMARK 7.13. With the notation from the previous definition, let
E be a set of locally finite perimeter in Q and 9%E = QN OF be the
topological boundary of E in €.

1) It is clear that spt up C O%E. Since vg is determined up to |up|-
null sets, we may and do assume henceforth that vz = 0 on Q\ 0°F
and we identify vx with a Borelian map 0%F — R".

2) It follows from the definition of the polar decomposition and from
exercise 7.4 that, for all ¢ € CL(Q,R"),

(7.4) /div @dﬁ”:/ o -vpd|lugl.
E °E
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We call the above equality the generalized Gauss-Green theorem.

EXERCISE 7.14 (Complements of sets of locally finite perimeter).
Let €2 be an open subset of R” and E C ) be a set of locally finite
perimeter in . Then '\ £ has locally finite perimeter in € and

HO\NE = —HE.

EXERCISE 7.15 (Sets of finite perimeter under scaling and trans-
lation). Let E be a set of locally finite perimeter in R", x € R™ and
A > 0. Then x + AF is a set of locally finite perimeter in R™ and

Mz E = (I)#ME,

where @ : R™ — R” is given by y — x + A\y. In particular, if £ has
finite perimeter, so does r + AE and P(z + AE,R") = A" 'P(E,R").

PROPOSITION 7.16 (Lipschitz epigraphs have locally finite perime-
ter). Let n > 2, f : R"™' — R Lipschitz and Q2 := epis f. Then Q
is a set of locally finite perimeter in R™, |ug| = H*" ' LLIQ and vg
coincides with the unit outer normal to 0S) in the sense of definition
6.46, i.e.

/
vy = (1))
V31V
on each point point x = (:U’, f(m’)) in 0) = gr f whose abscissa x' is
a differentiability point of f.

ProoF. It follows from theorem 6.45 and remark 6.47 that yg ad-
mits weak gradient V¥ xg = (—v, "' LOE). O

We next generalize the previous proposition to Lipschitz domains.

LEMMA 7.17. Let n > 2, f : R*! — R Lipschitz, U an open
subset of R", E' :== U’ Nepis f and V' : Depis f — R™ the unit outer
normal to D epis f in the sense of definition 0.46 (which, in view of the
previous proposition, coincides with the exterior normal to epis f in the
sense of definition 7.12); see figure 1. Let ® € SE(n) be a rigid motion,
U:=0U), E:=QF) and v := 0,0/, i.e. v:0P(epis f) — R™ is
given by x — DO (P (x)) - /(97 (2)). Then:

i) ®yu(H"! Ldepis f) = H" ! LOP(epis f).
ii) E is a set of locally finite perimeter in U, |up| = H" ! LLOVE and
its exterior normal is given by vg = V|gug.

In particular, H"~' L_O®(epis f) is a Radon measure. Note that
depis f = gr f, OV E' = U' Ndepis f and OVE = ®(OV'E") = U N
0P (epis f).
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h \r\\»\

s

FiGURE 1. Gauss-Green measure of a Lipschitz Domain

PROOF.
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i) Since @ is an isometry onto R", ®,H"~' = H""!. Therefore, for

all A C R,

Dy (H" ' Ldepis f)(A) =H"" Ldepis f('(A))

ii)

= K"t (0 epis f N CID_l(A))
= N[O (9D(epis f)NA)] =
= O, H" (0P (epis f)NA) =

=H""' LOd(epis f)(A).

1) Since Xpr = Xepis f|v7, it follows from proposition 7.16 and from
theorem 7.7 that E’ is a set of locally finite perimeter in U’ and
its Gauss-Green measure g coincides with the trace fepis f|o-
Moreover, by proposition 4.36, the polar decomposition of g

is (1[0 s M),
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2) Let R € SO(n) be the linear part of @, so that D®(z) =cte.= R.
We have, for all ¢ € CZ(U,R"):

/ div pdgn AF P Ee=t / (div ) o @dLm &
E !

4 and 1)

:/ div(R™ oo ®)dL” -
E/ ——
eCe(U',R)

/ (R opo®,V/)YdH" ! =
U B/

= /(R_l op,Vod Hod d(H" LIVE) =

J/

= /\(Rl op, Vo CITI)J dPy (7—["71 L@U/E/) =
RGS:O(”)@Roy’ocb—l) by:i),Hnil Love

~ [ter)a(nr LoV E),
where equality (x) is justified by, for all x € U,

div (R*1 opod)(z)=tr D(Rfl oo d)(z) chain rule
= tr [R™ o Dyp(®-z) o R] =
U

THEOREM 7.18 (Gaus-Green theorem for Lipschitz domains). Let
n > 2 and 0 C R™ be a Lipschitz domain. Then € is a set of locally
finite perimeter in R"™ and |uo| = H" ™' LOS.

PROOF.

1) For each z € 012, there exists an open set U, C R" such that = € U,
and U, is obtained by rigid motion of a cylinder centered at 0 € R”
as in definition 6.33, i.e. there exists a rigid motion ® € SE(n) with
®(0) = z and there exists 7,h > 0 and T' : R"~! — R Lipschitz with
I'(0) = O such that U, = ®(C(0,r,h)), ®(gr TNC(0,7, h)) = U,NON
and <I>(epis rncC(o,r, h)) =U,NKQ.

2) From the open cover (U,).caq of 02, we may extract a countable
subcover (U;);en by means of Lindel6f’s theorem. For each i € N, let
the corresponding objects defined in the previous item be denoted

with a subscript i, so that ®; ((C(O, s, h,)) = U;,.
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Let Uy := Q and U_; := Q°, so that (U;)i>—1 is a countable
open cover of R™. We may apply corollary 6.11 to obtain a smooth
partition of unity (&;);>—1 of R® with spt & C U, fori > —1. Besides,
for i > 1, as spt & C U; € R", it follows that spt &; is a compact
subset of U;.

Claim 1: for each i > —1, u; : CX(R",R") — R given by ¢ —
Jo div (&) AL™ is a finite R"-valued Radon measure on R™. Indeed,
it is clear that u_; = pp = 0, and for i > 1 and ¢ € C(R", R"),

/ div (&(’0) dcn spt §:i@Ui / div (SZQP) dcrn lemm:a 717
Q U;NQ

_ /@@-, vy d(H" LaYQ),

where v; = ®;,0, ¢f. lemma 7.17. It then follows that, for all
p € C2(R™,R"),

i - o] < (H"1 L0YQ) (spt &)l

Since H"~! L0 is a Radon measure on U; and spt &; is a compact
subset of U;, we conclude that || znmey < (H"' LOYQ) (spt &) <
oo, thus proving the claim.
Claim 2: For each compact subset K of R", ux : C°(K,R") =
{o € C*(R™,R") | spt ¢ C K} — R given by ¢ — [, div ¢ dL" is
continuous with respect to the topology of uniform convergence.

Indeed, since K is compact and (spt &;);>—1 is a locally finite
family in R”, K intersects the members of this family for at most
finitely many indices. That is, there exists N € N such that K N
spt & = 0 for i > N. Thus, for all p € CX(K,R"), p = > | &0,
hence div ¢ = Zfi_l div (&), which implies px = Zf\i_l tilcoo (R,
where the p;’s were defined in the previous item. Therefore, claim
2 follows from claim 1.
It follows from claim 2 that ¢ € CZP(R™,R") — [, div ¢dL" is
linear continuous in the LF topology of C_(R™ R"), i.e. it is an
R"-valued Radon measure on R". We have thus proved that xqo €
BVioc(R™), i.e. Q is a set of locally finite perimeter in R™.

Let (vq, |pal) be the polar decomposition of pug.
Claim 3: with the notation from claim 1, for 7 > 1, the trace of ug on
U; has polar decomposition (v;, H"™' LLoYQ2). In particular, from
the uniqueness of the polar decomposition it follows that |ug| ‘Ui =
H L LoYiQ and vg = v; |pol-a.e. on OViQ.
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Indeed, for each ¢ € C(U;, R"),
fio - @ = / div @ dgn P2
0
_ / le (pdﬁn 1emm:a 717
U;

_ / (o, d(H™ oY),

whence the claim, since H"~! LLaVQ) is a Radon measure on U; and
|lvill = 1 almost everywhere on U; with respect to H" 1 LY.

7) For i > 1, 0Q N U; = 9YiQ). Tt then follows from claim 3 that the
Borel regular measure H"~! o0 and the positive Radon measure
|11o| have the same traces on U;, namely, H"* L_9%Q. Since both
measures have support on 0€2, and since (U;);>1 is a countable open
cover of 99, we conclude that |ug| = H"™! LLOQ (since, for each
A € PBgn, we may write ANIQ as a countable disjoint union U;>; A;
with A; a Borel subset of U; for each i > 1).

O

COROLLARY 7.19. Let n > 2 and 2 C R™ be a Lipschitz domain.
Then H™ ' L0 is a Radon measure.

REMARK 7.20 (outer normal to a Lipschitz domain). With the no-
tation from the proof of the previous theorem, for each i > 1, the exte-
rior normal to € coincides H" ! LL9Q-a.e. with v; on 0QNU; = 9V Q.
In particular, it follows from remark 6.47 that, if 9 is a C* hypersurface
on a neighborhood of p € 9€), we may choose v on this neighborhood
as the usual outer unit normal from Differential Geometry.

7.2. Regularization of Radon measures and BV functions

PROPOSITION 7.21. Let (¢1)i=0 be the standard mollifier on R™.
Then, for each ¢ > 0, the convolution with ¢. defines a continuous

linear map ¢, * : C_(R™, R") — C_(R™, R").

PROOF. Given K C R™ compact, ¢, maps CK(R™, R") to CK«(R™, R"),
where K, := K + B(0,¢) is the e-neighborhood of K. Since, for all
o € CKR™ R"), 16, * ¢llu < [lell, the linear map ¢, » - CK(R™ R™) -
CKe(R™,R™) is bounded with respect to the norm of uniform conver-
gence. U

With the same proof, given an open subset {2 C R™, the convolution
with ¢, defines a continuous linear map ¢, * : C_(2., R") — C_(Q, R"),
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where (), is given by definition 6.17. It then follows from proposition
4.39 that (¢¢ *)" 1 Mige(Q,R") — Mioe(e, R?) is a well defined linear
map. We shall omit the “t” in the notation of this transpose, i.e. we
denote it with the same notation “¢ *”.

DEFINITION 7.22 (regularization of R™-valued Radon measures).
Let €2 be an open subset of R, i € Mo.(£2, R") and (¢;)¢~0 the stan-
dard mollifier on R™. We define the t-approximation or t-reqularization
Oflu’ by Mt = ¢t NVAS M10c<Qt7Rn)-

REMARK 7.23. The definition above extends definition 6.17 for
LL (L™|q,R™). That is, considering the embedding L{_(L™]o, R™) C
Mioc(©,R™) given by f +— L™|q L f, we have

(£m|Q I—f) = £m|Q ( ) S Mloc( )
Indeed, for all f € L|oc(£m|Q,R”) and all p € CC(QE,R"),
(LMo LLf)e- o= /(6155*90) L facm 1.108.1‘):7(561@
Q
:/90'(¢e*f)d£m:
Q

=L"a L(f)-¢

PROPOSITION 7.24. With the notation from the previous definition,
let Q@ C R™ open and p € Mioe(2,R™). Define ¢ : Q. — R™ by

/<b z —y) du(y).
Then uf € C*(Q,R™) and
e = LMo, Lyt
| < e

PRrOOF. 1) Let (v, |p|) be the polar decomposition of u. For each
closed ball B C Q. and for each multi-index o € Z7, we have, for
alleBandallyEQ

‘aa(¢€ - y )’ - ‘8a¢6 T — ) (?J)’ < "aa¢e|‘uXB+B(0,e)(y)'

Since Xp1m(0.e) € L'(|u]), we may apply the dominated convergence
theorem to conclude that, for all x € B°,

30%p(z) = / O de(z — y) du(y).

In particular, p. < L™
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2) For all p € C_(Q,R"), we have, for all z € 2, and all y € Q,

be(r —y)|lo()]| < H¢e”uuw‘|qupt v(m)Xspt ©+B(0,¢) (y),

hence (z,y) € Q x Q — ¢(r — y)p(r) € R” is summable with
respect to L™|g, ® |u|. That justifies the application of Fubini’s
theorem in the following computation:

/ o(x) - () AL () =

/ / 0o = y)el@) dL™(@ >)~v<y>d|m<y>‘**é¢f

/qﬁew - dply) =

= U -

thus showing that p. = L™|q, Lu, as asserted. In particular,
since [|p|] < |p|¢ (by the triangle inequality), it follows that |u.| =
o Lllpell < £™a. Lpl® = [ule

O

THEOREM 7.25 (Weak-star convergence of regularized Radon mea-
sures). Let Q2 be an open subset of R™ and 1 € Myo.(2, R™). Then, as
€l 0,

pre = and | =|ul,

in the sense that, for all ¢ € C_(2,R™), pe- o — - and similarly for
the total variations. Moreover, for all e > 0 and E € HBq,,

el (E) < |pl(Ee),
where E. := E 4 U(0, €) is the e-neighborhood of E.

PROOF.

1) Let ¢ € C(2,R") and take ¢y > 0 such that spt ¢ C Q.. Put
K = spt ¢ + B(0,¢9) € Q and ¢, := ¢ *p, where (¢¢)eso is the
standard mollifier on R™. Then, for all 0 < € < €, spt p. C K and
e — ¢ uniformly, by 1.111.ii). It then follows that

A A N

as € | 0, thus showing that p. =y as € | 0.
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2) For all € > 0, it follows from proposition 7.24 and remark 4.32 that
\pe] = L™|a. L||p€]|. On the other hand, it follows from the trian-
gle inequality that, for all z € Q, [|p“(z)|| < [, de(x — y) d|u|(y).
Therefore, for all € > 0 and all £ € Aq_,

el (E) = /EHlLE(HC)Hdﬁm(x) <
S/Qe XE(SU)</Q¢6(:c—y)dm|(y)> dcm(z) Tt

:/Q | b = y)xs(e) dL" (@) dial(y) <

-

<xE(v)

< [l (Ee).

3) Let V be a relatively compact open subset of . Take ¢y > 0 such
that V' € €2, and (€;)ren @ sequence in (0, €y) with € J 0.

In view of part 1), (pe,|v) is a sequence in My (V,R"™) weak-
star convergent to ply. Thus, for all U C V open, it follows from
proposition 4.57 that ]u]‘V(U) = |ulv[(U) < liminf|p, |v|(U) =
liminf|u€k||V(U).

On the other hand, given K C V compact, in view of part 2) we
have |pe, |(K) < |p|(K.,) — |u|(K) as k — oo, since the sequence
of relatively compact open sets (K., )ren decreases to K. Hence,
limsup\,uekHv(K) = lim sup|puc, |(K) < |u|(K) = WHV(K)' There-
fore, applying theorem 4.54, we conclude that the sequence of traces
(|/~Lek||v)keN is weak-star convergent to |,u||v. Since the decreasing
sequence (€x)ren in (0, €9) was arbitrarily taken, we conclude that,

for all ¢ € C(V,R), [,edlu] — [,ed|u| as e — 0. Since the
relatively compact open subset V' C () was arbitrarily taken, we

conclude that |pe| || and the thesis follows.
U
PROPOSITION 7.26 (regularization of BV functions). Let Q be an

open subset of R, f € BVioe(Q2), (¢¢)eso the standard mollifier on R™,
fo = o f € C2(0,) and (V¥ [), = ho+ V™ [ € Mio(2, R"). Then:

i) (V¥ fle = Lo, LV(fo).
i) fe — f in the sense of L} ().
i11) For each open V € QQ,

(ﬁn Qe Lv(fe))h/ﬁ(vw f)|v and (ﬁn
as € 0.

a. LIV =V £],
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PRrOOF. For each ¢ € CZ (2, R"),

En

mLV@wwz/wwwaMﬁ:

n brop. 1.108.4)

= —/div pfedl
_ /(div ). f L prop. 1.108.)
_ —/div (o) f AL =
_/gp .defdef.:fzz

= [e-awp.

thus showing assertion 1i).

Assertion ii) was already proved in 6.20.

To prove assertion iii), let V' € Q open. Take ¢y > 0 such that
V € Q. It follows from theorem 7.25 that (VY f).|y —~(V" f)|y and
(VY f)el VL]VWfHV. Since, by theorem 7.25, sup{|(V" f)|(V) | 0 <
€ < e} <|V¥fl(V,) < oo, the thesis follows from part i) and from
proposition 4.49.

0

7.3. First properties of BV functions

PROPOSITION 7.27. Let Q be an open subset of R™ and (fi)ren a
sequence in BV, (2).

i) If f € BVioe(Q) and fi, — f in LL (L"|q), then VY f, = V" f.
i) If f € LL(L"q), fr = f in LL . (L"a) and there emists u €

Mioe(,R™) such that VY fr =, then f € BVio(Q) and VY f =
M.

PROOF.
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i) For all ¢ € C*(Q,R"),
/ﬁ-dVWﬁ=‘/hwwndﬁ”ﬁ”

~ —/div of AL =

— [ avy

thus showing that V¥ f, = V" f.
ii) For all p € C(Q,R"),

/go-du: lim/go- dVY fr, =
k—oco
:—lim/div ofrdl" =
k—oo

= —/div pfdL",

hence f admits weak gradient VY f = u € M,.(Q2,R"), ie. f €
BVioc(£2).

U
COROLLARY 7.28. Let Q be an open subset of R™, f € LL_(L"|q)

loc

and (fi)ien a sequence in BV (Q) such that f; — f in LL (L"q).
i) If, for each compact K C Q, sup{|V" fi|(K) | i € N} < oo, then
f € BViee(Q) and VY f; 2 V™ f.
i) If sup{|V" f;|(Q) | i € N} < 0o, then f € BVioe(Q) with V¥ f €
M(Q,R™) and V¥ f; XL V™ £,
PROOF.

i) By corollary 4.63, there exists a subsequence (f;;)jen of (fi)ien
and 1 € Myc(€2,R") such that V¥ f;. 0. Tt then follows from
proposition 7.27.ii) that f € BV,.(2) and V¥ f = p. Then, from
7.27.i) we conclude that VY f; > V" f, as asserted.

ii) By the previous item, f € BVio.(Q) and V¥ f; > V¥ f. By proposi-
tion 4.49, it then follows that V¥ f € M(Q, R") and V¥ f; L V¥ f.

0

PROPOSITION 7.29 (Product rule for BV, part I). Let Q be an open
subset of R™, f € BViee(2) and g : Q@ — R locally Lipschitz. Then
f9 € BViee(Q) and V¥(fg) =V f Lg+ L LfVVg.

PROOF.
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1 Case 1: g € C*(Q2). Then, for all p € CZ(),

/wagdﬁ”—/&(@fdﬁ"—/¢vgfd£n_

€C(Q)
_ —/songWf - /songdﬁ“,

whence the thesis.

2 General case. It is clear that fg € L} _(L"|q) and that p := V" f g+
LML fVYg € Mpe(Q,R"). We must show that the weak gradient
of fg exists and coincides with p. By the locality of the weak de-
rivative, cf. theorem 7.7, it suffices to prove the latter assertion for
the restriction of fg to a given V & €2 open. Let ¢y > 0 such that
V € Q. and (¢¢)e=0 the standard mollifier on R". Fix a sequence
(€)ien in (0,€y) decreasing to 0. Denoting by a subscript “€” the
convolutions with ¢., as usual, we have:

(a) g == g, € C®(£,,) and, in view of theorem 6.20.iv), g; — ¢
uniformly on V. Hence fg; — fg in LL (V).

(b) For each i € N, we may apply case 1 with V' in place of 2 to fg;
to conclude that fg; € BV (V) and V¥(fg;) = V¥ f Lg; +
L" L fVg € Mio.(V,R™).

(c) For each ¢ € C(V,R"™), g;» — gy pointwise on V and ||g;¢|| <
sup{[|gilspe ¢llu [ i € N} - [lol| € LY(|V" £1), hence we may apply
the dominated convergence theorem to conclude that

[e-aw Lo > [oraws L),

fe. VW f Lgi =V f Lgon My (V,R").

(d) Since g € W2°(Q), it follows from theorem 6.20.vi) that, for
Al i € N, Vg, = (V" g),,. Thus [Vgll < V" gllieqrs) and,
by 6.20.iii), Vg; — V% g L™a.e. on V. Hence, for each ¢ €
C(V,R™), ofVg — of V¥ g L"a.e. on V, with ||¢ofVg] <
V¥ gl v [l € LY(L"|v); therefore, by the dominated
convergence theorem, [¢-fVg;dL" — [ - f V" gdL", whence
L L fVg =L LfV"Ygon My(V,R").

(e) From the two previous steps we conclude that V%(fg;) — i on
Mo (V,R™). By proposition 7.27.ii) with V' in place of €, it
follows that fg € BVio.(V) and V¥(fg) = u, as we wanted to
show.

O
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Given 2 C R”™ open, it will be useful in the subsequent develop-

ments to consider the variation of a function in L{_(£"|q), in the sense

of the definition below, even if it does not belong to BV)..(£2).

DEFINITION 7.30 (variation of a function in L{_

and f € LL_(92). We define, for each open V C ,

loc

). Let Q C R™ open

Var(f, V) = sup{ / fdiv pdC [ o € CEV.RY, gl < 1}.

EXERCISE 7.31 (variation of a function in L} ). Let Q C R™ open
and f € LiL (). Define, for each B C Q,

loc
Var¢(B) := inf{Var(f,U) | U open, B C U}.

Then Vary is a Borel regular measure on U which extends the variation
Var(f,-). Moreover, f € BV.(Q) if, and only if, Vary is a positive
Radon measure on €2, in which case it coincides with |V* f].

We call Var the variation measure of f.

PROPOSITION 7.32 (lower semicontinuity of the variation). Let 2 C
R™ open, (f;)ien a sequence in L _(L"q) and f € LE_(L"|q) such that

fi = fin LL (L"|q). Then, for all V C S open,
Var(f,V) < liminf Var(f;, V).

In particular, if f; € BViee(Q2) for all i € N and the second member of
the equality above is finite for each open V- € ), then f € BV ().

PROOF. For each ¢ € C(V,R™) with |||, <1,

/fdiv pdL" = lim/f,- div ¢ dL" < liminf Var(f;, V),
and taking the sup on the first member yields the thesis. O

We now prove a theorem on approximation of BV functions by
smooth functions.

THEOREM 7.33 (Almgren). Let Q be an open subset of R™ and
f € BV(Q). There exists a sequence (f;)ien € BV(Q2) N C®(Q) such
that fi — f in LY(L"q) and |V fi](Q) — [VY f](Q).

PROOF. 1) Fix ¢ > 0. Choose N € N sufficiently large so that,
putting
U:= Q% NU(0, N),

N~~~
={z€Q|d(z,Q°)>+}
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we have |VY f|(2 — U) < e. We can choose such N because |V f|
is a finite Radon measure and the second member above increases
to Q as N — oo. We now define (U;);en by

UO =U
l%ﬁ94rﬂWQN+U7 v > 1.

Then (U;); is an increasing sequence of open relatively compact sub-
sets of {2 which increases to (2.
Set U_; := () and define (V;);en by

V; =Uin \ Uz;l, 7> 0.

Note that, for each i < j e N, V,;NnV; =01if j —1 > i+1, ie.
if j > i+ 2; hence, each V; meets at most 3 other V;’s (including
itself). Thus, (V;);en is a locally finite open cover of Q with V; € Q
for each ¢ > 0. By theorem 6.8, there exists a smooth partition of
unity (&;)ien of Q such that, for all i > 0, & € C°(V;).

Let (¢;);>0 be the standard mollifier on R™. Note that f& € LY(L"),
fVE € YL, R") and both functions have compact support con-
tained in spt & € V;. Then, by proposition 1.108.d) and by theorem
1.111.i) we may choose, for each i > 0, ¢; > 0 sufficiently small so
that

Spt ¢€i *(ng) G ‘/z

/ e, *(FVE) — fVE] AL™ < e/27H1,

fe = Z¢€z *(fgz)
=0

Since spt ¢, *(f&;) € V; for each ¢ > 0 and since (V;);>0 is a locally
finite family of subsets of 2, the sum above is locally finite, hence
fe € C*(Q).

Since f =Y, f&, it follows from (7.5) and from the monotone
convergence theorem that

1 fe = flliern) < ZH% *(f&) — féllueng) <€
=0
ie. fo— finLY(L"|q) as e — 0.

It remains to show that f. € BV(Q2) and |V f[(Q2) — |[VY f|(2)
as € — 0.
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4) Tt follows from the previous step and proposition 7.32 that
VY f1(Q) = Var(f,Q) < limiglfVar(fe,Q).
e—

We will then achieve the thesis once we show that lim sup,_,, Var(f., ) <
VY FI(S).

5) For all p € C(Q2, R™) with ||¢|| < 1, we have, noting that f. div ¢ =
Yoo be; *(f&) div ¢ is a finite sum (because spt ¢ is compact sub-
set of Q and (spt & )ien is a locally finite family of subsets of 2):

/ Jediv pdLm = / be, #(f&) div pdLr PP 20
@ i=0 v
= Z/ f&idiv (ge, * ) AL =
i=0 Y &

=2 /Q fdiv (Gde * ) L™ =3 /Q (FVE, b, ) dLm ==
. : N——
- EOTT (oo, #(FVE) )

J/ J/
TV TV

=:1 =:1s

It follows from (7.5) that |I] < e. On the other hand, since
1€i[@e, * ]| < 1 for all ¢ > 0, we have

RV RECIOTRIEED 3y FENUOTRILLIE

< [V Q) + Z!VWH(%)~

Note that, since V; does not intersect V; if j > i + 2, we have
ViUVzUVs---C Q\U
VoUV UV CQ\ U,

whence > 7 |VY f1(Vi) < 2|V f|(©2\ U) < 2¢ by our choice of U
in part 1). It then follows that |I;] < |VY f|(R2) + 2¢, whence

Var(fe, Q) < |VY f|(2) + 3e.

Therefore, limsup,_,, Var(f.Q2) < |V"¥ f|(€2), as asserted.
U

REMARK 7.34. With the same hypothesis from theorem 7.33, if
f € BV(Q2)NL>(L"|q), there exists a sequence (f;);en € BV(2)NC>(9)



248 7. FUNCTIONS OF BOUNDED VARIATION

such that f; — f in LY(L"q), |VY fil(Q) — |VY fl(R2) and, for all
i € N, || fille(zrnlg) < 3| fllee(zn)n)- That follows from the same proof
of theorem 7.33, noting that, for each ¢ > 0 and for each = € €, the
sum in step 3 of the proof defining f.(z) has at most 3 nonzero terms
(since x belongs to at most 3 of the V;’s), each of which bounded by

[flleos (i)

COROLLARY 7.35 (approximation by smooth functions). Let 2 =
R™ or Q be a Lipschitz domain in R"™, and f € BV(Q). There ex-
ists a sequence (fi)ien € C2(R™) such that filq — f in LY(L"]q) and
[V fil () = [V FI(92).

PROOF. For each i € N, by theorem 7.33 there exists g; € BV(Q)N
C>(€2) such that ||g;— f[|L1(zn|0) < * and [|[V* g;|(Q)— V" f|(Q)| < 1/i.
Since BV(2) N C*(Q2) € WY(Q), we may apply corollary 6.43 (or
6.21 for Q@ = R") to find, for each i € N, f; € CX(R™) such that
lg: = fillL(zny) < + and ‘fQ(HVfZH —[IVaill) dﬁ”‘ < 1. Tt then follows
that

fila = f €LY(L"a) and |V" fi](Q) = /QIIVfiH dL™ — [V* FI(Q).
O

PROPOSITION 7.36 (Product rule for BV, part II). Let Q be an open
subset of R™. If f,g € BV(Q) NL®(L"|q), then fg € BV(Q).

PrRoOOF. By theorem 7.33 and remark 7.34, there exist sequences
(fi)iEN and (gi)iGN in BV(Q) N COO(Q) N Loo<£n|Q) such that
o fi — fin LY(L"q) and g; — ¢ in LY(L"]q);
o [V fil(Q2) = [V¥ f|(Q) and [V* g;[ () — |V* g[(£2);
o for all + € N| HfiHLOO(L”\Q) < C and HgiHL(’O(E"IQ) < C', where
C =3I f e eria) + llgllee i) < o0
It is then clear that, for all i € N, fig; € L}(L"|a), fg € LX(L"]q)
and f;g; — fg in L}(L"|q). Moreover,

lim inf[V*(fig:) |(€2) < 1iminf/ﬂ(!fiHIVgiH +1gilIVfil]) dL” <

< C(IV" fI(Q) + [V gl(9)) < oo.

It then follows from proposition 7.32 that Var(fg,Q) < C(|V" f|(Q)+

V" g](©)) < oo, so that fg € BV(Q), as asserted.
U

REMARK 7.37. With the notation from the previous proposition,
it is not true, in general, that V¥(fg) = V¥ f LLg+ V¥ g L_f. For
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instance, take ) = R", E a closed subset of R™ such that xp € BV(R"™)
and f = g = xg, so that fg = x% = xg. Then V¥ xgp = V"xr LE
does not coincide with 2V¥ xg LLE if 0 < L*(E) < o0.

EXERCISE 7.38. If p = 1 in exercise 6.25, we have (i) = (ii) < (di1).
Moreover,

e (i7) or (iii) are equivalent to f € BV(Q2) and we may take
C = Var(f,Q) = |V" f|(©2) in both cases;
o If Q =R" for all h € R”

ITf = Flleeny < A1RI- VY FIRT).

7.4. Traces and Extensions

THEOREM 7.39 (Trace theorem for BV functions on Lipschitz epigraphs).
Letn >2, T :R* " = R Lipschitz and € := epis I'. Then:
i) There exists a unique bounded linear operator T : BV(Q2) — LY(H"|sq)
such that, for all f € BV(Q) and all ¢ € CL(R™, R"),

(7.6) /fdiv gpdﬁ":—/go- dVWf—i-/ Tfop-vdH" 1,
Q Q o9

where v the unit outer normal to 0f).

ii) For all f € BV(Q) and for H" '-a.e. x € 99,

(7.7) lim |f(y) = Tf(x)[dL"(y) = 0,

r—0 B(x,r)N$2

so that, for such x,

Tf(x)=lim fdcr.
r—0 B(z,r)NQ
PRrooOF.
As usual, we identify R” = R*™! x R and, by means of this identi-
fication, we write, for each y € R™, y = (¢, yn).

1) Given f € BV(Q), suppose that there exist Tf,T'f € LY (H" o)
such that (7.6) holds for all ¢ € CL(R",R"). Then, for all such ¢,

/ (Tf—Tf)p -vdH" ' =0,
80

hence the R"-valued Radon measure (H"~! LLoQ) L(Tf —T'f)v
is null. Then so is its total variation (H"™' LLoQ) L|Tf —T'f|,
which means that Tf = T'f H" '-a.e. on 99.

In particular, if the bounded operator 7" satisfying (7.6) exists,
it must be unique.
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2) We define T on C°(R")|q := {fla | f € C°(R™)} by T'f := floa €
CC(GQ) C Ll(Hn_1|aQ).
Since () is the epigraph of a Lipschitz function, for all ¢ €
Cl(R™ R"™) we may apply the Gauss-Green theorem 6.45 to fp €
CL(R™ R™), which yields

/div (fp)dL" = fo-vdH" !,
Q o0

where v is the outer unit normal to 92 = gr I'. Taking into account
that div (fyp) = Vf-Ve+ fdiv ¢, we obtain (7.6) for f € C(R").
3) Fix e > 0 and f € C°(R"). Let f. : 92 — R be defined by, for all
y=(y.T(y)) €gr I =09,
fely) = (¥ . T(W) +e).
Note that f. € LY(H"!|sq), because f. € C_(99) and H" !sq is a

Radon measure on 0f).

We also define:
Qe={y=(,y2) ER"=R"XR|T(Y) <y <T(y) + ¢},
Q°:=Q\ Q. = epis (I' +¢).

For all y = (i, I'(y)) € 0, f(y) = Tf(y) = [y 2= (v.T(y) +
t) dt, so that

fe(y) =T f(y)] < /Oﬁla%f (v, T()+1t)|dt <
< [1vs. 00 + 1) o

Therefore, computing by means of the area formula,
(7.8)

aﬂIfe(y) — Tf(y)| dH" ' (y)
6 n—1 AF 5.40.2)

S/m</0 va(erten)\\dt) A 1(y) AT .

— /}Rn_1 (/0 IVf(,TW)+ 1) dt> VIt ”YF(y/)”i L) ol

<y/1+(Lip)2=:C

<c / IV £ den.
Qe

4) For an arbitrary f € BV(Q2), we may apply corollary 7.35 to obtain
a sequence (f;)ieny in C(R™) such that f;|o — f in L}(L"]q) and
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VY fil(Q) — |[VY £|(22). In particular, it follows from propositions
7.27.4), 4.49 and 4.58.ii) that
*f *f
VY filo = V¥ fand |VY filo| = [V" f].
Fix € > 0. For each i € N, let ff : 92 — R be defined by, for all
y=(y.T(y)) € 00,

fily) == %/6 [y, D) +t)dt =
t

== /00<fi>t<y>d .

Note that, for all i € N, ff € C_(99) and, by (7.8) (applied to
fi € C(?O(Rn»?
_ 1 ‘ n— onelli
s gl <2 [ - (ol ane ) e
o0 € Joq Jo

=2 [ rn) -l aw )
0 JoQ

€
< OV f;l(82).
Hence, for all 7,5 € N,
(7.9)

/ T f; — Tf;|dH" " <
o0

™

Tf; = fildH™ + / = Sl a4 / Tf; — fe]dH" ™ <
o0 0] 90

< C(IV™ £1(Q) + V" () +/m!ff — fo

We now estimate

(7.10)
Tonelli
£ = 5] dH" <
o0

1 ‘ n— AF 5.40.2
= _/ / (f)e = (f;)e] dmntae =02
€Jo Joo

:% / / fi(y' D) +1) = £y D) + )| V1 IVD(y)]? dy' de
0 JRr-1 -

<4/1+(LipD)2=C

= Q/ fi = fildLr 570,
€ Q.

Tonelli
<
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since f; — f in L}(£"|q). On the other hand,
VY fil(Qe) < V" fil(Qen Q) = [VY fil(Q) — [V™ fil ().

Since |V f;|(Q) — |VY f|(2) and, by proposition 4.57, |[V" f|(£2°) <
lim inf| V" f;](Q€), we conclude that

limsup|V* £;|(Q) = [V* £](Q) — lim inf[ V" £;](Q°) <
(7.11) < IVWf!(Q) [V FI(€X) =
= V" QN Q).
It then follows from (7.9), (7.10) and (7.11) that

limsup [ |[T'fi — Tf;|dH"™ < 2C|V¥ f](Q N Q).
1,j—00 519)

Therefore, since € > 0 was arbitrarily taken, |V*" f| is a finite
Radon measure and Q. N ) decreases to @) as € — 0, it follows that
(T fi)ien is a Cauchy sequence in L*(H" ! sq), thus it is convergent
in that space. We define

Tf:=lmTf; € LY(H" " oq).

As it was seen in step 2 of the proof, since f; € CZ(R") for
each ¢ € N, equality (7.6) holds for f; in place of f. Thus, taking
i — oo and taking into account that f; — f in L}(Q) and T'f; —
Tf in LY(H" Ysq), we conclude that (7.6) also holds for f. In
particular, our definition of T'f is independent of the choice of the
sequence (fi)ieny in C(R™) such that filq — f in L*(£L"|q) and
VY fil(Q) — [VY fI(Q). Indeed, if (f!);en is another such sequence
and T'f = lim T'f] in LY(H"~ 1|8Q) then both T"f and T'f satisfy
(7.6), which implies, in view of step 1 of the proof, that 7"f = T f
H" a.e. on 9.

The map T : BV(Q) — LYH" 'aq) is therefore well-defined,
it is clearly linear and (7.6) is verified for all f € BV(Q2) and all
p € CHR™, R").

5) Let (fi)ien be a sequence in BV(§2) and f € BV(Q2). We contend
that, if f; — f in LY(L"]q) and [V £](Q) — [V* £|(Q), then T'f; —
Tf in LY(H" Ypq). In particular, that proves the continuity of
T :BV(Q) — LY(H" !5q), thus reaching the conclusion of the proof
of part i).

Indeed, for each i € N we may take a sequence (g5)jen in C°(R™)

such that lim;_, gjlo — fi in L'(L"[q) and lim;_.|V" gZ|(2) —

VY £il(Q2). By the previous step, it then follows that lim; o T'g5 =
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Tf; in LY(H"'|an). Hence, we may take j = j(i) sufficiently large
in order that g; := g, satisfy

1
fi = gillirieni) < o

HVW fl|(Q) - |ngi’(9)‘ < % and

1
T fi — ng'||L1(Hn—l|aQ) < 3

Then (g;)ien is a sequence in C°(R™) such that g; — f in L*(L"|q)
and |VY g;[(Q2) — |VV f|(2); by the previous step of the proof, it
follows that T'g; — T'f in LY(H"!|sq). Then imTf; = limTg; =
Tf in LY(H" Y sq), which proves our contention.
6) We now prove part ii). Fix f € BV(2) up to the end of the proof.
For all x € 92 and all » > 0, we estimate

(7.12)
1

L (B(z,7) N Q)
1
= L (B(z,7) N Q)

/B Tl <

/R =TT ) a2 )+
y )
/B ) ~ri@lacw

J/

1
Lr(B(z,r) N Q)

_|_

-

@

We estimate (D) and @) along the following steps.

7) For ' € R"! and r € (0, 00|, we generalize the estimate (7.8) with
the infinite closed cylinder C(x/,7,00) = B(2/,7) x R in place of
R ! x R.

For € > 0, we define f., Q. and Q€ as in step 3) of the proof.
Note that, assuming f Borelian (which we may assume without loss
of generality — i.e. in each equivalence class of BV(£2) we may take
a Borelian representative, in view of corollary 1.118), f. : 00 — R
is clearly Borelian.

We extend the notation from step 3) to denote intersections with

the closed cylinder C(2/,r, 00):
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Q' 7)== QN C(2,r,00),
Q' r)e = Q. NC(2,r,00),
Q' 7)== Q°NC(2,r,00).

Note that Q(2', 00) = .
Claim 1: for £L'-a.e. € > 0,

(7.13) / ITf — f|dH"" < CIVY (2, 7)),
AONC (2! r,00)

where C' = /1 + ||Lip I'[|.

If f e C®(R™), the claim follows from the same argument used
in estimate (7.8), with 9Q N C(z', 7, 00) in place of 9, B(z',r) in
place of R™™ and Q(z/, 7). in place of (..

To prove claim 1 for f € BV(Q2), we shall apply the coarea
formula with the Lipschitz function g : R" — R given by, for all
y=(y,yn) €R",

9(y) =y =T,
whose level sets are translations of gr I' in the e, direction. Note
that, forally = (y/, y,) € R" such that ¢’ € Dr, Vg(y) = (—=VI(y/), 1),
hence Jg(y) = /1 + ||[VI'(y)|]> < /1 + (LipD)2 = C.

Take (f;)ien in C°(R™) such that filo — f in L}(L"|q) and
VY £i1(82) — [VY £(2). We have, for all i € N,

/00/ ‘f . f|d7‘[n71 dt coarea:f. 5.50
0 g~ H{tINQ(z!,7)

—/ i — fldgdcr <
Q! ,r)

go/ If; — fldcr =50,
Q(z’,r)

since f; — f in L}(L"]q). Thus, passing to a subsequence, if neces-
sary, we conclude that, for £'-a.e. t > 0,

(7.14)
/6 o a2 / fi— fldHmt iR,
NC(z’,r,00

g~ Ht}nQ(a’ )

where in equality (%) we have used the fact that the isometry y +—
y + te, of 00 = g~ 1{0} onto g~ '{t} preserves H" ! measure.
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On the other hand, we may estimate, for all ¢ > 0 and all 7 € N,

(7.15)

[ mpepawes [ g et
oQNC (' ,r,00) R 0QNC(z’ ,r,00)

J/

-

2890 for a.e. €>0, by (7.14)

+ / B |Tf¢—(fi)e‘d7-["_1 —l—/ B Tf—Tf|dH"".
R oQNC(z’ ,r,00) Y oQNC (' ,r,00)

J/

-~

—
<C|V™ £,|(9a';r)e) by the case feCzo(R™) 269 by step 5

Besides, adapting the estimate from (7.11), we have, for all € > 0,

limsup|[V* fi|(Q(x, y)e) < limsup|V" f;|(Q(z, y)e N Q) <
< V¥ fl(Q(z, y)e N Q).

But, since |V" f] is a Radon measure on £, it follows from propo-
sition 4.53 that, for L"%-a.e. € > 0, |VY fl(¢7'{e}) = 0; for such

VY 1z, y)e N Q) = [V Iz, y)e).

The claim therefore follows taking limsup, ., on both members of
(7.15).

8) Note that, for all z = (ac’, F(x’)) cdQandallr > 0,ify = (v, yn) €
B(x,r) N, then

0<9®) =y — L) = (Yo — z) + (L(z y)) <
< |yn — 2| + (LipT) Iy — 2'|| < 7“( +LlpF)

That is, B(z,r) N Q C ¢~*(]0,r(1 + LipT)]) N C(«/,r,0). Hence,
using the estimate from claim 1 in the previous step and the coarea
formula, we compute:
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Jng

/B( i =T e |acre) S

=

< |f(y) = Tf (¥, T(¥))] g(y) AL (y) "=

N /gl (J0,r(1+Lip 1] ) NC(a’,r,00)

r(1+LipT) N | | |
- / / }f( ) Tf (y F ) ’ dHn 1 ) dt Mt lnvarlan__t by isometries
0 ~L{t}nT(x’ r,00)

r(14+LipT) 1 claim 1
-/ [ 1A = TR D) | )
0 o0NC(z’,r,00)
< Cr(1+LipD)|[V* £, 7)rsipr) )

where C'= /1 + (LipI")?

On the other hand, 1f Y= (Y, yn) € QUa',7)ra+ripr), then |y —
|| <rand I'(y) <y, <T'(y) +r(1+LipI), hence

Yn — Tn = Yn — F(ml) <
r(1+LipT) 4+ I'(y) = T'(2') <r(1+42LipD),
_(yn - :L‘n) = _(yn - F(l‘/)) < _(F(y,) - F({L‘/)) < TLlp Fa
whence |y, — 2| < r(1+2LipT). Thus ||y — x| < r(2+2LipT), i.e.

Q' r)rasripry C B(z,7(2 +2LipI")) N Q2. We therefore conclude
that

[ 15w - 17 T6)] 4L) <
B(x,r)N2

< Cr(1+LipT)|V* f|(B(z,r(2+ 2LipT)) N Q).
Similarly, for all z = (2/,T'(z)) € 0 and all r > 0,

(7.16)

>1

/M TI-T)) =T @)L 5

<

N /gl (]0,r(1+Lip F)]) NC(a/ ,r,00)

r(1+LipT) ’ ’ n—1 H™~1 invariant by isometries
= - ITf(y',T()) = Tf(x)| dH" " (y)dt =
0 —L{t}NC(a’,r,00)

r(14+LipT)
- / / - Tf(y) — Tf(x)| dH " (y) dt =
0 oQNC(z’,r,00)

— r(1+LipT) / Tf(y) = Tf(@)| dH" " (y)

AQNC (2! ,r,00)

ITf(y, D)) — Tf(x)|Jg(y) AL (y) =



(7.17)
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Besides, if y = (v, y,) € 002NC(z',7,00), then ||y —2'|| < r and
Yo — 24| = [T(y') — D(2/)| < rLipT. Thus, y € B(z,7(1 + LipT)),
which implies 9Q N C(2',r,00) C B(x,r(1 + Lipl')) N 9. It then
follows that

[g ) —rr@las) <

<r(1 4 LipD) / ITf(y) - Tf(x)] dH" (1)

B(z,r(1+LipI'))NoQ

9) Claim 2: for H" '-a.e. z € 09,

(7.18) lim

(7.19)

9 £1(B(z.r) 1)

r—0 rn—1

=0.

Indeed, it suffices to prove that H" 1(A4,) = 0 for each n > 0,
where

A% f\(IBS(:c,r) N Q) - 77}-

rn—l

A, = {z € 9Q | limsup
r—0
Fix n > 0 and § > 0; we shall estimate H}p; (A4,). For each
x € A, and each 0 < e < 5 there exists 0 < r < e such that

VY fl(B(x,r) N Q
v AAEED0D) |

rne
It then follows that F, := {B(z,r) | z € A,,0 <r < € and (7.19) holds}
is a cover of A, by nondegenerate closed balls with diameters less
than 2e < 29. We may therefore apply the 5-times covering lemma
2.10 to obtain a countable disjoint subfamily G, C F. such that

A C UF. C Upeg.5B. Hence, denoting by U, the open subset of (2
given by {z € Q | d(x,Q°) < €}, we compute

W A) < Y am-15rl <

B=B(z,r)€q.
—1 5”—1 r<e
<y 2 o g B, ) 'S
B=B(z,r)€q. "
a(n —1)5"1 _
< 2= o i)

Since € with 0 < € < § was arbitrarily taken, |[V¥ f| is a finite
Radon measure and U, decreases to () as € — 0, we conclude that
Hios (A,) = 0, for all § > 0. Tt then follows that H" 1(4,) = 0,

which concludes the proof of the claim.



258 7. FUNCTIONS OF BOUNDED VARIATION

10) Claim 3: Let K be the cone with vertex at the origin given by
{(v,y,) € R xR | y, > (LipD)||y/||} and, for each r > 0,
K, :=B(0,7) N K. Then, for all z € 99,

1 < a(n) 1
Lr(B(x,r)NQ) — LK) L7 (B(x,7))

(7.20)

Indeed, in view of the translation invariance of Lebesgue mea-
sure, replacing I' by I'(- + 2’) — x,,, we may assume x = 0. If
y= (Y, yn) € hyp L, ie. if y, < |I'(y)], then

yn < D) = T(y) =T < LipD)lly" — 2| = (Lip D)[ly/'[],
hence y € K¢. That is, hyp |[I'| C K¢. Thus, for each r > 0,

K, =B(z,r)N K C B(z,r) Nepis |I'| C
C B(z,r) Nepis ' = B(x,r) N Q.

It then follows that
rLM(Ky) = LY(K,) < L"(B(z,7) N Q)
L£(B(z,r)NQ) > LYK,) =

LK)

:ﬁn(Kl)Tn = a(n)

E”(IB%(:E,T)),

whence the claim.
11) Fix o € 02 such that

. |wa|(IBB(x,7’) N Q)

r—0 rn—1

lim ITf—Tf(x)|dH"" =0.

r—0 B(z,r)NOY

=0 and

(7.21)

For such z, we estimate below (D) and @ from step 6). Note that
(7.21) holds H"1-a.e. on 9Q: the first equality holds H" -a.e. in
view of claim 2 in step 9) of the proof, and the second holds H" !-a.e.
by the Lebesgue differentiation theorem 3.30 (which may be applied
because T'f € LY (H" !|sq) and H"*|sq is a Radon measure on 992).
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For each r > 0, with C' = /1 + (LipI')?,

1 (7.16)
@ = / ) =Tf( L)) AL (y) <
C?"(l + Llp F) . claim 3
VY fl(B(z,7(2+2LipI") N Q) <
< Zitar gy VB -+ 2Lpr) ne) UL
Cr(1+LipT) '
— VY f|(B 242Lipl"))NQ) =
< e e IV f1(Ble 2+ 2Lip 1) 1)
~ C(1+LipT)(2+2LipD)» 1 [V* f|(B(x,r(2+2LipT)) N Q)
LK) rn=1(2 4 2Lip )1 '
Thus, in view of (7.21), we conclude that
(7.22) lim @ = 0.
Similarly, for each r > 0,
@ S [ ) - T )
= v L)) —Tf(x)|dL(y) <
L (B(ZL‘,’I") N Q) B(z,r)NQ
r(1+LipT) / . claim3
< Tfly)—=Tf(x)|dH" (y) <
Lr(B(x,r)NQ) B(m,r(l—&-LipF))ﬂaQ‘ ) (=)] (v)

(14 LipT) /
LK) S Lipr))nen

On the other hand, since prg.—1(B(z,r(1 + LipT')) N 9Q) C
B(z',r(1 + LipI")), it follows from the area formula that

Tf(y) — Tf(x)| dH"(y)

" (B(x, r(1+ LipT)) N 0Q) =
/ V1+VD(y)dL(y) <
Pren—1 (B(x,r(1+Lip F))HBQ)

< CL N (B(2/,r(1+ Lipl))) = Ca(n — 1)r" (1 + Lip)* ™,

whence

1 Ca(n—1)(1+LipI)"*
rn=t = Hr=1(B(z,r(1+ Lipl)) N oQ)
We therefore conclude that

Cl
@ < . / TFfy) =T F(z)| dH " (y).
H =1 (B(x,r(1+ LipT)) N 09Q) B(z,r(l—&-LipF))ﬂaQ‘ f)=T1 >‘ )
where
1+ (LipT)2 —1D)(1+LipD)"

LK)
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That implies, in view of (7.21),
(7.24) lim @ = 0.

r—0

Finally, from (7.12), (7.22) and (7.24), it follows that (7.7) holds
for x € 0N satisfying (7.21), i.e. it holds H" !-a.e. on 9%, which
concludes the proof.

O
COROLLARY 7.40. With the same hypothesis of theorem 7.39, if

FeBV(Q)NC(Q), then Tf = floq-
REMARK 7.41. With the notation from theorem 7.39:

1) We have actually proved in step 5) of the proof that the continu-
ity of T : BV(Q2) — LY (H" !sq) holds in a stronger sense, i.e. if
a sequence (f;)ieny in BV(Q) and f € BV(Q2) are such that f; —
[ in LYL"q) and |VY f;|(Q) — |[VY f](R), then T'f; — Tf in
Ll(Hn_1|aQ)-

2) The trace operator from theorem 6.48 for Wh1(Q) is the restriction
of the trace operator from theorem 7.39.

LEMMA 7.42. Let U C R"™ open, ® € SE(n) a rigid motion and
U = ®U). If f € BVie(U'), then fo® € BV (U). Moreover, if
D® = R € SO(n) and if (v,|VY f|) is the polar decomposition of V" f,
then the polar decomposition of V" (f o ®@) is

(@ v, @1y [V 1),
where ®;'v = R~ ovo®. In particular, fo® € BV(U) if f € BV(U').
PROOF. We have, for all ¢ € C°(U,R"):

AF 5.39,_Jc1>—1z1

/(f o ®)div pdcn MY f(div @) od~tdL &
U U’

= [ fdiv(RopodY)dc" &
U’ S——
€Ceo (U’ R™)

:—/ (Ropod® L 1)d|VY f| =
—— [tRopvod)or avr |-

:_/ (Rop,vo®@) d(@'4V"[|) =
—

Res0tm (p,R~Lovo®)

_ / (0, ®71) d (D14 V™ £)),
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where equality (x) is justified by, for all x € U,

div(Ropo® 1) (z) =tr D(Ropo® 1)(x) chain rule
=tr [RoDp(®'-2)o R7'| =
= tr D(p(@_l . IE) — (le S0) o (I)_l(ai).
O

THEOREM 7.43 (Trace theorem for BV functions on Lipschitz do-
mains). Let n > 2 and Q@ C R a Lipschitz domain with 02 bounded.
Then:

i) There exists a unique bounded linear operator T : BV(Q) — LY(H"Y|sq)
such that, for all f € BV(Q) and all p € CL(R™,R"),

(7.25) /fdiv gpdﬁ”:—/go- dVWf—f—/ Tfe-vdH" !,
Q Q o9

where v the unit outer normal to 0f).
ii) For all f € BV(Q) and for H" '-a.e. x € 09,

(7.26) lim mQ\f(y) = Tf(x)|dL"(y) =0,

r—0 B(I,’I")

so that, for such x,

Tf(x) =1lim fdacr.
r—0 B(z,r)N
PROOF. We proceed as in the proof of theorem 6.51. Fix f €

BV (D).

1) For each z € 012, there exists an open set U, C R" such that z € U,
and U, is obtained by rigid motion of a cylinder centered at 0 € R"
as in definition 6.33, i.e. there exists a rigid motion ® € SE(n) with
®(0) = x and there exists r,h > 0 and I : R*™' — R Lipschitz with
I'(0) = 0 such that U, = ®(C(0,r, h)), ®(gr TNC(0,7, h)) = U,NON
and @ (epis I' N C(0,r, k) = U, N

2) From the open cover (U,).ecsoa of the compact set 92 C R", we may
extract a finite subcover (U;)i1<;<n. For each 1 < i < N, let the
corresponding objects defined in the previous item be denoted with
a subscript 7, so that ®; ((C(O, i, hz)) = U,.

Let Uy := Q and U_; := Q°, so that (U;)—1<i<n is a finite open
cover of R™. We may apply corollary 6.11 to obtain a smooth par-
tition of unity (&)-1<;<ny of R” with spt & C U; for —1 < i < N.
Besides, for ¢ > 1, as spt & C U; € R, it follows that spt &; is a
compact subset of U;.
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Note that, in view of the product rule 7.29, for 0 < ¢ < N,
fi =& f € BV(Q2). Moreover, f = Zz‘]\io fiand spt f; Cspt & C Us;.
3) For 1 <i < N, it follows from lemma 7.42 that f;o®; € BV(epis ;N
C(0,r;, h,)) and spt f; o ®; C ®;*(spt &) € C(0,ry, hy). Extending
the latter function by 0, we may consider f; o ®; € BV(epis [';).
Denoting by T the trace operator given by theorem 7.39 applied
to epis I';, we may take T - (fi o ®;) € LY(H" ! |9epis r;); moreover,
by (7.7), spt T'- (fi o ®;) C spt(f;o®;) € C(0,7;,h;). Since the
composition with ®; induces a linear isometry of L*(H" !|s0nv;)
onto LY (" g epi 1:1C(0,r5,hs) )+ 1t makes sense to define
T f:=T(fio®)o®" € L'(H" aonv,) C L'(H" o),
where the latter inclusion is given by the extension by 0. Note that
spt T;f C spt &.

The map T; : BV(Q) — LY(H"t|sq) is clearly linear continuous,
since it is the composition of the sequence of linear continuous maps
described in its definition above. Actually, the continuity of T; holds
in a stronger sense: if a sequence (fx)reny in BV(Q2) and f € BV(Q)
are such that f, — f in LY(£L"|q) and |[V¥ fi|(Q) — [V f|(Q), then
Tife — Tif in LY(H"Ysq). Indeed,

e [t is clear that & fy koge &f in LY(L"q). Moreover, in view of
propositions 7.27.i) and 4.58.ii), we have |V" fi| =5|V¥ f| (see
exercise 4.56 for the definition of the narrow convergence ~¥),
so that [, &d|VY fi] = [,&d|V™ f] (because &lq € C,(2)).
It then follows that

V¥ (& fi)| () Produete -2 / &A™ fi] + / fell Ve acr =52
Q Q

i B Aval V& dLr =
%/Qg | f|+/ﬂf|| &l
= [VY(&)|(9).

e It follows from the previous item that (&;fx) o ® Lo = (& f) o Dy
in L1(£n|epis r;) and, since [VY[(&;fx) o ®i]] = @; #|VW(§sz)|
by lemma 7.42,

w . k—o0 w .
V"[(&ifi) © @il|(epis Ti) "= [V"[(€f) o @]|(epis T).
We then conclude from remark 7.41.1) that

T [(&fi) 0 @) " T - [(&f) 0 @]

in LY(H" Y sepis 1;), whence T fy — T;f in LY(H" o), as as-
serted.
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4) For 1 <i < N, with the definition of T} f in step 3), we have (recall

that f; = & f):
e For each x € 9QNspt & and each r > 0 such that B(x,r) C U;,

][ i) — Tof ()] AL (y) =
B(z,r)NQ

T [Fi0 @ily) = T+ (i 0 ®:)(®7 ()] AL (y).
B(®; " (z),r)Nepis T';

Since ®; is a linear isometry of d epis I';C(0, r;, h;) onto INQNU;
(hence it preserves H"! measure), by (7.7) it follows that

(7.27) lim |fily) = Tif ()| AL (y) = 0

r—0 B(z,r)NQ

for H" ! a.e. x € 90 Nspt &. Since the above equality holds
trivially if z € 9Q \ spt & (because spt T;f C spt §;, as it was
noted in step 3), and because B(z, ) Nspt & = () for sufficiently
small 7 > 0), we conclude that the latter equality holds for H"~!
a.e. x € 0f).

e For all ¢ € CL(R",R"), denoting by v/ the unit outer normal
to epis I'; and by (v, [VY f;|) the polar decomposition of V" f;,
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we have:

(7.28)
=D®;€50(n)

/fidiv pdl” :/ fio®; (div @) o &, dL" put M
Q epis I';

= / fio®; div (Ri_l opod,)dL" (7.7)
epis ['; ———

€Cl(R",R™)

(R opo®;)- dV™(fio®;)+

1

Il
|
T

epis I';

T(fl o (I)Z) (R,fl opo (I)l) s denfl 7é2

7

_I_
S—

Oepis I';

Il
|
T

(R'opo®;, R ow;0 @) d(®; 1,V fil)+

epis I';

+ [ T(fio®) (o, Rior/ o @) o ®;d(H" " Ldepis ) ey

<S07Vz> d|vw fz|‘|’

_|_

— 55—

[T(fio®;) 0@ ] (p, vy d(H" ™" LOD;(epis f)) =

Z—/so- defz-+/ Tif (@, v)dH 1.
0 o0

5) We define T := SN T; - BV(Q) — LY (H" Ysq). It follows from
step 3) that T is linear continuous. Besides, we have:
e Foreachz € 90 andeachy € Q, |f(y)-Tf(z)| = |Z¢N:o fily)+

Zfil Tif(l’)} < |foly)| + Zfil‘fi(y) - Tif(x)‘. Thus, for each
x € 0f) and each r > 0,

f F(y) - TF(x)] dLn(y) < f [ foly)] AL (y)+
B(xz,r)NQ

B(z,r)N$2

+3 f L Jr) - i@l ac)



7.4. TRACES AND EXTENSIONS 265

Since spt fo C spt & C €, for each x € 9 and r > 0 suffi-
ciently small fj is null on B(x,r) N, hence

lim | fo(y)| AL (y) = 0.

r—0 B(z,r)N$

It then follows from (7.27) that (7.26) holds for H" '-a.e. x €
of.

o Fix ¢ € C2(R",R").
Since o € C°(2,R™), we have

) Q
:/gofdiv @dﬁ”—i—/fV{o-god/L".
Q Q
Thus

(7.29)

/fo div (pdﬁ” — _/ © - d(VWf |_§0 4L |_fo0) prOduct:rule 7.29
& Q

—— [¢-avs.
Q
Therefore, from (7.28) and (7.29),

N
/fdivgpdﬁ”:/fodivgpdﬁ”+2fidiv<,0d£”:
Q Q

=1

N
—— [ av =3 e avse
Q i=1 7%

N
+Z/E)an¢-yd7{”1 =
=1

:—/gp‘dVWf—i-/ Tfe-vdH" !,
Q o9

thus (7.25) is verified.

6) We have thus proved the existence of a continuous linear map T :
BV(Q2) — LY(H" ) satisfying (7.26) and (7.25). It remains to
prove the uniqueness stated in part i), for which we reapply the
argument used in the proof of the same statement for epigraphs:
given f € BV(Q), suppose that there exist Tf,T'f € LY(H"|sq)
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such that (7.25) holds for all ¢ € CI(R™ R"). Then, for all such ¢,

/ (Tf—Tf)p-vdH" ' =0,
o0

hence the R™-valued Radon measure ("' LL9Q) L(Tf—T'f)v
is null. Then so is its total variation (K"~ ' LLoQ) L|Tf —T"f|,
which means that T'f = T"f H" !-a.e. on 0.

O
COROLLARY 7.44. With the same hypothesis of theorem 7.43, if

fEBV(Q)NCQ), then Tf = f|an.

REMARK 7.45. With the notation from theorem 7.43:

1) We have actually proved that the continuity of 7' : BV(2) — L} (H"|s0)
holds in a stronger sense, i.e. if a sequence (f;);eny in BV(Q) and
[ € BV(Q) are such that f; — f in LY(L"|q) and |[VY fi|(2) —
VY f1(Q), then T'f; — T'f in LY(H" " !]5q). Indeed, that was proved
in step 3) of the proof for each T; : BV(Q) — LY(H"|sq), for
1 <4 < N, hence it also holds for T' = Zf;l T;.

2) The trace operator from theorem 6.51 for WH(Q) is the restriction
of the trace operator from theorem 7.43.

THEOREM 7.46 (Extension of BV functions on Lipschitz epigraphs
or Lipschitz domains). Let n > 2 and Q an open subset of R™ which
is a Lipschitz epigraph or a Lipschitz domain with 02 bounded. Given
f € BV(Q) and g € BV(R"\ Q), let F be L*-measurable function

defined by

Fla) = f(x) x €} B

g(x) r e R\ Q.
Then F € BV(R"™) and

(7.30) VY F =i,V f+iyVVg—H"'LOQ L(Tf—Tg)r,
where i VY f and i4VY g are the pushforwards of V¥ f € M(,R")
and V¥ g € M(Q°,R") by the respective inclusions (the pushforward
is taken in the sense of remark 4.46), v is the unit outer normal of €2

and T denotes both trace operators BV(Q), BV(Q°) — LY (H" sq). In

particular,
VY F| =iy [V fl +ig| V¥ gl + H LLOQ LITf —Tg|.

Note that, since £"(9€2) = 0 (because, as we have already seen,
H-dim 02 = n — 1), F is indeed an almost everywhere defined £"-
measurable function. Besides, if §2 is a Lipschitz epigraph or a Lipschitz
domain with bounded frontier, so is Q°, so that the trace operator
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BV(Q") — LY (H" !|gq) exists. By exercise 7.14 and by the fact that
Xac = Xac L"-a.e., the Gauss-Green measure of Q° is —pq.

PROOF.
1) For all ¢ € C*(R™,R") with ||p]l, <1,
(7.31)

/Fdivwdﬁ"z/fdivgpdﬁ" /gdlvgpd/l"
n )

——/go-def—/go-deg—f-
Q Q°

—i—/ (Tf—Tg)p-vdH" .
09

(7.6) or (7 25)

Therefore,
Var(F,R") < [V* £1(Q) + [V* ¢)(@ / T — Tl dH™" <

which implies F' € BV(R™), as asserted.
2) It remains to prove the formulas for V¥ F' and |V"Y F|. Since R" =
QUINUQ, we have

V'F=V"FLQ+V"FLQ +V"F Lo
We must compute the three measures appearing in the second mem-

ber above. Since Q and Q° are open sets, by the locality of the weak
gradient it is clear that V¥ F|g = V¥ f and = V% g, hence

VYF LQ=iyV"fand VVF LQ =i,V"g.
We contend that
VYF Loy = —H"' LoQ L(Tf —Tg)v.

Indeed, fix € > 0 and let Q. := 90Q + U(0,¢) be the open
e-neighborhood of 9€). By exercise 6.12 (differentiable Urysohn
lemma) We may take (. € C*°(R"™) such that 0 < (. <1, (. =1on
O and ¢, = 0 on QF; in particular, spt (. C Q. C 90 + B(0, ¢).

For each ¢ € CX(R", R"), applying (7.31) with ¢(. in place of
@ yields

[t avF == [ avri- [ e avrgs
n Q

—i—/ (Tf—Tg)p-vdH" .
09

As € — 0, p(. converges pointwise to pxaqn, and ||ple|| < |l¢] €
LY(|VY F)) n LYV f]) N LY(|V™ g|). We may therefore apply the
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dominated convergence theorem along a sequence convergent to 0,
which yields

—/ © - dVWF:/ (Tf—Tg)p-vdH" 1,
B o9

thus proving our contention. _
Finally, since V¥ F LLQ, V¥ F LQ" and V¥ F L9 are pair-
wise mutually singular, it follows from proposition 4.15 that

VY F| = |VYF LQ|+|V"F LQ"| +|V"F Lo9|
which yields the stated formula for |[V¥ F.
O
COROLLARY 7.47 (Extension of BV functions on Lipschitz epigraphs
or Lipschitz domains). Let n > 2 and Q an open subset of R™ which

is a Lipschitz epigraph or a Lipschitz domain with 0S) bounded. The
extension by 0 defines a bounded linear operator BV(Q2) — BV(R™).

PROOF. For each f € BV(Q), its extension by 0 f : R* — R
coincides L"-a.e. with F' defined in the previous theorem by means of
f and g =0, hence f € BV(R"™). Moreover, it follows from (7.30) and

from the continuity of the trace operator that || flleyn) = || fllLicn) +
VY FIR™) = || fllerig) + VY FIQ) + T fllizm-1100) < CllfllBvie)-
U

COROLLARY 7.48. Let n > 2 and ) an open subset of R™ which

is a Lipschitz epigraph or a Lipschitz domain with 9€) bounded. Given
f e WH(Q) and g € WH(R™\ Q) such that Tf = Tgq, then F defined
in theorem 7.46 belongs to WHH(R™).

Proor. We have F' € BV(R") and, by (7.30), V¥ F = i,V¥ f +
iyV¥g=L" LVYf+ L LVYg el (L R). O
7.5. Compactness

THEOREM 7.49 (Compactness theorem for BV). Let Q@ C R" be a
bounded Lipschitz domain and (f;)ien a sequence in BV(Q) such that

sup{ || fillsvio) | i € N} < oo,

Then there exists f € BV(Q2) and a subsequence (fi,)jen of (fi)i such
that fi;, — f in L*(L™Q).

We present two proofs for this theorem.



7.6. SETS OF FINITE PERIMETER AND EXISTENCE OF MINIMAL SURFACES9

PrRoOOF 1. For each ¢ € N, we may apply theorem 7.33 to obtain
gi € C*(Q)NBV(Q) such that || f; — gl < 1/ and [[|Vg|| dL* <
V™ fi1(Q) + 1/i. In particular,

sup{/HVgiH dL" | i € N} < 0.
0

It then follows that (g;):en is a bounded sequence in W (Q) C BV().
We may therefore apply Rellich-Kondrachov’s theorem 6.77 to obtain
a subsequence (g;,)jen of (¢;); and f € L*(Q) ' such that g;, — f in
L'(Q). Thus, fi, — f in L*(€2). Moreover, it follows from proposition
7.32 that

Var(f, ) < liminf Var(f;,, Q) < sup{||fillave) | i € N} < oo,
W—/
I 7, ()
whence f € BV(Q). O

PROOF 2. By means of the extension by 0, cf. corollary 7.47, we
may assume that (f;);en a sequence in BV(R™) and spt f; C Q € R™.
It is clear that (f;)ien is bounded in L*(£"), since it is bounded in
BV(£2). Moreover, it follows from exercise 7.38 that
IS = Flloeny < Rl sup{[V* fil (R") | i € N},

TV
<o

so that limy_o||7fi — fillLicny = O uniformly on i € N. The thesis
then follows from the Kolmogorov-Riesz-Fréchet compactness criterion
1.80. O

7.6. Sets of Finite Perimeter and Existence of Minimal
Surfaces

In this section we develop some basic properties of sets of finite
perimeter and we apply the direct method of the Calculus of Vari-
ations to prove the existence of minimizers in some geometric varia-
tional problems. Recall the definitions and notations for sets of finite
perimeter in 7.5 and 7.12.

7.6.1. Support of the Gauss-Green measure. Let () be an
open set in R", E C € a set of locally finite perimeter in €2 and
e € Mio(2, R") its Gauss-Green measure. As we have already noted
in 7.13.1), it is clear that spt up C 9®E. Actually, we have the follow-
ing precise description of spt ug. We use || to denote the Lebesgue
measure in R".

Lactually f € LY (Q), by corollary 6.80
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ProprosSITION 7.50. If E C €2 is a set of locally finite perimeter in
the open subset ) of R™, then

spt pup = {2 € Q| Vr>0,0 < |ENU(z,r)| < aln)r"} c 0°E.

Moreover, there exists a Borel set F C Q in the same L. class of F
such that pp = O%F.

PROOF.

1) Let z € Q. If there exists » > 0 such that |[E N U(z,r)| = 0 (re-
spectively, such that |E N U(x,r)| = a(n)r"™), then xg = 0 (respec-
tively, xg = 1) L™"a.e. on the open set 2 N U(zx,r), which implies
VY xe =0on QN U(x,r) by the locality if the weak derivative 7.7,
hence QN U(x,r) C Q\ spt pg.

Conversely, if z € Q\ spt ug, there exists r > 0 such that
U(z,r) C Qand V¥ xg = 0 on U(x,r). It then follows from propo-
sition 5.7 that yg coincides L£™-a.e. with a constant function on
U(x,r), hence xg = 0 a.e. on U(z,r) or xg = 1 a.e. on U(x,r),
which implies |[E N U(z,7)| = 0 or |[ENU(z,r)| = a(n)r", respec-
tively.

We have thus proved that x € Q \ spt pg if, and only if, there
exists r > 0 such that |[ENU(z,7)|=0or |[ENU(x,r)| = a(n)r".

2) Up to modifying £ on a L£"-null set, we may assume that £ € Aq,.
Define:

Ay ={xe€Q|Ir>0,|ENU(z,7)| =0},
Ay ={x€Q|Ir>0,|ENnU(z,7r)| = a(n)r"} =
={zeQ|Ir>0,(Q\ E)NnU(z,r)| =0}.

Then Ay and A; are disjoint open subsets of Q with |[E N Ag| = 0
and |A; \ F| = 0. Define F' := (EU Ay) \ Ay € Bq. Then:
e E\FCENAyand F\ EC A\ E, so that |[EAF| =0.
e It follows from the previous item that gz = g, hence 0%F D
spt urp = spt ug = 2\ (Ao U Ay) by part 1) of the proof.
e Since A; C F° and F'cQ \ Ag, we conclude that O%F C
Q\ (Ag U A;), whence the thesis.

4

7.6.2. Operations with Sets of Finite Perimeter, part 1.

PROPOSITION 7.51. Let Q2 be an open subset of R™. If E,F are
sets of (locally) finite perimeter in ), then so are EUF and ENF.
Moreover,

(7.32) \wmur| + pear| < lpe| + el
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Proor. It follows from proposition 7.36 and of the locality of the
weak derivative that both xgnr = XEXF and xgur = XE + XF — XEXF
belong to BViec(2).

In order to prove (7.32), it suffices to show that the inequality holds
when both members are computed in each open A € (). Fix such an
open A € Q, let (¢¢)e>o be the standard mollifier in R” and take ¢y > 0
such that A € Q.

Define, for 0 < € < €, fe := ¢ * xp € C°(Q,) and g := ¢ * XF €
C®(Qq,), so that 0 < f,9. < 1, f.ge = Xpnr in L (Q,) and h, =
fe+ 9ge — fege — xpur in L} (Q,). Then:

1) It follows from proposition 7.26 that, for all open V' & Q

€0

|wa6|‘vi|u’EHV and |vwg€|‘vi|y’F‘|V

In particular, taking an open set V such that A € V € ()
conclude that

ey WE

4.54.i)

lim sup| V" f|(A) < limsup|V" f€|(Z) < |,uE|(Z),

and, similarly, lim sup|V"¥ g.|(A) < | ,uF|(Z).
2) For 0 < € < ¢,

IV (f90(A) < / (Fllgell + gell £1) acm,
V" h|(A) < / (1= g)lfull + (1 = £)llgel) L™,

hence
V¥ (fege)|[(A) + V¥ he[(A) < [V [](A) + VY g (A).

3) Taking the liminf of both members in the previous equality along
the sequence € = 1/k, it follows from step 1) and from the lower
semicontinuity of the variation 7.32 that

luporl(A) + |pear|(A) < lusl(A) + |prl(A).

The previous inequality holds for each open A € €). In particular,
given such an open A € ), it may be applied to A, = {x € A |
d(z, A°) > 1}, for each k € N, which yields
|umor | (Ar) + [penr|(Ar) < lpel(Ar) + |pel(Ak) < luel(A) + [urpl(A).

Since the sequence (Ag)gen increases to A, taking limy_,o in the first
member of the previous inequality allows us to conclude that

por|(A) + |penr|(A) < [upl(A) + |prl(A),
which proves (7.32), whence the thesis. O
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7.6.3. Compactness from perimeter bounds.

DEFINITION 7.52. Let (E;);en be a sequence of Lebesgue measur-
able sets in R™ and E a Lebesgue measurable set in R". We say that

if Xz — xellien = £ A E| — 0.
We say that EZ-IOACE if xg, — Xxg In | L (L.

loc

THEOREM 7.53 (Compactness from perimeter bounds). Let R > 0
and (E;)ien be a sequence of sets of finite perimeter in R™ such that
sup P(E;) < oo,
ieN

E; CcU(0,R) VieN.

Then there exists a set E C U(0, R) of finite perimeter in R™ and
a subsequence (E;.)jen of (E;)ien such that

J

E, —F and NEiji/lE-

ProOOF. Let Q = U(0, R), which is a bounded Lipschitz domain.
Note that, given f € L}(L"|q) C L}(L"), it follows from corollary 7.47
that f € BV(Q) if, and only if, its extension by 0 belongs to BV(R™).

The hypothesis implies that (xg,)ien is a bounded sequence in
BV(Q) since, for alli € N, [|xg,||L1(zn|q) < a(n)R" and [V (xEg,|a)|(Q2) =
VY XE||o(©2) < P(E;) < sup;eyP(E;) < oo. It then follows from
theorem 7.49 that there exists a subsequence (£;);en of (Ej)ien and
f € BV(Q) such that xg, — f in LY(£"|q). Since there exists a sub-
sequence of XE;, which Cojnverges L"-a.e. to f on (2, we conclude that
there exists £ € Aq such that f = xp L"-a.e. on {2, hence yg € BV(Q)
and E;, — F. By the remark on the first paragraph of the proof, we
have xg € BV(R"™), i.e. E is a set of finite perimeter in R™. Finally,
it follows from proposition 7.27.1) that pg, X i, which completes the
proof. ’ O

LEMMA 7.54. Let 2 C R™ be a bounded Lipschitz domain and E C
R™ be a set of locally finite perimeter. Then E N is a set of finite
perimeter in R™ and

P(ENQ) < P(E,Q)+ P(Q).

PROOF. We know from proposition 7.51 (with R™ in place of Q
and Q) in place of F) that £ N is a set of locally finite perimeter
in R™. It then suffices to prove the asserted inequality, which implies
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P(ENQ) < oo, since P(E, ) < 0o (because E is a set of locally finite
perimeter in R” and 2 € R") and P(©2) < oo (because 052 is bounded).

Consider F' in theorem 7.46 given by f = xglg and ¢ = 0. As
elements of LL (L"), we have F = xpgng; it then follows from theorem

7.46 that VY F = VY xgnq is given by (7.30). In particular, since
|Tf| <1 by (7.26), it follows that

P(ENQ) = V" F(R") < V" F|(Q) + / T

= [V xzl|,(©) +/ ITf]|dH" ! <
N o0
=|pe|(Q)=P(E,Q)
<P(E,Q)+H"1(00Q) =P(E,Q) +P(Q),
as asserted. O

COROLLARY 7.55 (Compactness from perimeter bounds). Let (E;);en
be a sequence of sets of locally finite perimeter in R™ such that, for all
R >0,

sup P(E;, U(0, R)) < oc.
ieN

Then there exists a set E of locally finite perimeter in R™ and a
subsequence (Ej;)jen of (Ei)ien such that

loc *
Ly, =FE and pg, = pp-

PRrOOF. For each N € N, it follows from lemma 7.54 that, for all
ieN, E;NU(0,N) is a set of finite perimeter in R™ and

sup P(EZ- NU(0, N)) < sup P(Ei,U(O, N)) + P(U(O, N)) < 00.
ieN ieN

We may therefore apply theorem 7.53 to obtain a subsequence
(E})jen of (E;)ien and for each k > 2 a subsequence (EF) ey of (Ef_l)jeN
such that for all k € N, X gty x) converges in LH(L") to a set of finite

J )
perimeter By, C U(0, k) of R™. The diagonal (E})xey is therefore a sub-

sequence of (E;);en such that X grqy(,n) is L1(L™) convergent for each

loc
is the characteristic function of a Borel measurable set F© C R™ such

that [(F NU(0,k)) A Ey| = 0 for each k € N, i.e. FNTU(0,k) is a set
of finite perimeter in R for each k € N, hence xr|uox € BV(U(0,k))
for each k € N. We have thus proved that xr € BVio.(R"), i.e. F'is a

set of locally finite perimeter in R", and EF ¢ F. Tt then follows from

N € N. That is, xgr is a convergent sequence in LL (L") and its limit

proposition 7.27.i) that p BE X i, which completes the proof. U
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7.6.4. Existence of Minimizers. In this subsection we apply
the direct method of the Calculus of Variations to prove the existence
of minimizers of two classes of geometric variational problems. Such
application rests on the compactness theorems 7.53, 7.55 and on the
lower semicontinuity of the perimeter 7.32.

Firstly we consider the Plateau problem in a compact subset K of
R™ with boundary data given by a set M of locally finite perimeter in
R™. The problem consists in finding a set Ey C R™ of locally finite
perimeter which has least perimeter in K among the sets £ C R™ with
locally finite perimeter whose boundaries are “fixed” by M, in the sense
that £\ K = M \ K — see figure 2.

F1GURE 2. Plateau problem in K with boundary data M

PROPOSITION 7.56 (Minimizers for the Plateau problem in K with
boundary data M). Let K C R™ be a compact set and M be a set of
locally finite perimeter in R™. Then there exists Eg C R™ of locally
finite perimeter which minimizes the functional

E v P(E, K)
in the class £ .= {E CR" | xg € BVjoc(R") and E\ K = M \ K}.
PROOF. Note that & # 0, since M € €. Let m := inf{P(E, K) |
E € &} (hence 0 < m < 00), and (E;);eny a sequence in € such that

P(E;, K) — m. Take R > 0 such that 2 :=U(0,R) D K.
For all 7 € N, we have

P(E;,Q) =P(E;,Q\ K)+P(E,K) =
=P(M,Q\ K)+P(E;, K) < C(9Q).
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It then follows from corollary 7.55 that there exists a set of locally
finite perimeter Fy C R™ and a subsequence (E;;)jen of (E;); such
that Ej; loACEO. Modifying Ey on a L"-null set, if necessary, me may
assume that Fy \ K = M \ K, so that Ey € £. Besides, by the
lower semicontinuity of the variation 7.32 it follows that P(Ep, Q) <

lim inf P(£;,, ), that is
P(M,Q\ K)+P(Ey, K) <
<liminf(P(M,Q\ K) + P(E;;, K)) =
=P(M,Q\ K) + liminf P(E;,, K),

whence P(Ep, K) < liminf P(E;,, K) = lim P(E;, K) = m. Since E, €
&, we also have the opposite inequality m < P(Ey, K), hence m =
P(Ep, K). O
Vi 3%
M:l%l = Ef\ m< 7]
Z

F1GURE 3. Relative isoperimetric problem in {2

Given an open set ) C R", the relative isoperimetric problem in €2
is the problem of finding sets with least perimeter in 2 with a fixed
prescribed volume — see figure 3. Precisely, given m € (0, |Q2]) (note
that || is not assumed to be finite), we want to decide whether the
following infimum is realized by a set of finite perimeter in 2:

a(m,Q) == inf{P(E,Q) | E C Q,xp € BV(Q), |E| = m}.

We say that a set £ C 2 of finite perimeter in € is a relative isoperi-
metric set in € if if is normalized according to proposition 7.50 so
that spt up = 0°F and it is a minimizer of the above problem, i.e. if
P(E,Q) = a(|E],$2). If Qis a bounded Lipschitz domain, the existence
of such minimizers may be proved once more by a direct application of
the direct method of the Calculus of Variations:

PROPOSITION 7.57 (Existence of relative isoperimetric sets on bounded
Lipschitz domains). Let Q be a bounded Lipschitz domain and m €
(0,]92]]. Then there exists a set E C € such that xg € BV(Q), |[E| =m
and P(E, Q) = a(m, Q).
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ProOOF. Let £ :={P(E,Q) | E C Q,xg € BV(Q), |E| = m}.
We contend that £ is not empty. Indeed, for each ¢t € R", define
Q =Qn{x € R" | x; < t}, so that xq, € BV(Q). By a direct
application of the dominated convergence theorem, t € R +— [();| €
R is a continuous function which is null in ¢y such that Q, = 0
and [Q] in ¢; such that €, = Q (such ¢y and ¢; exist because ()
is bounded). Therefore, by the intermediate value theorem, there
exists t € [to, t1] such that || = m, hence Q, € €.
It follows from the previous item that 0 < a(m,{) < oco. Let
(E;)ien be a sequence in & such that P(E;, Q) — «a(m, Q). Lemma
7.54 ensures that, for all 1 € N, E; is a set of finite perimeter in R"
and
P(E;) < P(E;, Q)+ P(Q),

so that sup{P(E;) | i € N} < oco. Since Q is bounded, we may
therefore apply the compactness criterion 7.53 to obtain £ C
such that xg € BV(R"™) and such that, passing to a subsequence if
necessary, £; = E. Then |E;| — |E|, so that |E| = m, i.e. E € €.
Besides, by the lower semicontinuity of the variation 7.32 it follows
that P(E, Q) < liminf P(E;, Q) = m; since E € £, we also have the
opposite inequality, hence P(E, Q) = m and we are done.
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