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General Notations and Conventions

We list below some basic notation used for objects which are not
defined in the text. A more detailed list, including the notation used
for objects defined in the text (with references to the pages where each
object was defined) may be found at the list of symbols at the end.

General convention for function spaces: From chapter 4 on, all
function spaces refer to spaces of real-valued functions, unless otherwise
specified.

2X power set of X 283
∪A {y | ∃x ∈ A, y ∈ x} 283
∩A {y | ∀x ∈ A, y ∈ x} 283
∪α∈AXα the same as ∪{Xα | α ∈ A} 283
∪α∈AXα the same as ∩{Xα | α ∈ A} 283
R [−∞,∞] (extended real numbers) 283
U(x, r) open ball of center x and radius r 283
B(x, r) closed ball of center x and radius r 283
U or Un open unit ball in Rn 283
B or Bn closed unit ball in Rn 283
Sn unit sphere in Rn+1 283
C(x, r, h) U(p · x, r)× U(q · x, h) ⊂ Rk × Rn−k, for x = (p · x, q · x) ∈ Rk × Rn−k

283
C(x, r) C(x, r, r) 283

C(x, r, h) C(x, r, h) ⊂ Rk × Rn−k 283
C(x, r) C(x, r, r) 283
A closure of A 283
Ao interior of A 283
Ac complement of A 283
χA characteristic function of A 283

iii



iv Glossary

A∆B symmetric difference of A and B, i.e. (A \B) ∪̇(B \ A) 283
A b X A is a compact subset of X 283
‖x‖ norm of x (in Rn, the euclidean norm, unless otherwise specified) 283
‖·‖u norm of uniform convergence. 283
sgn x x

‖x‖ if x 6= 0 and 0 otherwise 283

(e1, . . . , en) standard basis of Rn 283

α(m)
πm/2

Γ(m/2 + 1)
(euclidean volume of Bm if m integer) 283

lim sup
x→x0

f(x) inf
δ>0

sup
x∈U(x0,r)

f(x) = lim
δ→0

sup
x∈U(x0,r)

f(x) 283

lim inf
x→x0

f(x) sup
δ>0

inf
x∈U(x0,r)

f(x) = lim
δ→0

inf
x∈U(x0,r)

f(x) 283

LCH locally compact Hausdorff space 283
LCS locally compact separable metric space 283
Cb bounded continuous functions 283
Ck
b Ck functions with bounded derivatives up to order k 283

Cc continuous functions with compact support 283
Ck
c Ck functions with compact support 283

C0 continuous functions which vanish at infinity 283
Ck
0 Ck functions whose derivatives up to order k vanish at infinity 283

Ck(U) Ck functions on U whose derivatives up to order k extend continuously
to U 283

gr f graph of f , i.e. {(x, y) | y = f(x)} 283
epi f epigraph of f , i.e. {(x, y) ∈ dom f × R | y ≥ f(x)} 283
epiS f strict epigraph of f , i.e. {(x, y) ∈ dom f × R | y > f(x)} 283
hyp f hypograph of f , i.e. {(x, y) ∈ dom f × R | y ≤ f(x)} 283
hypS f strict hypograph of f , i.e. {(x, y) ∈ dom f × R | y < f(x)} 283
f ≺ U f ∈ Cc(U) and 0 ≤ f ≤ 1 283
δa Dirac measure centered at a. 283
f̌ x 7→ f(−x) 283
τyf x 7→ f(x− y) 283
Lip f Lipschitz constant of f 283

∂αf For a multi-index α ∈ Zn+,
(

∂
∂x1

)α1

. . .
(

∂
∂xn

)αn
f 283

|α| For a multi-index α ∈ Zn, α1 + · · ·+ αn. 283
Df Fréchet derivative of f 283
Λ(n,m) set of strictly increasing functions {1, . . . ,m} → {1, . . . , n} 283



CHAPTER 1

Measure and Integration Theory

1.1. Measures

Definition 1.1. A measure on a set X is a set function µ : 2X →
[0,∞] such that:

M1) µ(∅) = 0,
M2) (monotonicity) µ(A) ≤ µ(B) whenever A ⊂ B,
M3) (countable subadditivity) µ(∪∞n=1An) ≤

∑∞
n=1 µ(An).

Warning. Our nomenclature is in accordance with the one com-
monly used in Geometric Measure Theory. However, most textbooks
on Real Analysis (see, for instance, [Fol99]) call such a set function an
outer measure, reserving the name measure for a countably additive set
function defined on a σ-algebraM of subsets of X, as defined below in
1.6. We shall use the term “measure” for both types of set functions,
if no confusion arises; if the context does not make it clear, we may
use, for clarification, “measure on a σ-algebra” or “measure onM” for
countably additive set functions on σ-algebras, or “outer measure” for
the set functions introduced in the previous definition.

Definition 1.2. Given a measure µ on a set X, a subset A ⊂
X is called measurable with respect to µ (or µ-measurable, or simply
measurable) if it satisfies the Carathéodory condition:

∀T ⊂ X,µ(T ) = µ(T ∩ A) + µ(T \ A).

We denote by σ(µ) the set of measurable subsets of X with respect
to µ.

Example 1.3. The following are examples of measures:

1) Let X be a set and µ : 2X → [0,∞] be defined by µ(A) := card (A)
if A is finite and µ(A) :=∞ otherwise. Then µ is a measure on X,
called counting measure, and it can be readily checked that σ(µ) =
2X .

2) Let X be a set, a ∈ X and µ : 2X → [0,∞] be defined by µ(A) := 1
if a ∈ A and µ(A) := 0 otherwise. Then µ is a measure on X, called
Dirac measure centered at a, denoted by δa (or simply δ if a = 0).
It can be readily checked that σ(δa) = 2X .

1



2 1. MEASURE AND INTEGRATION THEORY

3) LetX = Rn and µ : 2X → [0,∞] be defined by µ(A) := inf{
∑

Q∈A vol(Q) |
A countable cover of A by cubes with sides parallel to the coordi-
nate axes}, where vol(Q) denotes the euclidean volume of the cube
Q (which is not assumed to be open or closed, i.e. any product of
intervals with the same length is a valid cube). Then µ is a measure
on Rn, called Lebesgue measure. We denote the Lebesgue measure
on Rn by |·| or Ln, and the set σ(Ln) of Lebesgue-measurable sets
by L Rn (or simply L ).

4) Hausdorff measures, to be defined in section 2.

Exercise 1.4.

a) Ln is invariant by translations, i.e. ∀x ∈ Rn, ∀A ⊂ Rn, Ln(A+x) =
Ln(A).

b) Ln is homogeneous of degree n with respect to homotheties, i.e.
∀λ > 0, ∀A ⊂ Rn, Ln(λA) = λnLn(A).

Exercise 1.5. Let µ and ν be measures on X and c > 0. Then:

a) µ+ ν is a measure on X and σ(µ) ∩ σ(ν) ⊂ σ(µ+ ν).
b) cµ is a measure on X and σ(cµ) = σ(µ).

Definition 1.6. Given a set X, M ⊂ 2X is called an algebra of
subsets of X if it contains the empty set, it is closed under comple-
mentation and closed under finite unions. M is called a σ-algebra if it
is an algebra closed under countable unions. The sets in M are called
measurable with respect to M, or M-measurable, or (if clear from the
context) simply measurable.

Given a σ-algebra M⊂ 2X , we call a set function µ :M→ [0,∞]
a measure on M if it satisfies:

M1) µ(∅) = 0,
M2) (countable additivity) µ(∪̇∞n=1An) =

∑∞
n=1 µ(An) (we use “∪̇” for

disjoint unions).

A measure µ :M→ [0,∞] is called:

• complete if E ∈M, µ(E) = 0 and A ⊂ E implies A ∈M,
• finite if µ(X) <∞,
• σ-finite if there exists a sequence (En)n∈N in M such that
∪n∈NEn = X and ∀n ∈ N, µ(En) < ∞. More generally, a set
A ⊂ X is said to be σ-finite if it can be covered by countably
many measurable sets of finite measure.

Theorem 1.7 (Carathéodory). If µ is a measure on a set X, then
σ(µ) is a σ-algebra and the restriction of µ to σ(µ) is a complete mea-
sure on σ(µ).
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Thus, each measure determines a measure on a σ-algebra by re-
striction to its measurable sets. Conversely, each measure defined on a
σ-algebra of subsets of X can be extended to a measure on X:

Theorem 1.8. If M is a σ-algebra of subsets of X and µ :M→
[0,∞] is a measure on M, then the set function:

µ∗ : 2X −→ [0,∞]
A 7−→ inf{µ(E) | A ⊂ E ∈M}

is a measure which extends µ and such that M⊂ σ(µ∗).

The above theorem is a corollary of Carathéodory’s extension the-
orem ([Fol99], proposition 1.13). Henceforth, whenever no confusion
arises, we shall drop the “∗” in the notation and denote by the same
symbol both the measure µ on M and its induced measure on X.

Definition 1.9. A measure µ : 2X → [0,∞] is called:

• regular , if ∀A ⊂ X, ∃E ∈ σ(µ) such that A ⊂ E and µ(A) =
µ(E).
• finite (respectively, σ-finite) if so is its restriction to σ(µ), cf.

definition 1.6. We define similarly sets which are finite or σ-
finite with respect to µ.

Remark 1.10. i) If we depart from a measure µ : M → [0,∞]
defined on a σ-algebra M ⊂ 2X and take its extension µ∗ : 2X →
[0,∞] given by theorem 1.8, then the measure µ∗ : σ(µ∗)→ [0,∞]
is an extension of µ. It coincides with the completion of µ if µ is
σ-finite (hence it is equal to µ if µ is complete and σ-finite). In
general, this extension coincides with saturation of the completion
of µ (see exercise 1.22 in [Fol99]).

ii) Similarly, if we depart from a measure µ : 2X → [0,∞], take
the measure on σ(µ) given by the restriction of µ to σ(µ), and
then take the extension µ∗ : 2X → [0,∞] of the latter measure
given by theorem 1.8, then µ∗ is a regular measure which satisfies
µ ≤ µ∗. Equality holds iff µ is a regular measure, cf. exercise 1.20
in [Fol99].

Proposition 1.11 (continuity properties of measures). For a mea-
sure µ on X, the following properties hold:

i) (continuity from below) if (En)n∈N is an increasing sequence in
σ(µ), then µ(∪∞n=1En) = limn→∞ µ(En),

ii) (continuity from above) if (En)n∈N is a decreasing sequence in σ(µ)
and µ(E1) <∞, then µ(∩∞n=1En) = limn→∞ µ(En).
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Exercise 1.12. If µ is a regular measure on X, property i) in
proposition 1.11 holds for any increasing sequence (En)n∈N of subsets
of X (i.e. the sets need not be measurable).

1.1.1. Operations on measures. Three useful ways of obtaining
new measures from old are restrictions, traces and pushforwards :

Definition 1.13 (Restrictions and traces of measures). Let µ be
a measure on a set X and A ⊂ X. We define the:

• restriction of µ to A, denoted by µ xA, as the measure 2X →
[0,∞] given by E 7→ µ(A ∩ E).
• trace of µ on A, denoted by µ|A, as the measure 2A → [0,∞]

given by E 7→ µ(E), i.e the restriction to 2A ⊂ 2X of the map
µ : 2X → [0,∞].

Note that the restriction µ xA is a measure on X, whereas the
trace µ|A is a measure on A. Moreover, we do not assume A to be
µ-measurable.

Definition 1.14 (Pushforward of measures). Let µ be a measure
on the set X and f : X → Y a map into the set Y . We define a
measure 2Y → [0,∞] on Y by:

A ⊂ Y 7→ µ
(
f−1(A)

)
,

called pushforward of µ by f and denoted by f#µ.

Proposition 1.15. Let µ be a measure on the set X, A ⊂ X and
f : X → Y . The following properties hold:

i) σ(µ) ⊂ σ(µ xA).
ii) If E ∈ σ(µ), then E ∩ A ∈ σ(µ|A). Besides, if A ∈ σ(µ), then

σ(µ|A) = σ(µ) ∩ 2A = {E ∈ σ(µ) | B ⊂ A}.
iii) For B ⊂ Y , f−1(B) is µ-measurable iff ∀A ⊂ X, B is f#(µ xA)-

measurable.

Proof.

i) Let B ∈ σ(µ). It follows from Carathéodory’s condition in 1.2 that,
for all T ⊂ X, µ xA(T ) = µ(A∩T ) = µ(A∩T ∩B)+µ

(
(A∩T )\

B
)

= µ xA(T ∩B)+µ xA(T \B), hence B is µ xA-measurable.
ii) Let B ∈ σ(µ). It follows from Carathéodory’s condition that, for

all T ⊂ X, µ(T ) = µ(T ∩ B) + µ(T \ B). In particular, for all
T ⊂ A, since T ∩ B = T ∩ B ∩ A and T \ B = T \ (B ∩ A):
µ(T ) = µ(T ∩ B) + µ(T \ B) = µ(T ∩ B ∩ A) + µ

(
T \ (B ∩ A)

)
,

hence B ∩ A is µ|A-measurable.
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Besides, if A ∈ σ(µ) and B ∈ σ(µ|A), for all T ⊂ X:

µ(T )
1
= µ(T ∩ A) + µ(T \ A)

2
=

= µ(T ∩ A ∩B) + µ(T ∩ A \B) + µ(T \ A)
3
= µ(T ∩B) + µ(T \B),

where we have used the µ-measurability of A in (1), the µ|A-
measurability of B in (2) and again the µ-measurability of A in
(3), which allows us to conclude that µ(T ∩ A \ B) + µ(T \ A) =
µ
(
(T \B) ∩ A

)
+ µ
(
(T \B) \ A

)
= µ(T \B). Thus B ∈ σ(µ).

iii) Let B ⊂ Y such that f−1(B) is µ-measurable. For all A ⊂ X, for
all S ⊂ Y :

f#(µ xA)(S) = µ xA(f−1(S)
)

= µ
(
A ∩ f−1(S)

)
=

= µ
(
A ∩ f−1(S) ∩ f−1(B)

)
+ µ
(
A ∩ f−1(S) \ f−1(B)

)
=

= µ
(
A ∩ f−1(S ∩B)

)
+ µ
(
A ∩ f−1(S \B)

)
=

= f#(µ xA)(S ∩B) + f#(µ xA)(S \B),

hence B is f#(µ xA)-measurable.
Conversely, assume that ∀A ⊂ X, B is f#(µ xA)-measurable.

For all T ⊂ X: µ
(
T ∩f−1(B)

)
+µ
(
T \f−1(B)

)
= f#(µ xT )(B)+

f#(µ xT )(Y \ B) = f#(µ xT )(Y ) = µ xT (X) = µ(T ), hence
f−1(B) is µ-measurable.

�

1.1.2. Measures on topological spaces. We now introduce a
topology τ on the set X. We shall consider measures on X which
interact with the topology, in the sense that they have nice regularity
and approximation properties, to be made precise below. This will
allow us to obtain theorems which make an interplay between topology
and measure theory, one of the key ideas of Geometric Measure Theory.

Recall that, given a subset S ⊂ 2X , there exists a smallest σ-algebra
of subsets of X which contains S, that is, the intersection of the family
of σ-algebras that contain S (this family is non-empty, since 2X is such
a σ-algebra). We denote this σ-algebra by σ(S), the so-called σ-algebra
generated by S.

Definition 1.16. For a topological space (X, τ), we define its Borel
σ-algebra as the σ-algebra generated by τ , i.e. σ(τ). We denote it by
BX or B(X). The elements of BX are called Borel sets.
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We say that a measure µ on X is a Borel measure if each Borel set
is µ-measurable, i.e. if BX ⊂ σ(µ). A Borel regular measure on X is
a Borel measure on X which satisfies: ∀A ⊂ X, ∃E ∈ BX such that
A ⊂ E and µ(A) = µ(E).

Exercise 1.17. Let µ and ν be measures on a topological space X
and c > 0.

a) If µ and ν are Borel measures on X, so are µ+ ν and cµ.
b) If µ and ν are Borel regular measures on X, so are µ+ ν and cµ.

Note that, if S ⊂ 2X and M is a σ-algebra of subsets of X, then
σ(S) ⊂ M iff S ⊂ M. In particular, if (X, τ) is a topological space
and µ is a measure on X, then µ is a Borel measure iff τ ⊂ σ(µ), i.e. if
each open subset of X is µ-measurable (or, equivalently, if each closed
subset of X is µ-measurable). In case the topology be metrizable by a
metric d, a simple criterion for a measure µ to be Borelian is given by
the theorem below.

Theorem 1.18 (Carathéodory’s criterion). A measure µ on a met-
ric space (X, d) is Borel iff

(Ca) µ(A ∪B) = µ(A) + µ(B)

whenever A,B ⊂ X satisfy d(A,B) := inf{d(a, b) | a ∈ A, b ∈ B} > 0.

Proof. If µ is Borel and d(A,B) > 0, then A∩B = ∅ = A∩B and,
by the measurability of A, µ(A∪B) = µ

(
(A∪B)∩A

)
+µ
(
(A∪B)\A

)
=

µ(A) + µ(B).
Conversely, assume that condition (Ca) holds. In order to prove

that µ is Borel, it suffices to prove that every closed set C is measurable.
Equivalently, we must show that, for each T ⊂ X such that µ(T ) <∞,
µ(T ) ≥ µ(T ∩ C) + µ(T \ C) (what clearly implies Carathéodory’s
condition in definition 1.2, since the same inequality is trivial if µ(T ) =
∞ and the other inequality holds by subadditivity of µ).

For each i ∈ N, let Ci := {x ∈ X | d(x,C) ≤ 1/i}. Then d(T ∩
C, T \Ci) ≥ 1/i > 0, so that the monotonicity of µ and condition (Ca)
imply µ(T ) ≥ µ

(
(T ∩C)∪ (T \Ci)

)
= µ(T ∩C) +µ(T \Ci). Therefore,

it suffices to prove that µ(T \ Ci)
i→∞−→ µ(T \ C).

For each j ∈ N, let Tj := T ∩ {x ∈ X | 1
j+1

< d(x,C) ≤ 1
j
}. Due to

the fact that C is closed, d(x,C) > 0 iff x ∈ X\C, hence ∀i ∈ N, T\C =
T \Ci∪∞j=iTj. Therefore, ∀i ∈ N, µ(T \C) ≤ µ(T \Ci)+

∑∞
j=i µ(Tj). The

thesis then follows if we show that
∑∞

j=1 µ(Tj) <∞, since this implies∑∞
j=i µ(Tj)

i→∞−→ 0, so that µ(T \C) ≤ lim inf µ(T \Ci) ≤ lim supµ(T \
Ci) ≤ µ(T \ C), where the last inequality holds by monotonicity.
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Since d(Ti, Tj) > 0 if i 6= j are both odd or both even, it follows from

condition (Ca) that, for all k ∈ N, µ(T ) ≥ µ(∪kj=1T2j) =
∑k

j=1 µ(T2j)

and µ(T ) ≥ µ(∪kj=1T2j+1) =
∑k

j=1 µ(T2j+1), thus
∑∞

j=1 µ(T2j) ≤ µ(T )

and
∑∞

j=1 µ(T2j+1) ≤ µ(T ), from what we conclude that
∑∞

j=1 µ(Tj) ≤
2µ(T ) <∞.

�

Example 1.19. The Lebesgue measure Ln is a Borel regular mea-
sure on Rn. Indeed:

1) Let d be the euclidean distance in Rn; we show Ln satisfies the
Carathéodory criterion (CA). Given A,B ⊂ Rn such that d(A,B) =
δ > 0, let A be a countable cover of A∪B by cubes with sides paral-
lel to the coordinate axes. Subdividing the sides of each cube in A, if
necessary, we may take another countable cover A′ of A∪B formed
by cubes of diameter less than δ/2 and such that

∑
Q∈A′ vol(Q) =∑

Q∈A vol(Q). Discarding the cubes of the latter family which do
not intersect A or B, we obtain a subfamily A′′ which still covers
A ∪ B. In view of the choice of the diameters of the cubes in A′,
we can decompose A′′ in two disjoint subfamilies A′′ = A1 ∪̇A2,
where the cubes in A1 cover A and those in A2 cover B. It then
follows that Ln(A) + Ln(B) ≤

∑
Q∈A1

vol(Q) +
∑

Q∈A2
vol(Q) =∑

Q∈A′′ vol(Q) ≤
∑

Q∈A′ vol(Q) =
∑

Q∈A vol(Q). By the arbitrari-
ness of the countable cover A of A∪B by cubes with sides parallel to
the coordinate axes, we conclude that Ln(A) +Ln(B) ≤ Ln(A∪B),
and the other inequality holds by finite subadditivity of Ln. Thus,
by theorem 1.18, Ln is a Borel measure.

2) Let A ⊂ Rn such that Ln(A) < ∞. We contend that ∃B ∈ BRn

such that A ⊂ B and Ln(A) = Ln(B) (hence Ln is Borel regular).
As a matter of fact, for each n ∈ N, take a countable cover An
of A by cubes with sides parallel to the coordinate axes such that
Ln(A) + 1/n >

∑
Q∈An vol(Q). Take B := ∩n∈N ∪Q∈An Q, so that

A ⊂ B ∈ BRn . Then, for each n ∈ N, An covers B, so that ∀n ∈ N,
Ln(B) ≤

∑
Q∈An vol(Q) < Ln(A) + 1/n, whence Ln(B) ≤ Ln(A),

and the other inequality holds by monotonicity of Ln.

Remark 1.20. Since the Lebesgue measure of each bounded cube
Q in Rn with sides parallel to the coordinate axes is finite (as it is
≤ vol(Q) <∞, by definition; it actually coincides with vol(Q), but we
postpone the proof of this fact to example 1.86, after the introduction
of product measures), and since Rn is a countable union of such cubes,
which are Borelian, it follows that the restriction of Ln to BRn is a
σ-finite measure on BRn . By the Borel regularity of Ln, cf. example
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1.19, the extension given by theorem 1.8 of Ln : BRn → [0,∞] is Ln
itself. Therefore, by remark 1.10.(i), we conclude that the completion
of Ln : BRn → [0,∞]. is Ln : L = σ(Ln)→ [0,∞].

Remark 1.21. The fact that the inclusions BRn ⊂ L ⊂ 2Rn are
strict can be seen by cardinality arguments. Indeed, card (BRn)=c and
card (L ) = 2c, whence BRn $ L . As to the strictness of the other
inclusion, it holds a more general result – see theorem 2.2.4 in [Fed69].

Definition 1.22. A Borel measure µ on a topological space (X, τ)
is called:

• open σ-finite if there exists a sequence (Un)n∈N of open subsets
of X such that X = ∪n∈NUn and ∀n ∈ N, µ(Un) <∞.
• locally finite if, for each x ∈ X, there exists an open neighbor-

hood U of x such that µ(U) <∞ .

It is clear that a locally finite Borel measure on a second countable
topological space is open σ-finite.

As a rule of thumb, there are two main classes of measures which in-
teract nicely with the topology: 1) locally finite Borel regular measures
on separable metric spaces and 2) Radon measures (to be introduced in
definition 1.28) on locally compact Hausdorff spaces. For instance, the
approximation theorem below holds in the first case (and, by definition
1.28, similar approximation properties also hold for Radon measures).
In later developments of the theory we shall be mainly interested in
locally compact separable metric spaces (for instance, open subsets of
Rn or, more generally, locally closed subsets of Rn, like embedded sub-
manifolds), for which the aforementioned classes of measures coincide,
cf. exercise 1.32.

Theorem 1.23 (approximation by open and closed sets). Let µ be
an open σ-finite Borel regular measure on a topological space (X, τ)
for which each closed set is a Gδ (i.e. a countable intersection of open
sets). The following approximation properties hold:

i) (approximation by open sets from the outside) ∀A ⊂ X, µ(A) =
inf{µ(U) | A ⊂ U ∈ τ},

ii) (approximation by closed sets from the inside) ∀A ∈ σ(µ), µ(A) =
sup{µ(C) | C ⊂ A,C closed}.

Remark 1.24. The theorem holds, in particular, for a locally finite
Borel regular measure on a separable metric space.

The proof is a consequence of the following lemmas.

Lemma 1.25. Let X be a set, S ⊂ 2X and F ⊂ 2X such that:
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• F is closed under countable intersections and countable unions.
• If A ∈ S, both A and its complement Ac belong to F .

Then F ⊃ σ(S).

Proof. Let G := {A ∈ F | Ac ∈ F}. Then:

1) S ⊂ G.
2) G is closed under complementation.
3) G is closed under countable unions. Indeed, if (An)n∈N is a sequence

in G, then ∪n∈NAn ∈ F and (∪n∈NAn)c = ∩n∈NAcn ∈ F .

Therefore, G is a σ-algebra which contains S, i.e. σ(S) ⊂ G ⊂ F . �

Corollary 1.26. If X is a set and S ⊂ 2X , σ(S) is the smallest
family of subsets of X closed under countable unions and countable
intersections, which contains S and the complements of the elements
of S.

Lemma 1.27. Let µ be a Borel measure on a topological space (X, τ)
for which each closed set is a Gδ. If B ∈ BX and µ(B) < ∞, for all
ε > 0 there exists a closed set C ⊂ B such that µ(B \ C) < ε.

Proof. Define ν := µ xB. By proposition 1.15, ν is a finite Borel
measure.

Let S be the family of all closed subsets of X and F the family of
all ν-measurable sets A ⊂ X such that ∀ε > 0, ∃C ⊂ A closed with
ν(A \ C) < ε. We assert that F ⊃ BX ; in particular, that implies
B ∈ F , whence the thesis. The assertion follows once we show that F
satisfies the hypotheses of lemma 1.25. Indeed:

• Let (An)n∈N be a sequence in F and fix ε > 0. For each n ∈ N,
∃Cn ⊂ An closed such that ν(An \ Cn) < 2−nε. Then, since
both ∩n∈NAn \∩n∈NCn and ∪n∈NAn \∪n∈NCn are contained in
∪n∈N(An \ Cn), it follows by subadditivity that:

1) ν(∩n∈NAn \ ∩n∈NCn) < ε and ∩n∈NCn is closed, thus
∩n∈NAn ∈ F

2) ν(∪n∈NAn\∪n∈NCn) < ε. Since ν is finite and the sequence
of ν-measurable sets (∪n∈NAn \ ∪kn=1Cn)k∈N decreases to
∪n∈NAn \ ∪n∈NCn, by continuity from above 1.11 there
exists k ∈ N such that ν(∪n∈NAn \ ∪kn=1Cn) < ε. As
∪kn=1Cn is closed, this shows that ∪n∈NAn ∈ F .

• Since every closed subset of X is a Gδ, taking complements we
conclude that every open subset of X is a Fσ, i.e. a countable
union of closed sets. Thus, if C ∈ S, then C ∈ F and X \C ∈
F , since F is closed under countable unions by the previous
item.
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Hence, by lemma 1.25, F ⊃ σ(S) = BX , as asserted. �

Proof of theorem 1.23. Firstly, we prove part (ii). Let A ∈
σ(µ). Assume that µ(A) < ∞. Since µ is Borel regular, ∃B′ ∈ BX

such that B′ ⊃ A and µ(B′) = µ(A) < ∞, hence µ(B′ \ A) = 0. Use
the Borel regularity again to obtain B′′ ∈ BX such that B′′ ⊃ B′ \ A
and µ(B′′) = µ(B′ \ A) = 0. Then B := B′ \ B′′ ∈ BX is such that
B ⊂ A and µ(B) = µ(A). Applying lemma 1.27 for a given ε > 0,
we obtain a closed set C ⊂ B such that µ(B \ C) = µ(A \ C) < ε,
which proves part (ii) in case A has finite measure. If µ(A) =∞, due
to the fact that µ is σ-finite, there exists a disjoint sequence (An)n∈N
in σ(µ) such that A = ∪̇n∈NAn and ∀n ∈ N, µ(An) < ∞. Given
ε > 0, for each n ∈ N, apply the case just proved to obtain a closed
set Cn ⊂ An such that µ(An \ Cn) = µ(An) − µ(Cn) < 2−nε. Since∑∞

n=1 µ(An) = µ(A) = ∞, it then follows that
∑∞

n=1 µ(Cn) = ∞.
Thus, for every M > 0, there exists N ∈ N such that the closed
subset C = ∪Nn=0Cn of A has measure µ(C) =

∑N
n=1 µ(Cn) > M , i.e.

sup{µ(C) | C ⊂ A,C closed} =∞ = µ(A).
In order to prove part (i), we may assume, by Borel regularity, that

A ∈ BX . Assume that there exists an open set V such that V ⊃ A
and µ(V ) < ∞. The thesis in this case follows from part (ii), passing
to the complements: for a given ε > 0, take a closed set C ⊂ V \ A
such that µ

(
(V \ A) \ C

)
< ε. Then U = V \ C is an open set which

does the job: U ⊃ A and µ(U \ A) < ε, since U \ A = (V \ A) \ C.
In the general case, given A ∈ BX , we use the hypothesis of µ being

open σ-finite to obtain a sequence (Vn)n∈N of open sets of finite measure
such that A ⊂ ∪n∈NVn. Fix ε > 0. For each n ∈ N, we may apply the
case just proved to the Borel set A ∩ Vn ⊂ Vn to obtain an open set
Un ⊃ A ∩ Vn such that µ

(
Un \ (A ∩ Vn)

)
< 2−nε. Then U = ∪n∈NUn is

an open set which cointains A and U \A ⊂ ∪n∈N
(
Un \ (A ∩ Vn)

)
, thus

µ(U \ A) < ε by countable subadditivity.
�

Definition 1.28. A Radon measure on a locally compact Hausdorff
topological space (X, τ) is a Borel measure µ on X such that:

R1) (finiteness on compact sets) if K is a compact subset of X, then
µ(K) <∞,

R2) (interior regularity for open sets) for all U ⊂ X open, µ(U) =
sup{µ(K) | K ⊂ U,K compact},

R3) (exterior regularity) for all A ⊂ X, µ(A) = inf{µ(U) | A ⊂
U,U open}.

Remark 1.29.
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i) Note that, by condition R2 in the definition above, every Radon
measure is Borel regular.

ii) A measure µ : BX → [0,∞] is called a Radon measure on BX if
its extension µ∗ : 2X → [0,∞] given by theorem 1.8 is a Radon
measure as defined above. That is equivalent to saying that µ
satisfies R1, R2 and R3 for any Borel set A ⊂ X, what coincides
with the usual definition of Radon measures in most Real Analysis
textbooks (for instance, in [Fol99], section 7.1).

It is clear that, if we depart from a Radon measure µ : 2X →
[0,∞], its restriction to BX is an Radon measure on BX , whose
extension given by theorem 1.8 is the original measure µ, thanks to
its Borel regularity. We therefore obtain a bijection between the set
of outer Radon measures on X and the set of Radon measures on
BX , which associates each Radon outer measure to its restriction
to BX . By means of this bijection, we may identify Radon outer
measures on X and Radon measures on BX .

Exercise 1.30. If µ and ν are Radon measures on a locally compact
Hausdorff space X and c > 0, then µ + ν and cµ are Radon measures
on X.

Exercise 1.31. If µ is a Radon measure on a locally compact Haus-
dorff space (X, τ), then µ is inner regular on all σ-finite µ-measurable
sets, i.e. property R2 holds for any σ-finite µ-measurable set A in
place of U . In particular, if µ is σ-finite, property R2 holds for all
µ-measurable sets.

Exercise 1.32. Let X be a locally compact separable metric space.
Then µ is a Radon measure on X iff µ is a locally finite Borel regular
measure on X. Moreover, if µ is such a measure, then µ is σ-finite,
hence it is inner regular on all µ-measurable sets by the previous exer-
cise.

Remark 1.33. It follows from exercise 1.32 that, if X is a locally
compact separable metric space and µ : BX → [0,∞] is a measure
which is finite on compact subsets of X, then the extension of µ to a
measure on X given by theorem 1.8 is a Radon measure (since it is a
locally finite Borel regular measure on X). In particular, the measure
µ on BX is Radon, cf. remark 1.29.

Definition 1.34 (Support of a measure on a topological space).
Let µ be a measure on a topological space X.

• We say that µ is concentrated on a set A ⊂ X if µ(X \A) = 0.
• The support of µ, denoted by spt µ, is the complement of the

union of all open sets V ⊂ X such that µ(V ) = 0.



12 1. MEASURE AND INTEGRATION THEORY

In the situation of the definition above, in general it is not true
that µ is concentrated on its support, i.e that µ(X \ spt µ) = 0. The
following proposition gives two sufficient conditions for that property
to hold:

Proposition 1.35. If µ is a measure on a second countable topo-
logical space or if µ is a Radon measure on a locally compact Hausdorff
topological space, then µ is concentrated on its support. Actually, its
support is the smallest closed set on which µ is concentrated.

Proof. If µ is a measure on a second countable topological space
X, by Lindelöf’s theorem we may cover X \ spt µ by countably many
open sets of measure zero, thus µ(X \ spt µ) = 0. If µ is a Radon
measure on a locally compact Hausdorff topological space, for each
compact K ⊂ X \ spt µ, we may cover K with finitely many open sets
of measure zero, hence µ(K) = 0. By interior regularity, it follows that
µ(X \ spt µ) = sup{µ(K) | K ⊂ X \ spt µ,K compact} = 0. In any of
the two cases, its clear that spt µ the smallest closed set on which µ is
concentrated.

�

In the following propositions, we relate measurability and regularity
properties of a measure µ and those of the measures obtained from µ
by restriction or pushforward operations.

Proposition 1.36. Let µ be a measure on the set X and A ⊂ X.
The following properties hold:

i) If X is a metric space, µ is a Borel regular measure on X and
either 1) A ∈ BX or 2) A ∈ σ(µ) and µ(A) < ∞, then µ xA is
Borel regular.

ii) If X is a locally compact separable metric space, µ a Radon measure
on X and either 1) A ∈ BX or 2) A ∈ σ(µ) and µ(A) <∞, then
µ xA is a Radon measure.

Proof.

i) In both cases µ xA is a Borel measure, by proposition 1.15. We
must show that it is Borel regular.
1) Let A ∈ BX . Given T ⊂ X, we must show that ∃B ∈ BX

such that B ⊃ T and µ xA(B) = µ xA(T ). Since µ is Borel
regular, ∃B′ ∈ BX such that B′ ⊃ A∩T and µ(B′) = µ(A∩T ).
Since B′ ⊃ A ∩ B′ ⊃ A ∩ T , by monotonicity it follows µ(A ∩
B′) = µ(A ∩ T ). Then, taking B = B′ ∪ Ac ∈ BX , we have
B ⊃ T and µ xA(B) = µ(A ∩ B) = µ(A ∩ B′) = µ(A ∩ T ) =
µ xA(T ).
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2) Let A ∈ σ(µ) with µ(A) < ∞. Since µ is Borel regular, ∃A′ ∈
BX such that A′ ⊃ A and µ(A′) = µ(A). Since A ∈ σ(µ) has µ-
finite measure, by finite additivity it follows that µ(A′ \A) = 0,
hence µ xA = µ xA′ is Borel regular by the previous item.

ii) By remark 1.29, µ is Borel regular. Hence, by the previous item,
µ xA is Borel regular. Since µ is locally finite, so is µ xA. There-
fore, from exercise 1.32, we conclude that µ xA is Radon.

�

Proposition 1.37. If both X and Y are separable locally compact
metric spaces, f a continuous proper map and µ a Radon measure on
X, then f#µ is a Radon measure on Y , and spt f#µ = f(spt µ).

Proof.

1) f#µ is a Borel measure. Indeed, if U ⊂ Y is open, so is f−1(U),
since f is continuous. In particular, f−1(U) ∈ BX ⊂ σ(µ), hence
U ∈ σ(f#µ) by proposition 1.15.

2) f#µ is locally finite. Indeed, if K ⊂ Y is compact, so is f−1(K),
since f is proper. Hence f#µ(K) = µ

(
f−1(K)

)
< ∞. As Y is

locally compact, the assertion follows.
3) f#µ is Borel regular (hence Radon, by the previous items and by

exercise 1.32). Indeed, given T ⊂ Y , we apply the exterior regularity
of µ on f−1(T ) to obtain, for each n ∈ N, Un ⊂ X open such that
Un ⊃ f−1(T ) and µ(Un) ≤ µ

(
f−1(T )

)
+ 1/n. Since f is closed

(because it is proper), Vn = Y \ f(X \ Un) is open in Y , T ⊂ Vn
and, noting that f−1

(
Y \ f(X \ Un)

)
= X \ f−1f(X \ Un) ⊂ Un,

f#µ(Vn) ≤ µ(Un) ≤ µ
(
f−1(T )

)
+ 1/n = f#µ(T ) + 1/n. Taking

V = ∩n∈NVn ∈ BY , we then have T ⊂ V and f#µ(T ) = f#µ(V ),
what proves the assertion.

4) Finally, we prove that spt f#µ = f(spt µ). Firstly, since 0 =
f#µ(Y \spt f#µ) = µ

(
X\f−1(spt f#µ)

)
, and sinceX\f−1(spt f#µ)

is open in X, it follows that X \ f−1(spt f#µ) ⊂ X \ spt µ, hence
(taking complements) spt µ ⊂ f−1(spt f#µ), from what we con-
clude that f(spt µ) ⊂ spt f#µ.

On the other hand, f#µ
(
Y \ f(spt µ)

)
= µ

(
X \ f−1f(spt µ)

)
≤

µ(X\spt µ) = 0, hence spt f#µ is concentrated on f(spt µ). Since f
is closed, f(spt µ) is a closed subset of Y , thus spt f#µ ⊂ f(spt µ),
and we had already proved the other inclusion, whence the thesis.

�

Remark 1.38. Let X and Y be separable locally compact metric
spaces, µ a Radon measure on X and f : X → Y a Borelian map, i.e.
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such that ∀B ∈ BY , f−1(B) ∈ BX . If f is not a continuous proper
map, f#µ may not be a Radon measure on Y (it might not be finite on
compact sets, and even if it is, it might not be a Borel regular measure).
However, if we add the hypothesis that, for all K ⊂ Y , µ

(
f−1(K)

)
<

∞, we may modify the definition of the pushforward in order to ensure
that f#µ be a Radon measure on Y . Instead of taking the pushforward
by f of the outer measure µ (i.e. the pushforward in the sense of
definition 1.14), we take the pushforward by f of the measure µ : BX →
[0,∞], i.e. the measure f#µ on BY given by A ∈ BY 7→ µ

(
f−1(A)

)
,

which is finite on compact sets by the hypothesis assumed on f and µ.
Then, by remarks 1.29 and 1.33, f#µ is a Radon measure on Y . Both
definitions of f#µ coincide if f is a proper continuous map.

1.2. Measurable Maps

Definition 1.39 (Measurable spaces and measurable maps). A
measurable space is a pair (X,M) where X is a set and M is a σ-
algebra of subsets of X. The elements of M are called M-measurable
(or simply measurable, if M is clear from the context) subsets of X.

Given measurable spaces (X,M) and (Y,N ), a map f : X → Y is
called measurable with respect to M and N (or simply measurable, if
M and N are clear from the context) if, ∀A ∈ N , f−1(A) ∈M.

If X (or Y ) is a topological space, we shall tacitly assume that the
σ-algebra M is the Borel σ-algebra BX , unless another σ-algebra is
explicitly specified. Thus, for instance:

• For X and Y topological spaces, a map f : X → Y is called
Borelian or Borel measurable if it is measurable with respect
to BX and BY .
• For X = R and Y a topological space (in particular, for Y = R

or C), a map f : X → Y is called Lebesgue measurable if it
is measurable with respect to L and BY , where L is the
σ-algebra of Lebesgue measurable subsets of R.

Definition 1.40 (µ-measurable maps). Let µ be a measure on the
set X and Y a topological space. A function f : dom f ⊂ X → Y is
called measurable with respect to µ if the following conditions hold:

i) its domain covers almost all of X, i.e. µ(X \ dom f) = 0,
ii) for all B ∈ BY , f−1(B) is µ-measurable.

Due to the fact that every subset of null measure ofX is µ-measurable,
a map f : dom f ⊂ X → Y is measurable with respect to µ in the
sense of the definition above iff any extension of f to a a map X → Y is
measurable with respect to σ(µ) and BY in the sense of definition 1.39.
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Moreover, if f is µ-measurable, any other function which coincides with
f except for a set of null measure is also µ-measurable.

We list below some of the main properties of measurable maps.

Theorem 1.41 (Properties of measurable maps). Let (X,M), (Y,N ),
(Z,O) be measurable spaces. The following properties hold:

i) f : X → Y is measurable iff given S ⊂ 2Y such that σ(S) = N ,
for all B ∈ S, f−1(B) ∈M.

ii) If f : X → Y and g : Y → Z are both measurable maps, so is g◦f .
iii) If X and Y are topological spaces and f : X → Y is continuous,

then it is Borelian.
iv) For Y = R, if (fn)n∈N is a sequence of measurable maps X → R,

the following maps X → R are measurable: infn∈N fn, supn∈N fn,
lim inf fn, lim sup fn. In particular, if (fn)n∈N is pointwise con-
vergent, the limit function is measurable. More generally, if Y is
a metric space and (fn)n∈N is a pointwise convergent sequence of
measurable maps X → Y , the limit function is measurable.

Proof.

i) The implication (⇒) is clear. On the other hand, N ′ := {T ⊂
Y | f−1(T ) ∈ M} is clearly a σ-algebra of subsets of Y . Thus, if
S ⊂ N ′, N = σ(S) ⊂ N ′, i.e. f is measurable.

ii) ∀A ∈ O, (g ◦ f)−1(A) = f−1
(
g−1(A)

)
∈M.

iii) Since f is continuous, ∀U ∈ τY , f−1(U) ∈ τX ⊂ σ(τX) = BX . As
σ(τY ) = BY , it suffices to apply part i to S = τY .

iv) Let g := infn∈N fn. For all α ∈ R, g−1([α,∞]) = ∩n∈Nf−1
n ([α,∞]) ∈

M. Since S := {[α,∞] | α ∈ R} generates BR, it follows from part
i that g is measurable. Similarly, supn∈N fn is measurable, and so
are lim inf fn = supk∈N infn≥k fn and lim sup fn = infk∈N supn≥k fn.

Finally, let (fn)n∈N be a sequence of measurable maps X →
Y pointwise convergent to f . Then, for each open set U ⊂ Y ,
f−1(U) = ∪i∈N ∪j∈N ∩n≥jf−1

n ({x ∈ U | d(x, Y \ U) ≥ 1/i}) ∈ M,
hence f is measurable.

�

Corollary 1.42. If f, g : X → R are both measurable, so are
max{f, g} and min{f, g}. In particular, both f+:= max{f, 0} and
f−:= max{−f, 0} are measurable.

Definition 1.43 (σ-algebra induced by a family of maps). Let

X be a set, (Yα,Nα)α∈A a family of measurable spaces and (X
fα−→

Yα)α∈A a family of maps defined on X. The smallest σ-algebra on X
for which ∀α ∈ A, fα is measurable (i.e. the intersection of the family
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of σ-algebras which make all fα’s measurable maps) is called σ-algebra
induced by (fα)α∈A, denoted by σ

(
(fα)α∈A

)
.

Proposition 1.44. With the notation from definition 1.43, let
M = σ

(
(fα)α∈A

)
.

i) If ∀α ∈ A, Nα = σ(Sα), then M = σ
(
{V ⊂ X | ∃α ∈ A, ∃D ∈

Sα, V = f−1
α (D)}

)
.

ii) If (Z,O) is a measurable space, then a map g : Z → X is measur-
able with respect to O and M iff ∀α ∈ A, fα ◦ g is measurable.

Proof.

i) Let N := σ
(
{V ⊂ X | ∃α ∈ A,∃D ∈ Sα, V = f−1

α (D)}
)
. It follows

from theorem 1.41.i that ∀α ∈ A, fα is measurable with respect to
N and Nα. Hence, M ⊂ N , and the other inclusion follows from
the fact that {V ⊂ X | ∃α ∈ A,∃D ∈ Sα, V = f−1

α (D)} ⊂ M.
ii) (⇒) follows from theorem 1.41 part ii. Conversely, if ∀α ∈ A,

fα ◦ g is measurable, then ∀α ∈ A, ∀D ∈ Nα, g−1f−1
α (D) = (fα ◦

g)−1(D) ∈ O, thus g is measurable by the previous item and by
theorem 1.41 part i.

�

Particular cases of the above construction are:

Product σ-algebra: Let (Xα,Mα)α∈A be a family of measur-
able spaces. On the product X =

∏
α∈AXα, the σ-algebra

induced by the family of projections (prα : X → Xα)α∈A is
called product σ-algebra, denoted by ⊗α∈AMα.

Pullback: Let (Y,N ) be a measurable space and f : X → Y .
The σ-agebra on X induced by {f} is called pullback of N ,
denoted by f ∗N .

Note that f ∗N = {f−1(V ) : V ∈ N}. In particular, if
X ⊂ Y e f = i is the inclusion X → Y , the pullback i∗N
coincides with {B ∩X : B ∈ N}, called restriction or trace of
N on X, usually denoted by N|X . In this situation, if X ∈ N ,
then N|X = {B ∈ N | B ⊂ X}.

Remark 1.45. As an application of proposition 1.44, note that:

• a map taking values on a product of measurable spaces en-
dowed with the product σ-algebra is measurable iff each of its
components is measurable.
• if a map f takes values on a measurable space (Y,N ) and has

its image contained in a subset X, than f is measurable iff it
is measurable as a map taking values on X endowed with the
trace σ-algebra.
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• If X is a topological space and A ⊂ X, BX |A = BA, i.e. the
trace σ-algebra of BX on A coincides with the Borel σ-algebra
of A endowed with the relative topology.

Exercise 1.46. If X is a locally compact separable metric space,
µ a Radon measure on X and A ⊂ X is locally compact in the relative
topology (i.e. A is a locally closed subspace), then µ|A is a Radon
measure on A.

Proposition 1.47 (Product of Borel σ-algebras). Let (Xα, τα)α∈A
be a family of topological spaces and X =

∏
α∈AXα endowed with the

product topology. Then:

i) ⊗α∈A BXα ⊂ BX .
ii) Equality holds in the previous item if A is countable and ∀α ∈ A, τα

is second countable.

Proof. For each α ∈ A, the projection
∏

α∈AXα → Xα is con-
tinuous. Hence, by theorem 1.41.iii, it is measurable with respect to
BX and BXα . It then follows from proposition 1.44.ii that the iden-
tity X → X is measurable with respect to BX and ⊗α∈A BXα , i.e.
⊗α∈A BXα ⊂ BX .

On the other hand, assume that A is countable and ∀α ∈ A, τα is
second countable, so that the product topology on X is second count-
able. We may take a countable base for this topology formed by rectan-
gles

∏
α∈A Uα where each Uα is open in Xα and, except for finetely many

α’s, Uα = Xα. Since each such rectangle is measurable with respect
to ⊗α∈A BXα , it follows that every open set in the product topology,
being a countable union of such rectangles, is measurable with respect
to ⊗α∈A BXα , thus BX ⊂ ⊗α∈A BXα . �

Corollary 1.48. For any n ∈ N, BRn = ⊗n1 BR. In particular,
if (X,M) is a measure space, a map f = (f1, . . . , fn) : X → Rn is
measurable iff each component fi is measurable, 1 ≤ i ≤ n.

It follows from the corollary above, identifying C ≡ R2 as metric
spaces, that a function f : X → C is measurable iff both Re f and Im f
are measurable.

Corollary 1.49. Let (X,M) be a measurable space, Y a topo-
logical space, f1, . . . , fn : X → R measurable maps and Φ : Rn → Y
Borelian. Then Φ(f1, . . . , fn) : X → Y is measurable. In particular,
sums, products and differences of measurable maps X → R are mea-
surable.

So is the quotient of measurable maps, as long as the denominator
is never zero, but see example 1.51, below.
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The following is a useful criterion for testing measurability in terms
of countable measurable covers.

Proposition 1.50. Let (X,M), (Y,N ) be measurable spaces, and
(An)n∈N a sequence in M such that ∪n∈NAn = X. Then a map f :
X → Y is measurable iff ∀n ∈ N, f |An : An → Y is measurable, where
each An is endowed with the trace σ-algebra.

Proof. For each B ∈ N , f−1(B) = ∪n∈Nf |−1
An

(B) ∈ M, since
∀n ∈ N, M|An ⊂M, due to the fact that ∀n ∈ N, An ∈M. �

The following example shows how the proposition above may be
applied:

Example 1.51.

1) Let sgn : C→ C be defined by sgn z:= z/|z| if z 6= 0 and sgn 0 := 0.
Taking X = C, A1 = {0} and A2 = C \ {0} in proposition 1.50, it
is clear that sgn is measurable (note that the trace σ-algebra on A2

coincides with its Borel σ-algebra as a metric subspace of C, and
that sgn |A2 is continuous). Thus, if (X,M) is a measurable space,
each measurable function f : X → C admits a polar decomposition
f = sgn f · |f |, where each factor is measurable.

2) Let + : R×R→ R be arbitrarily defined on {(+∞,−∞), (−∞,+∞)}
and in the usual way on the complement of this set. Taking A1 =
{(+∞,−∞), (−∞,+∞)}, A2 = R × {+∞} ∪ {+∞} × R, A3 =
R × {−∞} ∪ {−∞} × R and A4 = R × R in preposition 1.50, is
clear that + is Borelian. Thus, if (X,M) is a measurable space and
f, g : X → R are measurable maps, so is f + g. We can treat sim-
ilarly the difference, product and quotient of extended real valued
measurable maps.

We now focus our attention in a class of measurable maps which
will be used to develop the integration theory of a measure µ on a set
X.

Definition 1.52 (Simple functions). Let X and Y be measurable
spaces. A function ϕ : X → Y is called simple if it is measurable and
has finite image.

In the next section we shall be concerned with simple functions
taking values in R or C.

Proposition 1.53 (properties of simple functions). Let (X,M) be
a measure space.

i) The set of all C-valued simple functions on X is a subalgebra of
CX .
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ii) If f : X → [0,∞] is measurable, there exists an increasing sequence
(ϕn)n∈N of simple functions X → [0,∞) which converges pointwise
to f and such that the convergence is uniform on each part where
f is bounded.

iii) If f : X → C is measurable, there exists a sequence (ϕn)n∈N of
simple functions X → C which converges pointwise to f , and such
that ∀n ∈ N, |ϕn| ≤ |ϕn+1| ≤ |f | and the convergence is uniform
on each part where f is bounded.

Exercise 1.54. Let (X,M) be a measurable space, f : X → [0,∞]
measurable, (rn)n∈N a sequence in (0,∞) such that rn → 0 e

∑∞
i=1 rn =

∞. Then there exists a sequence (An)n∈N in M such that
∑n

k=1 rkχAk
increases pointwise to f .

Hint. Define (Ak)k∈N and (gk)k∈N inductively by: 1) A1 := {x ∈
X | r1 ≤ f(x)} and g1 := r1χA1 ; 2)Ak := {x ∈ X | gk−1(x)+rk ≤ f(x)}
and gk := gk−1 + rkχAk .

Exercise 1.55. Let (X,M) be a measurable space, Y a separable
metric space and f : X → Y a measurable map. Then there exists a
sequence of simple functions X → Y which converges pointwise to f .

We end this section with a definition of support for measurable
functions on a topological space endowed with a Borel measure which
is often more natural from a measure-theoretic point of view than the
usual definition of support.

Definition 1.56 (Support and essential support). LetX be a topo-
logical space endowed with a Borel measure µ and f a measurable
function on X.

i) The support of f , denoted by spt f , is the complement in X of the
union of all open sets on which f is null1.

ii) The essential support of f , denoted by ess spt f , is the complement
in X of the union of all open sets on which f is µ-a.e. null.

Remark 1.57 (Support and essential support). With the notation
from the previous definition:

1) It is clear that ess spt f ⊂ spt f .
2) If f is continuous on X and spt µ = X, then ess spt f = spt f .
3) If X is second countable, or if X is locally compact Hausdorff and µ

is Radon, then ess spt f is the complement of the biggest open set
on which f is null µ-a.e.

1Actually this definition makes sense for arbitrary functions on topological
spaces, not necessarily endowed with measures.
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4) We adopt the convention that, henceforth, “support of f” means
“essential support of f”, which will be denoted accordingly by “spt f”.

1.3. Integration Theory

Up to the end of this section, we fix a measure µ on the set X. The
restriction of µ to σ(µ) yields a classical measure space (X, σ(µ), µ),
for which an integration theory is developed in standard Real Analysis
textbooks. For the sake of completeness, we list some definitions and
theorems below and refer the reader elsewhere for more details.

In the theory of integration described below we consider measurable
functions on X taking values in R or C. We denote by L+(µ) the set
of µ-measurable functions on X taking values in [0,∞].

Definition 1.58. For a simple function ϕ ∈ L+(µ), i.e. for ϕ simple
and taking values in [0,∞), let Imϕ = {a1, . . . , an}, with ai 6= aj if
i 6= j, so that ϕ =

∑n
i=1 aiχϕ−1(ai) (which is the so-called standard

form or standard representation of the simple function ϕ). We define
the integral of ϕ with respect to µ by:

ˆ
ϕ dµ :=

n∑
i=1

aiµ
(
ϕ−1(ai)

)
∈ [0,∞],

where we use the convention 0 · ∞ := 0.
For an arbitrary f ∈ L+(µ), we now define:ˆ

f dµ := sup{
ˆ
ϕ dµ | ϕ ∈ L+ simple , ϕ ≤ f} ∈ [0,∞].

One can check that, whenever f, g ∈ L+(µ) and c ∈ [0,∞),
´

(f +
g) dµ =

´
f dµ+

´
g dµ and

´
cf dµ = c

´
f dµ.

For a µ-measurable function f taking values in R, we consider the
positive and negative parts of f , i.e. f+ = max{f, 0} and f− =
max{−f, 0}; according to corollary 1.42, they are both measurable
and satisfy f = f+ − f−, |f | = f+ + f−. We say that f is inte-
grable if

´
f+ dµ < ∞ or

´
f− dµ < ∞; if so, we define

´
f dµ:=´

f+ dµ−
´
f+ dµ ∈ R. We say that f is summable if both

´
f+ dµ <∞

and
´
f− dµ < ∞ (or, equivalently, if

´
|f | dµ < ∞), i.e. if f is inte-

grable and
´
f dµ ∈ R.

As it is usual, henceforth we omit the “µ” in the notation whenever
the measure is clear from the context. For a measurable set E ⊂ X,
we define

´
E
f :=

´
χEf .

Finally, a µ-measurable C-valued function f is called summable if´
|f | < ∞ (or, equivalently, if both real and imaginary parts of f are
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summable). For such a function, we define
´
f :=

´
Re f + i

´
Im f ∈

C. We denote by L1(µ) the set of summable functions f : X → C.
If µ is the counting measure on a set X and f is an integrable func-

tion on X, we use the notation
∑

x∈X f(x) for
´
f dµ, called unordered

sum of f .

Exercise 1.59. Let If µ be the counting measure on a set X and
f : X → [0,∞]. Then∑

x∈X

f(x) = sup
{∑
x∈F

f(x) | F ⊂ X finite
}
.

Moreover, if
∑

x∈X f(x) <∞, then {x ∈ X | f(x) > 0
}

is countable.

Warning. Some authors use the nomenclature “almost integrable”
for what we have called “integrable” and “integrable” for what we have
called “summable”.

We summarize the main properties of the integral defined above
in the theorems that follow. As it is usual, we say that a property P
which refers to points of X holds µ-almost everywhere (or simply almost
everywhere if the measure is clear from the context), with notation “P
µ-a.e.” or “P a.e. [µ]”, if the set of the points at which P does not
hold has measure zero.

Theorem 1.60 (properties of the integral). The following proper-
ties for the integral defined in 1.58 hold:

i) L1(µ) is a complex vector space and the integral is a linear func-
tional on it.

ii) If f ∈ L+, then
´
f = 0 iff f = 0 µ-a.e.

iii) If f and g are integrable and f = g a.e., then
´
f =

´
g. If f ≤ g

a.e., then
´
f ≤

´
g.

iv) (integral triangle inequality) If f ∈ L1, then |
´
f | ≤

´
|f |.

v) ∀f ∈ L1(µ), ‖f‖1 :=
´
|f | dµ defines a seminorm on L1(µ).

It follows from ii, above, that the linear subspace N := {f ∈ L1(µ) |
‖f‖1 = 0} of L1(µ) consists of the measurable functions on X which
are null almost everywhere. The elements of the quotient L1(µ)/N are,
therefore, classes of equivalence of summable functions which coincide
almost everywhere, and ‖·‖1 is a norm on this quotient. The fact
that this norm is complete (so that L1(µ)/N is a Banach space) is a
consequence of the convergence theorems 1.62 and 1.64 stated below.

Remark 1.61. As it is usual, we shall, henceforth, overload the
notation “L1(µ)”, which will be used both with its original meaning and
also to denote the aforementioned quotient space. That is, whenever
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we write “f ∈ L1(µ)”, it may signify, depending on the context, that f
is a summable function or that f is a class of equivalence of summable
functions which coincide almost everywhere. A similar remark applies
to the Lp spaces, to be introduced in subsection 1.3.1, below.

Theorem 1.62 (monotone convergence theorem). Let (fn)n∈N be
an increasing sequence in L+(µ), which converges µ-a.e. to f ∈ L+(µ).
Then

´
fn →

´
f .

Theorem 1.63 (Fatou’s lemma). Let (fn)n∈N be a sequence in
L+(µ). Then

´
lim inf fn ≤ lim inf

´
fn.

Theorem 1.64 (dominated convergence theorem). Let (fn)n∈N be
a sequence in L1(µ) dominated by a summable function g, i.e such that
∀n ∈ N, |fn| ≤ g. If (fn)n∈N converges pointwise almost everywhere to
f , then f ∈ L1(µ) and

´
fn →

´
f .

Corollary 1.65. With the same hypothesis, fn → f in L1(µ).

Proof. |fn−f | converges pointwise almost everywhere to zero and
the convergence is dominated by 2g, hence ‖fn − f‖1 =

´
|fn − f | →

0. �

Thus, dominated pointwise almost everywhere convergence implies
convergence in L1. On the other hand, without additional hypothe-
ses we cannot recover pointwise almost everywhere convergence from
L1 convergence, but we can ensure the pointwise almost everywhere
convergence of a subsequence, i.e. if (fn)n converges to f in L1(µ),
there exists a subsequence of (fn) which converges pointwise almost
everywhere to f .

The following improved version of the dominated convergence the-
orem often comes in handy:

Theorem 1.66 (generalized dominated convergence theorem). Let
(fn)n∈N and (gn)n∈N be sequences in L1(µ) such that:

i) ∀n ∈ N, |fn| ≤ gn µ-a.e.
ii) fn → f pointwise a.e. and gn → g pointwise a.e.

iii)
´
gn →

´
g <∞.

Then f ∈ L1(µ) and
´
fn →

´
f .

An important application of the dominated convergence theorem
is related to the study of continuity and differentiability of functions
defined by integrals. For instance, the following proposition is a direct
consequence of the dominated convergence theorem:
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Proposition 1.67 (differentiation under the integral sign using
the dominated convergence theorem). Let I ⊂ R be a nondegenerate
interval and f : X × I → R such that ∀t ∈ I, f(·, t) ∈ L1(µ). Let
F : I → R defined by F (t) :=

´
f(x, t) dµ(x).

i) Let t0 ∈ I and suppose that ∀x ∈ X, ∃ limt→t0 f(x, t) and there
exists g ∈ L1(µ) such that |f(x, t)| ≤ g(x) for all (x, t). Then

lim
t→t0

ˆ
f(x, t) dµ(x) =

ˆ
lim
t→t0

f(t, x) dµ(x).

In particular, F is continuous at t0 if ∀x ∈ X, f(x, ·) is continuous
in t0.

ii) Suppose that exists ∂f
∂t

and there exists g ∈ L1(µ) such that
∣∣∂f
∂t

(x, t)
∣∣ ≤

g(x) for all (x, t). Then F is differentiable and

F ′(t) =

ˆ
∂f

∂t
(x, t) dµ(x).

Similar statements hold if we replace the parameter interval I
by an open subset of Rk.

Exercise 1.68 (upper and lower integrals). We call ϕ : X → C an
extended simple function if it is µ-measurable and its image is count-
able. For a function f : X → [0,∞], not necessarily measurable, we
define:

• (upper integral)
´ ∗
f dµ:= inf{

´
ϕ dµ | ϕ ∈ L+ extended simple, ϕ ≥

f a.e.} ∈ [0,∞],
• (lower integral)

´
∗ f dµ:= sup{

´
ϕ dµ | ϕ ∈ L+ extended simple, ϕ ≤

f a.e.} ∈ [0,∞].

Prove that:

a) If
´
∗ f =

´ ∗
f <∞, then f is µ-measurable and

´
f coincides with

both upper and lower integrals (hence f ∈ L1).
b) If f is µ-measurable, then

´
∗ f =

´ ∗
f =

´
f .

c) The monotone convergence theorem holds for the upper integral,
i.e. if (fn)n∈N is a sequence of positive functions (not necessarily
measurable) which increases µ-a.e. to a function f (not necessarily
measurable), then

´ ∗
fn →

´ ∗
f . Similarly, Fatou’s lemma also

holds for the upper integral.
d) If (fn)n∈N is a sequence of positive functions (not necessarily mea-

surable) such that
´ ∗
fn → 0, there exists a subsequence of (fn)n∈N

which converges pointwise almost everywhere to zero.

Exercise 1.69. Let µ be a measure on a set X and A ⊂ X.

a) If f ∈ L+(µ), then f ∈ L+(µ xA), f |A ∈ L+(µ|A) and
´
f d(µ xA) =´

f |A d(µ|A).
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b) If A ∈ σ(µ), both integrals in the previous item coincide with´
A
f dµ.

Exercise 1.70. Let µ be a measure on the set X and f : X →
Y a map into the set Y . If g ∈ L+(f#µ), then g ◦ f ∈ L+(µ) and´
g d(f#µ) =

´
g ◦ f dµ.

Remark 1.71. In the previous exercise, if X and Y are topological
spaces and f : X → Y is a Borelian map, the same same statement
holds for a Borelian function g ≥ 0 on Y if we take the alternative
definition of the pushforward from remark 1.38, i.e. we take the push-
forward by f of the measure µ on BX , which is a measure f#µ on
BY , and then we take the extension of this measure given by theorem
1.7 (the alternative definition may be more convenient in this situation
because it yields a Borel regular measure). In fact, both definitions of
f#µ coincide on BY , and the integrals depend only on the measures
on the Borel sets, i.e. they depend only on µ : BX → [0,∞] and
f#µ : BY → [0,∞].

1.3.1. Lp spaces.

Definition 1.72. Let f be a C-valued measurable function on X.
We define:

• For real 0 < p <∞, ‖f‖p:= (
´
|f |p dµ)1/p ∈ [0,∞].

• For p = ∞, ‖f‖p := inf{C ∈ R | |f | ≤ C µ − a.e. on X} ∈
[0,∞] (note that inf ∅ = +∞).

For 0 < p ≤ ∞, we define Lp(µ):= {f : X → C µ − measurable |
‖f‖p <∞}.

For p ∈ [1,∞], we define its conjugate exponent p′ ∈ [1,∞] by
1
p

+ 1
p′

= 1 (thus p′ =∞ for p = 0 and p′ = 1 for p =∞).

For each real 0 < p < ∞ or p = ∞, one can readily check that
Lp(µ) is a vector space over C. For 1 ≤ p ≤ ∞, it follows from theorem
1.75, stated below, that ‖·‖p is a seminorm on Lp(µ).

Theorem 1.73 (Hölder’s inequality). For any p ∈ [1,∞], f, g C-
valued measurable functions on X, the following inequality holds:

‖fg‖1 ≤ ‖f‖p‖g‖p′ .

In particular, fg ∈ L1(µ) if f ∈ Lp(µ) and g ∈ Lp′(µ).

Theorem 1.74 (Generalized Hölder’s inequality). Let p1, . . . , pk ∈
[1,∞] such that

∑k
i=1

1
pi

= 1
r
≤ 1 and f1, . . . , fk C-valued measurable
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functions on X. Then

‖
k∏
i=1

fi‖r ≤
k∏
i=1

‖f‖pi .

In particular,
∏k

i=1 fi ∈ Lr(µ) if fi ∈ Lpi(µ) for 1 ≤ i ≤ k.

Theorem 1.75 (Minkowski’s inequality). For any p ∈ [1,∞], f, g
C-valued measurable functions on X, the following inequality holds:

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

For 1 ≤ p ≤ ∞, the linear subspace N := {f ∈ Lp(µ) | ‖f‖p =
0} of Lp(µ) consists of the measurable functions on X which are null
almost everywhere. Therefore, the quotient Lp(µ)/N consists of classes
of equivalence of functions in Lp(µ) which coincide almost everywhere,
and ‖·‖p is a norm on this quotient, which is complete by the following
theorem. As in remark 1.61, we shall henceforth overload the notation
“Lp(µ)”, which will be used both with its original meaning and also to
denote the aforementioned quotient space.

Theorem 1.76. For 1 ≤ p ≤ ∞, Lp(µ) is a Banach space. For
p = 2, it is a Hilbert space, since ‖·‖2 is induced by the Hermitian
inner product 〈f, g〉 :=

´
fḡ dµ (where ·̄ denotes complex conjugation),

whenever f, g ∈ L2(µ).

For 1 ≤ p <∞, the theorem above is a consequence of the conver-
gence theorems for the integral 1.62, 1.63, 1.64.

We now state a basic interpolation theorem which may be derived
by a convenient application of Hölder’s inequality.

Theorem 1.77 (Basic interpolation for Lp spaces). If 0 < p < q <
r ≤ ∞, then Lp(µ) ∩ Lr(µ) ⊂ Lq(µ) and, for all measurable f on X,
‖f‖q ≤ ‖f‖λp‖f‖1−λ

r , where λ ∈ (0, 1) is defined by

1

q
=
λ

p
+

1− λ
r

.

The following density theorem is a consequence of the regularity
properties of Radon measures (1.28, 1.31). For a locally compact Haus-
dorff space X, we denote by Cc(X) the space of continuous functions
on X with compact support.

Proposition 1.78. If µ is a Radon measure on a locally compact
Hausdorff space X and 1 ≤ p <∞, then Cc(X) is dense in Lp(µ).
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Proof. Since Lp simple functions are dense in Lp (as it can be read-
ily checked by means of proposition 1.53 and theorem 1.64), it suffices
to prove that such functions may be arbitrarily approximated in the
Lp norm by continuous functions with compact support. Besides, since
any Lp simple function is a finite linear combination of characteristic
functions of measurable sets of finite measure, it suffices to show that,
given E ∈ σ(µ) with µ(E) < ∞ and ε > 0, there exists φ ∈ Cc(X)
such that ‖φ − χE‖p < ε. Indeed, take a compact set K ⊂ E and
an open set U ⊃ E such that µ(U \ K) < δ, with δ > 0 to be cho-
sen later. Applying Urysohn’s lemma, choose φ ∈ Cc(X) such that
0 ≤ φ ≤ 1, φ ≡ 1 on a neighborhood of K and spt φ ⊂ U . Therefore,
χK ≤ φ ≤ χU and χK ≤ χE ≤ χU , so that |φ− χE| ≤ χU − χK , what
implies ‖φ− χE‖p ≤ ‖χU − χK‖p = δ1/p. Taking δ1/p < ε, the thesis is
achieved. �

We now identify the dual space of the Banach space Lp(µ). For
fixed p ∈ [1,∞], q = p′ the conjugate exponent of p and f ∈ Lp(µ),
let Φp(f) : Lq(µ) → C be defined by g 7→

´
fg dµ. It follows from

Hölder’s inequality 1.73 that Φp(f) is well defined, Φp(f) ∈ Lq(µ)′

and ‖Φp(f)‖q ≤ ‖f‖p. Actually, in “almost all” situations the last
inequality is an equality, and Φp is an isometry of Lp(µ) onto Lq(µ):

Theorem 1.79 (Riesz representation theorem). With the notation
above, if 1 < p < ∞, Φp is an isometry of Lp(µ) onto Lq(µ)′, so that
we may identify by means of this isometry Lq(µ)′ ≡ Lp(µ).

• For p =∞, if µ is σ-finite, Φ∞ is an isometry of L∞(µ) onto
L1(µ)

′
, so that L1(µ)

′ ≡ L∞(µ).
• For p = 1, Φ1 is an isometry of L1(µ) into L∞(µ)′, but in

general it is not onto, i.e. in general the dual of L∞(µ) is
bigger than L1(µ).

We end this subsection with a criterion for compacity in Lp(Ln).
For a function f defined on Rn and x, y ∈ Rn, we adopt the usual

notation for translations:

τyf(x) := f(x− y)

Theorem 1.80 (Kolmogorov-Riesz-Fréchet). Let 1 ≤ p < ∞ and
F be a bounded subset of Lp(Ln) such that

lim
h→0
‖τhf − f‖p = 0

uniformly in f ∈ F . Then, for each Ω ∈ σ(Ln) with finite measure,
the closure of F|Ω in Lp(Ln|Ω) is compact.

Here, F|Ω := {f |Ω | f ∈ F}.



1.4. PRODUCT MEASURES AND FUBINI-TONELLI’S THEOREM 27

1.3.2. Change of variables formula. We state in the next two
theorems the version of the change of variables formula for the Lebesgue
integral which is usually presented in Real Analysis textbooks. That
formula will be generalized in chapter 5 by the area and coarea formu-
las.

Theorem 1.81 (linear change of variables for the Lebesgue inte-
gral). Let T ∈ GL(n,R).

i) If A ∈ L Rn, then T · A ∈ L Rn and Ln(T · A) = |detT |Ln(A);
ii) If f : Rn → R is Lebesgue-measurable, so is f ◦ T , and, if f ≥ 0

or f ∈ L1, ˆ
f dLn =

ˆ
f ◦ T |detT | dLn.

Theorem 1.82 (C1-change of variables formula for the Lebesgue
integral). Let U ⊂ Rn open and φ : U → Rn be a C1 diffeomorphism
onto its image V := φ(U) (which is an open subset of Rn). If f is
a Lebesgue-measurable function on V , f ◦ φ is a Lebesgue-measurable
function on U ; besides, if f ≥ 0 or f ∈ L1, thenˆ

V

f dLn =

ˆ
U

f ◦ φ(x)|det Dφ(x)| dLn(x).

1.4. Product measures and Fubini-Tonelli’s theorem

If (X,M, µ) and (Y,N , ν) are measure spaces, there exists a stan-
dard construction, based on Carathéodory’s extension theorem, which
yields a measure µ × ν on the product σ-algebra M ⊗ N ⊂ 2X×Y ,
called product measure of µ and ν. If both µ and ν are σ-finite,
µ × ν is characterized by the property of being the unique measure
on M×N such that , for all measurable rectangles A×B ∈M×N ,
µ×ν(A×B) = µ(A)ν(B). The main tool used in the study and compu-
tation of integrals with respect to µ× ν is the classical Fubini-Tonelli’s
theorem, which relates integrals with respect to µ× ν to iterated inte-
grals with respect to µ and ν.

We now describe how to make an analogous construction for the
product of outer measures µ on a set X and ν on a set Y . We may
define the product µ× ν as the extension given by theorem 1.8 of the
product (in the sense of the previous paragraph) µ|σ(µ) ⊗ ν|σ(ν). That
is equivalent to the definition below.

Definition 1.83 (product measure). We define, for all E ⊂ X ×
Y , µ × ν(E) := inf{

∑
n∈N µ(An)ν(Bn) | ∀n ∈ N, An ∈ σ(µ), Bn ∈

σ(ν), E ⊂ ∪n∈NAn × Bn} ∈ [0,∞]. Recall that we use the convention
0 · ∞ = 0. We call µ× ν the product measure of µ and ν.
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We make a similar definition for any finite number of measures.
The theorem below, which may be obtained as a direct consequence

of classical Fubini-Tonelli’s theorem for products of measures on σ-
algebras, ensures that µ× ν it is indeed a measure. Note that µ× ν is
a regular measure, but we do not assume the regularity of µ or ν. We
use the following:

Notation.

• For E ⊂ X×Y and (x0, y0) ∈ X×Y , Ex0 := {y ∈ Y | (x0, y) ∈
E} (the x0-section of E) and Ey0 := {x ∈ X | (x, y0) ∈ E}
(the y0-section of E).
• For a function f defined on dom f ⊂ X × Y and (x0, y0) ∈
X × Y , fx0 (the x0-section of f) and fy0 (the y0-section of
f) are the functions defined, respectively, on (dom f)x0 and
(dom f)y0 by y 7→ f(x0, y) and x 7→ f(x, y0).

Theorem 1.84 (Fubini-Tonelli’s for outer measures, [Fed69], [EG91]).
With the notation from the previous definition, µ× ν : 2X×Y → [0,∞]
is a regular measure. Moreover:

i) If A ∈ σ(µ) and B ∈ σ(ν), then A×B ∈ σ(µ× ν) and µ× ν(A×
B) = µ(A)ν(B).

ii) If E ∈ σ(µ×ν) is σ-finite with respect to µ×ν, then, for µ-almost
every x ∈ X, Ex ∈ σ(ν), and for ν-almost every y ∈ Y , Ey ∈ σ(µ).
The functions x 7→ ν(Ex) and y 7→ µ(Ey) are measurable, and the
measure of E may be computed by:

µ× ν(E) =

ˆ
ν(Ex) dµ(x) =

ˆ
µ(Ey) dν(y).

iii) If f is an integrable function defined on dom f ⊂ X×Y such that
{f 6= 0} is σ-finite with respect to µ×ν (what holds, in particular, if
f is summable), then, for µ-almost every x ∈ X, fx is ν-integrable,
and for ν-almost every y ∈ Y , fy is µ-integrable. The almost
everywhere defined functions x 7→

´
fx dν and y 7→

´
fy dµ are

integrable, and
´
f d(µ× ν) may be computed by iterated integrals:ˆ

f d(µ× ν) =

ˆ (ˆ
fx dν

)
dµ(x) =

ˆ (ˆ
fy dµ

)
dν(y).

Remark 1.85. If µ and ν are both σ-finite, then so is µ×ν, so that
the σ-finiteness hypotheses in parts ii and iii above are automatically
fulfilled. Moreover, every positive measurable function is integrable,
so that part iii holds for such functions (what corresponds to classical
Tonelli’s theorem).
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Example 1.86. We show that the Lebesgue measure Ln on Rn

coincides with the product measure (L1)n = L1×· · ·×L1. Fix A ⊂ Rn.

1) As defined in example 1.3, Ln(A) = inf{
∑

Q∈A vol(Q) | A countable

cover of A by cubes with sides parallel to the coordinate axes}.
Since any cube Q ∈ Rn is a product of intervals (hence a product
of L1-measurable sets) and since, for each such cube, the euclidean
volume vol(Q) coincides with (L1)n(Q) (by the fact that the length
of an interval coincides with its Lebesgue measure), we immediately
conclude from definition 1.83 that (L1)n(A) ≤ Ln(A).

2) In the definition of Ln(A), we may use rectangles (i.e. products of
arbitrary intervals) instead of cubes (products of intervals with the
same side length), without modifying Ln(A). Indeed, it suffices to
show that, for any such rectangle R =

∏n
j=1 Ij and ε > 0, R may be

covered by a countable family A of cubes such that
∑

Q∈A vol(Q) ≤
vol(R) + ε. In order to accomplish that, assume vol(R) < ∞ (oth-
erwise we are done) and, for m ∈ N (to be chosen later), cover
each interval Ij by countably many disjoint intervals (Ikj,m)k∈N with

side lengths equal to 1/m so that
∑

k∈N L1(Ikj,m) − L1(Ij) < 1/m.

Then Am :=
(∏

Ik1
1,m× · · · × Iknn,m

)
k1,...,kn∈N

is a countable cover of R

by cubes and
∑

Q∈Am vol(Q) =
∏n

j=1

(∑
k∈N L1(Ikj,m)

) m→∞−→ vol(R);
thus, for m sufficiently large, A = Am does the job.

3) In view of the previous item, to prove the remaining inequality
(L1)n(A) ≥ Ln(A), it suffices to show that, given B =

∏n
j=1Bj with

(∀1 ≤ j ≤ n)Bj ∈ L R, for all ε > 0, there exists a countable fam-
ily A of rectangles which covers B and such that

∑
Q∈A vol(Q) ≤∏

1≤j≤n L1(Bj) + ε. We assume that
∏

1≤j≤n L1(Bj) < ∞, oth-

erwise the inequality is trivial. Recall that L1 is a Borel regu-
lar measure, as we have seen in example 1.19; actually, it is a
Radon measure, by exercise 1.32. It then follows from theorem
1.23 that, for any m ∈ N and for 1 ≤ j ≤ n, there exist open sets
Uj,m ⊂ R such that Bj ⊂ Uj,m and L1

(
Uj,m \Bj

)
< 1/m. Since each

open set in R is a countable disjoint union of open intervals, there
exists a countable family (Ikj,m)k∈N of disjoint open intervals such

that Uj,m = ∪̇k∈N Ikj,m; take Am :=
(∏

Ik1
1,m × · · · × Iknn,m

)
k1,...,kn∈N

.

Then Am is a countable family of rectangles which covers B and∑
R∈Am vol(R) =

∏n
j=1 L1(Uj,m)

m→∞−→
∏

1≤j≤n L1(Bj); thus, for m
sufficiently large, A = Am does the job.

Exercise 1.87 (Layer-cake formula, [LL01]). Let µ be a σ-finite
measure on X and ν a Radon measure on [0,∞). Define φ : [0,∞)→ R
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by φ(t) = ν
(
[0, t)

)
. Then, for every f ∈ L+(µ):ˆ
φ ◦ f dµ =

ˆ
[0,∞)

µ({f > t}) dν(t).

In particular, if p > 0 and ν = ptp−1 dt, it follows:ˆ
f(x)p dµ(x) = p

ˆ ∞
0

µ({f > t})tp−1 dt.

Hint. Compute the integral on the first member by means of Fubini-
Tonelli’s theorem.

We close this section with a useful generalization of Minkowski’s
inequality 1.75 which may be obtained as a corollary of Fubini-Tonelli’s
theorem:

Theorem 1.88 (Minkowski’s inequality for integrals). Let (X,M, µ)
and (Y,N , ν) be σ-finite measure spaces and f a M⊗N -measurable
function on X × Y .

i) If f ≥ 0 and 1 ≤ p <∞, then[ ˆ ( ˆ
f(x, y) dν(y)

)p
dµ(x)

]1/p

≤
ˆ [ˆ

f(x, y)p dµ(x)
]1/p

dν(y).

ii) If p ∈ [1,∞], the inequality below holds if the second member
makes sense and is finite. That is, if for ν-a.e. y ∈ Y f(·, y) ∈
Lp(µ) and the a.e. defined ν-measurable function y 7→ ‖f(·, y)‖p
is ν-summable, then for µ-a.e. x ∈ X, the function f(x, ·) is ν-
summable, the a.e. defined µ-measurable function x 7→

´
f(x, y) dν(y)

is in Lp(µ) and

‖
ˆ
f(·, y) dν(y)‖p ≤

ˆ
‖f(·, y)‖p dν(y).

1.5. Signed measures and Lebesgue-Radon-Nikodym
theorems

In this subsection we are concerned with measures on σ-algebras
(i.e. we don’t consider outer measures). We recall the notion of “signed
measure” and some important decomposition theorems which may be
used to relate the properties and the integration theory of one measure
on a σ-algebra to the corresponding properties of another measure on
the same σ-algebra.

Definition 1.89 (signed measures). A charge or signed measure
on a measurable space (X,M) is a set function ν :M→ R such that

SM1) ν(∅) = 0;
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SM2) Im ν ⊂ [−∞,∞) or Im ν ⊂ (−∞,∞] (i.e. ν omits −∞ or +∞);
SM3) ν is σ-additive, i.e. for all countable disjoint family (An)n∈N in

M,

ν(∪n∈NAn) =
∑
n∈N

ν(An),

with the meaning that n 7→ µ(An) is summable with respect to
the counting measure on N and the sum is µ(∪n∈NAn).

We say that a signed measure ν is finite if Im ν ⊂ R (i.e. if ν omits
both −∞ and +∞). We say that ν is σ-finite if there exists a sequence
(An)n∈N in M such that ∪n∈NAn = X and ∀n ∈ N, ν(An) ∈ R.

Example 1.90.

1) Let µ1 and µ2 be measures on (X,M) such that µ1 or µ2 is finite.
Then ν = µ1 − µ2 is a signed measure on (X,M).

2) Let µ be a measure on (X,M) and f : X → R an integrable function
(in the sense of definition 1.58). Then fµ : M → R given by
A 7→

´
A
f dµ is a signed measure.

Remark 1.91.

1) The second example is a particular case of the first, since fµ =
f+µ − f−µ. We will see in theorem 1.94 and in exercise 1.96 that
every signed measure on (X,M) may be written in both forms 1)
and 2).

2) Note that every measure on (X,M) is a signed measure. As it is
usual, for clarity reasons, sometimes we call a measure on (X,M)
a positive measure, to contrast with “signed measure”.

Definition 1.92 (absolute continuity and mutual singularity). Let
µ and ν be positive measures on a measurable space (X,M). We say
that:

1) µ is absolutely continuous with respect to ν (notation: µ � ν) if
∀A ∈M, ν(A) = 0 implies µ(A) = 0.

2) µ and ν are mutually singular (notation: µ ⊥ ν) if there exists
A ∈ M such that µ is concentrated on A and ν is concentrated on
X \ A.

Exercise 1.93. Let µ be a finite positive measure and ν a positive
measure on a measurable space (X,M). Then µ � ν iff ∀ε > 0,
∃δ > 0, ∀A ∈M, ν(A) < δ implies µ(A) < ε.

Theorem 1.94 (Jordan decomposition theorem). Let ν be a signed
measure on a measure space (X,M). Then there are unique positive
measures ν+ and ν− such that ν = ν+ − ν− and ν+ ⊥ ν−.
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Definition 1.95 (positive part, negative part and total variation
of a signed measure). With the notation from theorem 1.94, we call ν+

the positive part of ν and ν− the negative part of ν.
The positive measure |ν|:= ν+ + ν− is called the total variation of

ν.

Exercise 1.96. If ν is a signed measure on a measure space (X,M),
there exists a Borelian |ν|-integrable function f : X → R such that
|f | ≡ 1 and ν = f |ν|.

Definition 1.97 (integration with respect to a signed measure).
Let ν be a signed measure on a measure space (X,M) and f : X → R a
measurable function. We say that f is summable with respect to ν if it is
summable with respect to |ν| and we use the notation L1(ν) := L1(|ν|).
For such f , we defineˆ

f dν :=

ˆ
f dν+ −

ˆ
f dν−.

Note that the integral defined above satisfies the usual linearity
and convergence properties, which are inherited from the corresponding
properties of the integrals with respect to ν+ and ν−.

Definition 1.98 (absolute continuity and mutual singularity, bis).
Let ν be a signed measure and µ a positive measure on a measurable
space (X,M). We say that:

1) ν � µ if |ν| � µ.
2) ν ⊥ µ if |ν| ⊥ µ.

Exercise 1.99. Let ν be a signed measure on a measurable space
(X,M). The following properties hold:

a) For all A ∈M, |ν(A)| ≤ |ν|(A).
b) ν is finite (respectively, σ-finite) iff ν+ and ν− are finite (respectively,

σ-finite) iff |ν| is finite (respectively, σ-finite). If ν is finite, Im ν is
a bounded subset of R.

c) For all A ∈M,

|ν|(A) = sup{
∑
n∈N

|ν(An)| | ∀n ∈ N, An ∈M and ∪̇
n∈N

An = A}.

d) L1(|ν|) = L1(ν+) ∩ L1(ν−).
e) For all f ∈ L1(ν), |

´
f dν| ≤

´
|f | d|ν|.

Exercise 1.100. Let ν1 and ν2 be signed measures on a measurable
space (X,M) such that both omit −∞ or both omit +∞, µ a positive
measure (X,M) and c ∈ R. Then:



1.5. SIGNED MEASURES AND LEBESGUE-RADON-NIKODYM THEOREMS 33

a) cν1 and ν1 + ν2 are signed measures.
b) |cν1| = |c||ν1| and |ν1 + ν2| ≤ |ν1|+ |ν2|, with equality if |ν1| ⊥ |ν2|.
c) If ν1 ⊥ µ and ν2 ⊥ µ, then ν1 + ν2 ⊥ µ. If both ν1 and ν2 are

positive measures, then ν1 ⊥ µ and ν2 ⊥ µ iff ν1 + ν2 ⊥ µ.
d) If ν1 � µ and ν2 � µ, then ν1 + ν2 � µ. If both ν1 and ν2 are

positive measures, then ν1 � µ and ν2 � µ iff ν1 + ν2 � µ.
e) L1(ν1) ∩ L1(ν2) ⊂ L1(ν1 + ν2) and, ∀f ∈ L1(ν1) ∩ L1(ν2),

´
f d(ν1 +

ν2) =
´
f dν1 +

´
f dν2.

f) If c 6= 0, L1(cν1) = L1(ν1) and, ∀f ∈ L1(ν1),
´
f d(cν1) = c

´
f dν1.

Theorem 1.101 (Lebesgue decomposition theorem). Let ν be a
signed measure and µ a positive measure on a measurable space (X,M),
both σ-finite. Then there exist unique signed measures νs and νa on
(X,M) such that νs ⊥ µ, νa � µ and ν = νs + νa.

Definition 1.102. With the notation from the previous theorem,
we call νs the singular part of ν, νa the absolutely continuous part of ν
and ν = νs + νa the Lebesgue decomposition of ν with respect to µ.

Theorem 1.103 (Radon-Nikodym theorem). Let µ be a positive
measure and ν a σ-finite signed measure on a measurable space (X,M),
such that ν � µ. Then there exists a µ-integrable function f : X → R,
unique up to µ-null sets in M, such that ν = fµ, i.e. for all A ∈M,

ν(A) =

ˆ
A

f dµ.

Definition 1.104 (Radon-Nikodym derivative). With the notation
from the previous theorem, we cal f (or any measurable function which
coincides µ-a..e with f) the Radon-Nikodym derivative of ν with respect
to µ and denote it by dν

dµ
.

Note that, in the situation of example 1.90.2), i.e. if ν = fµ where
µ is a positive measure on (X,M) and f : X → R is µ-integrable,
then ν � µ. Hence, if ν is σ-finite, it follows from the uniqueness of
the Radon-Nikodym derivative stated in theorem 1.103 that f = dν

dµ

(equality here and in similar statements below means that f is in the
equivalence class of dν

dµ
modulo µ-a.e. null functions).

The Radon-Nikodym derivative has the properties suggested by the
notation dν

dµ
. We list those properties in exercise 1.105 and proposition

1.107 below.

Exercise 1.105. Let (X,M) be a measurable space and µ a posi-
tive measure on (X,M).
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a) If ν is a σ-finite signed measure on (X,M) and ν � µ, then

d|ν|
dµ

=
∣∣dν
dµ

∣∣.
In other words, if f : X → R is µ-integrable and ν = fµ, then
|ν| = |f |µ. Moreover, ν is finite iff dν

dµ
∈ L1(µ).

b) Let ν1 and ν2 be σ-finite signed measures on (X,M) such that both
omit −∞ or both omit +∞ and c ∈ R. Suppose that ν1 � µ and
ν2 � µ. Then

d(cν1)

dµ
= c

dν1

dµ
and

d(ν1 + ν2)

dµ
=
dν1

dµ
+
dν2

dµ
.

c) If ν is a σ-finite signed measure on (X,M) and ν � µ, then dν
dµ

=
d(ν+)
dµ
− d(ν−)

dµ
, d(ν+)

dµ
=
(
dν
dµ

)+
and d(ν−)

dµ
=
(
dν
dµ

)−
.

Remark 1.106. Let ν be a signed measure on (X,M). It is imme-
diate from defintion 1.98 that ν � |ν|. If ν is σ-finite, it then follows
from exercise 1.105.a) with |ν| in place of µ that dν

d|ν| = ±1 |ν|-a.e. on

X.

Proposition 1.107 (chain rule for the Radon-Nikodym deriva-
tive). Let λ, ν and µ be positive measures on a measurable space (X,M)
with λ and ν σ-finite and such that λ� ν � µ. Then:

i) For every f : X → [0,∞] measurable,ˆ
f dν =

ˆ
f
dν

dµ
dµ.

ii) λ� µ and
dλ

dµ
=
dλ

dν
· dν
dµ

.

1.6. Convolutions

In this section we consider integrals with respect to the Lebesgue
measure in Rn, which we often denote by dx, dy, etc. We recall the
basic properties of convolutions and mollifiers, which will be extensively
used in subsequent chapters.

Let f, g : Rn → C be Ln-measurable functions. We define the
convolution f ∗ g by:

f ∗ g(x) :=

ˆ
f(x− y)g(y) dy,

whenever the integral makes sense at least for Ln-a.e. x ∈ Rn. That
occurs mainly in two cases:
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• one of the functions is essentially bounded, the other belongs
to L1

loc(Ln) and one of them has compact support;
• one of the functions belong to Lp(Ln) and the other belongs

to Lq(Ln), with 1
p

+ 1
q
≥ 1, cf. proposition 1.108.g) below.

Broadly speaking, whenever defined, the convolution product is
commutative and associative, and inherits the regularity properties
from both factors. The latter property is widely explored in techniques
which involve approximation of functions by means of mollifiers.

We summarize the main properties of the convolution product in
the propositions below. For a function f defined on Rn and x, y ∈ Rn,
we use the notation:

τyf(x) := f(x− y) and f̌(x) := f(−x)

as well as the standard multi-index notation for partial derivatives, i.e.
given α = (α1, . . . , αn) ∈ Zn+,

∂αf(x) :=
( ∂

∂x1

)α1

. . .
( ∂

∂xn

)αn
f(x),

|α| := α1 + · · ·+ αn.

Proposition 1.108 (properties of the convolution product). For
f, g, h : Rn → C such that the convolution products are defined:

a) f ∗ g is Ln-measurable.
b) f ∗ g = g ∗ f .
c) (f ∗ g) ∗h = f ∗(g ∗h).
d) spt f ∗ g ⊂ spt f + spt g.

e) ˇ(f ∗ g) = f̌ ∗ ǧ.
f) ∀y ∈ Rn, τy(f ∗ g) = (τyf) ∗ g = f ∗(τyg).
g) (Young’s inequality) If p, q, r ∈ [1,∞] with 1

p
+ 1

q
= 1 + 1

r
, then

‖f ∗ g‖r ≤ ‖f‖p‖g‖q.

Thus, f ∗ g ∈ Lr(Ln) if f ∈ Lp(Ln) and g ∈ Lq(Ln). In particular,
for p = 1 and q = r ∈ [1,∞], ‖f ∗ g‖q ≤ ‖f‖1‖g‖q.

If p and q are conjugate exponents, i.e. if we take p, q, r above
with r = ∞, then f ∗ g(x) exists for every x ∈ Rn and f ∗ g is
bounded and uniformly continuous; besides, if both p and q are finite,
then f ∗ g ∈ C0(Rn,C).

h) If f ∈ L1
loc(Ln) and g ∈ L∞(Ln) with spt g compact, then f ∗ g ∈

L1
loc(Ln).
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i) If f and g satisfy the hypothesis of one of the two previous items
and ϕ ∈ Cc(Rn,C), thenˆ
f ∗ g(x)ϕ(x) dx =

¨
f(x)g(y)ϕ(x+ y) dx dy =

ˆ
f(x)ǧ ∗ϕ(x) dx.

j) Let 0 ≤ k ≤ ∞ and α ∈ Zn a multi-index with |α| ≤ k. If f ∈
Ck
b(Rn) and g ∈ L1(Ln), or f ∈ Ck(Rn), g ∈ L1

loc(Ln) and one of them
has compact support, then f ∗ g ∈ Ck(Rn) and ∂α(f ∗ g) = (∂αf) ∗ g.

Recall our convention adopted in remark 1.57, i.e. for measurable
functions “support” means “essential support”.

The proof of the proposition above can be found in standard real
analysis textbooks, but we offer a proof of part j) as an application of
the dominated convergence theorem.

Proof of part j). We prove the assertion for k = 1 and α = ej,
1 ≤ j ≤ n. The general case follows by induction using the same
argument.

1) Suppose f ∈ C1
b and g ∈ L1. We have

∂

∂xj
[f(x− y)g(y)] = ∂xjf(x− y)g(y)

hence ∀x, y ∈ Rn,
∣∣ ∂
∂xj

[f(x−y)g(y)]
∣∣ ≤ ‖∂xjf‖u|g(x)|. Since g ∈ L1,

we may differentiate under the integral sign using the dominated
convergence theorem 1.67.ii:

∂xj(f ∗ g)(x) =

ˆ
∂xjf(x− y)g(y) dy = (∂xjf) ∗ g(x).

Moreover, since ∂xjf ∈ L∞ and g ∈ L1, it follows from the last state-
ment in part g) that (∂xjf) ∗ g is continuous (actually it is uniformly
continuous). Since that holds for all 1 ≤ j ≤ n, we conclude that
f ∗ g ∈ C1, as asserted.

2) Suppose that f ∈ C1(Rn), g ∈ L1
loc(Ln) and one of them, say f , has

compact support (the case spt g b Rn is similar).
Fix x0 ∈ Rn and r > 0. Let K be the compact set B(x0, r)−spt f

(so that, for x ∈ B(x0, r), x−y ∈ spt f implies y ∈ K). We have, for
all (x, y) ∈ U(x0, r)×Rn,

∣∣ ∂
∂xj

[f(x−y)g(y)]
∣∣ = |∂xjf(x−y)||g(y)| ≤

‖∂xjf‖u χK |g|. Since χK |g| ∈ L1(Ln), we may apply proposition 1.67
with U(x0, r) in place of I and (Rn,Ln) in place of (X,µ), yielding,
for all x ∈ U(x0, r),

∂xj(f ∗ g)(x) =

ˆ
∂xjf(x− y)g(y) dy = (∂xjf) ∗ g(x).
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Since (∂xjf) ∗ g coincides on U(x0, r) with (∂xjf) ∗(χKg) (where
K = B(x0, r) − spt f , as above), ∂xjf ∈ L∞ and χKg ∈ L1, we
conclude that (∂xjf) ∗ g is continuous on U(x0, r). As that holds
for 1 ≤ j ≤ n, it follows that f ∗ g is continuously differentiable on
U(x0, r); since x0 ∈ Rn and r > 0 were arbitrarily taken, we are
done.

�

Lemma 1.109. If f ∈ C0(Rn), then f is uniformly continuous.

Proof. Fix ε > 0 and let K ⊂ Rn compact such that |f | ≤ ε on
Kc. Since f |K is uniformly continuous, there exists δ > 0 such that
|f(x) − f(y)| ≤ ε whenever x, y ∈ K with ‖x − y‖ < δ. If x, y ∈ Rn

and ‖x− y‖ < δ, we have:

1) if x, y ∈ K, |f(x)− f(y)| ≤ ε;
2) if x, y ∈ Kc, |f(x)− f(y)| ≤ 2ε;
3) if x ∈ K and y ∈ Kc, the closed segment [x, y] intersects ∂K, hence

there exists z ∈ ∂K ⊂ K such that ‖z−x‖ < δ. Since, by continuity,
|f | ≤ ε in ∂K, we have |f(x)−f(y)| ≤ |f(x)−f(z)|+|f(z)−f(y)| ≤
|f(x)− f(z)|+ |f(z)|+ |f(y)| ≤ 3ε.

Hence, for all x, y ∈ Rn with ‖x− y‖ < δ, |f(x)− f(y)| ≤ 3ε. �

Lemma 1.110. If 1 ≤ p < ∞, translation is continuous in the
Lp norm, i.e. for fixed f ∈ Lp(Ln), the map Rn → Lp(Ln) given by
y 7→ τyf is continuous.

Proof. Fix z ∈ Rn. We must prove that limy→z‖τyf − τzf‖p = 0.
Fix ε > 0. Since Cc(Rn) is dense in Lp(Ln) (by proposition 1.78), there
exists g ∈ Cc(Rn) such that ‖f − g‖p ≤ ε. Then ‖τyf − τzf‖p ≤
‖τy(f − g)‖p + ‖τyg − τzg‖p + ‖τz(g − f)‖p ≤ 2ε+ ‖τyg − τzg‖p. Since
Cc(Rn) ⊂ C0(Rn), it follows from lemma 1.109 that g is uniformly
continuous; hence

‖τyg − τzg‖p ≤ ‖τyg − τzg‖u Ln(spt g)
y→z→ 0.

We therefore conclude that lim supy→z‖τyf − τzf‖p ≤ 2ε, whence the
thesis, since ε > 0 was arbitrarily taken. �

In the next theorem we use the following notation: for φ : Rn → C
and t > 0, we define φt : Rn → C by

(1.1) φt(x) := t−nφ(t−1x).

Note that, if φ ∈ L1(Ln), it follows from theorem 1.81 that φt ∈
L1(Ln) and

´
φ dLn =

´
φt dLn.



38 1. MEASURE AND INTEGRATION THEORY

Theorem 1.111 (mollifiers, part I). Let φ ∈ L1(Ln) with
´
φ dLn =

a and f : Rn → C.

i) If 1 ≤ p <∞ and f ∈ Lp(Ln), then φt ∗ f
t→0→ af in Lp(Ln).

ii) If f is uniformly continuous and either (1) f is bounded or (2)

spt φ is compact, then φt ∗ f
t→0→ af uniformly in Rn.

iii) If f is continuous on an open set U ⊂ Rn and either (1) f ∈
L∞(Ln) or (2) f ∈ L∞loc(Ln) and spt φ is compact, then φt ∗ f

t→0→ af
uniformly on compact subsets of U .

Proof.

i) ∀t > 0, ∀x ∈ Rn,

f ∗φt(x)− af(x) =

ˆ
[f(x− y)− f(x)]φt(y) dy

z=t−1y
=

=

ˆ
[f(x− tz)− f(x)]φ(z) dz =

=

ˆ
[τtzf(x)− f(x)]φ(z) dz.

Thus, by Minkowski’s inequality for integrals 1.88,

‖f ∗φt − af‖p ≤
ˆ
‖τtzf − f‖p|φ(z)| dz.

For any sequence tn → 0, ‖τtnzf−f‖p|φ(z)| converges pointwise to
0, by force of lemma 1.110, and ‖τtnzf − f‖p|φ(z)| ≤ 2‖f‖p|φ(z)|.
Since φ ∈ L1(Ln), we may therefore apply the dominated conver-

gence theorem 1.64 to conclude that
´
‖τtnzf−f‖p|φ(z)| dz n→∞→ 0,

hence ‖f ∗φtn − af‖p → 0. Since the sequence tn → 0 was ar-
bitrarily taken, it follows that ‖f ∗φt − af‖p → 0 as t → 0, as
asserted.

ii) By the same computation from the previous item, ∀t > 0, ∀x ∈ Rn,

f ∗φt(x)− af(x) =

ˆ
[τtzf(x)− f(x)]φ(z) dz.

Thus ‖f ∗φt− af‖u ≤
´
‖τtzf − f‖u|φ(z)| dz. Since f is uniformly

continuous, we have ‖τtzf − f‖u
t→0→ 0 for all z ∈ Rn. If (1)

holds, then ‖τtzf − f‖u|φ(z)| ≤ 2‖f‖u|φ(z)| for all z ∈ Rn; if (2)
holds, by the compacity of spt φ and by the uniform continuity of
f we may take δ > 0 such that for all 0 < t < δ and all z ∈ spt φ,
‖τtzf−f‖u ≤ 1, whence ‖τtzf−f‖u|φ(z)| ≤ |φ(z)| for all 0 < t < δ
and all z ∈ Rn. In either case, the dominated convergence theorem
ensures that ‖f ∗φt − af‖u → 0 as t→ 0, as asserted.



1.6. CONVOLUTIONS 39

iii) Fix ε > 0. Let K ⊂ U compact and C ⊂ Rn compact such that´
Rn\C |φ| dL

n ≤ ε (which exists, since φ ∈ L1). Take η > 0 such that

η · sup{|x| | x ∈ C} < d(K,U c); then K ′ := {x − ty | x ∈ K, y ∈
C, |t| ≤ η} is a compact subset of U which contains K. Since
f |U is continuous, by compacity it follows that f |K′ is uniformly
continuous; therefore, there exists 0 < δ < min{η, 1} such that
sup{|f(x − ty) − f(x)| | x ∈ K, y ∈ C, |t| < δ} < ε. Hence, if
|t| < δ, ∀x ∈ K:

|f ∗φt(x)− af(x)| =
∣∣ˆ [τtyf(x)− f(x)]φ(y) dy

∣∣ ≤
≤
ˆ
|τtyf(x)− f(x)||φ(y)| dy =

=

ˆ
Rn\C
|τtyf(x)− f(x)||φ(y)| dy +

ˆ
C

|τtyf(x)− f(x)||φ(y)| dy ≤

≤ 2ε‖f‖L∞(K′′) + ε‖φ‖1.

where K ′′ = Rn in case (1) or K ′′ = K +B(0, sup{|y| | y ∈ spt φ})
in case (2) (recall that δ < 1).

Since ε > 0 was arbitrarily taken, we therefore conclude that
‖(f ∗φt − af)|K‖u = sup{|f ∗φt(x) − af(x)| | x ∈ K} → 0 as
t→ 0.

�

In the applications of the previous theorem, the most important
cases are a = 1 and a = 0. For a = 1, we call (φt)>0 an approximate
identity or mollifier , since it can be used to approximate a function f
on Rn by means of the convolutions φt ∗ f , which have the same class
of regularity as φ, in the appropriate topology of the function space f
belongs to.

For instance, we may take (φt)>0 given by the following definition:

Definition 1.112 (standard mollifier in Rn). Let φ : Rn → R be
the smooth function given by

φ(x) :=

{
c exp

(
1

‖x‖2−1

)
if ‖x‖ < 1

0 if ‖x‖ ≥ 1,

where c is chosen so that
´
Rn φ(x) dx = 1. The family (φt)>0 induced

by φ by means of (1.1) is called standard mollifier in Rn.

Note that spt φ = B(0, 1), so that ∀t > 0, spt φt = B(0, t).

Exercise 1.113. Show that φ in the definition above is a C∞ func-
tion on Rn.
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Exercise 1.114 (differentiable Urysohn’s lemma). If K ⊂ U ⊂ Rn

with K compact and U open, there exists f ∈ C∞c (Rn) such that 0 ≤
f ≤ 1, f ≡ 1 on K and spt f ⊂ U .

Hint. Let K ′ := K + B(0, 1
2
d(K,U c)) and (φt)>0 the standard

mollifier in Rn. Take f = φt ∗χK′ for a convenient choice of t.

Exercise 1.115 (approximation in L1
loc). Let 1 ≤ p < ∞, f ∈

Lp
loc(Ln) and (φt)>0 the standard mollifier in Rn. Then φt ∗ f → f in

Lp
loc(Ln), i.e. for all K ⊂ Rn compact, ‖φt ∗ f − f‖Lp(Ln|K) → 0.

Hint. For each K ⊂ Rn compact, let K ′ := K+B1 and f̃ := χK′ ·f .

Then f̃ ∈ Lp(Ln) and, by theorem 1.111, φt ∗ f̃ → f̃ in Lp(Ln).

Remark 1.116. The previous exercise means that φt ∗ f converges
to f in the Fréchet topology of Lp

loc(Ln).

We will resume this discussion on mollifiers and approximations in
chapter 6.

1.7. Lusin’s and Egorov’s Theorems

Theorem 1.117 (Lusin, [Fed69]). Let µ be a Borel regular mea-
sure on a metric space X (respectively, a Radon measure on a locally
compact Hausdorff space X), Y a separable metric space, f : dom f ⊂
X → Y a µ-measurable map. Then, for each A ∈ σ(µ) with µ(A) <∞
and for each ε > 0, there exists a closed (respectively, compact) set
C ⊂ A such that µ(A \ C) < ε and f |C is continuous.

Proof. We may assume dom f = X (otherwise, replace A by
A ∩ dom f and extend f arbitrarily to X). For each i ∈ N, there
exists a countable disjoint sequence (Yi,j)j∈N in BY such that ∀j ∈ N,
diam Yi,j < 1/i and ∪̇j∈N Yi,j = Y . To obtain such a sequence, cover
Y with countably many balls (Bi,j) with diameter less than 1/i (what
is possible, since Y is separable) and then take ∀j ∈ N, Yi,j := Bi,j \
∪j−1
n=1Bi,n. Let ∀j ∈ N, Ai,j := A ∩ f−1(Yi,j) ∈ σ(µ), so that A =
∪̇j∈NAi,j. By theorem 1.23 (respectively, exercise 1.31), there exists a
closed (respectively, compact) set Ci,j ⊂ Ai,j such that ∀j ∈ N, µ(Ai,j \
Ci,j) < 2−i−jε. Then µ(A \ ∪j∈NCi,j) < 2−iε and, by proposition 1.11.ii
(continuity from above for µ), there exists J(i) ∈ N such that µ(A \
∪J(i)
j=1Ci,j) < 2−iε. Now, for each 1 ≤ j ≤ J(i), choose yi,j ∈ Yi,j

and define the function gi on the closed (respectively, compact) set

Ci := ∪J(i)
j=1Ci,j by gi|Ci,j ≡ yi,j. It is then clear that gi : Ci → Y is

continuous and, due to the fact that diam Yi,j < 1/i, we have (denoting
by d the metric on Y ) sup{d

(
f(x), gi(x)

)
| x ∈ Ci} ≤ 1/i. Take
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C := ∩i∈NCi, so that C is closed (respectively, compact) and µ(A \
C) ≤

∑
i∈N µ(A \ Ci) ≤ ε. As ∀i ∈ N, C ⊂ Ci, we have ∀i ∈ N,

sup{d
(
f(x), gi(x)

)
| x ∈ C} ≤ 1/i, hence (gi|C)i∈N converges uniformly

to f |C , so f |C is continuous. �

Corollary 1.118. With the same hypotheses, if µ is σ-finite, f
coincides µ-a.e. with a Borelian map X → Y .

Proof. Let (Ai)i∈N be a sequence in σ(µ) of disjoint sets such
that ∀i ∈ N, µ(Ai) < ∞ and X = ∪̇i∈NAi. For each i, j ∈ N, we
may apply theorem 1.117 to obtain a closed set Ci,j ⊂ Ai such that
µ(Ai \ Ci,j) < 1/j and f |Ci,j is continuous. Then B := ∪i,j∈NCi,j is a
Borel set such that µ(X \C) = 0 and, for each E ∈ BY , (f |B)−1(E) =
∪i,j∈N(f |Ci,j)−1(E) ∈ BX . Choose y0 ∈ Y and define F : X → Y by
F ≡ y0 on X \ B and F = f on B. Then F is Borelian and F = f
µ-a.e. �

Corollary 1.119. Let µ be a σ-finite Borel regular measure on
a metric space X (respectively, a σ-finite Radon measure on a locally
compact Hausdorff space X), Y = R or C, f : dom f ⊂ X → Y a
µ-measurable function. Then there exists a sequence (fn)n∈N in C(X)
(respectively, in Cc(X)) which converges pointwise µ-a.e. to f . More-
over, if ‖f‖∞ <∞, we can take this sequence (fn)n∈N so that ∀n ∈ N,
‖fn‖∞ ≤ ‖f‖∞.

Proof. We may assume, modifying f on a set of measure zero if
necessary, that dom f = X and ∀x ∈ X, |f(x)| ≤ ‖f‖∞. Let (Ai)i∈N
be a sequence in σ(µ) of disjoint sets such that ∀i ∈ N, µ(Ai) < ∞
and X = ∪̇i∈NAi. For each i, j ∈ N, we may apply theorem 1.117 to
obtain a closed (respectively, compact) set Ci,j ⊂ Ai such that µ(Ai \
Ci,j) < 1/j and f |Ci,j is continuous. For each n ∈ N, let Cn be the
closed (respectively, compact) set ∪ni,j=1Ci,j. Since the last union is
finite, f |Cn is continuous; use Tietze’s extension theorem to extend
f |Cn to a function fn ∈ C(X) (respectively, fn ∈ Cc(X)). Note that,
if ‖f‖∞ < ∞, we may and do take the extension fn so that ‖fn‖∞ ≤
‖f‖∞. The sequence (fn)n∈N thus defined converges pointwise to f on
∪n∈NCn = ∪i,j∈NCi,j. Since µ(X \ ∪i,j∈NCi,j) = 0, we are done. �

Definition 1.120. Let µ be a measure on the set X, Y a metric
space and A ⊂ X. We say that a sequence (fn)n∈N of µ-measurable
Y -valued functions on X converges almost uniformly on A to a µ-
measurable function f : dom f ⊂ X → Y if, for all ε > 0, there exists
B ∈ σ(µ) such that µ(A \ B) < ε and (fn)n∈N converges uniformly to
f on B.
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Note that, both in the definition above and in the theorem below,
we do not assume A to be µ-measurable.

Theorem 1.121 (Egorov). Let µ be a measure on the set X, Y a
separable metric space, A ⊂ X with µ(A) <∞ and (fn)n∈N a sequence
of Y -valued measurable functions on X which converges pointwise µ-
a.e. on A to a µ-measurable function f : dom f ⊂ X → Y . Then
(fn)n∈N converges almost uniformly to f on A.

Proof. Fix ε > 0 and denote by d the metric on Y . For i, j ∈ N,
define Ci,j := ∪n≥j{x ∈ X | d

(
fn(x), f(x)

)
≥ 1/i}. Note that each Ci,j

is µ-measurable, since d : Y × Y → R is continuous (hence Borelian)
and, for fixed n ≥ j, x ∈ dom fn ∩ dom f 7→

(
fn(x), f(x)

)
∈ Y × Y

is µ-measurable (it is in this point that we use the separability of Y ,
what ensures BY×Y = BY ⊗BY ), so that x 7→ d

(
fn(x), f(x)

)
is µ-

measurable and Ci,j is a countable union of µ-measurable sets. Hence,
for fixed i ∈ N, it follows from proposition 1.15.i that (Ci,j)j∈N is a
decreasing sequence of µ xA-measurable sets. Since µ(A) < ∞, and
since ∩j∈NCi,j has µ xA-measure zero due to the fact that (fn)n∈N con-
verges µ-a.e. on A to f , we may apply the continuity from above 1.11

for the measure µ xA to conclude that µ xA(Ci,j)
j→∞−→ 0. Therefore,

for fixed i ∈ N, there exists J(i) ∈ N such that µ xA(Ci,J(i)) < 2−iε.
Let B := X \ ∪i∈NCi,J(i). Then B ∈ σ(µ), µ(A \ B) = µ x( ∪i∈N
Ci,J(i)) ≤

∑
i∈N µ x(Ci,J(i)) < ε and (fn)n∈N converges uniformly to f

on B. �

We close this section with an application of Egorov’s theorem. Re-
call that, for a Banach space X, the weak topology of X is the topology
induced by its dual X ′, i.e. the weakest topological vector space topol-
ogy on X which makes all elements of X ′ continuous.

Theorem 1.122 (theorem 1.35 in [AFP00]). Let µ be a measure
on the set X and 1 < p < ∞. If (fn)n∈N is a bounded sequence in
Lp(µ) which converges pointwise almost everywhere to a function f ,
then f ∈ Lp(µ) and (fn)n∈N converges weakly to f .



CHAPTER 2

Hausdorff Measures

2.1. Carathéodory’s construction

Lebesgue measure on Rn is not adequate to study “lower dimen-
sional” objects, such as embedded k-dimensional manifolds or, more
generally, their measure-theoretic cousins, the k-rectifiable sets. For
that purpose, we shall introduce Hausdorff measures and dimension,
a class of Borel regular measures whose origins may be traced back to
[Hau18] and [Car14].

In order to construct Hausdorff measures, we depart from an ab-
stract construction on a metric space X which may be used to generate
a plethora of Borel measures on X with nice geometric flavor. We shall
be concerned only with Hausdorff measures here, but the interested
reader may consult, for instance, [Fed69], [Mat95] or [KP08] for
other such measures as well.

Let X be a metric space, F ⊂ 2X and ζ : F → [0,∞]. Roughly
speaking, the idea is to “measure” the elements of F by means of
the method or gauge ζ and use that to define a Borel measure on
X, abstracting the geometric idea underlying the construction of the
Lebesgue measure. We define such measure in two steps:

1) For 0 < δ ≤ ∞ we define ∀A ⊂ X,

ψδ(A) := inf{
∑
S∈G

ζ(S) | G ⊂ F∩{S | diam S ≤ δ},G countable cover of A}.

Note that inf ∅ = ∞, so that ψδ(A) = ∞ if there is no countable
cover of A by elements of F with diameter ≤ δ. Moreover, if A = ∅,
G = ∅ ⊂ F is such a cover and, since the sum over the empty family
is zero (as we defined the sum by means of the integral with respect
to counting measure at the end of definition 1.58), we conclude
that ψδ(∅) = 0. Besides, it is straightforward to check that ψδ is
monotone and countably subbaditive, i.e. it is a measure according
to definition 1.1. In general, the measures (ψδ)δ thus defined are not
Borel, but we can fabricate a Borel measure out of them, as we do
in the second step of the construction:

2) Define, for each A ⊂ X, ψ(A) := sup{ψδ(A) | 0 < δ ≤ ∞} ∈ [0,∞].

43
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Note that, for fixed A ⊂ X, {ψδ(A)}δ is decreasing in δ, so that
the sup in the definition above coincides with limδ→0 ψδ(A).

Definition 2.1. With the notation above, we call ψ the result of
Carathéodory’s construction from the gauge ζ on F , and we call ψδ the
size δ approximating measure.

We prove in the next proposition that ψ is actually a Borel measure.

Proposition 2.2. Let X be a metric space and ψ be the result of
Carathéodory’s construction from the gauge ζ on F ⊂ 2X . Then ψ is
a Borel measure. Besides, if F ⊂ BX , ψ is Borel regular.

Proof. We denote by d the metric on X. That ψ is a measure
follows directly from the fact that, for each δ ∈ (0,∞], ψδ is a measure.
In order to prove that ψ is Borel, we verify the Carathéodory’s criterion
1.18. Let A,B ⊂ X such that d(A,B) = δ > 0 and ψ(A∪B) <∞; we
must show that ψ(A∪B) ≥ ψ(A)+ψ(B). Indeed, for any η < δ/2, cover
A ∪ B by a countable family G ⊂ F whose elements have diameters
≤ η. Note that no element of G intersects both A an B, thanks to the
triangle inequality. Thus, discarding the elements of G which do not
meet A or B, we obtain a subcover G ′ ⊂ G of A∪B that may be written
as a disjoint union G ′ = G1 ∪̇ G2, where G1 covers A and G2 covers
B. Then

∑
S∈G ζ(S) ≥

∑
S∈G′ ζ(S) =

∑
S∈G1

ζ(S) +
∑

S∈G2
ζ(S) ≥

ψη(A) + ψη(B). By the arbitrariness of G ⊂ F whose elements have
diameters ≤ η, we conclude that ψη(A ∪ B) ≥ ψη(A) + ψη(B), for all
η < δ/2. Hence, taking η → 0, it follows that ψ(A∪B) ≥ ψ(A)+ψ(B),
as asserted.

Assume now that F ⊂ BX . We contend that ψ is Borel regular.
Indeed, let A ⊂ X such that ψ(A) < ∞; we must prove the existence
of B ∈ BX such that B ⊃ A and ψ(B) = ψ(A). For each δ > 0, we
can take Bδ ∈ BX such that Bδ ⊃ A and ψδ(Bδ) = ψδ(A): choose,
for each n ∈ N, a countable cover Gn ⊂ F of A whose elements have
diameters ≤ δ, such that

∑
S∈Gn ζ(S) < ψδ(A) + 1/n, and then put

Bδ := ∩n∈N ∪S∈Gn S. Define B := ∩n∈NB1/n ∈ BX . Then B ⊃ A and,
for each n ∈ N, ψ1/n(A) ≤ ψ1/n(B) ≤ ψ1/n(B1/n) = ψ1/n(A), so that
ψ1/n(A) = ψ1/n(B), and taking n→∞ yields ψ(A) = ψ(B). �

Definition 2.3. Let X be a metric space and m a nonnegative
real number. Take F = 2X and ζ : 2X → [0,∞] given by

ζ(S) := α(m)
(diam S)m

2m
,

where α(m) = πm/2

Γ(m/2+1)
(i.e. the euclidean volume of Bm if m integer).

The result of Carathéodory’s construction from the gauge ζ on 2X is
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called Hausdorff m-dimensional measure on X, denoted by Hm. We
use the notation Hm

δ for the size δ approximation of Hm.

Proposition 2.4 (immediate properties of Hausdorff measure).
Let X be a metric space and m a nonnegative real number. The fol-
lowing properties hold for Hm:

1) The Hausdorff measure is compatible with the operation of taking
traces. That is, if X is a metric space and A ⊂ X, the trace of Hm

on A coincides with the m-dimensional Hausdorff measure on A (as
a metric subspace of X).

2) The Hausdorff measure is invariant by isometries. That is, if Y is
another metric space and f : X → Y is an isometry onto Y , then
the pushforward f#Hm coincides with the Hausdorff m-dimensional
measure on Y .

3) If Y is another metric space and f : X → Y has Lipschitz constant
Lip f <∞, then ∀A ⊂ X, Hm

(
f(A)

)
≤ (Lip f)mHm(A).

4) Hm also coincides with the result of Carathéodory’s construction
from ζ (same gauge as in definition 2.3) on F ′ = {closed subsets of
X} or F ′′ = {open subsets of X}. If X is a normed vector space,
we may also take F ′′′ = {closed convex subsets of X}.

5) Hm is a Borel regular measure on X.
6) H0 coincides with the counting measure on X.

Proof. Properties 1) and 2) are immediate; property 2) is also a
direct consequence of 3) since, if f is an isometry onto Y , then Lip f =
Lip f−1 = 1.

3) Let A ⊂ X, δ ∈ (0,∞] and G a countable cover of A by subsets of
diameter ≤ δ. Then f(G) := {f(S) | S ∈ G} is a countable cover
of f(A) by subsets of diameter ≤ δ · Lip f since, for each S ⊂ X,
diam f(S) ≤ diam S · Lip f . Hence,

Hm
δ Lip f

(
f(A)

)
≤
∑
S∈G

α(m)2−m
(
diam f(S)

)m ≤
≤ (Lip f)m

∑
S∈G

α(m)2−m(diam S)m.

By the arbitrariness of G, taking the infimum we conclude that
Hm
δ Lip f

(
f(A)

)
≤ (Lip f)mHm

δ (A); thus, taking δ → 0, the thesis
follows.

4) It is clear that we may use F ′ = {closed subsets of X} instead of
F = 2X , since the diameters are not affected by taking closures. IfX
is a normed vector space, the same argument works for F ′′′ = {closed
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convex subsets of X}, since diameters are not affected by taking
closed convex hulls either.

As to the remaining case, let ψ be the result of Carathéodory’s
construction from ζ on F ′′ = {open subsets of X}. Since F ′′ ⊂
F = 2X , it is clear that Hm ≤ ψ. To prove the reverse inequal-
ity, define, for each S ⊂ X and δ > 0, Sδ := ∪x∈SU(x, δ/2); note
that Sδ is open (for it is a union of open balls) and diam Sδ ≤
diam S + δ. Given δ > 0 and A ⊂ X such that Hm(A) < ∞,
for any countable cover G = {Sn | n ∈ N} of A by subsets of
diameter ≤ δ such that

∑
n∈N α(m)2−m(diam Sn)m < ∞, and for

any 0 < ε ≤ δ, Gε := {(Sn)2−nε | n ∈ N} ⊂ F ′′′ is a countable
open cover of A by subsets of diameter ≤ 2δ. Therefore, ψ2δ(A) ≤∑

n∈N α(m)2−m
(
diam (Sn)2−nε

)m ≤∑n∈N α(m)2−m(diam Sn+2−nε)m.
Taking ε→ 0 along any decreasing sequence, we may apply theorem
1.64 to conclude that the last sum converges to

∑
n∈N α(m)2−m(diam Sn)m,

so that ψ2δ(A) ≤
∑

n∈N α(m)2−m(diam Sn)m. By the arbitrariness
of the cover G, taking the infimum we conclude that ψ2δ(A) ≤
Hm
δ (A); thus, taking δ → 0, it follows that ψ(A) ≤ Hm(A), as

asserted.
5) Since F ′ ⊂ BX , it follows from the previous item and from propo-

sition 2.2 that Hm is a Borel regular measure.
6) It is clear that, ∀x ∈ X, ∀δ ∈ (0,∞],H0

δ({x}) = 1. Thus,H0({x}) =
1. Since H0 is a Borel measure, we conclude that the measure of
each finite set coincides with its cardinality and the measure of each
infinity set is ∞, i.e. H0 is the counting measure on X.

�

Corollary 2.5. If X, Y are metric spaces, m a nonnegative
real number and f : X → Y is an isometry into Y , then ∀A ⊂ X,
Hm
(
f(A)

)
= Hm(A).

Proof. By proposition 2.4.(1), we may substitute Y ′ := Im f for
Y without modifying Hm

(
f(A)

)
. Since f : X → Y ′ is an isometry

onto Y ′, the thesis follows from proposition 2.4.(2). �

Exercise 2.6 (Hm–null sets). Let X be a metric space, A ⊂ X
and 0 < m <∞. The following statements are equivalent:

1) Hm(A) = 0.
2) ∃δ ∈ (0,∞] such that Hm

δ (A) = 0.
3) ∀ε > 0, ∃(En)n∈N cover of A such that

∑
n∈N(diam En)m < ε.

The next proposition is a preparation for the introduction of the
notion of Hausdorff dimension.
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Proposition 2.7. Let X be a metric space, A ⊂ X and 0 ≤ s <
t <∞. If Hs(A) <∞ then Ht(A) = 0.

Proof. For each δ > 0, since Hs
δ(A) ≤ Hs(A) < ∞, there ex-

ists a countable cover G of A by subsets of diameter ≤ δ such that∑
S∈G α(s)2−s(diam S)s < Hs(A) + 1. Then

Ht
δ(A) ≤

∑
S∈G

α(t)2−t(diam S)t =
α(t)2−t

α(s)2−s

∑
S∈G

α(s)2−s(diam S)t−s(diam S)s ≤

≤ 2s−t
α(t)

α(s)
δt−s

∑
S∈G

α(s)2−s(diam S)s ≤ 2s−t
α(t)

α(s)
δt−s

(
Hs(A) + 1

)
,

and taking δ → 0 we conclude that Ht(A) = 0. �

As a corollary, if 0 ≤ s < t <∞ and Ht(A) > 0, then Hs(A) =∞.
It then follows that inf{m ∈ [0,∞) | Hm(A) = 0} = sup{m ∈ [0,∞) |
Hm(A) =∞} ∈ [0,∞].

Definition 2.8. Let X be a metric space and A ⊂ X. The ex-
tended real number inf{m ∈ [0,∞) | Hm(A) = 0} = sup{m ∈ [0,∞) |
Hm(A) =∞} ∈ [0,∞] is called Hausdorff dimension of A, denoted by
H-dim A.

With the notation above, note that ∀m > H-dim A, Hm(A) = 0,
and ∀m < H-dim A, Hm(A) = ∞. For m = H-dim A, nothing can
be said about Hm(A), i.e. it can be zero, strictly positive or ∞. On
the other hand, if ∃m ∈ [0,∞) such that 0 < Hm(A) < ∞, then
H-dim A = m.

Exercise 2.9 (properties of Hausdorff dimension). Let X be a
metric space.

a) If Y ⊂ X is a metric subspace of X and A ⊂ Y , the Hausdorff
dimension of A as a subset of the metric space Y is the same for A
as a subset of the metric space X.

b) The Hausdorff dimension is invariant by isometries, i.e. if Y is a
metric space, f : X → Y an isometry into Y and A ⊂ X, then
H-dim A = H-dim f(A).

c) Let X, Y be metric spaces and f : X → Y be a Lipschitz map.
For all A ⊂ X, H-dim f(A) ≤ H-dim A. In particular, if f is
bi-Lipschitz onto its image (i.e. f is Lipschitz and has a Lipschitz
inverse f−1 : Im f → X), then ∀A ⊂ X, H-dim f(A) = H-dim A.

d) (monotonicity) If A ⊂ B ⊂ X, H-dim A ≤ H-dim B.
e) (stability with respect to countable unions) If A = ∪n∈NAn ⊂ X,

then H-dim A = sup{H-dim An | n ∈ N}.



48 2. HAUSDORFF MEASURES

We will show next that, for X = Rn, the Hausdorff n-dimensional
measureHn coincides with the Lebesgue n-dimensional measure Ln. In
particular, that implies H-dim Rn = n (use the stability with respect
to countable unions of the Hausdorff dimension, cf. exercise 2.9, to
Rn = ∪n∈NCn, where each Cn is a cube with finite Lebesgue measure).
More generally, we will show in exercise 5.42 with the help of the area
formula that, for any smooth embedded k-submanifold M ⊂ Rn, the
measure induced by the Riemannian metric on M coincides with the
trace Hk|M, which implies H-dim M = k.

In order to prove that Hn = Ln in Rn, we need to establish some
preliminaries which are of interest on their own right.

2.2. Vitali’s Covering Theorem

Notation. For a closed ball B = B(x, r) in Rn and 0 < t <∞, we
define

tB := B(x, tr).

In a general metric space, however, the center and radius of a ball are
not uniquely determined (take, for instance, [0,∞) as a metric subspace
of R and look at the balls centered at 0). In this case, for a closed ball
B ⊂ X, in order to define tB, we could choose once and for all a center
x and a radius r and proceed like above, i.e. we might consider x and
r as part of the given data when we speak of a ball; instead, we prefer
to proceed like in [Mat95] and define, let us say, for t = 5:
(2.1)

5B := ∪{B′ ⊂ X closed ball | B′ ∩B 6= ∅, diam B′ ≤ 2 diam B},

which clearly coincides with the previous definition in case X = Rn.

Theorem 2.10 (5–times covering lemma). Let X be a metric space
and F ⊂ 2X a family of nondegenerate closed balls in X such that
sup{diam B | B ∈ F} < ∞. Then there exists a disjoint subfamily
G ⊂ F such that ∪B∈FB ⊂ ∪B∈G5B.

Proof. Let R := sup{diam B | B ∈ F} <∞. Since the balls in F
are nondegenerate, i.e. have strictly positive diameter, for any B ∈ F ,
diam B ∈ (0, R] = ∪̇j∈N( R

2j
, R

2j−1 ]. Thus, putting ∀j ∈ N,Fj := {B ∈
F | diam B ∈ ( R

2j
, R

2j−1 ]}, we have ∪̇j∈NFj = F .
We now define inductively (Gj)j∈N by: 1) G1 is a maximal disjoint

subfamily of F1, obtained by an application of Zorn’s lemma to the
set of all disjoint subfamilies of F1 partially ordered by inclusion; 2)
Once defined G1 ⊂ F1, . . . ,Gj−1 ⊂ Fj−1, we take a maximal disjoint

subfamily Gj of F ′j := {B ∈ Fj | ∀B′ ∈ ∪j−1
i=1Gi, B ∩ B′ = ∅}, obtained
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by an application of Zorn’s lemma to the set of all disjoint subfamilies
of F ′j ⊂ Fj partially ordered by inclusion.

We contend that G := ∪j∈NGj ⊂ F satisfies the thesis of the theo-
rem. Indeed, it is clear, by construction, that G is a disjoint subfamily
of F . On the other hand, for any B ∈ Fj, there exists B′ ∈ ∪ji=1Gi such
that B ∩ B′ 6= ∅, otherwise Gj ∪̇{B} % Gj would be a disjoint subfam-
ily of F ′j, violating the maximality of Gj. Since diam B ≤ R

2j−1 = 2 R
2j

and R
2j
< diam B′, it follows that diam B < 2 diam B′, so that B ⊂

5B′. �

Remark 2.11. With the notation from theorem 2.10:

1) Note that, if X is separable, then G is countable (since any disjoint
family of sets with nonempty interiors in X is countable).

2) We have actually proved a stronger statement than the thesis: there
exists a disjoint subfamily G ⊂ F such that, for any B ∈ F , ∃B′ ∈ G
with B ∩B′ 6= ∅ and diam B < 2 diam B′ (thus B ⊂ 5B′).

Definition 2.12. Let X be a metric space, F a collection of balls
in X and A ⊂ X. We say that F is a fine cover A, or that F covers
A finely, if F is a cover of A such that, ∀x ∈ A, inf{diam B | x ∈ B ∈
F} = 0.

Corollary 2.13. Let X be a metric space, A ⊂ X, F ⊂ 2X a
family of nondegenerate closed balls of X which covers A finely. Then
there exists a disjoint subfamily G ⊂ F such that, for all F ⊂ F finite,
A \ ∪B∈FB ⊂ ∪B∈G\F5B.

Proof. Since the cover F is fine, we may assume that sup{diam B |
B ∈ F} ≤ 1; otherwise, discard the balls in F with diameter > 1, so
that the remaining balls still cover A finely. Take G ⊂ F as in remark
2.11.2. Let x ∈ A \ ∪B∈FB. Since F is finite, ∪B∈FB is closed, hence
there exists r > 0 such that U(x, r) ∩ ∪B∈FB = ∅. Since F covers A
finely, there exists B ∈ F such that x ∈ B and diam B < r, so that
B ⊂ U(x, r), thus B ∩ ∪B∈FB = ∅. By remark 2.11.2, there exists
B′ ∈ G such that B′∩B 6= ∅ (hence B′ /∈ F ) and diam B < 2 diam B′,
so that x ∈ B ⊂ 5B′. Therefore, A \ ∪B∈FB ⊂ ∪B∈G\F5B, as as-
serted. �

Corollary 2.14 (Vitali’s covering theorem for the Lebesgue mea-
sure). Let A ⊂ Rn and F a collection of nondegenerate closed balls in
Rn which covers A finely. Then, for every ε > 0, there exists a disjoint
subfamily G ⊂ F such that Ln(∪G) ≤ Ln(A) + ε and Ln(A \ ∪G) = 0.

Note that we do not assume A to be Ln-measurable.
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Proof. Assume first that Ln(A) < ∞. We may assume that
Ln(A) > 0, otherwise the thesis is trivial. Fix 0 < δ < 5−n (so that
1−5−n+δ < 1) with δLn(A) < ε. Since Ln is Borel regular, by theorem
1.23 there exists an open set U ⊃ A such that Ln(U) < (1 + δ)Ln(A).
We will show that there exists a disjoint subfamily G ⊂ F whose balls
are contained in U and Ln(A \ ∪G) = 0, whence the thesis (since
Ln(∪G) ≤ Ln(U) < (1 + δ)Ln(A) < Ln(A) + ε).

Fix θ ∈ (1− 5−n + δ, 1).

1) Put FU := {B ∈ F | B ⊂ U, diam B ≤ 1}. Since F covers A finely,
it is clear that FU is still a fine cover of A. Applying theorem 2.10
to FU , there exists a disjoint subfamily GU ⊂ FU such that A ⊂
∪FU ⊂ ∪B∈GU5B. Since GU is disjoint (hence countable, by remark
2.11), it follows that Ln(A) ≤ Ln(∪B∈GU5B) ≤

∑
B∈GU L

n(5B) =
5n
∑

B∈GU L
n(B) = 5nLn(∪GU). Thus Ln(A\∪GU) ≤ Ln(U\∪GU) =

Ln(U)−Ln(∪GU) ≤ (1 + δ− 5−n)Ln(A) < θLn(A); moreover, since
Ln(A) < ∞, we may apply the continuity from above 1.11 for the
Borel measure Ln xA to obtain a finite subfamily G1 ⊂ GU such
that Ln(A \ ∪G1) < θLn(A).

2) Given 2 ≤ j ∈ N, assume we have defined finite disjoint subfamilies
G1 ⊂ · · · ⊂ Gj−1 ⊂ F such that, for 1 ≤ i ≤ j− 1, the balls of Gi are
contained in U and Ln(A \ ∪Gi) < θiLn(A). If Ln(A \ ∪Gj−1) = 0,
we stop and the thesis follows with G := Gj−1; otherwise, we reapply
the argument of the previous item to the open set U ′ := U \ ∪Gj−1

in place of U and to A′ := A \ ∪Gj−1 ⊂ U ′ in place of A (reducing
the open set U ′, if necessary, we may assume that Ln(U ′) < (1 +
δ)Ln(A′)): take FU ′ := {B ∈ F | B ⊂ U ′, diam B ≤ 1}, which
is a fine cover of A′, and use theorem 2.10 to extract a disjoint
subfamily GU ′ ⊂ FU ′ such that A′ ⊂ ∪FU ′ ⊂ ∪B∈GU′5B, so that
Ln(A′ \∪GU ′) ≤ (1 + δ−5−n)Ln(A′). Then, applying once more the
continuity from above for the Borel measure Ln xA′, there exists
a finite set G ′j ⊂ GU ′ such that Ln(A′ \ ∪G ′j) < θLn(A′) < θjLn(A).
Put Gj := Gj−1 ∪ G ′j. Then Gj ⊂ F is a finite disjoint family whose
balls are contained in U , and A \ ∪Gj = A′ \ ∪G ′j has Lebesgue

measure < θjLn(A).
3) We have thus inductively defined an increasing sequence (Gj)j∈N

such that, for each j ∈ N, Gj is a finite disjoint subfamily of F
whose balls are contained in U , with Ln(A\∪Gj) < θjLn(A). Define
G := ∪i∈NGi; then G is a disjoint subfamily of F whose balls are

contained in U , with ∀j ∈ N, Ln(A \ ∪G) ≤ θjLn(A)
j→∞−→ 0. Hence

Ln(A \ ∪G) = 0, which concludes the proof in the case Ln(A) <∞.
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If Ln(A) =∞, we take ∀k ∈ N, Vk := {x ∈ Rn | k − 1 < ‖x‖ < k}.
Given ε > 0, for each k ∈ N we take an open set Uk ⊃ A∩Vk such that
Ln
(
Uk \ (A∩ Vk)

)
< 2−kε; substituting Uk ∩ Vk for Uk, we may assume

Uk ⊂ Vk. We now apply the first part of the proof to find, for each k ∈
N, a disjoint subfamily Gk ⊂ F whose balls are contained in Uk ⊂ Vk
and Ln(A ∩ Vk \ ∪Gk) = 0. Then, since the Vk’s are pairwise disjoint,
G := ∪k∈NGk is a disjoint subfamily of F such that Ln(A \ ∪G) ≤
Ln
(
∪k∈N(A∩Vk\∪Gk)

)
+Ln(∪k∈N{x ∈ Rn | ‖x‖ = k−1}) = 0. Besides,

Ln(∪G) =
∑

k∈N Ln(∪Gk) <
∑

k∈N Ln(A∩ Vk) + 2−kε = Ln(A) + ε. �

Corollary 2.15 (filling open sets with balls with respect to Lebesgue
measure). Let U ⊂ Rn be an open set and F a family of nondegenerate
closed balls contained in U which covers U finely (for instance, if F
is the family of all nondegenerate closed balls contained in U , or the
family of all such balls with diameters bounded by a fixed δ > 0). Then
there exists a disjoint subfamily G ⊂ F such that Ln(U \ ∪G) = 0.

Proof. Apply the previous corollary with A = U . �

2.3. Steiner Symmetrization

We briefly study in this subsection some properties of the oper-
ation called Steiner symmetrization, introduced by Jakob Steiner in
1836 ([Ste38]). This operation will be used to prove the isodiametric
inequality in 2.19, our key ingredient to show that Ln = Hn in Rn.

Definition 2.16. Let (e1, . . . , en) be the standard basis of Rn and
identify Rn−1 ≡ 〈e1, . . . , en−1〉, R ≡ 〈en〉, so that Rn ≡ Rn−1 × R. We
define the Steiner symmetrization with respect to Rn−1 to be the map
Sen : 2Rn → 2Rn defined by (see figure 1):

Sen(A) :=
⋃

{x′∈Rn−1|Ax′ 6=∅}

{(x′, xn) | |xn| ≤
1

2
L1(Ax′)},

where we have used the notation for sections established in 1.4.
Given a ∈ Sn−1 ⊂ Rn, we define similarly the Steiner symmetriza-

tion Sa with respect to the (n−1)-dimensional subspace 〈a〉⊥: take any
orthogonal map φ ∈ O(n) such that φ(a) = en (hence φ(〈a〉⊥) = Rn−1)
and put Sa := φ−1 ◦ Sen ◦ φ.

Proposition 2.17 (properties of Steiner symmetrization). Let a ∈
Sn−1.

i) ∀A ⊂ Rn, diam Sa(A) ≤ diam A.
ii) If A ⊂ Rn is Ln-measurable, then so is Sa(A) and Ln(A) =
Ln
(
Sa(A)

)
.
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Figure 1. Steiner Symmetrization

Proof. Since diameters and Lebesgue measure are preserved by
isometries, it suffices to prove the proposition for a = en.

i) First we make a reduction: it suffices to prove the thesis for closed
sets. Indeed, assuming the thesis for closed sets, since the Steiner
symmetrization is clearly monotone with respect to set inclusion,
it follows for arbitrary A ⊂ Rn that diam Sen(A) ≤ diam Sen(A) ≤
diam A = diam A.

So, assume that A is closed. Given x, y ∈ Sen(A), we will exhibit
x′, y′ ∈ A such that ‖x − y‖ ≤ ‖x′ − y′‖, what clearly implies
diam Sen(A) ≤ diam (A). Indeed, let (see figure 1 for the notation)
x = (b, xn), y = (c, yn), r := inf{t | (b, t) ∈ A}, s := sup{t |
(b, t) ∈ A}, u := inf{t | (c, t) ∈ A} and v := sup{t | (c, t) ∈ A}.
Note that, since A is closed, (b, r), (b, s), (c, u), (c, v) ∈ A. Note
also that, since Ab ⊂ [r, s] and Ac ⊂ [u, v], we have s− r ≥ L1(Ab)
and v − u ≥ L1(Ac).

Up to relabeling the points, we may assume that s− u ≥ v− r
(like it is the case in the figure). It then follows that:

s− u ≥ 1

2
(s− u) +

1

2
(v − r) =

=
1

2
(s− r) +

1

2
(v − u) ≥

≥ 1

2
L1(Ab) +

1

2
L1(Ac) ≥

≥ |xn|+ |yn| ≥ |xn − yn|.
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Thus, ‖x− y‖2 = |xn − yn|2 + ‖b− c‖2 ≤ (s− u)2 + ‖b− c‖2 =
‖(b, s)− (c, u)‖2, thus the assertion is proved with x′ = (b, s), y′ =
(c, u) ∈ A.

ii) If n = 1, Sen(A) is a closed set and it is clear that L1(A) =
L1
(
Sen(A)

)
. If n ≥ 2, let f : Rn−1 → [0,∞] be given by f(x) =

1
2
L1(Ax). It follows from Fubini-Tonelli’s theorem 1.84 that f is
Ln−1-measurable; hence, by lemma 2.18, S := {(x, t) ∈ Rn−1×R |
−f(x) ≤ t ≤ f(x)} is Ln-measurable. Then Sen(A) = S \ {(x, 0) |
Ax = ∅} is Ln-measurable and the fact that Ln(A) = Ln

(
Sen(A)

)
is a consequence of Fubini-Tonelli’s theorem.

�

Lemma 2.18. Let f : Rn → [0,∞] be Ln-measurable. Then hyp f :=
{(x, t) ∈ Rn × [0,∞) | t ≤ f(x)} ⊂ Rn+1 is Ln+1-measurable.

Proof. Let θ : R×R→ R be defined by θ(x, y) = x−y, with∞−
∞ := 0, −∞−(−∞) := 0. Then θ is measurable with respect to BR×R
and BR (see proposition 1.50 and example 1.51). On the other hand,
(f, ι) : Rn×R→ R×R given by (x, y) 7→

(
f(x), y

)
is measurable with

respect to L Rn+1 and BR⊗BR, since each component is measurable
(see remark 1.45). Since BR⊗BR = BR×R (by proposition 1.47), it
follows that the composite f − ι is measurable with respect to L Rn+1

and BR, whence hyp f = (f − ι)−1([0,∞]) ∩ Rn × [0,∞) is Ln+1-
measurable. �

2.4. The isodiametric inequality; Ln = Hn

Theorem 2.19 (isodiametric inequality). The Lebesgue measure of
any subset of Rn is at most the measure of an euclidean ball with the
same diameter. That is, for all A ⊂ Rn,

Ln(A) ≤ α(n)
(diam A

2

)n
.

Proof. We assume that diam A <∞, otherwise the thesis is triv-
ial.

1) Let (e1, . . . , en) be the standard basis of Rn. Define S0 := Sen ◦
Sen−1 ◦ · · · ◦ Se1 . Note that the same properties stated in proposition
2.17 for the Steiner symmetrization also hold for S0 (just apply that
proposition n times in a row).

2) We contend that, for all B ⊂ Rn, for 1 ≤ j ≤ n, S0(B) is symmetric
with respect to the hyperplane 〈ej〉⊥; that is, denoting by Rj : Rn →
Rn the reflection with respect to 〈ej〉⊥, Rj

(
S0(B)

)
= S0(B). Indeed,

for 1 ≤ j ≤ n, let Bj := Sej ◦ · · · ◦ Se1(B).
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i) By definition 2.16, it is clear that B1 = Se1(B) is invariant by
R1.

ii) Assume that, given 2 ≤ j ≤ n, Bj−1 is invariant by Ri for
1 ≤ i ≤ j − 1. We will show that Bj = Sej(Bj−1) is invariant
by Ri for 1 ≤ i ≤ j. That is clear for i = j, by definition 2.16.
For i < j, since Bj−1 is invariant by Ri, we have, denoting by
Pj the orthogonal projection on Rn−1 ≡ 〈ej〉⊥ and by P⊥j the

orthogonal projection on R ≡ 〈ej〉, ∀x ∈ Rn−1:

Bj−1 ∩ P−1
j (x) = Ri(Bj−1) ∩ P−1

j (x)
Ri◦Pj=Pj◦Ri

=

= Ri

(
Bj−1 ∩ P−1

j (R−1
i · x)

)
As R−1

i = Ri and P⊥j ◦Ri = P⊥j , it then follows that, ∀x ∈ Rn−1:

(Bj−1)x = P⊥j
(
Bj−1 ∩ P−1

j (x)
)

=

= P⊥j ◦Ri

(
Bj−1 ∩ P−1

j (Ri · x)
)

=

= P⊥j
(
Bj−1 ∩ P−1

j (Ri · x)
)

=

= (Bj−1)Ri·x.

By the arbitrariness of x ∈ Rn−1, the equality above implies,
in view of definition 2.16, that Ri

(
Sej(Bj−1)

)
= Sej(Bj−1), i.e.

Bj = Sej(Bj−1) is invariant by Ri, as asserted.
Our contention is therefore proved.

3) From the contention in the previous item, it follows that, given B ⊂
Rn, S0(B) is invariant by Rn◦Rn−1◦· · ·◦R1, i.e. S0(B) is symmetric
with respect to the origin. Thus, ∀x ∈ S0(B), −x ∈ S0(B), so that
2‖x‖ ≤ diam S0(B) ≤ diam B, i.e. S0(B) ⊂ B(0, diam B

2
).

4) It follows from the previous item applied to B = A that:

Ln(A) ≤ Ln(A) = Ln
(
S0(A)

)
≤ Ln

(
B(0,

diam A

2
)
)

=

= α(n)
(diam A

2

)n
= α(n)

(diam A

2

)n
.

�

Exercise 2.20. Show an example of a set A ⊂ Rn which is not
contained in any ball with diameter diam A.

Theorem 2.21. For all δ ∈ (0,∞] and n ∈ N, Hn = Hn
δ = Ln in

Rn.

Proof. Fix δ ∈ (0,∞] and A ⊂ Rn.
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1) Claim 1: Hn
δ (A) ≥ Ln(A). Indeed, let F be a countable cover of A

by subsets of Rn with diameters≤ δ. For each S ∈ F , it follows from
the isodiametric inequality 2.19 that Ln(S) ≤ α(n)2−n(diam S)n.
Hence,

∑
S∈F α(n)2−n(diam S)n ≥

∑
S∈F Ln(S) ≥ Ln(A), where

the last inequality is due to the countable subadditivity of Ln. Tak-
ing the infimum of all such covers F yields the claim.

2) Claim 2: for all B ⊂ Rn, Ln(B) = 0 implies Hn(B) = 0. To prove
the claim, fix ε > 0 and take F a countable cover of B by cubes
of sides parallel to the coordinate axes such that

∑
Q∈F vol(Q) < ε;

such a cover exists, in view of the definition of the Lebesgue measure
in example 1.3. Since, for each cube Q ∈ F , vol(Q) =

(
diam Q√

n

)n
, we

conclude that
∑

Q∈F(diam Q)n < nn/2ε. Hence, by the arbitrariness
of the ε > 0 fixed, the claim follows from exercise 2.6.

3) Claim 3: Hn
δ (A) ≤ Ln(A). Assume that Ln(A) < ∞ (otherwise

the claim is trivial) and take a countable cover F of A by cubes
of sides parallel to the coordinate axes such that

∑
Q∈F vol(Q) <

Ln(A) + ε. For each Q ∈ F , we may apply corollary 2.15 to Qo

to obtain a countable disjoint family (Bk
Q)k∈N such that each Bk

Q

is a nondegenerate closed ball with diameter ≤ δ contained in Qo

and Ln(Qo \ ∪k∈NBk
Q) = 0. Since Ln(∂Q) = 0, it then follows that

Ln(Q \ ∪k∈NBk
Q) = 0; hence, by claim 2, Hn(Q \ ∪k∈NBk

Q) = 0,

so Hn
δ (Q \ ∪k∈NBk

Q) = 0. Since, by finite subadditivity, Hn
δ (Q) ≤

Hn
δ (Q \ ∪k∈NBk

Q) + Hn
δ (∪k∈NBk

Q) = Hn
δ (∪k∈NBk

Q), it follows that

Hn
δ (Q) = Hn

δ (∪k∈NBk
Q). Therefore,

Hn
δ (A) ≤

∑
Q∈F

Hn
δ (Q) =

∑
Q∈F

Hn
δ (∪k∈NBk

Q)
countable subadditivity

≤

≤
∑
Q∈F

∑
k∈N

Hn
δ (Bk

Q)
diam BkQ≤δ
≤

≤
∑
Q∈F

∑
k∈N

α(n)2−n(diam Bk
Q)n =

∑
Q∈F

∑
k∈N

Ln(Bk
Q) =

=
∑
Q∈F

Ln(∪k∈NBk
Q) =

∑
Q∈F

Ln(Q) =
∑
Q∈F

vol(Q) < Ln(A) + ε.

Thus, by the arbitrariness of ε, claim 3 is proved.
4) By claims 1 and 3, Hn

δ (A) = Ln(A). Since that holds for all δ > 0,
it follows that Ln(A) = Hn(A), hence the thesis follows.

�

Corollary 2.22. H-dim Rn = n.
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Proof. Apply the stability with respect to countable unions of
the Hausdorff dimension, cf. exercise 2.9.e), to Rn = ∪k∈NCk, where
each Ck is a nondegenerate cube with finite Lebesgue measure, i.e.
0 < Hn(Ck) <∞, so that ∀k ∈ N, H-dim Ck = n. �

Exercise 2.23. If E is a k-dimensional subspace of a normed space
X, then H-dim E = k.



CHAPTER 3

Differentiation of Measures

The main reference for this chapter is [Sim83].

3.1. Densities

Up to the end of this section we fix a metric space (X, d).

Definition 3.1 (upper and lower n-dimensional densities). Let
A ⊂ X, x ∈ X, n > 0 real and µ a measure on X. We define:

1) the n-dimensional upper density of A at x with respect to µ:

Θ∗n(µ,A, x) := lim sup
r→0

µ
(
A ∩ B(x, r)

)
α(n)rn

∈ [0,∞].

2) the n-dimensional lower density of A at x with respect to µ:

Θn
∗ (µ,A, x) := lim inf

r→0

µ
(
A ∩ B(x, r)

)
α(n)rn

∈ [0,∞].

If Θ∗n(µ,A, x) = Θn
∗ (µ,A, x), we denote their common value by

Θn(µ,A, x) and call it density of A at x with respect to µ.
For A = X, we use the notations Θ∗n(µ, x), Θn

∗ (µ, x) and Θn(µ, x)
for Θ∗n(µ,X, x), Θn

∗ (µ,X, x) and Θn(µ,X, x), respectively.

Note that we don’t assume A to be measurable.

Remark 3.2. With the notation above:

1) Note that Θ∗n(µ,A, x) = Θ∗n(µ xA, x) and Θn
∗ (µ,A, x) = Θn

∗ (µ xA, x).
2) If U ⊂ X is an open set and x ∈ U , Θ∗n(µ,A, x) = Θ∗n(µ xU,A, x)

and Θn
∗ (µ,A, x) = Θn

∗ (µ xU,A, x).

Lemma 3.3. If µ is a locally finite Borel measure on X, A ⊂ X, x ∈
X and n > 0 real, then, the definitions of Θ∗n(µ,A, x) or Θn

∗ (µ,A, x)
do not change if we use open balls instead of closed balls.

Proof. Recall that, for f : (0,∞)→ R,

lim sup
r→0

f(r) := inf
r>0

sup
0<ρ<r

f(ρ),

lim inf
r→0

f(r) := sup
r>0

inf
0<ρ<r

f(ρ).

57
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Put, for r > 0,

f(r) :=
µ
(
A ∩ U(x, r)

)
α(n)rn

and g(r) :=
µ
(
A ∩ B(x, r)

)
α(n)rn

.

Since µ is locally finite, there exists r0 > 0 such that µ
(
U(x, r0)

)
<∞.

In order to prove the lemma, it suffices to show that, ∀0 < r < r0,

sup
0<ρ<r

f(ρ) = sup
0<ρ<r

g(ρ) and inf
0<ρ<r

f(ρ) = inf
0<ρ<r

g(ρ)

That is a consequence of the following claims:

1) Claim 1: ∀ρ ∈ (0, r), g(ρ) may be arbitrarily approximated by el-
ements of {f(ρ) | 0 < ρ < r}. Indeed, for a given ρ ∈ (0, r),
B(x, ρ) = ∩k∈NU(x, ρ + 1/k); for sufficiently large k, ρ + 1/k < r,
hence µ

(
U(x, ρ + 1/k)

)
< ∞. That allows us to apply the con-

tinuity from above 1.11 to the Borel measure µ xA, which en-
sures µ

(
A ∩ U(x, ρ + 1/k)

)
→ µ

(
A ∩ B(x, ρ)

)
as k → ∞. Thus,

f(ρ+ 1/k)→ g(ρ), as asserted.
2) Claim 2: ∀ρ ∈ (0, r), f(ρ) may be arbitrarily approximated by el-

ements of {g(ρ) | 0 < ρ < r}. Indeed, for a given ρ ∈ (0, r),
U(x, ρ) = ∪{B(x, ρ − 1/k) | k ∈ N, 1/k < ρ}. Applying the con-
tinuity from below 1.11 to the Borel measure µ xA, it follows
that µ

(
A ∩ B(x, ρ − 1/k)

)
→ µ

(
A ∩ U(x, ρ)

)
as k → ∞. Thus,

g(ρ− 1/k)→ f(ρ), as asserted.

�

Proposition 3.4. If µ is a locally finite Borel measure on X, A ⊂
X and n > 0 real, then the functions X → [0,∞] given by x ∈ X 7→
Θ∗n(µ,A, x) and x ∈ X 7→ Θn

∗ (µ,A, x) are Borelian.

Proof.

1) Firstly, note that, for fixed r > 0, the function X → [0,∞] given
by x 7→ µ

(
A ∩ U(x, r)

)
is lower semicontinuous (hence Borelian).

Indeed, let x ∈ X and (xn)n∈N a sequence in X convergent to x.
For all k ∈ N such that r − 1/k > 0, ∃n0 ∈ N, ∀n ≥ n0, U(xn, r) ⊃
B(x, r−1/k). Hence ∀n ≥ n0, µ

(
A∩U(xn, r)

)
≥ µ

(
A∩B(x, r−1/k)

)
,

whence lim infn→∞ µ
(
A∩U(xn, r)

)
≥ µ

(
A∩B(x, r−1/k)

)
. Applying

the continuity from below 1.11 for the Borel measure µ xA, we con-
clude that µ

(
A∩B(x, r−1/k)

)
→ µ

(
A∩U(x, r)

)
≤ lim infn→∞ µ

(
A∩

U(xn, r)
)
, which shows the asserted lower semicontinuity at x.

2) Claim: Given r > 0, the functions ψr, ψ
r : X → [0,∞] given by:

x 7→ inf
0<ρ<r

µ
(
A ∩ U(x, ρ)

)
α(n)ρn

and x 7→ sup
0<ρ<r

µ
(
A ∩ U(x, ρ)

)
α(n)ρn

,
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respectively, are Borelian. Indeed, it suffices to show that, ∀x ∈ X,

inf
0<ρ<r

µ
(
A ∩ U(x, ρ)

)
α(n)ρn

= inf{
µ
(
A ∩ U(x, ρ)

)
α(n)ρn

| 0 < ρ < r, ρ ∈ Q} and

sup
0<ρ<r

µ
(
A ∩ U(x, ρ)

)
α(n)ρn

= sup{
µ
(
A ∩ U(x, ρ)

)
α(n)ρn

| 0 < ρ < r, ρ ∈ Q},

in which case the asserted measurability follows from the previous
item and from theorem 1.41.(iv). In order to show the equalities

above, it is enough to prove that, for all 0 < ρ < r,
µ
(
A∩U(x,ρ)

)
α(n)ρn

may

be arbitrarily approximated by elements of the set {µ
(
A∩U(x,ρ)

)
α(n)ρn

|
0 < ρ < r, ρ ∈ Q}. For that purpose, take a sequence of rationals
(ρk)k∈N in (0, ρ) such that ρk ↑ ρ; then α(n)ρnk → α(n)ρn and,
applying the continuity from below to the Borel measure µ xA,

µ
(
A ∩U(x, ρk)

)
↑ µ
(
A ∩U(x, ρ)

)
, hence

µ
(
A∩U(x,ρk)

)
α(n)ρnk

→ µ
(
A∩U(x,ρ)

)
α(n)ρn

,

as asserted.
3) Due to the fact that µ is a locally finite Borel measure, it follows

from lemma 3.3 that Θ∗n(µ,A, ·) = infr∈Q∗+ ψ
r and Θn

∗ (µ,A, ·) =
supr∈Q∗+ ψr. Thus, from the claim in the previous item and from

theorem 1.41.(iv), we conclude that both Θ∗n(µ,A, ·) and Θn
∗ (µ,A, ·)

are Borelian.

�

Corollary 3.5. If µ is a locally finite Borel measure on X, A ⊂ X
and n > 0 real, then the set Y := {x ∈ X | Θ∗n(µ,A, x) = Θn

∗ (µ,A, x)}
is Borel measurable and Θn(µ,A, ·) : Y → [0,∞] is Borelian.

Theorem 3.6 (comparison density theorem). Let µ be a Borel mea-
sure on a metric space X, n > 0 real, t ≥ 0 and A ⊂ A1 ⊂ X. If
∀x ∈ A, Θ∗n(µ,A1, x) ≥ t then tHn(A) ≤ µ(A1).

Proof. We assume that t > 0 and µ(A1) < ∞, otherwise the
thesis is trivial.

Fix 0 < τ < t and δ > 0. Since, ∀x ∈ A, Θ∗n(µ,A1, x) =

lim supr→0

µ
(
A1∩B(x,r)

)
α(n)rn

≥ t > τ , it follows that ∀x ∈ A, ∀r > 0,

∃0 < ρ < r such that
µ
(
A1∩B(x,ρ)

)
α(n)ρn

> τ . It then follows that F :=

{B | ∃x ∈ A, ∃r > 0, B = B(x, r),
µ
(
A1∩B(x,r)

)
α(n)rn

> τ, 2r ≤ δ} is a fine

cover of A. Take a disjoint subfamily G ⊂ F , given by corollary 2.13,
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such that, for all F ⊂ F finite,

(3.1) A \ ∪B∈FB ⊂ ∪B∈G\F5B.

Due to the fact that µ xA1 is a Borel measure, for all F ⊂ G fi-
nite,

∑
B∈F µ(A1 ∩ B) = µ

(
A1 ∩ (∪B∈FB)

)
≤ µ(A1) < ∞. Therefore,

by exercise 1.59,
∑

B∈G µ(A1 ∩ B) = sup{
∑

B∈F µ(A1 ∩ B) | F ⊂
G, F finite} ≤ µ(A1) <∞; since, for all B ∈ G ⊂ F , µ(A1 ∩B) > 0, it
follows that G is countable. Let (Bk)k∈N be an enumeration of G. For
each k ∈ N, Bk ∈ F , hence there exists xk ∈ A and rk > 0 such that
Bk = B(xk, rk) and τα(n)rnk < µ(A1 ∩Bk), so that

τ

∞∑
k=1

α(n)rnk ≤
∞∑
k=1

µ(A1 ∩Bk) =

= µ
(
A1 ∩ (∪k∈NBk)

)
≤ µ(A1) <∞.

On the other hand, for all N ∈ N, it follows from (3.1) that A ⊂
(∪Nk=1Bk) ∪ (∪k≥N+15Bk). Since, for each k ∈ N, diam Bk ≤ 2rk ≤ δ
and diam 5Bk ≤ 5 diam Bk ≤ 10rk ≤ 5δ, we then conclude that

Hn
5δ(A) ≤

N∑
k=1

α(n)2−n(diam Bk)
n +

∞∑
k=N+1

α(n)2−n(diam 5Bk)
n ≤

≤
N∑
k=1

α(n)rnk + 5n
∞∑

k=N+1

α(n)rnk .

Thus, takingN →∞, it followsHn
5δ(A) ≤

∑∞
k=1 α(n)rnk , hence τHn

5δ(A) ≤
τ
∑∞

k=1 α(n)rnk ≤ µ(A1). Taking δ → 0, we obtain τHn(A) ≤ µ(A1).
Finally, since τ ∈ (0, t) was arbitrarily taken, making τ → t in the last
inequality yields the thesis. �

Theorem 3.7 (upper density theorem). Let µ be a Borel regular
measure on a metric space X, n > 0 real and B ∈ σ(µ) with µ(B) <∞.
Then Θ∗n(µ,B, x) = 0 for Hn-a.e. x ∈ X \B.

Proof. Let C ⊂ B be a closed set and t > 0. Define At := {x ∈
X \ B | Θ∗n(µ,B, x) ≥ t} and At1 := X \ C ⊃ At. Since At1 = X \ C
is an open set, it follows from remark 3.2 that, for all x ∈ At ⊂ At1,
Θ∗n(µ xB,At1, x) = Θ∗n(µ xAt1, B, x) = Θ∗n(µ,B, x) ≥ t. Thus, we
may apply theorem 3.6 with the Borel measure µ xB in place of µ, At

in place of A and At1 in place of A1, yielding tHn(At) ≤ µ xB(At1) =
µ(B\C). By the arbitrariness of C, it follows that tHn(At) ≤ inf{µ(B\
C) | C ⊂ B,C closed}. On the other hand, it follows from proposition
1.36 that µ xB is a finite Borel regular measure, to which theorem
1.23 may be applied to approximate B by closed sets contained in B,
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which yields inf{µ(B \ C) | C ⊂ B,C closed} = 0. As t > 0 was
arbitrarily taken, it follows that ∀t > 0, Hn(At) = 0. Since {x ∈
X \ B | Θ∗n(µ,B, x) > 0} = ∪k∈NA1/k, we conclude that Hn({x ∈
X \B | Θ∗n(µ,B, x) > 0}) = 0, whence the thesis. �

Exercise 3.8. If µ is an open σ-finite Borel regular measure on a
metric space X, the thesis in theorem 3.7 holds for all B ∈ σ(µ), i.e.
the hypothesis of µ(B) being finite may be dropped.

Corollary 3.9 (density theorem for the Lebesgue measure). If
B ⊂ Rn is Ln-measurable, then Θn(Ln, B, x) exists for Ln-a.e. x ∈ Rn,
Θn(Ln, B, x) = 1 for Ln-a.e. x ∈ B and Θn(Ln, B, x) = 0 for Ln-a.e.
x ∈ Rn \B.

Proof. Note that, if f, g : (0,∞)→ [0,∞], then

lim inf
r→0

f(r) + lim inf
r→0

g(r) ≤ lim inf
r→0

(f + g)(r) ≤

≤ lim inf
r→0

f(r) + lim sup
r→0

g(r) ≤

≤ lim sup
r→0

(f + g)(r) ≤ lim sup
r→0

f(r) + lim sup
r→0

g(r).

Fix x ∈ Rn. Applying the inequalities above to f(r) =
Ln
(
B∩B(x,r)

)
α(n)rn

and g(r) =
Ln
(

(Rn\B)∩B(x,r)
)

α(n)rn
, and taking into consideration that f(r) +

g(r) ≡ 1, it follows that, for all x ∈ Rn:

(3.2) Θ∗n(Ln, B, x) + Θn
∗ (Ln,Rn \B, x) = 1,

and the same holds with Rn \B in place of B.
On the other hand, theorems 2.21, 3.7, exercise 3.8 and the fact

that 0 ≤ Θn
∗ (Ln, B, ·) ≤ Θ∗n(Ln, B, ·) ≤ 1 imply that Θn(Ln, B, x) = 0

for Ln-a.e. x ∈ Rn \ B. The same holds for Rn \ B in place of B, i.e.
Θn(Ln,Rn \ B, x) = 0 for Ln-a.e. x ∈ B. The last equality implies, in
view of (3.2), that Θn(Ln, B, x) = 1 for Ln-a.e. x ∈ B. �

Exercise 3.10. Any convex subset X of Rn is Ln-measurable.

Hint. Use corollary 3.9 to prove that ∂X has null Lebesgue mea-
sure.

Exercise 3.11. Let X be a metric space, n > 0 real and A ⊂ X be
Hn-measurable with Hn(A) <∞. Then Θ∗n(Hn, A, x) ≤ 1 for Hn-a.e.
x ∈ A.

Hint. For each t > 1, put At := {x ∈ A | Θ∗n(Hn, A, x) ≥ t}.
Given ε > 0, take an open set U ⊃ At such thatHn(U∩A) < Hn(At)+ε
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(why such an open set exists?) and apply theorem 3.6 with Hn xA in
place of µ, At in place of A and A ∩ U in place of A1.

3.2. Differentiation Theorems

In the first part of this section we extend theorems 3.6 and 3.7 to
the situation in which we define upper and lower densities of a Borel
measure µ on a metric space X with respect to another Borel measure
ν on X, with convenient regularity and finiteness assumptions.

Definition 3.12 (upper and lower densities of a measure relative
another). Let X be a metric space, µ and ν measures on X, and x ∈
X. We define the upper and lower density of µ relative to ν at x by,
respectively:

Θ∗ν(µ, x) := lim sup
r→0

µ
(
B(x, r)

)
ν
(
B(x, r)

) ∈ [0,∞],

Θν
∗(µ, x) := lim inf

r→0

µ
(
B(x, r)

)
ν
(
B(x, r)

) ∈ [0,∞],

where we adopt the extended arithmetic rules 0
0

:= 0, ∞∞ := 0. If
Θ∗ν(µ, x) = Θν

∗(µ, x), we say that the density of µ relative to ν at x
exists and denote it by Θν(µ, x) := Θ∗ν(µ, x) = Θν

∗(µ, x).

Note that:

• if ∃r > 0, µ
(
B(x, r)

)
= 0, then Θ∗ν(µ, x) = Θν

∗(µ, x) = 0.

• if @r > 0, µ
(
B(x, r)

)
= 0 and ∃r > 0, ν

(
B(x, r)

)
= 0, then

Θ∗ν(µ, x) = Θν
∗(µ, x) =∞.

In particular, if x /∈ spt µ ∩ sup ν, the upper and lower densities at
x assume value 0 or ∞.

Remark 3.13. If X = Rn, A ⊂ Rn, x ∈ Rn and µ a measure
on Rn, the n-dimensional upper and lower densities of A at x with
respect to µ, defined in 3.1, are special cases of the above definition:
Θ∗n(µ,A, x) = Θ∗L

n
(µ xA, x) and Θn

∗ (µ,A, x) = ΘL
n

∗ (µ xA, x).

Lemma 3.14. If µ and ν are locally finite Borel measures on a met-
ric space X, and x ∈ X, then the definitions of Θ∗ν(µ, x) or Θν

∗(µ, x)
do not change if we use open balls instead of closed balls.

Proof. It is an adaptation of the proof of lemma 3.3, analyzing
separately the case in which x 6= spt µ ∩ spt ν.

Define, for r > 0,

f(r) :=
µ
(
U(x, r)

)
ν
(
U(x, r)

) and g(r) :=
µ
(
B(x, r)

)
ν
(
B(x, r)

) .
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1) If ∃r0 > 0, µ
(
B(x, r0)

)
= 0, then ∀0 < r < r0, f(r) = g(r) = 0 and

the thesis is trivial in this case.
2) If @r > 0, µ

(
B(x, r)

)
= 0 and ∃r0 > 0, ν

(
B(x, r0)

)
= 0, then

∀0 < r < r0, f(r) = g(r) = ∞ and the thesis is also trivial in this
case.

3) If neither of the previous cases holds, then x ∈ spt µ ∩ spt ν.
Since both µ and ν are locally finite, there exists r0 > 0 such that
µ
(
B(x, r0)

)
< ∞ and ν

(
B(x, r0)

)
< ∞. That is, for all 0 < r < r0,

0 < µ
(
B(x, r)

)
< ∞ and 0 < ν

(
B(x, r)

)
< ∞. In order conclude

the proof of the lemma, it suffices to show that, ∀0 < r < r0,

sup
0<ρ<r

f(ρ) = sup
0<ρ<r

g(ρ) and inf
0<ρ<r

f(ρ) = inf
0<ρ<r

g(ρ)

That is a consequence of the following claims:
i) Claim 1: ∀ρ ∈ (0, r), g(ρ) may be arbitrarily approximated by

elements of {f(ρ) | 0 < ρ < r}. Indeed, for a given ρ ∈ (0, r),
B(x, ρ) = ∩k∈NU(x, ρ+1/k); for sufficiently large k, ρ+1/k < r,
hence µ

(
U(x, ρ+ 1/k)

)
<∞ and ν

(
U(x, ρ+ 1/k)

)
<∞. That

allows us to apply the continuity from above 1.11 to the Borel
measures µ and ν, which ensures µ

(
U(x, ρ+1/k)

)
→ µ

(
B(x, ρ)

)
and ν

(
U(x, ρ + 1/k)

)
→ ν

(
B(x, ρ)

)
> 0 as k → ∞. Thus,

f(ρ+ 1/k)→ g(ρ), as asserted.
ii) Claim 2: ∀ρ ∈ (0, r), f(ρ) may be arbitrarily approximated by

elements of {g(ρ) | 0 < ρ < r}. Indeed, for a given ρ ∈ (0, r),
U(x, ρ) = ∪{B(x, ρ − 1/k) | k ∈ N, 1/k < ρ}. Applying the
continuity from below 1.11 to the Borel measures µ and ν, it
follows that µ

(
B(x, ρ − 1/k)

)
→ µ

(
U(x, ρ)

)
and ν

(
B(x, ρ −

1/k)
)
→ ν

(
U(x, ρ)

)
> 0 as k → ∞. Thus, g(ρ − 1/k) → f(ρ),

as asserted.

�

Proposition 3.15. Let µ and ν be locally finite Borel measures
on a metric space X, with ν finite on all closed balls of X. Then the
functions X → [0,∞] given by x ∈ X 7→ Θ∗ν(µ, x) and x ∈ X 7→
Θν
∗(µ, x) are Borelian.

Proof. We adapt the proof or proposition 3.4.

1) Let U0 := {x ∈ X | ∃r > 0, ν
(
B(x, r)

)
= 0} = X \ spt ν and

V0 := {x ∈ X | ∃r > 0, µ
(
B(x, r)

)
= 0} = X \ spt µ. We will

apply proposition 1.50 to A1 = V0, A2 = U0 \ V0 and A3 = X \
(U0 ∪ V0). Note that, since U0 and V0 are open sets, (Ai)1≤i≤3 is
a Borel partition of X. As Θ∗ν(µ, ·) and Θν

∗(µ, ·) are constant on
A1 (equal to 0) and A2 (equal to ∞), their restrictions to A1 and
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A2, endowed with the respective trace σ-algebras, are measurable.
It remains to show that the restrictions of Θ∗ν(µ, ·) and Θν

∗(µ, ·)
to A3 = spt µ ∩ spt ν are measurable, endowing A3 with the trace
σ-algebra BX |A3 .

2) Note that, for fixed r > 0, the functions X → [0,∞] given by x 7→
µ
(
U(x, r)

)
and x 7→ ν

(
U(x, r)

)
are lower semicontinuous (hence

Borelian). Indeed, let x ∈ X and (xn)n∈N a sequence in X conver-
gent to x. For all k ∈ N such that r − 1/k > 0, ∃n0 ∈ N, ∀n ≥ n0,
U(xn, r) ⊃ B(x, r− 1/k). Hence ∀n ≥ n0, µ

(
U(xn, r)

)
≥ µ

(
B(x, r−

1/k)
)
, whence lim infn→∞ µ

(
U(xn, r)

)
≥ µ

(
B(x, r−1/k)

)
. Applying

the continuity from below 1.11 to the Borel measure µ, we conclude
that µ

(
B(x, r−1/k)

)
→ µ

(
U(x, r)

)
≤ lim infn→∞ µ

(
U(xn, r)

)
, what

shows the asserted lower semicontinuity at x for µ, and the same
argument holds for ν.

It then follows that the quotient
µ
(
U(·,r)

)
ν
(
U(·,r)

) : X → [0,∞] is Bore-

lian (see example 1.51.2), so its restriction to A3 is measurable with
respect to the trace σ-algebra.

3) Claim: Given r > 0, the functions ψr, ψ
r : X → [0,∞] given by:

x 7→ inf
0<ρ<r

µ
(
U(x, ρ)

)
ν
(
U(x, ρ)

) and x 7→ sup
0<ρ<r

µ
(
U(x, ρ)

)
ν
(
U(x, ρ)

) ,
respectively, have measurable restrictions to A3. Indeed, it suffices
to show that, ∀x ∈ A3,

inf
0<ρ<r

µ
(
U(x, ρ)

)
ν
(
U(x, ρ)

) = inf{
µ
(
U(x, ρ)

)
ν
(
U(x, ρ)

) | 0 < ρ < r, ρ ∈ Q} and

sup
0<ρ<r

µ
(
U(x, ρ)

)
ν
(
U(x, ρ)

) = sup{
µ
(
U(x, ρ)

)
ν
(
U(x, ρ)

) | 0 < ρ < r, ρ ∈ Q},

in which case the asserted measurability follows from the previous
item and from theorem 1.41.(iv). In order to show the equalities
above, it is enough to prove that, for all x ∈ A3 and 0 < ρ < r,
µ
(
U(x,ρ)

)
ν
(
U(x,ρ)

) may be arbitrarily approximated by elements of the set

{µ
(
U(x,ρ)

)
ν
(
U(x,ρ)

) | 0 < ρ < r, ρ ∈ Q}. For that purpose, take a sequence

of rationals (ρk)k∈N in (0, ρ) such that ρk ↑ ρ; then, applying the
continuity from below to the Borel measures µ and ν, µ

(
U(x, ρk)

)
↑

µ
(
U(x, ρ)

)
and ν

(
U(x, ρk)

)
↑ ν
(
U(x, ρ)

)
. Since x ∈ A3 ⊂ spt ν and



3.2. DIFFERENTIATION THEOREMS 65

ν is finite on balls, we have 0 < ν
(
U(x, ρ)

)
<∞. Hence

µ
(
U(x,ρk)

)
ν
(
U(x,ρk)

) →
µ
(
U(x,ρ)

)
ν
(
U(x,ρ)

) , as asserted.

4) Due to the fact that µ and ν are locally finite Borel measures,
it follows from lemma 3.14 that Θ∗ν(µ, ·)|A3 = infr∈Q∗+ ψ

r|A3 and

Θν
∗(µ, ·)|A3 = supr∈Q∗+ ψr|A3 . Thus, from the claim in the previous

item and from theorem 1.41.(iv), we conclude that both Θ∗ν(µ, ·)|A3

and Θν
∗(µ, ·)|A3 are measurable.

�

Exercise 3.16. Show that, in proposition 3.15, the hypothesis of ν
being finite on all closed balls of X may be replaced by the hypothesis
of X being separable.

Hint. Adapt the argument above. Prove that, for each x ∈ A3,
there exists an open neighborhood x ∈ U ⊂ X and r0 > 0 such that,
for all 0 < r < r0 the restrictions of ψr and ψr to U∩A3 are measurable.

Corollary 3.17. Let µ and ν be locally finite Borel measures on
a metric space X, with ν finite on all closed balls of X. Then the
set Y := {x ∈ X | Θ∗ν(µ, x) = Θν

∗(µ, x)} is Borel measurable and
Θν(µ, ·) : Y → [0,∞] is Borelian.

In order to obtain similar versions of the comparison 3.6 and upper
density 3.7 theorems to the situation in which the densities of a Borel
measure µ are taken with respect to another Borel measure ν, we need
ν to satisfy the “symmetric Vitali property” introduced below. The
idea is to abstract the Vitali property of the Lebesgue measure stated
in corollary 2.14.

Definition 3.18. Let X be a metric space, F a collection of balls
in X and A ⊂ X. We say that F is a strongly fine cover A, or that
F covers A finely in the strong sense, if F is a cover of A such that,
∀x ∈ A, inf{r > 0 | B(x, r) ∈ F} = 0.

It is clear that every strongly fine cover of A is a fine cover of A in
the sense of definition 2.12, but the converse does not hold.

Definition 3.19 (symmetric Vitali property (SVP)). We say that
a measure µ on a metric space X satisfies the symmetric Vitali property
if, for all A ⊂ X with µ(A) <∞ and for all F strongly fine cover of A by
nondegenerate closed balls, there exists a countable disjoint subfamily
G ⊂ F such that µ(A \ ∪G) = 0.



66 3. DIFFERENTIATION OF MEASURES

Note that A is not assumed to be µ-measurable.

Remark 3.20.

1) It is clear that, if a measure µ on a metric space X has SVP, so does
any restriction of µ, i.e. ∀Y ⊂ X, µ xY has SVP.

2) If a measure µ on a metric space X is σ-finite and has SVP, then
µ is concentrated on its support, i.e. µ(X \ spt µ) = 0. Indeed, let
X = ∪k∈NAk, with ∀k ∈ N, Ak ∈ σ(µ) and µ(Ak) < ∞. For each
k ∈ N, the family of nondegenerate closed balls F = {B(x, r) | x ∈
X\spt µ, r > 0, µ

(
B(x, r)

)
= 0} covers Ak\spt µ finely in the strong

sense. Hence, there exists a countable disjoint subfamily Gk ⊂ F
such that µ

(
(Ak \ spt µ) \ ∪Gk

)
= 0; since µ(∪Gk) = 0 (because

Gk is countable and each B ∈ Gk has null measure), we conclude
that µ(Ak \ spt µ) = 0. Therefore X \ spt µ = ∪k∈N(Ak \ spt µ) has
µ-measure zero.

We list in the propositions below some sufficient conditions in order
for a measure to satisfy the symmetric Vitali property.

Proposition 3.21 (doubling property implies SVP). Let X be a
separable metric space and µ a finite Borel regular measure on X. As-
sume that µ satisfies the doubling property:

∃C > 0, ∀B ⊂ X nondegenerate closed ball, µ(5B) ≤ Cµ(B),

where 5B is given by (2.1). Then µ has the symmetric Vitali property.

Proof. Let A ⊂ X and F a fine cover of A by nondegenerate
closed balls. By corollary 2.13, there exists a disjoint subfamily G ⊂ F
such that, for all F ⊂ F finite, A \ ∪B∈FB ⊂ ∪B∈G\F5B. Since X is
separable, G is countable; let (Bn)n∈N be an enumeration of G. Then,
for all N ∈ N,

A \ ∪Nn=1Bn ⊂ ∪n≥N+15Bn.

Hence, µ(A\∪Nn=1Bn) ≤ C
∑∞

n=N+1 µ(Bn)
N→∞−→ 0, since

∑∞
n=1 µ(Bn) =

µ(∪G) ≤ µ(X) < ∞. Thus, applying the continuity from above 1.11
to the finite measure µ, it follows that µ(A \ ∪G) = 0. �

Remark 3.22. We have actually proved that, if µ is a finite Borel
regular measure on X with the doubling property, then the symmetric
Vitali property holds in a stronger sense, i.e. given A ⊂ X with µ(A) <
∞, the symmetric Vitali property holds for arbitrary fine covers of A,
not necessarily in the strong sense.

Proposition 3.23 (Borel measures on subsets of Rn satisfy SVP).
Let X be a metric subspace of Rn and µ a Borel measure on X. Then
µ satisfies the symmetric Vitali property.
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In order to prove this proposition, we will need the following cov-
ering theorem:

Theorem 3.24 (Besicovitch covering theorem). For each n ∈ N,
there exists a natural constant N = N(n), depending only on n, which
satisfies the following property: if F is any family of nondegenerate
closed balls in Rn with sup{diam B | B ∈ F} <∞ and A is the set of
centers of the balls in F , then exist G1, . . . ,GN such that, for 1 ≤ i ≤ N ,
Gi is a disjoint subfamily of F and ∪Ni=1Gi covers A.

For the proof of this theorem, we refer, for instance, to [EG91],
[KP08], [Mat95] or [Fed69].

Corollary 3.25. Let µ be a Borel measure in Rn, A ⊂ Rn with
µ(A) < ∞ and F a family of nondegenerate closed balls which covers
A finely in the strong sense. Then, for any open set U ⊃ A, there
exists a countable disjoint subfamily G ⊂ F such that ∪G ⊂ U and
µ(A \ ∪G) = 0.

Proof. It is an adaptation of the argument used to prove corollary
2.14, using Besicovitch covering theorem instead of the 5-times covering
lemma 2.10.

Let N = N(n) be the constant given by theorem 3.24 and fix θ ∈
(1 − 1

N
, 1). We may assume that µ(A) > 0, otherwise the thesis is

trivial. Let U ⊃ A be an open set.

1) Put FU := {B ∈ F | B ⊂ U, diam B ≤ 1}. Since F covers A finely
in the strong sense, it is clear that FU is still a strongly fine cover of
A; in particular, A is contained in the set of centers of the balls in
F . Applying theorem 3.24 to FU , we may take disjoint subfamilies
G1
U , . . .GNU ⊂ FU such that A ⊂ ∪Ni=1(∪GiU). Hence, by subadditivity,

µ(A) ≤
∑N

i=1 µ
(
A∩(∪GiU)

)
. We therefore conclude that there exists

1 ≤ i ≤ N such that µ
(
A∩(∪GiU)

)
≥ 1

N
µ(A) > (1−θ)µ(A). Since GiU

is a countable family (by remark 2.11) of closed balls, we may apply
the continuity from below 1.11 to the Borel measure µ xA to obtain
a finite subfamily G1 ⊂ GiU such that µ

(
A ∩ (∪G1)

)
> (1 − θ)µ(A).

But, since ∪G1 is Borelian (hence µ-measurable), we have

µ(A) = µ
(
A ∩ (∪G1)

)
+ µ(A \ ∪G1),

and the fact that µ(A) <∞ allows us to conclude that µ(A\∪G1) <
θµ(A).

2) Given 2 ≤ j ∈ N, assume we have defined finite disjoint subfamilies
G1 ⊂ · · · ⊂ Gj−1 ⊂ F such that, for 1 ≤ i ≤ j − 1, the balls of
Gi are contained in U and µ(A \ ∪Gi) < θiµ(A). We reapply the
argument of the previous item to the open set U ′ := U \ ∪Gj−1
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in place of U and to A′ := A \ ∪Gj−1 ⊂ U ′ in place of A: take
FU ′ := {B ∈ F | B ⊂ U ′, diam B ≤ 1}, which is a strongly fine
cover of A′, and use theorem 3.24 as in the previous item to find a
disjoint subfamily GU ′ ⊂ FU ′ such that µ

(
A′ ∩ (∪GU ′)

)
≥ 1

N
µ(A′) >

(1−θ)µ(A′). Then, applying the continuity from below to the Borel
measure µ xA′, there exists a finite set G ′j ⊂ GU ′ such that µ

(
A′ ∩

(∪G ′j)
)
> (1−θ)µ(A′). As in the previous item, the µ-measurability

of G ′j and the fact that µ(A′) <∞ imply that µ(A′\∪G ′j) < θµ(A′) <

θjµ(A). Put Gj := Gj−1∪G ′j. Then Gj ⊂ F is a finite disjoint family
whose balls are contained in U , and A \ ∪Gj = A′ \ ∪G ′j satisfies

µ(A \ ∪Gj) < θjµ(A).
3) We have thus inductively defined an increasing sequence (Gj)j∈N

such that, for each j ∈ N, Gj is a finite disjoint subfamily of F
whose balls are contained in U , with µ(A \ ∪Gj) < θjµ(A). Define
G := ∪i∈NGi; then G is a disjoint subfamily of F whose balls are

contained in U , with ∀j ∈ N, µ(A \ ∪G) ≤ θjµ(A)
j→∞−→ 0. Hence

µ(A \ ∪G) = 0, which concludes the proof.

�

Proof of proposition 3.23. If X = Rn, the thesis follows di-
rectly from corollary 3.25.

In the general case, let ρ denote the metric on X induced by the
euclidean metric d on Rn and ι : X → Rn the inclusion. We use
superscripts ρ and d for balls in X and Rn, respectively, so that ∀x ∈ X,
B(x, r)ρ = B(x, r)d ∩ X. Given A ⊂ X with µ(A) < ∞ and F ⊂ 2X

a strongly fine cover of A by nondegenerate closed balls, let F ′ :=
{B nondegenerate closed ball in Rn | B ∩ X ∈ F}. Then F ′ ⊂ 2Rn

is a strongly fine cover of A in Rn; indeed, ∀x ∈ A, ∀δ > 0, the fact
that F is a strongly fine cover for A in X ensures the existence of
0 < r < δ such that B(x, r)d ∩X = B(x, r)ρ ∈ F , hence B(x, r)d ∈ F ′
by definition. Since, by proposition 1.15.(iii), the pushforward measure
ι#µ is a Borel measure on Rn, it follows from the case already proved
that there exists a countable disjoint subfamily G ′ ⊂ F ′ such that
ι#µ(A\∪G ′) = 0. Define G := {B∩X | B ∈ G ′}; then G is a countable
disjoint subfamily of F and, since ∀B ∈ G ′, A \ B = A \ (B ∩ X), it
follows that A \ ∪G = A \ ∪G ′, thus µ(A \ ∪G) = ι#µ(A \ ∪G ′) = 0,
which concludes the proof. �

Theorem 3.26 (general comparison density theorem). Let µ and ν
be open σ-finite Borel regular measures on a metric space X such that
ν has the symmetric Vitali property, t ≥ 0 and A ⊂ X. If ∀x ∈ A,
Θ∗ν(µ, x) ≥ t then tν(A) ≤ µ(A).
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Proof. We assume that t > 0, otherwise the thesis is trivial.
Firstly, assume that ν(A) <∞.
Fix 0 < τ < t and an open set U ⊃ A. Since, ∀x ∈ A, Θ∗ν(µ, x) =

lim supr→0

µ
(
B(x,r)

)
ν
(
B(x,r)

) ≥ t > τ , it follows that ∀x ∈ A, ∀r > 0, ∃0 < ρ < r

such that
µ
(
B(x,ρ)

)
ν
(
B(x,ρ)

) > τ , so that µ
(
B(x, ρ)

)
> τν

(
B(x, ρ)

)
(note that, in

order for the quotient to be > τ , according to our extended arithmetic
convention in 3.12, the numerator cannot be 0 and the denominator
cannot be ∞). It then follows that F := {B | ∃x ∈ A,∃r > 0, B =
B(x, r), µ

(
B(x, ρ)

)
> τν

(
B(x, ρ)

)
, B ⊂ U} is a strongly fine cover of

A. Since ν(A) <∞ and ν has the symmetric Vitali property, we may
take a countable disjoint subfamily G ⊂ F such that ν(A \ ∪G) = 0.
Therefore, by countable subadditivity,

τν(A) ≤ τ
[∑
B∈G

ν(B) + ν(A \ ∪G)
]
≤

≤
∑
B∈G

µ(B) = µ(∪G) ≤ µ(U).

Since µ is open σ-finite Borel regular, theorem 1.23 may be applied and
yields µ(A) = inf{µ(U) | U ⊃ A open} ≥ τν(A) and, taking τ → t,
the thesis follows in case ν(A) <∞.

If ν(A) = ∞, the fact that ν is open σ-finite allows us to take a
countable disjoint family (Bk)k∈N of Borel sets inX such that ∪̇k∈NBk =
X and ∀k ∈ N, ν(Bk) <∞. Thus, for all k ∈ N, the case already proved
applies to A ∩ Bk, which yields µ(A ∩ Bk) ≥ tν(A ∩ Bk). By the fact
that both µ xA and ν xA are Borel measures, it then follows that
µ(A) =

∑
k∈N µ(A ∩Bk) ≥ t

∑
k∈N ν(A ∩Bk) = tν(A). �

Corollary 3.27. Let µ and ν be open σ-finite Borel regular mea-
sures on a metric space X such that ν has the symmetric Vitali prop-
erty. Then Θ∗ν(µ, x) <∞ for ν-a.e. x ∈ X.

Proof. Let I := {x ∈ X | Θ∗ν(µ, x) = ∞}. We must show that
ν(I) = 0. Since µ is open σ-finite, we may take a sequence of open sets
(Uk)k∈N such that ∪k∈NUk = X and ∀k ∈ N, µ(Uk) <∞.

Fix k ∈ N and t > 0, and let Akt := {x ∈ Uk | Θ∗ν(µ, x) ≥ t}.
Applying theorem 3.26 with Akt in place of A, it follows that tν(Akt ) ≤
µ(Akt ) ≤ µ(Uk) < ∞. Since I ∩ Uk = ∩t>0A

k
t , we then conclude that

∀t > 0, ν(I ∩ Uk) ≤ ν(Akt ) ≤ t−1µ(Uk)
t→∞−→ 0, hence ν(I ∩ Uk) = 0. As

I = ∪k∈N(I ∩ Uk), the thesis follows from the countable subadditivity
of ν. �
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Theorem 3.28 (general upper density theorem). Let µ be a Borel
regular measure on a metric space X, ν an open σ-finite Borel regular
measure on X with the symmetric Vitali property, and A ∈ σ(µ) with
µ(A) <∞. Then Θ∗ν(µ xA, x) = 0 for ν-a.e. x ∈ X \ A.

Proof. For each t > 0, let St := {x ∈ X \A | Θ∗ν(µ xA, x) ≥ t}.
By proposition 1.36.(i), µ xA is a finite Borel regular measure on X;
hence, we may apply theorem 3.26 with µ xA in place of µ, ν and St
in place of A, which yields tν(St) ≤ µ xA(St) = µ(A ∩ St) = 0, since
A ∩ St = ∅. Thus, ν(St) = 0, whence ν({x ∈ X \ A | Θ∗ν(µ xA, x) >
0}) = ν(∪n∈NS1/n) = 0. �

Theorem 3.29 (general density theorem). Let µ be an open σ-
finite Borel regular measure on a metric space X with symmetric Vitali
property and A ∈ σ(µ). Then the density Θµ(µ xA, ·) coincides µ-a.e.
on X with χA, i.e.

Θµ(µ xA, x) = lim
r→0

µ
(
A ∩ B(x, r)

)
µ
(
B(x, r)

) =

{
1 for µ-a.e. x ∈ A,
0 for µ-a.e. x ∈ X \ A.

Proof. It is an adaptation of the proof of corollary 3.9, using
theorem 3.28 instead of theorem 3.7.

Firstly, we prove the case in which µ(X) < ∞. Since µ is con-
centrated on its support, by remark 3.20.2), it suffices to show that
Θµ(µ xA, ·) coincides µ-a.e. on spt µ with χA. Fix x ∈ spt µ and de-

fine f, g : (0,∞)→ [0,∞] by f(r) =
µ
(
A∩B(x,r)

)
µ
(
B(x,r)

) and g(r) =
µ
(

(X\A)∩B(x,r)
)

µ
(
B(x,r)

) .

Due to the fact that f(r) + g(r) ≡ 1 and that lim infr→0(f + g)(r) ≤
lim infr→0 f(r) + lim supr→0 g(r) ≤ lim supr→0(f + g)(r), it follows that

(3.3) Θ∗µ(µ xA, x) + Θµ
∗(µ x(X \ A), x) = 1,

and the same holds with X \ A in place of A.
On the other hand, since µ is a finite Borel regular measure and

A ∈ σ(µ), we may apply theorem 3.28 with ν = µ, which yields
Θ∗µ(µ xA, x) = 0 for µ-a.e. x ∈ X \ A. Then the fact that 0 ≤
Θµ
∗(µ xA, ·) ≤ Θ∗µ(µ xA, ·) ≤ 1 implies that Θµ(µ xA, x) = 0 for

µ-a.e. x ∈ X \ A. The same holds for X \ A in place of A, i.e.
Θµ(µ x(X \ A), x) = 0 for µ-a.e. x ∈ A. The last equality implies, in
view of (3.3), that Θµ(µ xA, x) = 1 for µ-a.e. x ∈ A ∩ spt µ, which
concludes the proof in case µ(X) <∞.

In the general case, since µ is open σ-finite, we may cover X with
countably many open sets (Uk)k∈N such that ∀k ∈ N, µ(Uk) < ∞.
For fixed k ∈ N, it follows from proposition 1.36.(i) and from remark
3.20.(1) that µ xUk is a finite Borel regular measure with SVP, to
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which the case already proved yields Θµ xUk(µ x(Uk ∩ A), ·) = χA

(µ xUk)-a.e. onX. Since Uk is open, the functions Θµ xUk(µ x(Uk ∩ A), ·)
and Θµ(µ xA, ·) coincide on Uk; hence, Θµ(µ xA, ·) coincides with χA
µ-a.e. on Uk. As ∪k∈NUk = X, we conclude that Θµ(µ xA, ·) coincides
with χA µ-a.e. on X, as asserted. �

Corollary 3.30 (general Lebesgue differentiation theorem). Let
µ be an open σ-finite Borel regular measure on a metric space X with
symmetric Vitali property and f : X → C a µ-measurable function
satisfying one of the following conditions:

i) f ∈ L1(µ) or
ii) X is separable and f ∈ L1

loc(µ), i.e. ∀x ∈ X, ∃r > 0,
´
B(x,r)
|f | dµ <

∞.

Then, for µ-a.e. x ∈ X:

(3.4) lim
r→0

1

µ
(
B(x, r)

) ˆ
B(x,r)

f dµ = f(x).

Proof. Note that, since f = [(Re f)+ − (Re f)−] + i[(Im f)+ −
(Im f)−], it suffices to prove the thesis for positive functions, i.e. we
may assume f : X → [0,∞). Moreover, the fact that µ is open σ-
finite ensures the existence of a sequence (Uk)k∈N of open sets such
that ∪k∈NUk = X and ∀k ∈ N, µ(Uk) < ∞; we may also assume that´
f d(µ xUk) =

´
Uk
f dµ <∞ in case hypothesis (ii) holds. Therefore,

if we prove the thesis for finite Borel regular measures with SVP and
hypothesis (i), it will follow that, for each k ∈ N, (3.4) holds with
µ xUk in place of µ. In particular, for all k ∈ N, (3.4) holds (with
µ) for µ-a.e. x ∈ Uk, hence it holds for µ-a.e. x ∈ X = ∪k∈NUk. We
may then assume that µ(X) < ∞ and that hypothesis (i) holds, i.e.
f ∈ L1(µ).

Fix k ∈ N. The fact that µ is a finite Borel regular measure allows us
to apply Lusin’s theorem 1.117, which yields a closed subset Fk ⊂ X
such that µ(X \ Fk) < 1/k and f |Fk is continuous. Since µ has the
symmetric Vitali property, so does µ xFk; hence, by remark 3.20,
µ xFk is concentrated on its support. In particular, if Nk := Fk∩ (X \
spt µ xFk) = {x ∈ Fk | ∃r > 0, µ

(
Fk ∩B(x, r)

)
= 0}, then µ(Nk) = 0.

For each x ∈ Fk \ Nk, for each r > 0, we have 0 < µ
(
Fk ∩ B(x, r)

)
≤
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µ
(
B(x, r)

)
, so that

1

µ
(
B(x, r)

) ˆ
Fk∩B(x,r)

f dµ =

=
µ
(
Fk ∩ B(x, r)

)
µ
(
B(x, r)

) · 1

µ
(
Fk ∩ B(x, r)

) ˆ
Fk∩B(x,r)

f dµ.

(3.5)

From the general density theorem 3.29, for µ-a.e. x ∈ Fk,
µ
(
Fk∩B(x,r)

)
µ
(
B(x,r)

) r→0−→

1, and the continuity of f |Fk ensures ∀x ∈ Fk, 1

µ
(
Fk∩B(x,r)

) ´
Fk∩B(x,r)

f dµ
r→0−→

f(x). It then follows from (3.5) that, adjoining a µ-null set to Nk if
necessary, ∀x ∈ Fk \Nk,

(3.6)
1

µ
(
B(x, r)

) ˆ
Fk∩B(x,r)

f dµ
r→0−→ f(x).

We contend that, for µ-a.e. x ∈ Fk,

(3.7)
1

µ
(
B(x, r)

) ˆ
B(x,r)\Fk

f dµ
r→0−→ 0.

Indeed, let ν be the Borel regular measure on X given by f dµ, i.e. the
extension of the measure A ∈ BX 7→

´
A
f dµ given by theorem 1.8.

Since F c
k = X \ Fk has finite ν-measure (because f ∈ L1(µ)), we can

apply the general upper density theorem 3.28 with ν in place of µ, µ
in place of ν and F c

k in place of A, thus proving our contention.
It then follows from (3.6) and (3.7) that, adjoining another µ-null

set to Nk if necessary, ∀x ∈ Fk \ Nk, (3.4) holds. Therefore, as k ∈ N
was arbitrarily taken and X \ ∪k∈NFk is µ-null, (3.4) holds for x in the
complement of the µ-null set (∪k∈NNk)∪(X \∪k∈NFk) and we are done.

�

Corollary 3.31 (Lebesgue Points). Let X be a separable metric
space, µ an open σ-finite Borel regular measure on X with symmetric
Vitali property, 1 ≤ p < ∞ and f ∈ Lp

loc(µ), i.e. ∀x ∈ X, ∃r >
0,
´
B(x,r)
|f |p dµ <∞. Then, for µ-a.e. x ∈ X,

(3.8) lim
r→0

1

µ
(
B(x, r)

) ˆ
B(x,r)

|f(y)− f(x)|p dµ(y) = 0.

Proof. Let {ri | i ∈ N} be a countable dense subset of C. It
follows from corollary 3.30 that, for every i ∈ N, there exists a µ-null
set Ai such that, for all x ∈ Aci ,

lim
r→0

1

µ
(
B(x, r)

) ˆ
B(x,r)

|f − ri|p dµ = |f(x)− ri|p.
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Then the above equality holds for all i ∈ N and for all x in the com-
plement of the µ-null set A := ∪i∈NAi.

Fix x ∈ Ac and ε > 0. There exists i ∈ N such that |f(x)− ri| < ε.
Then

1

µ
(
B(x, r)

) ˆ
B(x,r)

|f(y)− f(x)|p dµ(y) ≤

≤ 2p−1

µ
(
B(x, r)

) ˆ
B(x,r)

(
|f(y)− ri|p + |ri − f(x)|p

)
dµ(y) ≤

≤ 2p−1

µ
(
B(x, r)

) ˆ
B(x,r)

|f(y)− ri|p dµ(y) + 2p−1|f(x)− ri|p,

so that

lim sup
r→0

1

µ
(
B(x, r)

) ˆ
B(x,r)

|f(y)−f(x)|p dµ(y) ≤ 2·2p−1|f(x)−ri|p < 2pεp.

Since ε > 0 was arbitrarily taken, the thesis follows. �

Definition 3.32 (Lebesgue Points). With the same notation from
the previous corollary, a point x ∈ X for which (3.8) holds is called
Lebesgue point of f with respect to µ.

It is clear that every point of continuity of f is a Lebesgue point of
f .

If X = Rn and µ = Ln, the limit in (3.8) can be taken along
all closed balls B containing x (not necessarily centered at x) with
diam B → 0:

Corollary 3.33 (Lebesgue points with noncentered balls). Let
1 ≤ p < ∞ and f ∈ Lp

loc(Ln). Then, for each Lebesgue point x of f
with respect to Ln (in particular, for Ln-a.e. x ∈ Rn),

lim
B↓{x}

1

Ln(B)

ˆ
B

|f(y)− f(x)|p dLn(y) = 0,

where the limit is taken over all closed balls B containing x with diam B →
0.

Proof. For each closed ball B containing x, we have:

1

Ln(B)

ˆ
B

|f(y)− f(x)|p dLn(y) ≤

≤ 1

Ln(B)

ˆ
B(x,diam B)

|f(y)− f(x)|p dLn(y) =

= 2n
1

Ln
(
B(x, diam B)

) ˆ
B(x,diam B)

|f(y)− f(x)|p dLn(y)
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and then the thesis follows from corollary 3.31. �

Our next step is to prove a version of the general comparison density
theorem 3.26 for lower densities.

Firstly we introduce for Borel outer measures the notions of abso-
lute continuity and mutual singularity which were introduced in 1.92
for measures on a σ-algebra M.

Definition 3.34 (absolute continuity and mutual singularity). Let
µ and ν be Borel measures on a topological space X. We say that:

1) µ is absolutely continuous with respect to ν (notation: µ � ν) if
∀A ⊂ X, ν(A) = 0 implies µ(A) = 0.

2) µ and ν are mutually singular (notation: µ ⊥ ν) if there exists
A ∈ BX such that µ is concentrated on A and ν is concentrated on
X \ A.

Remark 3.35. Note that µ ⊥ ν iff µ|BX
⊥ ν|BX

in the sense of
definition 1.92. Besides, it is clear that, if µ is a Borel measure and
ν is a Borel regular measure on a topological space X, then µ � ν
iff ∀A ∈ BX , ν(A) = 0 implies µ(A) = 0. Thus, if ν is Borel regular,
then µ� ν iff µ|BX

� ν|BX
in the sense of definition 1.92.

We now prove a version of the Lebesgue decomposition theorem
1.101 for outer measures. The lemma below may be obtained as a
direct consequence of the previous remark and theorem 1.101, but we
give a direct proof.

Lemma 3.36 (Lebesgue decomposition theorem). Let µ be a σ-finite
Borel measure and ν a Borel regular measure on a metric space X.
Then there exists B ∈ BX such that ν is concentrated on Bc and
µ xBc � ν, so that

(LD) µ = µ xB + µ xBc, µ xB ⊥ ν, µ xBc � ν.

Moreover:

1) B ∈ BX satisfying (LD) is unique up to µ-null sets, i.e. if B′ ∈ BX

also satisfies (LD), then B∆B′ is µ-null.
2) the decomposition (LD) is unique in the sense that, if µ = µs + µa

with µs ⊥ ν and µa � ν, then µs = µ xB and µa = µ xBc.

Definition 3.37. With the notation above, we call µ xB the sin-
gular part and µ xBc the absolutely continuous part of µ with respect
to ν.

Proof. 1) Assume µ finite. Let F := {F ∈ BX | ν(F ) = 0}
and α := sup{µ(F ) | F ∈ F}, so that 0 ≤ α ≤ µ(X) < ∞. We
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contend that this sup is attained. Indeed, take a sequence (Fn)n∈N
in F such that µ(Fn)→ α and define B := ∪n∈NFn. Then B ∈ BX

and ν(B) = 0 (since each Fn is ν-null), so that B ∈ F . Since
∀n ∈ N, µ(Fn) ≤ µ(B) and µ(Fn) → α, it follows α ≤ µ(B), hence
α = µ(B).

We contend that µ xBc � ν. Indeed, if that is not the case,
the Borel regularity of ν and remark 3.35 imply the existence of
A ∈ BX such that ν(A) = 0 and µ xBc(A) > 0; hence B ∪ A ∈
F and µ(B ∪ A) = µ(B) + µ(Bc ∩ A) = α + µ xBc(A) > α,
which contradicts the definition of α. The contention is then proved,
so that ν is concentrated on Bc and µ xBc � ν. Besides, since
µ xB is trivially concentrated on B, we have µ xB ⊥ ν and the
decomposition (LD) holds.

2) In the general case, since µ is σ-finite, we can take an increasing
sequence (An)n∈N in σ(µ) such that ∪n∈NAn = X and ∀n ∈ N,
µ(An) < ∞. For each n ∈ N, µ xAn is a finite Borel measure,
to which the previous item can be applied, yielding Bn ∈ BX

such that ν is concentrated on Bc
n and µ xAn ∩Bc

n � ν. Let
B := ∪n∈NBn ∈ BX . Then ν(B) = 0, i.e. ν is concentrated on Bc;
we contend that µ xBc � ν, which yields the validity of decompo-
sition (LD). Indeed, if F ∈ BX is ν-null, ∀n ∈ N, µ xAn ∩Bc

n(F ) =
µ(An ∩ Bc

n ∩ F ) = 0, hence µ
(
An ∩ (∩n∈NBc

n) ∩ F
)

= 0. Since(
An ∩ (∩n∈NBc

n) ∩ F
)
n∈N is a sequence in σ(µ) which increases to(

(∩n∈NBc
n)∩F

)
= Bc∩F , the continuity from below 1.11 applied to

µ yields µ xBc(F ) = µ(Bc ∩ F ) = 0, which proves our contention.
3) Let B′ ∈ BX such that (LD) also holds with B′ in place of B.

Then µ xB \B′ is concentrated on B and absolutely continuous
with respect to ν (which is null on B), hence µ xB \B′ is the
null measure. Similarly, µ xB′ \B is null, and so is µ xB∆B′ =
µ xB \B′ + µ xB′ \B, i.e. µ(B∆B′) = 0, as asserted.

4) Let ν = µs+µa with µs ⊥ ν and µa � ν. Let B′ ∈ BX such that µs
is concentrated on B′ and ν is concentrated on (B′)c. Then µa � ν
is also concentrated on (B′)c; thus, for all A ⊂ X, µs(A) = µs(A ∩
B′) = µ(A ∩B′) = µ xB′(A) and µa(A) = µa

(
A ∩ (B′)c

)
= µ

(
A ∩

(B′)c
)

= µ x(B′)c(A). That is, µa = µ xB′ and µs = µ x(B′)c.
In particular, (LD) holds with B′ in place of B; by the previous
item, it follows that µ(B∆B′) = 0, hence µs = µ xB′ = µ xB
and µa = µ x(B′)c = µ xBc, as asserted.

�
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Theorem 3.38 (comparison theorem for lower densities). Let µ
and ν be open σ-finite Borel regular measures on a metric space X,
t ≥ 0 and A ⊂ X with ∀x ∈ A, Θν

∗(µ, x) ≤ t.

i) If µ has SVP, then µ(A) ≤ t ν(A).
ii) If ν has SVP and B is given by lemma 3.36, so that (LD) holds,

then µ(A \B) ≤ t ν(A).

Proof. It is similar to the proof of theorem 3.26.

(1) Firstly, we make a reduction: it is enough to prove the case in
which both µ(A) and ν(A) are finite. Indeed, suppose that the
thesis holds in that case. In the general case, since both µ and
ν are σ-finite, there exists a disjoint sequence (Bk)k∈N of Borel
sets in X such that µ(Bk) <∞, ν(Bk) <∞ and X = ∪̇k∈NBk.
Thus, for each k ∈ N, the thesis holds for Bk ∩ A in place of
A, so that, for all k ∈ N, µ(Bk ∩ A) ≤ t ν(Bk ∩ A) in case i)
and µ(Bk ∩ A \ B) ≤ t ν(Bk ∩ A) in case ii). By the fact that
both µ xA and ν xA are Borel measures, it then follows that
µ(A) =

∑
k∈N µ(Bk ∩ A) ≤ t

∑
k∈N ν(Bk ∩ A) = t ν(A) in case

i), and µ(A \B) =
∑

k∈N µ(Bk ∩A \B) ≤ t
∑

k∈N ν(Bk ∩A) =
t ν(A) in case ii).

Assume, therefore, µ(A) <∞ and ν(A) <∞.
(2) It is enough to prove part i) for A ⊂ spt µ. Indeed, suppose

that the thesis holds in that case. Since µ is σ-finite and
has SVP, it follows from remark 3.20 that µ is concentrated
on its support; thus, for arbitrary A it follows that µ(A) =
µ(A ∩ spt µ) ≤ t ν(A ∩ spt µ) ≤ t ν(A) and we are done.

Assume, therefore, A ⊂ spt µ. Fix τ > t and an open

set U ⊃ A. Since, ∀x ∈ A, Θν
∗(µ, x) = lim infr→0

µ
(
B(x,r)

)
ν
(
B(x,r)

)
≤ t < τ , it follows that ∀x ∈ A, ∀r > 0, ∃0 < ρ < r such

that
µ
(
B(x,ρ)

)
ν
(
B(x,ρ)

) < τ , so that µ
(
B(x, ρ)

)
< τν

(
B(x, ρ)

)
(note

that µ
(
B(x, ρ)

)
> 0, since x ∈ spt µ; hence, in order for the

quotient to be < τ , according to our extended arithmetic con-
vention in 3.12, the denominator cannot be 0). It then follows
that F := {B | ∃x ∈ A, ∃r > 0, B = B(x, r), µ

(
B(x, r)

)
<

τν
(
B(x, r)

)
, B ⊂ U} is a strongly fine cover of A. Since

µ(A) < ∞ and µ has the symmetric Vitali property, we may
take a countable disjoint subfamily G ⊂ F such that µ(A \
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∪G) = 0. Therefore, by countable subadditivity,

µ(A) ≤ µ(A \ ∪G) +
∑
B∈G

µ(B) < τ
∑
B∈G

ν(B) =

= τν(∪G) ≤ τν(U)

Since ν is open σ-finite Borel regular, theorem 1.23 may be
applied and yields τν(A) = inf{τν(U) | U ⊃ A open} ≥ µ(A)
and, taking τ → t, part i) is proved.

(3) We now prove ii). Take B ∈ BX given by lemma 3.36, so
that (LD) holds. Note that, since the measure µ xBc is abso-
lutely continuous with respect to ν, it clearly has SVP; besides,
it is trivially open σ-finite, it is Borel regular by proposition
1.36.(i), and ∀x ∈ A:

Θν
∗(µ xBc, x) = lim inf

r→0

µ xBc
(
B(x, r)

)
ν
(
B(x, r)

) ≤

≤ lim inf
r→0

µ
(
B(x, r)

)
ν
(
B(x, r)

) = Θν
∗(µ, x) ≤ t.

We may therefore apply part i) with µ xBc in place of µ,
yielding µ(A \B) = µ xBc(A) ≤ t ν(A), as asserted.

�

Theorem 3.39 (differentiation theorem for Borel measures on met-
ric spaces). Let µ and ν be open σ-finite Borel regular measures on a
metric space X. Suppose that X is separable or that ν is finite on
closed balls of X.

i) The set Y := {x ∈ X | Θ∗ν(µ, x) = Θν
∗(µ, x)} is Borel measurable

and Θν(µ, ·) : Y → [0,∞] is Borelian.
ii) If ν has SVP, Yf := {x ∈ Y | Θν(µ, x) <∞} is a Borel measurable

subset of X whose complement is ν-null.
iii) If both µ and ν have SVP, µ(Y c) = ν(Y c) = 0.

Proof.

1) If ν is finite on closed balls, part (i) follows from corollary 3.17; if
X is separable, part (i) is a direct consequence of exercise 3.16.

2) We now prove part (iii). It suffices to prove the case in which
µ(X) <∞ and ν(X) <∞. Indeed, assuming that the thesis holds
in this case, in the general case we can take a sequence (Uk)k∈N
of open sets such that X = ∪k∈NUk and ∀k ∈ N, µ(Uk) < ∞
and ν(Uk) < ∞. The thesis then holds, for each k ∈ N, for
the finite Borel regular measures with SVP µ xUk and ν xUk
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in place of µ and ν, respectively. Thus, for each k ∈ N, since

Θ∗ν(µ, ·) = Θ∗ν xUk(µ xUk, ·) and Θν
∗(µ, ·) = Θν xUk

∗ (µ xUk, ·)
on the open set Uk, it follows that µ(Y c ∩ Uk) = 0 = ν(Y c ∩ Uk),
whence µ(Y c) = 0 = ν(Y c), as asserted.

Assume, therefore, that both µ and ν are finite. Let 0 < a <
b <∞ and Ya,b := {x ∈ X | Θν

∗(µ, x) ≤ a and Θ∗ν(µ, x) ≥ b}. Since
both µ and ν are open σ-finite Borel regular measures with SVP,
we may apply theorems 3.26 and 3.38 to conclude that bν(Ya,b) ≤
µ(Ya,b) and µ(Ya,b) ≤ aν(Ya,b), so that µ(Ya,b) ≤ aν(Ya,b) ≤ a

b
µ(Ya,b).

Since a
b
< 1 and µ(Ya,b) < ∞, it follows that µ(Ya,b) = 0, hence

ν(Ya,b) = 0. As Y c = ∪{Ya,b | 0 < a < b < ∞, a ∈ Q, b ∈ Q}, it
follows that µ(Y c) = ν(Y c) = 0, as asserted.

3) We prove part (ii). It is clear from part (i) that Yf = {x ∈ Y |
Θν(µ, x) < ∞} is Borel measurable. By the same reduction made
in the previous item, we may assume that both µ and ν are fi-
nite. Take B ∈ BX given by lemma 3.36, so that (LD) holds.
Note that µ xBc is a finite Borel regular measure on X with SVP.
Applying part (iii) with µ xBc in place of µ, we conclude that
{x ∈ X | Θ∗ν(µ xBc, x) 6= Θν

∗(µ xBc, x)} is ν-null. On the other
hand, as µ(B) < ∞, we may apply theorem 3.28 with B in place
of A, yielding Θ∗ν(µ xB, x) = 0 for ν-a.e. x ∈ Bc. That im-
plies Θ∗ν(µ xBc, x) = Θ∗ν(µ, x) and Θν

∗(µ xBc, x) = Θν
∗(µ, x)

for ν-a.e. x ∈ Bc. It then follows that Y c ∩ Bc = {x ∈ Bc |
Θ∗ν(µ, x) 6= Θν

∗(µ, x)} differs from {x ∈ Bc | Θ∗ν(µ xBc, x) 6=
Θν
∗(µ xBc, x)} by a ν-null set; thus, since the latter set is ν-null, so

is the former. Since ν is concentrated on Bc, we then conclude that
ν(Y c) = ν(Y c ∩ Bc) = 0. Finally, by corollary 3.27, F := {x ∈ X |
Θ∗ν(µ, x) <∞} has ν-null complement; as Yf = Y ∩F , we conclude
that Y c

f = Y c ∪ F c is ν-null, as asserted.

�

Theorem 3.40 (Lebesgue-Besicovitch-Radon-Nikodym differentia-
tion theorem). Let µ and ν be open σ-finite Borel regular measures on
a metric space X. Suppose that X is separable or that ν is finite on
closed balls of X, and that ν has SVP.

i) Let µ = µs +µa be the Lebesgue decomposition of µ with respect to
ν, i.e. µs = µ xB and µa = µ xBc, where B ∈ BX is given by
lemma 3.36. Then, for all A ∈ BX ,

(3.9) µa(A) =

ˆ
A

Θν(µ, x) dν(x),

so that, for all A ∈ BX , µ(A) =
´
A

Θν(µ, x) dν(x) + µs(A).
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ii) If µ also has SVP, in lemma 3.36 we can take B′ = {x ∈ X |
Θν(µ, x) =∞} in place of B.

Proof. i) Note that the integral in (3.9) makes sense, since, by
theorem 3.39.(ii), Θν(µ, ·) is a positive Borel measurable function
defined on the complement of a ν-null set.

Let λ = Θν(µ, ·) dν be the Borel regular measure on X defined
by the second member in (3.9), i.e. the extension of the measure
A ∈ BX 7→

´
A

Θν(µ, x) dν(x) given by theorem 1.8. We must show
that µa = λ. Since both measures are Borel regular, it suffices to
show that they coincide on Borel sets.

Let A ∈ BX , fix t > 1 and take Yf given by 3.39.(ii), so that
ν(B ∪ Y c

f ) = 0. We contend that both λ and µa are concentrated
on S := {x ∈ Bc ∩ Yf | Θν(µ, x) > 0} ∈ BX . Indeed, since
Sc = B ∪ Y c

f ∪ {x ∈ Bc ∩ Yf | Θν(µ, x) = 0}, it is clear that
λ(Sc) = 0. On the other hand applying theorem 3.38.(ii) with
{x ∈ Bc ∩ Yf | Θν(µ, x) = 0} in place of A and t = 0, it follows
that µa

(
{x ∈ Bc ∩ Yf | Θν(µ, x) = 0}

)
= µ

(
{x ∈ Bc ∩ Yf |

Θν(µ, x) = 0}
)

= 0 and, as µa(B ∪ Y c
f ) = 0 (because µa � ν), we

conclude that µa(S
c) = 0.

Define, ∀k ∈ Z, Ak := {x ∈ A ∩ S | tk ≤ Θν(µ, x) < tk+1} ∈
BX . Since A ∩ S = ∪̇k∈ZAk, we have:

µa(A) = µa(A ∩ S) = µ(A ∩ S) =
∑
k∈Z

µ(Ak),

λ(A) = λ(A ∩ S) =
∑
k∈Z

λ(Ak).
(3.10)

On the other hand, for all k ∈ Z:

tkν(Ak)
3.26

≤ µ(Ak)
3.38.(ii)

≤ tk+1ν(Ak),

tkν(Ak) ≤ λ(Ak) ≤ tk+1ν(Ak).
(3.11)

From (3.10) and (3.11) we then conclude that:

µa(A) =
∑
k∈Z

µ(Ak) ≤ t
∑
k∈Z

tkν(Ak) ≤ tλ(A)

λ(A) =
∑
k∈Z

λ(Ak) ≤ t
∑
k∈Z

tkν(Ak) ≤ tµa(A).

Since t > 1 was arbitrarily taken, we can make t ↓ 1 to conclude
µa(A) ≤ λ(A) and λ(A) ≤ µa(A), hence µa(A) = λ(A), as asserted.

ii) Since B′ ⊂ Y c
f , it follows from theorem 3.39.(ii) that ν(B′) = 0,

i.e. ν is concentrated on (B′)c. Therefore, it is enough to prove
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that µ x(B′)c � ν. Indeed, let A ⊂ X such that ν(A) = 0.
We must show that µ x(B′)c(A) = µ

(
(B′)c ∩ A

)
= 0. Since

(B′)c = {x ∈ X | Θν
∗(µ, x) < ∞} = ∪n∈N{x ∈ X | Θν

∗(µ, x) ≤ n},
it suffices to show that ∀n ∈ N, µ

(
A∩{x ∈ X | Θν

∗(µ, x) ≤ n}
)

= 0.
But, as µ has SVP, we may apply theorem 3.38.(i), which yields
µ
(
A ∩ {x ∈ X | Θν

∗(µ, x) ≤ n}
)
≤ nν

(
A ∩ {x ∈ X | Θν

∗(µ, x) ≤
n}
)
≤ nν(A) = 0, whence the thesis.

�

Corollary 3.41. With the same hypothesis from theorem 3.40,

Θν(µ, ·) coincides ν-a.e. with the Radon-Nikodym derivative
d(µa|BX

)

d(ν|BX
)

.

Proof. It is a direct consequence of (3.9) and the uniqueness of
the Radon-Nikodym derivative stated in theorem 1.103. �



CHAPTER 4

Rn-valued Radon Measures

4.1. Linear functionals on spaces of continuous functions

In this section we fix a locally compact Hausdorff space X, which
will be assumed σ-compact, unless otherwise specified. We aim to study
the representation of continuous linear functionals on certain spaces of
continuous functions on X by means of vector valued Radon measures.

Notation. We denote by

• Cc(X,Rn) the space of continuous functions f : X → Rn with
spt f compact;
• C0(X,Rn) the space of continuous functions f : X → Rn which

vanish at infinity, i.e. such that ∀ε > 0, ∃K ⊂ X compact such
that ‖f‖ < ε on X \K.
• Cb(X,Rn) the space of bounded continuous functions f : X →
Rn.

Endowed with the norm of uniform convergence, i.e. ‖f‖u :=
sup{‖f(x)‖ | x ∈ X}, Cb(X,Rn) is a Banach space. As it can be read-
ily verified by means of Urysohn’s lemma for locally compact Hausdorff
spaces (see lemma 4.5, below), C0(X,Rn) is the closure of Cc(X,Rn) in
Cb(X,Rn); in particular, C0(X,Rn) is itself a Banach space with the
norm of uniform convergence.

Definition 4.1 (Rn-valued Radon measures). We say that a linear
functional µ : Cc(X,Rn)→ R is an Rn-valued Radon measure on X if,
for each compact K ⊂ X, the restriction of µ to CK

c (X,Rn) := {f ∈
Cc(X,Rn) | spt f ⊂ K}, endowed with ‖·‖u, is linear continuous; that
is, if ∃CK ≥ 0 such that

(LF cont) sup{µ · f | f ∈ CK
c (X,Rn), ‖f‖u ≤ 1} ≤ CK .

If the condition above holds with a constant C ≥ 0 which does not
depend on K, i.e. if µ is linear continuous on Cc(X,Rn) endowed with
‖·‖u, we call µ a finite Rn-valued Radon measure on X.

Remark 4.2.

81
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1) We will identify Rn-valued Radon measures on X with set func-
tions on X, as the name “measure” indicates, after we prove Riesz
representation theorem for Radon measures 4.9.

2) The definition adopted for an Rn-valued Radon measure on X is
equivalent to saying that µ : Cc(X,Rn) → R is linear contin-
uous with respect to the natural topological vector space topol-
ogy on Cc(X,Rn), which is an inductive limit of Fréchet spaces
(an LF space for short). It is actually the countable strict in-
ductive limit (thanks to the σ-compactness of X) of the Banach
spaces

{(
CK
c (X,Rn), ‖·‖u

)
| K ⊂ X compact

}
; its topology is the

strongest locally convex topology on Cc(X,Rn) which makes all in-
clusions CK

c (X,Rn) → Cc(X,Rn) continuous, for K ⊂ X compact.
With such a topology, given a locally convex space Y , a linear map
Cc(X,Rn) → Y is continuous iff ∀K ⊂ X compact, its restriction
to CK

c (X,Rn) is continuous (as we defined in the case Y = R). We
don’t suppose the reader to have any prior knowledge on locally
convex spaces, but if he or she wants to delve into some of the de-
tails which may be left behind the scenes, we suggest: [Con90],
chapter IV, for a brief overview of locally convex spaces; [Osb14],
for a gentle introduction to locally convex spaces; [K6̈9], [SW99],
[Tre06] or [Bou87] for the heavy stuff.

3) For those fluent in locally convex spaces: the LF topology of Cc(X,Rn)
introduced in the previous item coincides with the product topol-
ogy of the LF spaces Cc(X,R), i.e. we may identify Cc(X,Rn) ≡
Cc(X,R)n as topological vector spaces. Indeed, the continuity of
Cc(X,Rn) → Cc(X,R)n, f 7→ (f1, . . . , fn), is clear; the continuity
of its inverse can be verified using the facts that it maps bounded
sets to bounded sets, Cc(X,Rn) is locally convex and Cc(X,R)n is
bornological.

If X is an open set in some Euclidean space, C∞c (X,R)n with
its LF topology (i.e. the topology induced by the family of Fréchet
spaces {f ∈ C∞c (X,R)n | spt f ⊂ K}, for each K ⊂ X compact) has
a continuous dense inclusion in Cc(X,Rn) ≡ Cc(X,R)n. That means
that the dual of Cc(X,R)n may be identified with a linear subspace
of the dual of C∞c (X,R)n, i.e. every Rn-valued Radon measure on
X is an Rn-valued Schwartz distribution on X.

Exercise 4.3 (Rn-valued Radon measures on open sets of Eu-
clidean spaces).

a) Let X be a locally compact separable metric space and (Uk)k∈N
be an increasing sequence of relatively compact open subsets of X
such that ∪k∈NUk = X. Then a linear map µ : Cc(X,Rn) → R is
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continuous, i.e. it is an Rn-valued Radon measure on X, iff ∀k ∈ N,
µ|(

Cc(Uk,Rn),‖·‖u
) is continuous (we identify Cc(Uk,Rn) with the linear

subspace of Cc(X,Rn) formed by the functions with support in Uk).
b) Let U be an open subset of Rm. Then C∞c (U,Rn) is sequentially

dense in
(
Cc(U,Rn), ‖·‖u

)
.

Hint. Use the standard mollifier 1.112, proposition 1.108 and
theorem 1.111.

c) Let X be an open subset of Rm and (Uk)k∈N be an increasing se-
quence of relatively compact open subsets of X such that ∪k∈NUk =
X. Let µ : C∞c (X,Rn) → R be a linear map such that ∀k ∈ N,
µ|(

C∞c (Uk,Rn),‖·‖u
) is continuous. Then µ may be uniquely extended

to a continuous linear map Cc(X,Rn)→ R.

Hint. Use the two previous items.

Remark 4.4 (Rn-valued Radon measures on open sets of Euclidean
spaces). In view of part c) of the previous exercise, we may identify Rn-
valued Radon measures on open subsets X of Euclidean spaces with
linear functionals µ : C∞c (X,Rn) → R such that, for each compact
subset K ⊂ X, the restriction of µ to {f ∈ C∞c (X,R)n | spt f ⊂ K}
is continuous with respect to the topology of uniform convergence (i.e.
given by the norm ‖·‖u).

We recall more preliminaries from Real Analysis in order to prove
the version of Riesz representation theorem for Rn-valued Radon mea-
sures 4.9 below.

Notation. Let X be a locally compact Hausdorff space, U ⊂ X
open and f a function on X. The notation f ≺ U means that 0 ≤ f ≤
1, f ∈ Cc(X,R) and spt f ⊂ U .

Lemma 4.5 (Urysohn’s lemma for LCH). If X is a locally compact
Hausdorff space, U ⊂ X open and K ⊂ U compact, then there exists
f ∈ Cc(X,R) such that χK ≤ f ≺ U .

Theorem 4.6 (Tietze’s extension theorem for LCH). If X is a
locally compact space, K ⊂ X compact and f : K → R continuous,

then f admits a continuous extension f̃ : X → R. Moreover, we may

take f̃ with compact support and, if f is bounded, we may also take f̃

such that ‖f̃‖u = ‖f‖u.

Theorem 4.7 (Riesz representation theorem for positive linear
functionals). Let X be a locally compact Hausdorff space and L : Cc(X,R)→
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R a positive linear functional, i.e. L is linear and L · f ≥ 0 whenever
f ≥ 0. Then there exists a unique Radon measure η on X which rep-
resents L, i.e. ∀f ∈ Cc(X,R), L · f =

´
f dη. Moreover, on open sets

η is given by
η(U) = sup{L · f | f ≺ U}.

For the proof of 4.5, 4.6 (which are direct consequences of the cor-
responding versions of those theorems for normal spaces) and 4.7 we
refer the reader, for instance, to [Fol99] or [Rud87].

Remark 4.8. Every positive linear functional on Cc(X,R) is an
R-valued Radon measure on X, i.e. positivity implies continuity on
Cc(X,R). Indeed, given K ⊂ X compact, take Φ ∈ Cc(X,R) given by
lemma 4.5 such that χK ≤ Φ ≺ X. For all f ∈ CK

c (X,R) with f 6= 0,

we have |f |
‖f‖u ≤ Φ, so that Φ± f

‖f‖u ≥ 0 and Φ± f
‖f‖u ∈ Cc(X,R). Hence

0 ≤ L
(
Φ± f

‖f‖u

)
= L(Φ)± L(f)

‖f‖u , which implies |L(f)| ≤ L(Φ)‖f‖u. The

continuity condition (LF cont) is then satisfied with CK := L(Φ).

Theorem 4.9 (Riesz representation theorem for Radon measures).
Let X be a σ-compact locally compact Hausdorff space and µ : Cc(X,Rn)→
R an Rn-valued Radon measure on X. Then there exists a unique
Radon measure λ on X and a Borel measurable map ν : X → Rn unique
up to λ-null sets such that ‖ν‖ = 1 λ-a.e. on X and ∀f ∈ Cc(X,Rn),

(4.1) µ · f =

ˆ
〈f, ν〉 dλ,

where 〈·, ·〉 denotes the Euclidean inner product in Rn. Moreover,

i) ∀U ⊂ X open,

(4.2) λ(U) = sup{µ · f | f ∈ Cc(X,Rn), ‖f‖ ≺ U}.
ii) µ is a finite Rn-valued Radon measure iff λ is a finite Radon mea-

sure; if that is the case, ‖µ‖C0(X,Rn)∗ = λ(X).

Remark 4.10. Note that, in (4.2), sup{µ ·f | f ∈ Cc(X,Rn), ‖f‖ ≺
U} = sup{|µ · f | | f ∈ Cc(X,Rn), ‖f‖ ≺ U}. Indeed, if f ∈ Cc(X,Rn)
and ‖f‖ ≺ U , so does −f , and µ · (−f) = −µ · f , hence either µ · f or
µ · (−f) coincides with |µ · f |.

Proof.

1) (Existence) Let C+
c (X):= {f ∈ Cc(X,R) | f ≥ 0}. Define L :

C+
c (X)→ [0,∞) by f 7→ sup{µ · φ | φ ∈ Cc(X,Rn), ‖φ‖ ≤ f}. Note

that L is well-defined, i.e. the sup is indeed ≥ 0 (since µ · 0 = 0)
and finite, due to the continuity condition (LF cont): if f 6= 0,
∀φ ∈ Cc(X,Rn) with ‖φ‖ ≤ f , we have ψ := φ

‖f‖u ∈ Cspt f
c (X,Rn)
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and ‖ψ‖u = ‖φ‖u
‖f‖u ≤ 1, hence µ · ψ ≤ Cspt f , i.e. µ · φ ≤ Cspt f‖f‖u,

showing that L(f) ≤ Cspt f‖f‖u.
We contend that L is additive and 1-homogeneous, i.e. ∀f, g ∈

C+
c (X), ∀c ≥ 0, L(f + g) = L(f) + L(g) and L(cf) = cL(f). The

1-homogeneity is clear, since, for c = 0 the equality is trivial and for
c > 0 and f ∈ C+

c (X), we have ‖φ‖ ≤ cf iff ‖c−1φ‖ ≤ f , so that {µ ·
φ | φ ∈ Cc(X,Rn) | ‖φ‖ ≤ cf} = c{µ · φ | φ ∈ Cc(X,Rn) | ‖φ‖ ≤ f}.
To prove the additivity, let f, g ∈ C+

c (X). If φ, ψ ∈ Cc(X,Rn) satisfy
‖φ‖ ≤ f and ‖ψ‖ ≤ g, then φ+ψ ∈ Cc(X,Rn) and ‖φ+ψ‖ ≤ f +g,
so that µ · φ + µ · ψ = µ · (φ + ψ) ≤ L(f + g), and taking the sup
over all such φ and ψ we conclude that L(f) + L(g) ≤ L(f + g). It
remains to prove the reverse inequality. Given φ ∈ Cc(X,Rn) such
that ‖φ‖ ≤ f + g, define:

φ1 :=

{
f
f+g

φ iff + g > 0,

0 iff + g = 0,
and φ2 :=

{
g

f+g
φ iff + g > 0,

0 iff + g = 0.

Note that, for i = 1, 2, φi is clearly continuous on the open set
{f + g > 0}; besides if x0 ∈ X is such that (f + g)(x0) = 0 and
ε > 0 is given, there exists an open neighborhood V of x0 on which
f + g < ε, hence ‖φ‖ < ε on V , whence ‖φi‖ < ε on V , thus proving
the continuity of φi at x0. Hence φi is continuous and {‖φi‖ > 0} ⊂
{f+g > 0}; taking closures we conclude that spt φi ⊂ spt (f+g) b
X. Then φ1, φ2 ∈ Cc(X,Rn), ‖φ1‖ ≤ f , ‖φ2‖ ≤ g and φ1 + φ2 = φ,
so that µ ·φ = µ ·φ1 +µ ·φ2 ≤ L(f) +L(g). Taking the sup over all
such φ, we conclude that L(f+g) ≤ L(f)+L(g) and our contention
is proved.

We now extend L to a positive linear functional on Cc(X,R). For
f ∈ Cc(X,R), we may write f = f+− f−, where f+ = max{f, 0} ∈
C+(X) and f− = max{−f, 0} ∈ C+(X); define L · f := L(f+) −
L(f−) ∈ R (which coincides with the original definition if f = f+ ∈
C+
c (X)). If c ∈ R and f ∈ Cc(X,R), the fact that L · (cf) = cL · f

follows from the definition of L and from the equalities (cf)+ = cf+

and (cf)− = cf− if c ≥ 0; (cf)+ = −cf− and (cf)− = −cf+ if
c < 0. On the other hand, if f, g ∈ Cc(X,R) and h = f + g, then
h+ + f− + g− = h− + f+ + g+; applying L to both members and
using the additivity of L on C+

c (X), it follows that L·h = L·f+L·g,
thus proving the linearity of L. If f ∈ Cc(X,R) and f ≥ 0, then
f = f+ ∈ C+

c (X), so that L·f = L(f+) ≥ 0; therefore L is a positive
linear functional on Cc(X,R).

We may then apply theorem 4.7 to L, which ensures the existence
of a unique Radon measure η on X which represents L. Thus, for
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every f ∈ C+
c (X), we have

(4.3) L · f = sup{µ · φ | φ ∈ Cc(X,Rn), ‖φ‖ ≤ f} =

ˆ
f dη.

For 1 ≤ i ≤ n, define µi : Cc(X,R) → R by µi · f := µ · (fei).
Since ‖±fei‖ = |f | ∈ C+

c (X), it follows from (4.3) that, for all
f ∈ Cc(X,R), µi · (±f) ≤ sup{µ · φ | φ ∈ Cc(X,Rn), ‖φ‖ ≤ |f |} =´
|f | dη, so that |µi · f | ≤

´
|f | dη. Thus, since Cc(X,R) is dense

on L1(η) (by proposition 1.78; we consider Lp spaces of real valued
functions), µi extends to a bounded linear function on L1(η), still de-
noted by µi. As η is σ-finite (because η is a Radon measure on X and
X is σ-compact), we may apply Riesz representation theorem 1.79
for the dual of L1 to conclude that there exists gi ∈ L∞(η) which rep-
resents µi, i.e. such that ∀f ∈ L1(η) (in particular, ∀f ∈ Cc(X,R)),
µi · f =

´
fgi dη. It follows from corollary 1.118 that gi coincides

η-a.e. with a Borelian function; since this Borelian function is es-
sentially bounded, it may be modified in η-null Borel set, yielding
a bounded Borelian function in the same L∞ equivalence class. We
may therefore assume that gi is a bounded Borelian function.

For all f =
∑n

i=1 fiei ∈ Cc(X,Rn),

µ · f =
n∑
i=1

µ · (fiei) =
n∑
i=1

µi · fi =

=
n∑
i=1

ˆ
figi dη =

ˆ
〈f, g〉 dη,

where g = (g1, . . . , gn) : X → Rn is a bounded Borelian map. To
complete the proof of the existence part of the theorem, we now take
ν := g

‖g‖ in the Borel set where g 6= 0 and 0 on its complement, and

λ := ‖g‖η, i.e. the extension given by theorem 1.8 of the measure
on BX defined by A ∈ BX 7→

´
A
‖g‖ dη. Then ν : X → Rn is

Borelian, by proposition 1.50 with A1 := {g 6= 0} and A2 := Ac1,
and ‖ν‖ = 1 λ-a.e., since λ(A2) = 0. The fact that the measure
A ∈ BX 7→

´
A
‖g‖ dη is a Radon measure on BX is a consequence

of lemma 4.11, below, with ‖g‖ in place of f and η in place of µ.
It then follows from remark 1.29.(ii) that λ is a Radon measure on
X. Since, for all f ∈ Cc(X,Rn), µ · f =

´
〈f, g〉 dη =

´
〈f, ν〉 dλ, i.e.

(4.1) holds, so the existence part is proved.
2) (Uniqueness and proof of (4.2)) Suppose that (4.1) holds with a

Radon measure λ and a Borel measurable map ν : X → Rn with
‖ν‖ = 1 λ-almost everywhere. Modifying ν on a λ-null Borel set,
if necessary, we may assume that equality holds everywhere, i.e.
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∀x ∈ X, ‖ν(x)‖ = 1. Given U ⊂ X open, denote by |µ|(U) the
second member of (4.2), i.e.

|µ|(U) := sup{µ · f | f ∈ Cc(X,Rn), ‖f‖ ≺ U}.

For all f ∈ Cc(X,Rn) such that ‖f‖ ≺ U , we have µ·f =
´
〈f, ν〉 dλ spt f⊂U

=´
U
〈f, ν〉 dλ ≤

´
U
‖f‖ dλ ≤ λ(U); hence, taking the sup in the first

member, we conclude that

(4.4) |µ|(U) ≤ λ(U).

We now prove the reverse inequality (hence the equality) in (4.4),
which then implies (4.2). Firstly, assume that λ(U) < ∞. Fix
ε > 0. We may apply Lusin’s theorem 1.117 to obtain a compact
set K ⊂ U such that λ(U \ K) < ε and ν|K continuous. Then we
may apply Tietze’s extension theorem 4.6 to each component of ν|K ,
yielding f : X → Rn continuous such that f |K = ν|K . Multiplying
f by a convenient cut function, we may assume spt f ⊂ U and
‖f‖u ≤ 1 + ε. Indeed, since ‖ν‖ ≡ 1, by continuity of f we may
take an open neighborhood V ⊂ U of K such that ‖f |V ‖u ≤ 1 + ε,
and then we take φ ∈ Cc(X,R) given by Urysohn’s lemma 4.5 such
that χK ≤ φ ≺ V , so that φf ∈ Cc(X,Rn), spt φf ⊂ V ⊂ U and
‖φf‖u ≤ 1 + ε; we then substitute fφ for f . It therefore follows
that:

i)
´
〈f, ν〉 dλ =

´
U
〈f, ν〉 dλ =

´
U\K〈f, ν〉 dλ +

´
K
〈f, ν〉 dλ. Since´

K
〈f, ν〉 dλ =

´
K
〈ν, ν〉 dλ = λ(K) > λ(U)−ε and |

´
U\K〈f, ν〉 dλ| ≤´

U\K‖f‖ dλ ≤ ‖f‖u λ(U\K) ≤ (1+ε)ε, it follows that
´
〈f, ν〉 dλ ≥

−(1 + ε)ε+ λ(U)− ε = λ(U)− ε(2 + ε).
ii) On the other hand,

´
〈f, ν〉 dλ = µ · f = ‖f‖u µ · f

‖f‖u ≤ (1 +

ε)|µ|(U), since ‖f‖u ≤ 1 + ε and f
‖f‖u is one of the competitors

in the definition of |µ|(U), i.e. f
‖f‖u ∈ Cc(X,Rn) and ‖f‖

‖f‖u ≺ U .

From (i) and (ii) above we conclude that λ(U) ≤ ε(2 + ε) + (1 +
ε)|µ|(U). Since ε > 0 was arbitrarily taken, we may send ε → 0 to
conclude that λ(U) ≤ |µ|(U), thus proving the reverse inequality
(hence the equality) in (4.4) if λ(U) <∞.

In the general case, for an arbitrary open set U ⊂ X, due to
σ-compactness of X, we may take an increasing sequence (Un)n∈N
of open subsets of X such that ∀n ∈ N, Un b U and ∪n∈NUn = U
(to obtain such a sequence, take a sequence (Kn)n∈N of compact sets
which increases to U , then for each n ∈ N take an open set Vn such
that Kn ⊂ Vn b U and define Un := ∪ni=1Vi). Since, for each n ∈ N,
λ(Un) <∞ (because Un is compact and λ is Radon, hence finite on
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compact sets), we may apply the case already proved to conclude
that λ(Un) = |µ|(Un). Applying the continuity from below 1.11 to
λ, it then follows that λ(U) = supn∈N|µ|(Un) = supn∈N sup{µ · f |
f ∈ Cc(X,Rn), ‖f‖ ≺ Un}. We contend that the second member in
the latter equality is |µ|(U) = sup{µ · f | f ∈ Cc(X,Rn), ‖f‖ ≺ U},
which yields the asserted equality in (4.4). Indeed, for each n ∈ N,
|µ|(Un) ≤ |µ|(U), thus supn∈N|µ|(Un) ≤ |µ|(U). On the other
hand, let f be one of the competitors in the definition of |µ|(U),
i.e. f ∈ Cc(X,Rn) and ‖f‖ ≺ U . Since spt f ⊂ U is compact, it
can be covered by finitely many of the Un’s; thus, since (Un)n∈N is
increasing, there exists n ∈ N such that spt f ⊂ Un. It therefore fol-
lows that ‖f‖ ≺ Un, i.e. f is one of the competitors in the definition
of |µ|(Un), hence µ · f ≤ |µ|(Un) ≤ supn∈N|µ|(Un). Taking the sup
of µ · f over all such f , we conclude that |µ|(U) ≤ supn∈N|µ|(Un),
hence the equality holds, thus proving our contention.

We have thus proved that (4.2) holds, so that λ is uniquely de-
termined on open sets by |µ|. Since Radon measures are uniquely
determined by their values on open sets, we have proved the unique-
ness of λ.

We now prove the uniqueness of ν. Suppose that ν ′ : X → Rn

is another Borelian map such that ‖ν ′‖ = 1 λ-a.e. and (4.1) holds
with ν ′ in place of ν. Modifying both ν and ν ′ on a λ-null Borel
set, we may assume that ‖ν‖ ≡ 1 and ‖ν ′‖ ≡ 1. Then, for all
f ∈ Cc(X,Rn),

´
〈f, ν−ν ′〉 dλ = 0. Let U ⊂ X open with λ(U) <∞

and fix ε > 0. Once again we apply Lusin’s theorem 1.117 to obtain
a compact set K ⊂ U such that λ(U \ K) < ε and (ν − ν ′)|K
continuous. Then we may apply Tietze’s extension theorem 4.6 to
each component of (ν− ν ′)|K , yielding f : X → Rn continuous such
that f |K = (ν− ν ′)|K . Since ‖ν− ν ′‖u ≤ 2, as before, multiplying f
by a convenient cut function if necessary, we may assume spt f ⊂ U
and ‖f‖u ≤ 2 + ε. Thus

0 =

ˆ
〈f, ν − ν ′〉 dλ =

ˆ
U

〈f, ν − ν ′〉 dλ =

=

ˆ
U\K
〈f, ν − ν ′〉 dλ+

ˆ
K

‖ν − ν ′‖2 dλ.

Since |
´
U\K〈f, ν − ν

′〉 dλ| ≤ ‖f‖u‖ν − ν ′‖uλ(U \ K) ≤ (2 + ε) · 2ε
and

´
K
‖ν − ν ′‖2 dλ ≥

´
U
‖ν − ν ′‖2 dλ − 4ε, it then follows that´

U
‖ν−ν ′‖2 dλ ≤ 4ε+ (2 + ε) ·2ε. Hence, sending ε→ 0 we conclude

that
´
U
‖ν − ν ′‖2 dλ = 0, which implies ν = ν ′ λ-a.e. on U . As

X is σ-compact, we may cover X with countably many relatively
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compact open sets (Un)n∈N, which are λ-finite, since λ is Radon
(that is, X is open σ-finite). Therefore, as ∀n ∈ N, ν = ν ′ λ-a.e. on
Un, it follows that ν = ν ′ λ-a.e. on ∪n∈NUn = X, thus proving that
ν is unique up to λ-null sets, as asserted.

It remains to prove assertion ii). Indeed, by (4.2), the norm of µ
as a linear function on the normed space

(
Cc(X,Rn), ‖·‖u

)
is given

by ‖µ‖ = sup{µ · f | f ∈ Cc(X,Rn), ‖f‖u ≤ 1} = λ(X), so that
µ is a bounded linear functional iff λ(X) < ∞. If that is the case,
as Cc(X,Rn) is dense on

(
C0(X,Rn), ‖·‖u

)
, µ extends to a unique

bounded linear functional on C0(X,Rn) with ‖µ‖C0(X,Rn)∗ = λ(X),
thus proving ii).

�

Lemma 4.11. Let X be a locally compact Hausdorff space, f : X →
[0,∞) bounded Borelian and µ a σ-finite Radon measure on BX (in
the sense of remark 1.29.ii). Then λ := fµ : BX → [0,∞] given by
A 7→

´
A
f dµ is a Radon measure on BX .

Proof. It is clear that λ = fµ is a measure on BX which is finite
on compact subsets of X, since f is bounded and µ is Radon (hence
finite on such subsets). We must show that λ is outer regular on Borel
sets and inner regular on open subsets of X (actually it is inner regular
on all Borel sets). That is a consequence of the σ-compactness of µ
and of the fact that λ� µ:

1) Let B ∈ BX . Note that, if µ is finite on B, so is λ = fµ, since f is
bounded.

Assume that µ finite on B. For each n ∈ N, since µ(B) =
inf{µ(U) | U ⊃ B open} and µ(B) < ∞, we may take an open set
Un ⊃ B such that µ(Un \ B) < 1

n
. Substituting Un with ∩ni=1Ui, we

may assume that the sequence (Un)n∈N thus defined is decreasing.
Then ∩n∈NUn ⊃ B and µ

(
(∩n∈NUn) \ B

)
= 0; since λ � µ, it then

follows that λ is null on (∩n∈NUn) \ B, so that λ(B) = λ(∩n∈NUn).
On the other hand, since µ(U1) < ∞ (because µ is finite both on
B and U1 \ B), as noted above we also have λ(U1) < ∞; apply-
ing the continuity from above 1.11 to λ, we then conclude that
infn∈N λ(Un) = limλ(Un) = λ(∩n∈NUn) = λ(B), thus proving the
outer regularity of λ on B if µ(B) <∞.

In the general case, using the fact that µ is σ-finite, we may
write B = ∪n∈NBn as a countable union of Borel sets with finite
µ-measure (hence with finite λ-measure). Given ε > 0, for each
n ∈ N, we may choose, in view of the fact that λ(Bn) < ∞ and
that λ is outer regular on Bn by the case proved above, an open set
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Un ⊃ Bn such that λ(Un \ Bn) < 2−nε. Put U := ∪n∈NUn, so that
U ⊃ B open. As U \ B ⊂ ∪n∈N(Un \ Bn), it follows by countable
subadditivity that λ(U \B) < ε, thus proving the exterior regularity
of λ on B.

2) Let B ∈ BX . We will show that λ is inner regular on B.
Assume that µ(B) <∞. Since µ is Radon, it follows from exer-

cise 1.31 that µ is inner regular on B; as µ(B) <∞, for each n ∈ N,
there exists Kn ⊂ B compact such that µ(B \Kn) < 1

n
. Substitut-

ing Kn with ∪ni=1Ki, we may assume that (Kn)n∈N thus defined is
increasing. Then ∪n∈NKn ⊂ B and µ(B \ ∪n∈NKn) = 0; as λ � µ,
it then follows λ(B \ ∪n∈NKn) = 0. Thus, applying the continu-
ity from below 1.11 to λ, we conclude that λ(B) = λ(∪n∈NKn) =
limλ(Kn) = supn∈N λ(Kn), which proves the interior regularity of λ
on B if µ(B) <∞.

In the general case, by the fact that µ is σ-finite, we may take
an increasing sequence (Bn)n∈N in BX such that ∪n∈NBn = B and
∀n ∈ N, µ(Bn) <∞ (thus λ(Bn) <∞). By the case proved above,
for each n ∈ N, λ is inner regular on Bn; hence, since λ(Bn) <∞, we
may take a compact Kn ⊂ Bn such that λ(Bn \Kn) < 1

n
. Therefore,

limλ(Kn) = limλ(Bn) = λ(B), where in the last equality we have
applied the continuity from below to λ, showing that λ is inner
regular on B, as asserted.

�

In theorem 4.9, we may drop the σ-compactness hypothesis on X if
µ is a finite Rn-valued Radon measure. That is, we obtain the following
version of the theorem:

Theorem 4.12 (Riesz representation theorem for finite Radon mea-
sures). Let X be a locally compact Hausdorff space and µ : Cc(X,Rn)→
R a finite Rn-valued Radon measure on X. Then there exists a unique
finite Radon measure λ on X and a Borel measurable map ν : X → Rn

unique up to λ-null sets such that ‖ν‖ = 1 λ-a.e. on X and ∀f ∈
Cc(X,Rn),

µ · f =

ˆ
〈f, ν〉 dλ,

where 〈·, ·〉 denotes the Euclidean inner product in Rn. Moreover,

i) ∀U ⊂ X open,

λ(U) = sup{µ · f | f ∈ Cc(X,Rn), ‖f‖ ≺ U}.
ii) ‖µ‖C0(X,Rn)∗ = λ(X).

The proof is the same, as:
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i) In the existence part, we only used the σ-compactness condition
to ensure that the restriction of λ to BX is σ-finite (in order to
be able to apply Riesz representation theorem 1.79 for the dual of
L1(λ) and lemma 4.11), but λ is finite in case of µ finite (since, if
µ is finite, the positive linear functional L defined in the beginning
of the proof is bounded, hence λ(X) = ‖L‖ < ∞ by the formula
to compute the measure which represents the linear functional on
open sets given in theorem 4.7).

ii) In the uniqueness part and in the proof of (4.2), we used the σ-
compactness condition only in case λ(U) = ∞; but, as pointed in
the previous item, λ is finite in case of µ finite, so that we don’t
need the σ-compactness either.

Definition 4.13 (total variation and polar decomposition). Let µ
be an Rn-valued Radon measure on a σ-compact locally compact Haus-
dorff space X. With the same notation of theorem 4.9, λ is called the
total variation of µ, and the pair (ν, λ) is called the polar decomposition
of µ. Henceforth, we will use the notation |µ|:= λ to denote the total
variation of µ, and

µ = ν|µ|
with the meaning that (ν, |µ|) is the polar decomposition of µ.

Example 4.14. Let X be a σ-compact locally compact Hausdorff
space.

1) Let µ be a locally finite Borel measure on X. Then µ induces a
positive linear functional µ̂ on Cc(X,R) (which is necessarily con-
tinuous, by remark 4.8), given by µ̂ · f :=

´
f dµ. If µ is a Radon

measure, then µ̂ = 1 · µ is the polar decomposition of µ̂ (by the
uniqueness of the polar decomposition); in particular, µ is the total
variation of µ̂.

2) Similarly, let ν be a signed measure on BX whose total variation
|ν| is locally finite. Then ν induces a continuous linear functional
ν̂ on Cc(X,R) given by ν̂ · f :=

´
f dν. Indeed, it is clear that ν̂

is a well-defined linear functional on Cc(X,R), and the continuity
follows from the triangle inequality 1.99.e): ∀K ⊂ X compact and
∀f ∈ CK

c (X), |ν̂ · f | ≤
´
|f | d|ν| =

´
K
|f | d|ν| ≤ |ν|(K)‖f‖u, hence ν̂

is bounded on CK
c (X).

We may take Borelian function h : X → R such that |h| ≡ 1 and
ν = h|ν|. Indeed, since ν+ ⊥ ν−, we may take disjoint Borel sets
P and N such that X = P ∪̇N , ν+ is concentrated on P and ν− is
concentrated on N . Thus, ν+ = χP |ν| and ν− = χN |ν|, so that ν =
ν+− ν− = (χP −χN)|ν| and we take h := χP −χN . If |ν| is Radon,
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it follows from the uniqueness of the polar decomposition of ν̂ that
its polar decomposition is ν̂ = h|ν| (we identify |ν| with a Radon
outer measure on X, cf. remark 1.29). In particular, |ν̂| = |ν|.
Besides, it follows from the uniqueness of the Jordan decomposition
1.94 that, as measures on BX , ν+ = h+|ν| and ν− = h−|ν|. Since
either ν+ or ν− if finite, we conclude that either h+ ∈ L1(|ν|) or
h− ∈ L1(|ν|), i.e. h is |ν|-integrable. Thus, in order for a continuous
linear functional µ on Cc(X,R) to be induced by a signed measure
on BX whose total variation is Radon, it is necessary that µ have
polar decomposition µ = h|µ| with h |µ|-integrable (which means
that not every continuous linear functional on Cc(X,R) is obtained
in this way if X is not compact).

3) Let X = R and I be the positive linear functional defined on

Cc(X,R) by the Riemann integral, i.e. I · f :=
´ b
a
f(x) dx for a < b

such that spt f ⊂ [a, b]. The polar decomposition of I is I = 1 · Ln.
In particular, that could have been taken as the definition of the
Lebesgue measure, i.e. it is the total variation of the positive linear
functional induced by the Riemann integral.

Proposition 4.15 (properties of the total variation, part I). Let
µ and ν be Rn-valued Radon measures on a σ-compact locally compact
Hausdorff space X and c ∈ R. Then:

i) |µ+ ν| ≤ |µ|+ |ν|, with equality if |µ| ⊥ |ν|.
ii) |cµ| = |c||µ|.

That is, the total variation of Rn-valued Radon measures has the
same properties stated in 1.100.b) for the total variation of signed mea-
sures on a σ-algebra of subsets of X.

Proof. Let U ⊂ X open. It follows from (4.2) and remark 4.10
that:

1) |µ+ν|(U) = sup{µ ·f +ν ·f | f ∈ Cc(X,Rn), ‖f‖ ≤ 1} ≤ sup{µ ·f |
f ∈ Cc(X,Rn), ‖f‖ ≤ 1} + sup{ν · f | f ∈ Cc(X,Rn), ‖f‖ ≤ 1} =
|µ|(U) + |ν|(U).

2) |cµ|(U) = sup{|c||µ · f | | f ∈ Cc(X,Rn), ‖f‖ ≤ 1} = |c| sup{|µ · f | |
f ∈ Cc(X,Rn), ‖f‖ ≤ 1} = |c||µ|(U).

For an arbitrary set A ⊂ X, we now use the outer regularity on A of
the Radon measures |µ+ ν|, |µ| and |ν|. Note that, for arbitrary open
sets U, V containing A, the open set U ∩ V contains A and |µ|(U) +
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|ν|(V ) ≥ |µ|(U ∩V )+ |ν|(U ∩V ), which justifies the equality (∗) below:

|µ+ ν|(A) = inf{|µ+ ν|(U) | U ⊃ A open}
by 1)

≤

≤ inf{|µ|(U) + |ν|(U) | U ⊃ A open} ∗=
= inf{|µ|(U) + |ν|(V ) | U, V ⊃ A open} =

= inf{|µ|(U) | U ⊃ A open}+ inf{|ν|(V ) | V ⊃ A open} =

= |µ|(A) + |ν|(A),

which proves the inequality in part i).
Similarly,

|cµ|(A) = inf{|cµ|(U) | U ⊃ A open} by 2)
=

= |c| inf{|µ|(U) | U ⊃ A open} = |c||µ|(A),

thus proving part ii).
It remains to prove the equality in part i) if |µ| ⊥ |ν|. Indeed, in that

case, there exist disjoint Borel sets A,B ⊂ X such that X = A ∪̇B, |µ|
concentrated on A and |ν| concentrated on B. Let (nµ, |µ|) and (nν , |ν|)
be the polar decompositions of µ and ν, respectively. We have, for all
f ∈ Cc(X,Rn):

(µ+ ν) · f = µ · f + ν · f =

ˆ
〈f, nµ〉 d|µ|+

ˆ
〈f, nν〉 d|ν| =

=

ˆ
〈f, χAnµ + χBnν〉 d(|µ|+ |ν|).

Since ‖χAnµ + χBnν‖ = 1 (|µ| + |ν|)-a.e., it follows that the polar
decomposition of µ+ν is (χAnµ+χBnν , |µ|+|ν|); in particular, |µ+ν| =
|µ|+ |ν|, as asserted. �

Definition 4.16 (integration with respect to Rn-valued Radon
measures). Let µ be an Rn-valued Radon measure on a σ-compact lo-
cally compact Hausdorff space X, with polar decomposition µ = ν|µ|.

i) A vector Borelian map f : X → Rn is called summable with respect
to µ if it is summable with respect to |µ|, i.e. if f ∈ L1(|µ|,Rn) ≡
L1(|µ|)n. For such f , we defineˆ

f · dµ :=

ˆ
〈f, ν〉 d|µ| ∈ R.

ii) An scalar Borelian map f : X → R is called summable with respect
to µ if it is summable with respect to |µ|, i.e. if f ∈ L1(|µ|). For
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such f , we defineˆ
f dµ :=

ˆ
fν d|µ| =

(ˆ
fν1 d|µ|, . . . ,

ˆ
fνn d|µ|

)
∈ Rn.

Remark 4.17.

1) Note that both integrals in the definition above make sense, since
|〈f, ν〉| ≤ ‖f‖ ∈ L1(|µ|) if f vector-valued and ‖fν‖ = |f | ∈ L1(|µ|)
if f scalar-valued.

2) Since |µ| is a Radon measure, we have Cc(X,Rn) ⊂ L1(|µ|,Rn);
the inclusion is actually dense, in view of proposition 1.78. It is
clear that the integral defined in i) extends µ : Cc(X,Rn)→ R, i.e.
∀f ∈ Cc(X,Rn), ˆ

f · dµ = µ · f.

3) The integrals defined above satisfy the usual linearity and conver-
gence properties, which are inherited from the corresponding prop-
erties for the integral with respect to |µ|. So are following versions
of the triangle inequality:

|
ˆ
f · dµ| ≤

ˆ
‖f‖ d|µ| and ‖

ˆ
f dµ‖ ≤

ˆ
|f | d|µ|,

for f ∈ L1(|µ|,Rn) or f ∈ L1(|µ|), respectively.

We now aim to identify Rn-valued Radon measures with set func-
tions. Firstly we introduce the notion of Rn-valued measures as set
functions.

Definition 4.18 (Rn-valued measure on a σ-algebra). Let X be a
set andM a σ-algebra of subsets of X. We say that a map µ :M→ Rn

is an Rn-valued measure on M if

VM1) µ(∅) = 0;
VM2) µ is σ-additive, i.e. for all countable disjoint family (An)n∈N in

M,

µ(∪n∈NAn) =
∑
n∈N

µ(An),

with the meaning that the series is absolutely convergent (or,
equivalently, that each component of n 7→ µ(An) is summable
with respect to the counting measure on N) and the sum is
µ(∪n∈NAn).

Definition 4.19 (Rn-valued Radon measures as set functions). Let
X be a σ-compact locally compact Hausdorff space. We denote by Bc

X

the set of Borel subsets of X which are relatively compact. We define:
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i) a finite Rn-valued Radon measure set function on X is an Rn-
valued measure on BX in the sense of definition 4.18.

ii) an Rn-valued Radon measure set function on X is a set function
µ : Bc

X → Rn such that, for all K ⊂ X compact, its restriction
to BK ⊂ Bc

X is a finite Rn-valued Radon measure set function on
K, i.e. µ|BK

: BK → Rn is an Rn-valued measure on BK in the
sense of definition 4.18.

We denote by M(X)n or M(X,Rn) the set of finite Rn-valued
Radon measure set functions on X and by Mloc(X)n or Mloc(X,Rn)
the set of Rn-valued Radon measure set functions on X. It is clear
that those are real linear spaces, i.e. M(X,Rn) is a linear subspace of
(Rn)BX and Mloc(X,Rn) is a linear subspace of (Rn)Bc

X .

Remark 4.20.

1) The nomenclature established in the previous definition is provi-
sional. That is, for a moment we want to use different names for
Rn-valued Radon measures as linear functionals on spaces of contin-
uous functions and for Rn-valued Radon measures as set functions.
However, we will see shortly that, if X is second countable, i.e. if X
is a locally compact separable metrizable space (which is the case
of interest in subsequent developments), a (finite) Rn-valued Radon
measure set function on X may be canonically identified with a
(finite) Rn-valued Radon measure on X (the latter in the sense of
definition 4.1), and conversely. Making these identifications, we will
treat those objects as one and the same thing, so that we may aban-
don this provisional nomenclature.

2) Each µ ∈ M(X,Rn) determines an element of Mloc(X,Rn) by re-
striction of µ : BX → Rn to Bc

X . The fact that X is σ-compact
allows to decompose each B ∈ BX as a countable disjoint union of
elements of Bc

X ; thus, by σ-additivity, µ is uniquely determined by
its restriction to Bc

X , i.e. the association µ ∈M(X,Rn) 7→ µ|Bc
X
∈

Mloc(X,Rn) is linear 1-1 and allows us to identifyM(X,Rn) with a
linear subspace ofMloc(X,Rn). By means of this identification, we
consider, henceforth,M(X,Rn) as a linear subspace ofMloc(X,Rn).

Definition 4.21 (induced Rn-valued Radon measure set functions).
Let µ be an Rn-valued Radon measure on a σ-compact locally compact
Hausdorff space X. The Rn-valued Radon measure set function in-
duced by µ is the set function µ̂ : Bc

X → Rn defined, for all A ∈ Bc
X ,

by

µ̂(A) :=

ˆ
χA dµ ∈ Rn.

If µ is finite, we define µ̂ : BX → Rn by the same formula.
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Note that the definition above makes sense, since χA ∈ L1(|µ|) if
A ∈ Bc

X or if A ∈ BX and µ finite (i.e. if |µ| is finite, by theorem 4.9).
The fact that µ̂ is actually an Rn-valued Radon measure set function

is proved in the proposition below.

Proposition 4.22 (induced Rn-valued Radon measure set func-
tions). With the notation from the previous definition:

i) µ̂ is a (finite) Rn-valued Radon measure set function on X if µ is
a (finite) Rn-valued Radon measure on X.

ii) The maps I : Cc(X,Rn)∗ → Mloc(X,Rn) and I : C0(X,Rn)∗ →
M(X,Rn) defined by µ 7→ µ̂ are linear 1-1 and commute with the
inclusions, i.e. the following diagram is commutative:

Cc(X,Rn)∗ Mloc(X,Rn)

C0(X,Rn)∗ M(X,Rn)

I

I

Proof. Let K ⊂ X compact. We assert that µ̂ : BK → Rn

is an Rn-valued measure on BK (in the sense of definition 4.18). It
is clear that µ̂(∅) = 0. Let (An)n∈N be a disjoint sequence of Borel
measurable subsets of K, and A = ∪̇n∈NAn. For each n ∈ N, let
φn :=

∑n
k=1 χAk . Then φnν → χAν pointwise, and the convergence is

dominated, since ‖φnν‖ ≤ χA ∈ L1(|µ|) (becauseA b X and |µ| is finite
on compact sets). Applying the dominated convergence theorem 1.64
componentwise, it follows that

´
φnν d|µ| →

´
χAν d|µ| = µ̂(A). As´

φnν d|µ| =
∑n

k=1

´
χAkν d|µ| =

∑n
k=1 µ̂(Ak), the assertion is proved.

Hence, µ̂ is an Rn-valued Radon measure set function on X if µ is an
Rn-valued Radon measure on X. The same argument may be used to
prove that µ̂ : BX → Rn is an Rn-valued measure on BX (i.e. a finite
Rn-valued Radon measure set function on X) if µ is finite.

We next prove that I is linear. Let µ and ν be Rn-valued Radon
measures on X and c ∈ R.

To prove that I(µ+ ν) = I(µ) + I(ν), we must compare all three of
the polar decompositions µ = n1|µ|, ν = n2|ν| and µ+ν = N |µ+ν|. In
order to accomplish that, note that λ := |µ|+|ν| is a Radon measure on
X, by exercise 1.30, and all three of the measures |µ+ν|, |µ| and |ν| are
absolutely continuous with respect to λ (recall that |µ+ ν| ≤ |µ|+ |ν|,
from proposition 4.15). Since the restrictions to BX of all measures
involved are σ-finite (because they are Radon and X is σ-compact),
we may take Radon-Nikodym derivatives of those restrictions (theorem
1.103) and apply the chain rule for such derivatives (proposition 1.107),
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which yields, for all f ∈ Cc(X,Rn):

µ · f =

ˆ
f · n1 d|µ| 1.107

=

ˆ
f · n1

d|µ|
dλ

dλ,

ν · f =

ˆ
f · n2 d|ν| 1.107

=

ˆ
f · n2

d|ν|
dλ

dλ,

hence

(µ+ ν) · f =

ˆ
〈f, n1

d|µ|
dλ

+ n2
d|ν|
dλ
〉 dλ =

=

ˆ 〈
f,

n1
d|µ|
dλ

+ n2
d|ν|
dλ∣∣n1

d|µ|
dλ

+ n2
d|ν|
dλ

∣∣〉∣∣n1
d|µ|
dλ

+ n2
d|ν|
dλ

∣∣ dλ

(we define the quotient to be, for instance, 0 where the denominator

is 0). Note that, since |µ| ≤ λ and |ν| ≤ λ, we have
∣∣d|µ|
dλ

∣∣ ≤ 1 λ-a.e.

and
∣∣d|ν|
dλ

∣∣ ≤ 1 λ-a.e., whence
∣∣n1

d|µ|
dλ

+ n2
d|ν|
dλ

∣∣ ≤ 2 λ-a.e.; modifying
those Borelian functions, if necessary, on a λ-null Borel set, we may

assume that they are all bounded. Thus, from lemma 4.11, d|µ|
dλ
λ, d|ν|

dλ
λ

and
∣∣n1

d|µ|
dλ

+ n2
d|ν|
dλ

∣∣λ are Radon measures on BX ; therefore, from
remark 1.29, the extensions (denoted with the same notation) of those
measures given by theorem 1.8 are outer Radon measures on X. It
then follows from the uniqueness of the polar decompositions of µ, ν
and µ+ ν that

|µ| = d|µ|
dλ

λ,

|ν| = d|ν|
dλ

λ,

|µ+ ν| =
∣∣n1

d|µ|
dλ

+ n2
d|ν|
dλ

∣∣λ,
N =

n1
d|µ|
dλ

+ n2
d|ν|
dλ∣∣n1

d|µ|
dλ

+ n2
d|ν|
dλ

∣∣ |µ+ ν| − a.e.
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We thus have, for all A ∈ Bc
X :

µ̂+ ν(A) =

ˆ
A

N d|µ+ ν| =

=

ˆ
A

n1
d|µ|
dλ

+ n2
d|ν|
dλ∣∣n1

d|µ|
dλ

+ n2
d|ν|
dλ

∣∣∣∣n1
d|µ|
dλ

+ n2
d|ν|
dλ

∣∣ dλ =

=

ˆ
A

(
n1
d|µ|
dλ

+ n2
d|ν|
dλ

)
dλ =

=

ˆ
A

n1
d|µ|
dλ

dλ+

ˆ
A

n2
d|ν|
dλ

dλ =

=

ˆ
A

n1 d|µ|+
ˆ
A

n2 d|ν| = µ̂(A) + ν̂(A)

thus showing that I(µ + ν) = I(µ) + I(ν). Similarly, if c 6= 0 and
µ = n1|µ| is the polar decomposition of µ, it follows that, for all
f ∈ Cc(X,Rn), (cµ) · f = c

´
〈f, n1〉 d|µ| =

´
〈f, sgn (c)n1〉|c||µ|. Thus,

if cµ = n2|cν| is the polar decomposition of cµ, it follows from the
uniqueness of such decomposition that n2 = sgn (c)n1 and |cν| = |c||ν|
(which had already been proved in proposition 4.15.(ii)). Therefore,
for all A ∈ Bc

X ,

ĉµ(A) =

ˆ
A

n2 d|cµ| =
ˆ
A

sgn (c)n1 d(|c||µ|) =

=

ˆ
A

sgn (c)|c|n1 d|µ| = cµ̂(A),

thus proving that I(cµ) = cI(µ).
The commutativity of the diagram in part ii) is immediate from the

definitions. It remains to prove that I : Cc(X,Rn)∗ →Mloc(X,Rn) is
1-1 (which then implies that I : C0(X,Rn)∗ →M(X,Rn) is 1-1 in view
of the asserted commutativity).

Let µ and ν be Rn-valued Radon measures such that µ̂ = ν̂, with
respective polar decompositions µ = n1|µ| and µ = n2|ν|. We have,
for all A ∈ Bc

X ,
´
χAn1 d|µ| =

´
χAn2 d|ν|. By linearity of the inte-

grals, the latter equality also holds if we substitute χA with a sim-
ple function φ =

∑k
i=1 aiχAi such that ∀1 ≤ i ≤ k, ai ∈ R and

Ai ∈ Bc
X if ai 6= 0. For any f ∈ Cc(X,R), we may take a se-

quence (φm)m∈N of such simple functions which converges pointwise
to f and ∀m ∈ N, |φm| ≤ |f |; that follows from proposition 1.53.iii)
(note that, writing a simple function φ in the standard representa-
tion, i.e. φ =

∑n
i=1 aiχφ−1(ai) for Imφ = {a1, . . . , an} with ai 6= aj

if i 6= j, then |φ| ≤ |f | implies φ−1(ai) ⊂ spt f if ai 6= 0, hence
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φ−1(ai) ∈ Bc
X if ai 6= 0). Hence φmn1 → fn1 and φmn2 → fn2

pointwise, and the convergence is dominated with respect to both |µ|
and |ν|, since ‖φmni‖ = |φm| ≤ |f | ∈ L1(|µ|) ∩ L1(|ν|). Applying the
dominated convergence theorem 1.64 componentwise, it follows that´
fn1 d|µ| = limm→∞

´
φmn1 d|µ| = limm→∞

´
φmn2 d|ν| =

´
fn2 d|ν|.

Writing the latter equality componentwise, if ni =
∑n

j=1 n
j
iej, we con-

clude that, for all f ∈ Cc(X,R) and 1 ≤ j ≤ n,
´
fnj1 d|µ| =

´
fnj2 d|ν|.

Therefore, for all f ∈ Cc(X,Rn),

µ · f =

ˆ
f · n1 d|µ| =

=
n∑
j=1

(

ˆ
fjn

j
1 d|µ|)ej =

=
n∑
j=1

(

ˆ
fjn

j
2 d|ν|)ej =

=

ˆ
f · n2 d|ν| = ν · f,

thus µ = ν, showing that I : Cc(X,Rn)∗ → Mloc(X,Rn) is 1-1, as
asserted.

�

Conversely, every Rn-valued Radon measure set function on a σ-
compact locally compact Hausdorff spaceX induces an Rn-valued Radon
measure on X.

Definition 4.23 (induced Rn-valued Radon measures). Let µ be
an Rn-valued Radon measure set function on a σ-compact locally com-
pact Hausdorff space X. The Rn-valued Radon measure induced by µ
is the map µ̌ : Cc(X,Rn)→ R defined, for all f ∈ Cc(X,Rn), by

µ̌ · f :=
n∑
i=1

ˆ
K

fi dνi,

where the integrals in the second member are taken with respect to
signed measures νi, 1 ≤ i ≤ n, obtained as the the restrictions of the
components µi of µ to BK , where K ∈ Bc

X contains spt f .

Note that, by definition 4.19, µ|BK
= (ν1, . . . , νn) : BK → Rn is an

Rn-valued measure on BK ; thus, for 1 ≤ i ≤ n, νi is a finite signed
measure on the measure space (K,BK) in the sense of definition 1.89.
We may then take the integrals in the sense of definition 1.97, since f
is bounded (hence f |K ∈ L1(|νi|) for 1 ≤ i ≤ n).
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That µ̌ ·f is well-defined (i.e. the definition does not depend on the
relatively compact Borel set K ⊃ spt f) and linear on f will be proved
as part of the next proposition.

Proposition 4.24. With the notation from the previous definition:

i) µ̌ : Cc(X,Rn)→ R is well-defined and linear continuous, i.e. it is
an Rn-valued Radon measure on X. Moreover, µ̌ is finite if so is
µ, i.e. µ̌ : C0(X,Rn)→ R is linear continuous if µ is finite.

ii) The maps J : Mloc(X,Rn) → Cc(X,Rn)∗ and J : M(X,Rn) →
C0(X,Rn)∗ defined by µ 7→ µ̌ are linear, commute with inclusions
and invert I (defined in proposition 4.22) on the left, i.e. ∀µ Rn-
valued Radon measure,

ˇ̂µ = µ.

Proof. We firstly show that, given f ∈ Cc(X,Rn), µ̌ · f is well-
defined, i.e. the definition does not depend on the relatively compact
Borel set K ⊃ spt f . Indeed, let, ∀1 ≤ i ≤ n, νi : BK → R and
ν0
i : Bspt f → R denote the ith components of the restrictions of µ

to BK and Bspt f , respectively (which are finite signed measures). It
follows from the uniqueness of the Jordan decomposition 1.94 that
the positive and negative parts of ν0

i coincide with the restrictions of
the positive and negative parts of νi, respectively; thus, for 1 ≤ i ≤
n,

´
K
f dν±i =

´
spt f

f d(ν±i )|spt f =
´

spt f
f d(ν0

i )±, showing that the

definition of µ̌ · f does not depend on K, as asserted.
To show that µ̌ : Cc(X,Rn) → R is linear continuous, it suffices to

show that, for each K ⊂ X compact, the restriction µ̌ : CK
c (X,Rn)→ R

is linear continuous in the normed space (CK
c (X,Rn), ‖·‖u) (see defini-

tion 4.1). That follows from the fact that, if µ|BK
= (ν1, . . . , νn),

µ̌|CK
c (X,Rn) is given by f 7→

∑n
i=1

´
K
fi dνi, which is clearly linear in

CK
c (X,Rn) (by the linearity of the integrals) and |µ̌·f | ≤

∑n
i=1

´
K
|fi| d|νi| ≤

(
∑n

i=1|νi|(K))‖f‖u (where we used the triangle inequality from exercise
1.99.(e)), which yields the asserted continuity.

If µ is finite, i.e. if µ = (µ1, . . . , µn) : BX → Rn is an Rn-valued
measure on BX , each component µi of µ is a finite signed measure
on BX and the same argument used in the first paragraph of this
proof to show that µ̌ ·f is well-defined may be applied to conclude that
∀f ∈ Cc(X,Rn), µ̌·f =

∑n
i=1

´
X
fi dµi. Therefore, applying the triangle

inequality once more, it follows that |µ̌ · f | ≤ (
∑n

i=1|µi|(X))‖f‖u, thus
proving that µ̌ :

(
Cc(X,Rn), ‖·‖u

)
→ R is linear continuous; hence, by

the density of Cc(X,Rn) in C0(X,Rn), µ̌ may be uniquely extended
to a continuous linear functional µ̌ : C0(X,Rn) → R with norm ≤∑n

i=1|µi|(X).
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The fact that J : Mloc(X,Rn) → Cc(X,Rn)∗ is linear follows
directly from its definition and from exercise 1.100 parts e) and f).
Since J : M(X,Rn) → C0(X,Rn)∗ was defined by restriction of J :
Mloc(X,Rn)→ Cc(X,Rn)∗ toM(X,Rn), it is also linear and the com-
mutativity with the inclusions follows by definition.

It remains to show that J◦I coincides with the identity of Cc(X,Rn)
(hence it also coincides with the identity of C0(X,Rn), thanks to the
commutativity of I and J with the inclusions).

Let µ ∈ Cc(X,Rn)∗ be an Rn-valued Radon measure with polar
decomposition µ = N |µ|, where N = (N1, . . . , Nn). We must show
that ˇ̂µ = µ. It follows from definition 4.21 that, for each A ∈ Bc

X ,
µ̂(A) =

´
A
N d|µ|. Thus, for each K ⊂ X compact, for 1 ≤ i ≤ n,

the ith component of the Rn-valued measure µ̂|BK
on BK is the finite

signed measure Ni|µ| on (K,BK). The positive and negative parts of
its Jordan decomposition are N+

i |µ|, N−i |µ| : BK → R, respectively
(since Ni|µ| = N+

i |µ| −N−i |µ| and N+
i |µ| ⊥ N−i |µ| as measures on the

measurable space (K,BK)). It then follows from definition 4.23 that,
if f ∈ Cc(X,Rn) and spt f ⊂ K,

ˇ̂µ · f =
n∑
i=1

ˆ
K

fi d(Ni|µ|) =

=
n∑
i=1

ˆ
K

fi d(N+
i |µ|)−

n∑
i=1

ˆ
K

fi d(N−i |µ|) =

=
n∑
i=1

ˆ
K

fiN
+
i d|µ| −

n∑
i=1

ˆ
K

fiN
−
i d|µ| =

=
n∑
i=1

ˆ
K

fiNi d|µ| =

=

ˆ
〈f,N〉 d|µ| = µ · f.

Therefore, by the arbitrariness of K and f , we conclude that ˇ̂µ = µ,
as asserted. �

We will see next that, if X is a locally compact separable metric
space, J defined above also inverts I on the right, i.e. I◦J is the identity
of the corresponding domains. That is, I : Cc(X,Rn)∗ →Mloc(X,Rn)
and I : C0(X,Rn)∗ →M(X,Rn) are surjective isomorphisms, so that
we may identify Cc(X,Rn)∗ ≡Mloc(X,Rn) and C0(X,Rn)∗ ≡M(X,Rn).

Proposition 4.25. Let X be a locally compact separable metric
space, I and J defined in propositions 4.22 and 4.24, respectively.
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Then I ◦ J is the identity of Mloc(X,Rn), and so is its restriction
to M(X,Rn).

Proof. Take µ : Bc
X → Rn in Mloc(X,Rn). We must show that

ˆ̌µ = µ. It suffices to show that, for an arbitrary relatively compact
open set U ⊂ X, the restrictions of µ and ˆ̌µ coincide on BU ⊂ Bc

X (for
the union of such BU coincides with Bc

X , i.e. every element of Bc
X is

contained in some relatively compact open set). Fix such a relatively
compact open set U and let µ|BU

= (µ1, . . . , µn), ˆ̌µ|BU
= (ˆ̌µ1, . . . , ˆ̌µn).

We must therefore prove that, for 1 ≤ i ≤ n, the finite signed measures
µi and ˆ̌µi coincide on the measurable space (U,BU).

Fix 1 ≤ i ≤ n. Note that, since U is a locally compact separable
metric space, and since the total variations of both µi and ˆ̌µi are finite
positive Borel measures on (U,BU) (in particular, they are finite on
compact subsets of U), it follows from remark 1.33 that |µi| and | ˆ̌µi| are
positive Radon measures on BU . Thus, in order to prove that µi = ˆ̌µi,
it suffices to show, in view of lemma 4.26 below with U in place of X,
that ∀f ∈ Cc(U,R),

´
U
f dµi =

´
U
f dˆ̌µi.

Fix f ∈ Cc(U,R) and let F := fei ∈ Cc(U,Rn) ⊂ Cc(X,Rn). It
follows from definition 4.23 that

(4.5) µ̌ · F =

ˆ
U

f dµi.

On the other hand, let the polar decomposition of µ̌ ∈ Cc(X,Rn)∗

be µ̌ = N |µ̌|, where N = (N1, . . . , Nn). By definition 4.21, for each
A ∈ Bc

X , ˆ̌µ(A) =
´
A
N d|µ̌|. Thus, the ith component of the Rn-valued

measure ˆ̌µ|BU
on BU is the finite signed measure Ni|µ̌| on (U,BU). It

then follows that

µ̌ · F =

ˆ
〈F,N〉 d|µ̌| =

ˆ
U

fNi d|µ̌| =

=

ˆ
U

f dˆ̌µi.

(4.6)

Comparing (4.5) and (4.6), we conclude that
´
U
f dµi =

´
U
f dˆ̌µi,

as we wanted to show.
�

Lemma 4.26. Let X be a σ-compact locally compact Hausdorff space
and µ,ν signed measures on BX whose total variations |µ| and |ν| are
Radon measures on BX . Then µ = ν iff ∀f ∈ Cc(X,R),

´
f dµ =´

f dν.

Note that both integrals make sense, since both |µ| and |ν| are
Radon, hence Cc(X,R) ⊂ L1(µ) ∩ L1(ν).
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Proof. It suffices to prove (⇐), since the reverse implication is
trivial.

Suppose that ∀f ∈ Cc(X,R),
´
f dµ =

´
f dν.

1) We contend that there exist Borelian functions hµ, hν : X → R
such that |hµ| = |hν | ≡ 1 and µ = hµ|µ|, ν = hν |ν|. Indeed, since
µ+ ⊥ µ−, we may take disjoint Borel sets P and N such that X =
P ∪̇N , µ+ is concentrated on P and µ− is concentrated on N . Thus,
µ+ = χP |µ| and µ− = χN |µ|, so that µ = µ+ − µ− = (χP − χN)|µ|,
thus proving the contention for µ with hµ := χP − χN ; we do the
same for ν.

2) The linear functional L defined on Cc(X,R) by f 7→
´
f dµ =

´
f dν

is continuous, since, by the fact that |µ| is finite on compact sets
and by the triangle inequality 1.99.e), for every K ⊂ X compact
and for every f ∈ CK

c (X,R), |
´
f dµ| ≤

´
K
|f | d|µ| ≤ |µ|(K)‖f‖u.

By the previous item, we have, for all f ∈ Cc(X,R),

L · f =

ˆ
f dµ =

ˆ
f · hµ d|µ|,

L · f =

ˆ
f dν =

ˆ
f · hν d|ν|.

Since |µ| and |ν| are positive Radon measures on BX (which, by
remark 1.29, correspond to outer Radon measures on X, denoted
with the same notation), we conclude that both hµ|µ| and hν |ν| are
polar decompositions for L. Hence, by the uniqueness of the polar
decomposition stated in theorem 4.9 (with n = 1), it follows that
|µ| = |ν| and hµ = hν |µ|-a.e., which implies µ = hµ|µ| = hν |ν| = ν.

�

Corollary 4.27. If X is a locally compact separable metric space,
then I and J defined in propositions 4.22 and 4.24, respectively, are
surjective isomorphisms, inverses of each other.

Proof. It is a consequence of propositions 4.22, 4.24 and 4.25. �

Remark 4.28. If X is a locally compact separable metric space,
we may therefore identify Cc(X,Rn)∗ ≡Mloc(X,Rn) and C0(X,Rn)∗ ≡
M(X,Rn) by means of the linear isomorphisms of the previous corol-
lary. With these identifications in mind, we will henceforth abandon
our provisional nomenclature and drop the hats and checks from the
notation, treating an Rn-valued Radon measure µ and the correspond-
ing Rn-valued Radon measure set function µ̂ as being one and the same
object.
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Corollary 4.29. If X is a locally compact separable metric space,
M(X,Rn) is a Banach space with the norm ‖µ‖ := |µ|(X).

Proof. It is a consequence of the identification C0(X,Rn)∗ ≡M(X,Rn)
and of theorem 4.9.ii), which asserts that the operator norm of µ ∈
C0(X,Rn)∗ is |µ|(X). �

Exercise 4.30 (properties of the total variation, part II). Let X
be a locally compact separable metric space and µ an Rn-valued Radon
measure on X. Define, for all E ∈ BX :

i) µ1(E) := sup{
∑m

k=1‖µ(Ek)‖ | m ∈ N; ∀1 ≤ k ≤ m,Ek ∈ BX , |µ|(Ek) <
∞; ∪̇mk=1 Ek ⊂ E}.

ii) µ2(E) := sup{
∑

k∈N‖µ(Ek)‖ | ∀k ∈ N, Ek ∈ BX , |µ|(Ek) <∞; ∪̇k∈NEk =
E}.

iii) µ3(E) := sup{
´
E
f · dµ | f ∈ L1(|µ|,Rn), ‖f‖ ≤ 1}.

iv) µ4(E) := sup{
´
E
f · dµ | f ∈ Cc(X,Rn), ‖f‖ ≤ 1}.

Then µ1(E) = µ2(E) = µ3(E) = µ4(E) = |µ|(E).

4.2. Operations with Rn-valued Radon measures

We generalize to Rn-valued Radon measures the operations for pos-
itive measures introduced in definitions 1.13 and 1.14.

Definition 4.31 (restrictions of Rn-valued Radon measures). Let
X be a locally compact separable metric space, µ ∈ Cc(X,Rn)∗ an Rn-
valued Radon measure and g : X → R a bounded Borelian function on
X. We define the restriction of µ to g, denoted by µ xg, as the contin-
uous linear functional on Cc(X,Rn) given by µ xg · f :=

´
〈fg, ν〉 d|µ|

if (ν, |µ|) is the polar decomposition of µ.

Notation. If λ is a positive measure on X and h ∈ L+(λ), we
introduce the alternative notation λ xh to denote the measure on
X which has been denoted so far by hλ, i.e. the extension given by
theorem 1.8 of the measure on σ(λ) given by A 7→

´
A
h dλ. This

alternative notation is motivated by the following remark.

Remark 4.32. With the notation from the previous definition:

1) Note that µ xg is indeed a well-defined continuous linear func-
tional: ∀K ⊂ X compact and ∀f ∈ CK

c (X,Rn), fg ∈ L1(|µ|), µ xg
is clearly linear in f and, by the triangle inequality (remark 4.17.3),
|µ xg · f | ≤ |µ|(K)‖g‖u‖f‖u, hence µ xg is continuous.

2) The polar decomposition of µ xg is (gν|g| , |g||µ|), where we define
gν
|g| := 0 on the Borel set {g = 0}. That follows from the fact that

|g||µ| is a positive Radon measure on X (by lemma 4.11) and from
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the uniqueness of the polar decomposition. In particular, using the
notation above, we have

|µ xg| = |µ| x|g|.
3) If µ is a positive Radon measure on X (which we identify with

the element of Cc(X,R)∗ whose polar decomposition is (1, µ)) and
A ∈ BX , then µ xχA coincides with the positive Radon measure
µ xA (that this positive measure is Radon follows from proposition
1.36). We extend this notation for an arbitrary µ ∈ Cc(X,Rn)∗, i.e.
we use the notation µ xA in place of µ xχA. It then follows from
the previous item that

|µ xA| = |µ| xA.
4) We may similarly define µ xg ∈ Cc(X,Rn)∗ for µ ∈ Cc(X,R)∗

and g : X → Rn bounded Borelian: that is the continuous linear
functional f ∈ Cc(X,Rn) 7→

´
〈f, g〉ν d|µ| if (ν, |µ|) is the polar

decomposition of µ. Then ( gν‖g‖ , ‖g‖|µ|) is the polar decomposition

of µ xg. In particular,

|µ xg| = |µ| x‖g‖.
Note that, with this definition, if µ ∈ Cc(X,Rn)∗ has polar de-

composition (ν, |µ|), then µ = |µ| xν.
5) We may also define µ xg for g ∈ L1

loc(|µ|) using the same formula.
Note that, for all K ⊂ X compact and for all f ∈ CK

c (X,Rn), |µ xg·
f | =

∣∣´
K
〈fg, ν〉 d|µ|

∣∣ ≤ (
´
K
|g| d|µ|)‖f‖u, whence the continuity of

µ xg. As before, the polar decomposition of µ xg is (gν|g| , |g||µ|),
which follows from the uniqueness of the polar decomposition and
from the fact that |g||µ| is a positive Radon measure on BX (by the
fact that it is finite on compact subsets of X and by remark 1.33).
Thus, as before,

|µ xg| = |µ| x|g|.
6) As a final generalization of the restriction operation, we may define

µ xT ∈ Cc(X,Rm)∗ for µ ∈ Cc(X,Rn)∗ and T ∈ L1
loc

(
|µ|, L(Rm,Rn)

)
by f ∈ Cc(X,Rm) 7→

´
〈T · f, ν〉 d|µ|, where (ν, |µ|) is the polar

decomposition of µ. As before, it follows from the triangle in-
equality that, for all K ⊂ X compact and for all f ∈ CK

c (X,Rm),
|µ xT · f | ≤ (

´
K
‖T‖ d|µ|)‖f‖u, hence µ xT is indeed a continu-

ous linear functional. Note that, defining T ∗ : X → L(Rn,Rm) by
x 7→ T (x)∗, i.e. the adjoint of T , we have, ∀f ∈ Cc(X,Rm):

µ xT · f =

ˆ
〈T · f, ν〉 d|µ| =

ˆ 〈
f,

T ∗ · ν
‖T ∗ · ν‖

〉
‖T ∗ · ν‖ d|µ|.
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Since ‖T ∗ ·ν‖ d|µ| is a positive Radon measure on X, it follows as be-
fore from the uniqueness of the polar decomposition that

(
T ∗·ν
‖T ∗·ν‖ , ‖T

∗·
ν‖|µ|

)
is the polar decomposition of µ xT . In particular,

|µ xT | = |µ| x‖T ∗ · ν‖.
Exercise 4.33 (Lebesgue decomposition and Radon-Nikodym de-

rivative for Rn-valued Radon measures). Let X be a locally compact
separable metric space µ ∈ Cc(X,Rn)∗ and λ a positive Radon measure
on X. We say that

• µ ⊥ λ if |µ| ⊥ λ in the sense of definition 3.34;
• µ� λ if |µ| � λ in the sense of 3.34.

Then:

a) (Lebesgue decomposition) There exist unique Rn-valued Radon mea-
sures µa, µs on X such that µs ⊥ λ, µa � λ, µ = µs + µa.

b) (Radon-Nikodym derivative) If µ � λ, there exists a unique (up
to λ-null sets) Borelian map f : X → Rn with f ∈ L1

loc(λ) and
µ = λ xf . We call f the Radon-Nikodym derivative of µ with
respect to λ and denote it by dµ

dλ
.

Exercise 4.34 (fundamental lemma of the Calculus of Variations).
Let X be an open set in Rm. If µ : Cc(X,Rn) → R is an Rn-valued
Radon measure on X such that µ · f = 0 for all f ∈ C∞c (X,Rn), then
µ = 0. In particular, if g ∈ L1

loc(Lm|X ,Rn) andˆ
X

〈f, g〉 dLm = 0

for all f ∈ C∞c (X,Rn), then g = 0 Lm-a.e. on X.

Definition 4.35 (trace of Rn-valued Radon measures). Let X be
a locally compact separable metric space and A ⊂ X a locally compact
subspace of X (i.e the intersection of an open with a closed subset
of X). If µ is an Rn-valued Radon measure on X with polar decom-
position (ν, |µ|), we define an Rn-valued Radon measure µ|A on A by

f ∈ Cc(A,Rn) 7→
´
〈f̃ , ν〉 d|µ|, where f̃ : X → Rn is the extension of f

by 0 in the complement of A.

Proposition 4.36. Let X be a locally compact separable metric
space, A ⊂ X a locally compact subspace and µ ∈ Cc(X,Rn)∗ with po-
lar decomposition (ν, |µ|). Then µ|A is a well-defined Rn-valued Radon
measure on A and it is finite if so is µ. Moreover, the polar decomposi-
tion of µ|A is (ν|A, |µ|

∣∣
A

), where |µ|
∣∣
A

denotes the trace of |µ| on A in
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the sense of definition 1.13. In particular, if µ is a positive Radon mea-
sure on X, the trace of µ on A in the sense of definition 4.35 coincides
with the trace in the sense of definition 1.13.

Proof. Note that f̃ is a bounded Borel measurable function and
vanishes on the complement of a compact subset of A (which is also
a compact subset of X, since the inclusion is continuous and X is

Hausdorff), hence f̃ ∈ L1(|µ|) and the integral makes sense, i.e. µ|A ·
f is well-defined and clearly linear in f . Moreover, for all K ⊂ A
compact and f ∈ CK

c (A,Rn), we have, by the triangle inequality
∣∣µ|A ·

f
∣∣ =

∣∣´
K
〈f̃ , ν〉 d|µ|

∣∣ ≤ |µ|(K)‖f‖u, hence µ|A is continuous, i.e. µ|A ∈
Cc(A,Rn)∗.

For all f ∈ Cc(A,Rn), it follows from exercise 1.69 that µ|A · f =´
〈f̃ , ν〉 d|µ| =

´
A
〈f̃ , ν〉 d|µ| =

´
〈f, ν|A〉 d|µ|

∣∣
A

, where |µ|
∣∣
A

denotes

the trace of |µ| on A in the sense of definition 1.13. Since |µ|
∣∣
A

is a
positive Radon measure on BA (it is a Borelian measure by proposition
1.15.ii and it is finite on compact subsets of A, hence it is Radon by
remark 1.33), and since ν|A is Borelian with ‖ν|A‖ = 1 |µ|

∣∣
A

-a.e., it

follows that the polar decomposition of µ|A is (ν|A, |µ|
∣∣
A

). In particular,

|µ|A| = |µ|
∣∣
A

. Hence, if µ is finite (i.e. if |µ| is a positive finite Radon
measure), so is µ|A (since its total variation is finite). �

We next introduce the pushforward operation for Rn-valued Radon
measures by transposition. For that purpose, and for those who are
not acquainted with locally convex spaces and LF topologies, we make
an ad hoc definition of continuity which generalizes the notion of con-
tinuity introduced in definition 4.1 (and coincides with the notion of
continuity with respect to the locally convex topologies of the spaces
involved, cf. remark 4.2).

Definition 4.37 (continuity of linear maps on Cc(X,Rn)). Let X
and Y be locally compact separable metric spaces.

i) We say that A ⊂ Cc(X,Rn) is bounded it there exists K ⊂ X
compact such that A ⊂ CK

c (X,Rn) and A is bounded in the latter
space (i.e. it bounded as a subset of the Banach space CK

c (X,Rn)).
ii) We say that a sequence (xn)n∈N in Cc(X,Rn) converges to x ∈

Cc(X,Rn) if there exists K ⊂ X compact such that the image of
the sequence is contained in CK

c (X,Rn), x ∈ CK
c (X,Rn) and xn → x

in CK
c (X,Rn).

iii) We say that a linear map T : Cc(X,Rn)→ Cc(Y,Rm) is continuous
if one of the following equivalent conditions hold:
• T (A) is bounded whenever A ⊂ Cc(X,Rn) is bounded.
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• T (xn)→ 0 whenever (xn)n∈N is a sequence in Cc(X,Rn) such
that xn → 0.

Remark 4.38. That the two conditions in part iii) of the above
definition are indeed equivalent to continuity in the LF topology of
the spaces involved, cf. remark 4.2, is a consequence of the fact that
LF spaces are bornological. Actually, in the above definition, we could
replace the codomain of T by any locally convex space; in particular,
those conditions may also be used to characterize continuity of linear
functionals Cc(X,Rn)→ R.

Proposition 4.39. Let X and Y be locally compact separable met-
ric spaces and T : Cc(X,Rn)→ Cc(Y,Rm) a linear map.

i) If T is continuous and µ is an Rm-valued Radon measure on Y ,
then µ ◦ T is an Rn-valued Radon measure on X.

ii) If T is continuous with respect to the C0 topology (i.e. the topology
induced by ‖·‖u) on both domain and codomain, and µ is a finite
Rm-valued Radon measure on Y , then µ ◦ T is a finite Rn-valued
Radon measure on X.

Proof. It is immediate from the definitions. �

Definition 4.40. With the notation from the previous proposition,
we define the transpose of T , T t : Cc(Y,Rm)∗ → Cc(X,Rn)∗ in case (i)
or T t : C0(Y,Rm)∗ → C0(X,Rn)∗ in case (ii), by T t · µ := µ ◦ T .

Example 4.41. Let X be a locally compact separable metric space.

1) Let T : X → L(Rm,Rn) be a continuous map. We define T̂ :

Cc(X,Rm) → Cc(X,Rn) by (T̂ · f)(x) := T (x) · f(x). Then T̂ is
clearly linear and, for all K ⊂ X compact and f ∈ CK

c (X,Rm), we

have T̂ · f ∈ CK
c (X,Rn) and ‖T̂ · f‖u ≤ ‖T |K‖u‖f‖u, which implies

the continuity of T̂ . The transpose of T̂ is given by µ 7→ µ xT ,
where µ xT was defined in part 6) of remark 4.32 (but the situation
in that remark is more general, since it the continuity of T is not
required).

2) Let U ⊂ X open. The inclusion Cc(U,Rn) ⊂ Cc(X,Rn) (which
maps f ∈ Cc(U,Rn) to its extension by 0 on the complement of U)
is clearly continuous; its transpose coincides with µ 7→ µ|U , where
µ|U is the trace of µ on U in the sense of definition 4.35. For a
general locally compact subspace A ⊂ X, we cannot define the trace
by means of transposition, since, in general, there is no canonical
inclusion Cc(A,Rn) ⊂ Cc(X,Rn).

Proposition 4.42. Let X and Y be locally compact separable met-
ric spaces and f : X → Y a continuous proper map. Then both
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(◦f) : Cc(Y,Rn) → Cc(X,Rn) and (◦f) : C0(Y,Rn) → C0(X,Rn) given
by g 7→ g ◦ f are well-defined and linear continuous.

Proof. If g ∈ Cc(Y,Rn), then spt (g ◦ f) ⊂ f−1(spt g), which is
compact, since f is proper, hence g ◦ f ∈ Cc(X,Rn). If g ∈ C0(Y,Rn)
and ε > 0, there exists K ⊂ Y compact such that Kc ⊂ {‖g‖ < ε}.
Since f is proper, f−1(K) is compact and f−1(K)c = f−1(Kc) ⊂
{‖g ◦ f‖ < ε}, hence g ◦ f ∈ C0(X,Rn). Thus, both (◦f) : Cc(Y,Rn)→
Cc(X,Rn) and (◦f) : C0(Y,Rn) → C0(X,Rn) are well-defined and
clearly linear. It remains to prove their continuity. Indeed, for all K ⊂
Y compact and for all g ∈ CK

c (Y,Rn), we have g ◦ f ∈ C
f−1(K)
c (X,Rn)

and ‖g◦f‖u ≤ ‖g‖u, which implies the continuity of (◦f) : Cc(Y,Rn)→
Cc(X,Rn), and the continuity of (◦f) : C0(Y,Rn)→ C0(X,Rn) follows
by the same argument. �

Definition 4.43. With the notation from definition 4.42, the trans-
poses (◦f)t : Cc(X,Rn)∗ → Cc(Y,Rn)∗ and (◦f)t : C0(X,Rn)∗ →
C0(Y,Rn)∗ are called pushforward by f and denoted by f#:µ 7→ f#µ.

Proposition 4.44. Let X and Y be locally compact separable met-
ric spaces, f : X → Y a continuous proper map and µ ∈ Cc(X,Rn)∗

with polar decomposition (νX , |µ|). Suppose that there exists a Borelian
map νY : Y → Rn such that νY ◦ f = νX . Then the polar decomposi-
tion of f#µ is (νY , f#|µ|), where f#|µ| is the pushforward of |µ| by f in
the sense of the definition 1.14. In particular, if µ is a positive Radon
measure on X, the pushforward of µ by f in the sense of definition
4.43 coincides with the pushforward in the sense of definition 1.14.

Proof. For all g ∈ Cc(Y,Rn), we have:

f#µ · g = µ · (g ◦ f) =

ˆ
〈g ◦ f, νX〉 d|µ| =

=

ˆ
〈g ◦ f, νY ◦ f〉 d|µ|

ex.1.70
=

=

ˆ
〈g, νY 〉 df#|µ|,

where f#|µ| is the pushforward of |µ| by f in the sense of the definition
1.14. Since f#|µ| is a positive Radon measure on Y , by proposition 1.37,
and since f−1

(
{‖νY ‖ 6= 1}

)
⊂ {‖νX‖ 6= 1} is |µ|-null (i.e. {‖νY ‖ 6=

1} is f#|µ|-null), we conclude that the polar decomposition of f#µ is
(νY , f#|µ|), as asserted.

In particular, if µ is a positive Radon measure on X, the polar
decomposition of µ̌ (using the notation of definition 4.23 for clarity) is
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(1, µ), so that we can take νY ≡ 1, hence the polar decomposition of
f#µ̌ is (1, f#µ), whence the thesis. �

Exercise 4.45. Let X and Y be locally compact separable metric
spaces, T : X → L(Rm,Rn) continuous, f : X → Y a continuous proper
map and µ an Rn-valued Radon measure on X. Suppose that there
exists S : Y → L(Rm,Rn) such that S ◦ f = T . Then f#(µ xT ) =
f#µ xS. In particular, if f is an homeomorphism, then f#(µ xT ) =
f#µ xf#T , where f#T := T ◦ f−1.

Remark 4.46. We may define the pushforward with respect to
more general maps. For instance, let X and Y be locally compact
separable metric spaces, µ ∈ Cc(X,Rn)∗ with polar decomposition
(ν, |µ|) and f : X → Y a Borelian map such that ∀K ⊂ Y compact,
|µ|
(
f−1(K)

)
<∞. We define f#µ : Cc(Y,Rn)→ R by

g 7→
ˆ
〈g ◦ f, ν〉 d|µ|.

Note that the integral makes sense, since ‖g◦f‖ ∈ L1(|µ|) (because it is
a bounded Borelian map which vanishes in the complement of the |µ|-
finite set f−1(spt g)). Moreover, f#µ is clearly linear and, for allK ⊂ Y
compact and for all g ∈ CK

c (Y,Rn), |f#µ · g| =
∣∣´
f−1(K)

〈g ◦ f, ν〉 d|µ|
∣∣ ≤

|µ|
(
f−1(K)

)
‖g‖u, hence f#µ ∈ Cc(Y,Rn)∗, i.e. f#µ is indeed an Rn-

valued Radon measure on Y . If f is a continuous proper map, the
latter pushforward coincides with the one defined by transposition in
definition 4.43. As before, we may find the polar decomposition of f#µ
from the polar decomposition (νX , |µ|) if there exists a Borelian map
νY : Y → Rn such that νY ◦f = νX . For that purpose, we take f#|µ| in
the sense of remark 1.38, which is a positive Radon measure on Y , and
repeat the same computations in the proof of the previous proposition,
for g ∈ Cc(Y,Rn):

f#µ · g =

ˆ
〈g ◦ f, νX〉 d|µ| =

=

ˆ
〈g ◦ f, νY ◦ f〉 d|µ|

remark 1.71
=

=

ˆ
〈g, νY 〉 df#|µ|,

where f#|µ| is the pushforward of |µ| by f in the sense of remark 1.38.
Since f#|µ| is a Radon measure on Y and ‖νY ‖ = 1 f#|µ|-a.e. on Y ,
we conclude that the polar decomposition of f#µ is (νY , f#|µ|).
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4.3. Weak-star convergence

Definition 4.47. Let X be a locally compact separable metric
space. We say that

i) a sequence (µk)k∈N in Cc(X,Rn)∗ is weakly-star convergent to µ ∈
Cc(X,Rn)∗ (notation: µk

∗
⇀µ) if, for all f ∈ Cc(X,Rn),

´
f · dµk →´

f · dµ;
ii) a sequence (µk)k∈N in C0(X,Rn)∗ is weakly-star convergent in the

sense of finite measures to µ ∈ C0(X,Rn)∗ (notation: µk
∗ f
⇀µ) if,

for all f ∈ C0(X,Rn),
´
f · dµk →

´
f · dµ.

Remark 4.48.

1) Some authors use the nomenclature locally weakly star convergent
and weakly star convergent for our definitions above in i) and ii),
respectively.

2) We have used different names to distinguish one from the other, but
both types of convergence above are actually the same notion, i.e.
convergence of sequences with respect to weak star topologies: the
first type in the weak-star dual of Cc(X,Rn) and the second in the
weak-star dual of C0(X,Rn). Note that, in general, none of these
weak-star topologies is first-countable, so that we may have to use
nets or filters to handle general topological problems. However, note
that, thanks to the Banach-Alaoglu theorem and to the separability
of C0(X,Rn), strongly bounded subsets of C0(X,Rn)∗ are relatively
compact and metrizable in the weak-star topology of C0(X,Rn)∗.

Proposition 4.49 (relation between weak-star convergence and
weak-star convergence in the sense of finite measures). Let X be a lo-
cally compact separable metric space, (µk)k∈N a sequence in Cc(X,Rn)∗

and µ ∈ Cc(X,Rn)∗. The following conditions are equivalent:

i) µk
∗
⇀µ and supk∈N|µk|(X) <∞.

ii) (µk)k∈N is a sequence in C0(X,Rn)∗, µ ∈ C0(X,Rn)∗ and µk
∗ f
⇀µ.

Proof.

(i ⇒ ii): For every f ∈ Cc(X,Rn) such that ‖f‖u ≤ 1, µ · f =
limµk · f ≤ lim inf |µk|(X) ≤ supk∈N|µk|(X) < ∞; taking the
sup over all such f , we conclude that |µ|(X) ≤ lim inf |µk|(X) <
∞, i.e. µ ∈ C0(X,Rn)∗. Moreover, given g ∈ C0(X,Rn) and
ε > 0, we may take f ∈ Cc(X,Rn) such that ‖f − g‖u < ε;
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hence, for all k ∈ N,

|µk · g − µ · g| ≤ |µk · g − µk · f |+ |µk · f − µ · f |+ |µ · f − µ · g| ≤
≤ |µk|(X)‖f − g‖u + |µk · f − µ · f |+ |µ|(X)‖f − g‖u ≤
≤ 2ε sup

k∈N
|µk|(X) + |µk · f − µ · f |.

Taking k →∞, it follows that lim sup|µk·g−µ·g| ≤ 2ε supk∈N|µk|(X);
by the arbitrariness of the ε > 0 taken, it then follows that

lim sup|µk · g − µ · g| = 0, i.e. µk · g → µ · g, whence µk
∗ f
⇀µ.

(ii ⇒ i): For all g ∈ C0(X,Rn), µk · g → µ · g; in particular,
that holds for g ∈ Cc(X,Rn) and, by the principle of uniform
boundedness, supk∈N|µk|(X) < ∞ (recall that the operator
norm of µk ∈ C0(X,Rn)∗ is |µk|(X)).

�

Proposition 4.50. Let X and Y be locally compact separable met-
ric spaces and T : Cc(X,Rn) → Cc(Y,Rm) linear continuous. Then
T t : Cc(Y,Rm)∗ → Cc(X,Rn)∗ preserves weak-star convergence of se-
quences. The same holds for weak-star convergence in the sense of
finite measures if T is continuous with respect to the C0 topologies.

Proof. It is immediate from the definitions. �

Remark 4.51.
1) Actually, with the same hypothesis from the previous proposition ,

T t : Cc(Y,Rm)∗ → Cc(X,Rn)∗ and T t : C0(Y,Rm)∗ → C0(X,Rn)∗

are continuous with respect to the corresponding weak-star topolo-
gies.

2) In particular, this proposition applies to the operations with Rn-
valued Radon measures which may be defined by transpositions:
the restriction µ 7→ µ xT with T : X → L(Rm,Rn) continuous
(example 4.41.1), the trace on open sets µ 7→ µ|U with U ⊂ X open
(example 4.41.2) and the pushforward by a continuous proper map
(definition 4.43 and proposition 4.44).

Exercise 4.52.

a) Let (xk)k∈N be a sequence in Rn convergent to x ∈ Rn. Then

δxk
∗ f
⇀δx.

b) (concentration of mass) Let (µk)k∈N be the sequence of positive
Radon measures on Rn given by (∀k ∈ N)µk := knLn x(0, k−1)n.

Then µk
∗ f
⇀δ.

c) (spreading of mass) Let (µk)k∈N be the sequence of positive Radon

measures on Rn given by (∀k ∈ N)µk :=
∑k

m=1 k
−1δm/k. Then

µk
∗ f
⇀L1 x(0, 1).
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d) Let (µk)k∈N be a sequence of signed Radon measures on Rn (i.e.
signed measures on BRn whose total variation is Radon) and µ a

signed Radon measure on Rn such that µk
∗
⇀µ. It is not necessarily

true that µ+
k

∗
⇀µ+, µ−k

∗
⇀µ− or |µk|

∗
⇀|µ|.

Proposition 4.53 (foliations by Borel sets for positive Radon mea-
sures). Let X be a locally compact separable metric space, µ a positive
Radon measure on X and (Eα)α∈A a disjoint family of Borel sets in X.
Then {α ∈ A | µ(Eα) > 0} is countable.

Proof. Since X can be covered by countably many relatively com-
pact open sets, it suffices to show that, for each relatively compact open
set U , the thesis holds for the finite Radon measure ν := µ xU . For
each A′ ⊂ A finite,

∑
α∈A′ ν(Eα) = ν(∪̇α∈A′ Eα) ≤ ν(X) <∞. It then

follows that α ∈ A 7→ ν(Eα) is summable with respect to the counting
measure, hence {α ∈ A | ν(Eα) > 0} is countable, as asserted. �

Theorem 4.54 (characterization of weak-star convergence for pos-
itive Radon measures). Let X be a locally compact separable metric
space, (µk)k∈N a sequence of positive Radon measures in X and µ a
positive Radon measure in X. The following conditions are equivalent:

i) µk
∗
⇀µ.

ii) For all K ⊂ X compact and for all U ⊂ X open,

µ(K) ≥ lim supµk(K) and µ(U) ≤ lim inf µk(U).

iii) For all E ∈ Bc
X such that µ(∂E) = 0, µk(E)→ µ(E).

Moreover, if µk
∗
⇀µ and x ∈ spt µ, there exists n ∈ N and a se-

quence (xk)k≥n in X such that ∀k ≥ n, xk ∈ spt µk and xk → x.

Proof.
(i⇒ii) For each f ∈ Cc(U,R) with |f | ≤ 1, µ · f = limµk · f ≤
lim inf µk(U). Taking the sup over all such f , it follows that µ(U) ≤
lim inf µk(U).

Note that µ(K) = inf{µ · f | f ∈ Cc(X,R), χK ≤ f ≤ 1} (the
inequality ≤ is clear and the reverse inequality follows from the outer
regularity of µ in K and from the Urysohn lemma 4.5). For each f ∈
Cc(X,R) such that χK ≤ f ≤ 1, µ ·f = limµk ·f ≥ lim sup

´
χK dµk =

lim supµk(K). Taking the inf over all such f , we conclude that µ(K) ≥
lim supµk(K).
(ii⇒iii) Let E ∈ Bc

X such that µ(∂E) = 0. Applying (ii) for the
compact set K = E and for the open set U = Eo, it follows that
µ(E) = µ(E) ≥ lim supµk(E) ≥ lim supµk(E) and µ(E) = µ(Eo) ≤
lim inf µk(E

o) ≤ lim inf µk(E), whence µ(E) = limµk(E), as asserted.
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(iii⇒i) We must show that, for every f ∈ Cc(X,R), µk · f → µ · f .
Since an arbitrary f ∈ Cc(X,R) can be written as f = f+ − f− with
f± ≥ 0 in Cc(X,R), it suffices to consider the case f ≥ 0. So, fix f ≥ 0
in Cc(X,R).

Since f is continuous with compact support, for every t > 0 the
set {f > t} is open relatively compact and ∂{f > t} ⊂ {f = t}.
We may apply proposition 4.53 to the disjoint family of Borel sets
({f = t})t>0 to conclude that there exists a countable set I ⊂ (0,∞)
such that µ({f = t}) = 0 for t ∈ (0,∞) \ I; hence µ(∂{f > t}) = 0 for
t ∈ (0,∞) \ I. It then follows from (iii) that, for every t ∈ (0,∞) \ I,
µk({f > t})→ µ({f > t}).

Define ∀k ∈ N, F, Fk : (0,∞)→ [0,∞) by Fk(t) := µk({f > t}) and
F (t) := µ({f > t}). Then F, Fk are Borelian (since they are decreasing
functions) and, as we saw in the previous paragraph, Fk → F pointwise
in (0,∞) \ I, i.e. Fk → F L1-a.e. (since countable sets have Lebesgue
measure 0). We contend that the convergence is dominated. Indeed,
∀k ∈ N, ∀t > 0, Fk(t) ≤ µk(spt f)χ[0,‖f‖u](t); hence, if we show that
C := supk∈N µk(spt f) < ∞, then the sequence Fk will be dominated
by the L1-summable function Cχ[0,‖f‖u], thus proving our contention.

In order to show that supk∈N µk(spt f) <∞, take a relatively com-
pact open set U ⊃ K := spt f and, denoting by d the distance in X,
let ∀0 < ε < d(K,U c), Uε := {x ∈ X | d(x,K) < ε}; applying proposi-
tion 4.53 to the Radon measure µ and the disjoint family of Borel sets
(∂Uε)0<ε<d(K,Uc), we conclude that there exists 0 < ε < d(K,U c) such
that µ(∂Uε) = 0. Since Uε is open and relatively compact (because it is
contained in U), it then follows from (iii) that µk(Uε)→ µ(Uε). Hence
supk∈N µk(spt f) ≤ supk∈N µk(Uε) <∞, as asserted.

Finally, by the dominated convergence theorem 1.64 and by the
layer-cake formula 1.87 (note that µ, µk are σ-finite, since they are
Radon and X is σ-compact), we have:

µk · f =

ˆ
f dµk =

ˆ ∞
0

Fk dL1 →

→
ˆ ∞

0

F dL1 =

ˆ
f dµ = µ · f,

as we wanted to show.
Finally, suppose that µk

∗
⇀µ and let x ∈ spt µ. We claim that ∀ε >

0, there exists n ∈ N such that ∀k ≥ n, U(x, ε)∩spt µk 6= ∅. Arguing by
contradiction, suppose that there exists ε > 0 and a sequence (kn)n∈N
in N such that kn → ∞ and U(x, ε) ∩ spt µkn = ∅. It then follows
from ii) that µ

(
U(x, ε)

)
≤ lim inf µk

(
U(x, ε)

)
≤ limµkn

(
U(x, ε)

)
= 0,
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hence µ
(
U(x, ε)

)
= 0, which contradicts the fact that x ∈ spt µ and

proves the claim. We now apply the claim for ε = i ∈ N, yielding a
sequence (ni)∈N, which we may assume to be strictly increasing. Then,
for each i ∈ N, we may choose xni , xni+1, . . . , xni+1−1 such that xj ∈
U(x, 1/i) ∩ spt µj for ni ≤ j < ni+1, thus yielding a sequence (xj)j≥n1

in X such that ∀j ≥ n1, xj ∈ spt µj and xj → x.
�

Exercise 4.55. Let X be a locally compact separable metric space,
(µk)k∈N a sequence of positive Radon measures on X and µ a positive

Radon measure on X. Suppose that µk
∗
⇀µ and for every r > 0,

lim supk→∞ inf{µk
(
U(x, r)

)
| x ∈ spt µk} > 0. If (xk)k∈N is a conver-

gent sequence in X with ∀k ∈ N, xk ∈ spt µk, then limxk ∈ spt µ.

Exercise 4.56 (narrow convergence). We say that a sequence (µk)k∈N
in C0(X,Rn)∗ is narrowly convergent to µ ∈ C0(X,Rn)∗ (notation:

µk
∗ nc
⇀µ) if, for all f ∈ Cb(X,Rn),

´
f · dµk →

´
f · dµ, where Cb(X,Rn)

denotes the Banach space of bounded continuous functions X → Rn

(endowed with the norm of uniform convergence ‖·‖u). That is, µk
∗ nc
⇀µ

if it converges to µ in the weak-star dual of Cb(X,Rn).
If (µk)k∈N is a sequence of positive finite Radon measures on X and

µ is a positive finite Radon measure on X, then µk
∗ nc
⇀µ iff µk(X) →

µ(X) and ∀A ⊂ X open, µ(A) ≤ lim inf µk(A).

Hint. To prove that the stated condition implies µk
∗ nc
⇀µ, it suf-

fices to show that
´
g dµk →

´
g dµ for g ∈ Cb(X,R) with 0 ≤ g ≤ 1

(since Cb(X,R) is the linear span of such g). Prove that
´
g dµ ≤

lim inf
´
g dµk, using the layer-cake formula 1.87 to compute the inte-

grals and Fatou’s lemma. The same holds for 1 − g in the place of
g.

Proposition 4.57 (weak convergence and total variation, part I).
Let X be a locally compact separable metric space and (µk)k∈N a se-
quence in Cc(X,Rn)∗ weakly-star convergent to µ ∈ Cc(X,Rn)∗. Then,
for every A ⊂ X open, |µ|(A) ≤ lim inf|µk|(A).

Proof. For every f ∈ Cc(X,Rn) with spt f ⊂ A and ‖f‖ ≤ 1, we
have µ · f = limµk · f ≤ lim inf|µk|(A). Taking the sup over all such f
yields the thesis. �

Proposition 4.58 (weak convergence and total variation, part II).
Let X be a locally compact separable metric space and (µk)k∈N a se-
quence in Cc(X,Rn)∗ weakly-star convergent to µ ∈ Cc(X,Rn)∗.
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i) If ν is a positive Radon measure on X and |µk|
∗
⇀ν, then ∀E ⊂ X,

|µ|(E) ≤ ν(E). Moreover, if E ∈ Bc
X and ν(∂E) = 0, then

µk(E)→ µ(E).

ii) If |µk|(X) → |µ|(X) < ∞, then |µk|
∗ f
⇀|µ| (actually |µk|

∗ nc
⇀|µ| in

the sense of exercise 4.56).

Proof.

i) It suffices, by outer regularity, to prove the inequality for E ⊂ X
open. Let A ⊂ X open with A b E, and take f ∈ Cc(X,R)
such that χA ≤ f ≤ 1 and spt f ⊂ E (which exists, by Urysohn’s
lemma 4.5). Then

|µ|(A)
4.57

≤ lim inf|µk|(A) ≤

≤ lim inf

ˆ
f d|µk|

|µk|
∗
⇀ν

= lim

ˆ
f dν ≤

≤ ν(E).

Since, by inner regularity, |µ|(E) = sup{|µ|(K) | K ⊂ E compact} =
sup{|µ|(A) | A ⊂ E open, A b E}, taking the sup in the inequality
above yields |µ|(E) ≤ ν(E), as asserted.

Suppose that E ∈ Bc
X with ν(∂E) = 0. Fix ε > 0. It follows

from lemma 4.59 below that there exists K ⊂ X compact and
A ⊂ X open such that A ⊂ E ⊂ Ko and ν(K \ A) < ε. Take
f ∈ Cc(X,R) such that χA ≤ f ≤ 1 and spt f ⊂ Ko. We then
have, for all k ∈ N:∣∣ˆ f dµk − µk(E)

∣∣ ≤ ˆ
|f − χE| d|µk| ≤ |µk|(K \ A)∣∣ˆ f dµ− µ(E)

∣∣ ≤ |µ|(K \ A) ≤ ν(K \ A)

Thus,

|µk(E)− µ(E)| ≤
∣∣ˆ f dµk − µk(E)

∣∣+
∣∣ˆ f dµ− µ(E)

∣∣+
∣∣ˆ f dµk −

ˆ
f dµ

∣∣ ≤
≤ |µk|(K \ A) + ν(K \ A) +

∣∣ˆ f dµk −
ˆ
f dµ

∣∣.
Since limk→∞

∣∣´ f dµk −
´
f dµ

∣∣ = 0 and, by the fact that K \ A
is compact, |µk|

∗
⇀ν and theorem 4.54.ii), lim sup|µk|(K \ A) ≤

ν(K \ A), it follows that

lim sup|µk(E)− µ(E)| ≤ 2ν(K \ A) < 2ε.
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By the arbitrariness of the ε > 0 taken, we conclude that µk(E)→
µ(E), as asserted.

ii) It follows from proposition 4.57 that, for all A ⊂ X open, |µ|(A) ≤
lim inf|µk|(A). Since |µk|(X)→ |µ|(X) <∞, we may assume, ex-
cluding the first terms of the sequence if necessary, that |µk|(X) <

∞ for all k ∈ N. It then follows from exercise 4.56 that |µk|
∗ nc
⇀|µ|;

in particular, |µk|
∗ f
⇀|µ|.

�

Lemma 4.59. Let X be a locally compact Hausdorff space, µ a pos-
itive Radon measure on X and E ∈ Bc

X such that µ(∂E) = 0. Then,
for every ε > 0, there is a compact set K ⊂ X and an open set A ⊂ X
such that A ⊂ E b Ko and µ(K \ A) < ε.

Proof. Fix ε > 0. Since E b X, we may take a compact set
K ⊂ X such that E b Ko and ν(K \ E) < ε/2. Indeed, by outer
regularity, there exists U ⊃ E open such that ν(U \ E) < ε/2; take
a relatively compact open set V such that E ⊂ V b U (which exists,
since E is compact) and put K := V . Then E b Ko and, as ν(∂E) = 0,
we have ν(K \ E) = ν(K \ E) ≤ ν(U \ E) < ε/2.

Similarly, by inner regularity there exists a compact set C ⊂ Eo

such that µ(Eo \C) < ε/2. Take a relatively compact open set A ⊂ X
such that C ⊂ A b Eo. Since µ(∂E) = 0, we have µ(E \ A) =
µ(Eo \A) ≤ µ(Eo \C) < ε/2. Finally, since K \A = (K \E)∪ (E \A),
the thesis follows. �

Exercise 4.60. Let X be a locally compact separable metric space,
(µj)j∈N a sequence of Rn-valued Radon measures on X weakly-star
convergent to an Rn-valued Radon measure µ on X and (Vm)m∈N an
increasing sequence of relatively compact open subsets of X such that
X = ∪m∈NVm. Suppose that ∀m ∈ N, limj→∞|µj|(Vm) = |µ|(Vm).

Then |µj|
∗
⇀|µ|.

Theorem 4.61 (De La Vallée Poussin). Let X be a locally compact
separable metric space and (µk)k∈N be a sequence of finite Rn-valued
Radon measures on X such that sup{|µk|(X) | k ∈ N} < ∞. Then
there exists a finite Rn-valued Radon measure µ on X and a subse-

quence (µkj)j∈N of (µk)k∈N such that µkj
∗ f
⇀µ. Moreover, |µ|(X) ≤

lim inf|µkj |(X).

Proof. The first assertion is a direct consequence of the fact that
strongly closed balls in C0(X,Rn)∗ are compact and metrizable in the
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weak-star topology (hence sequentially compact): the compactness fol-
lows from Banach-Alaoglu theorem, and the metrizability follows from
the fact that C0(X,Rn) is a separable Banach space.

The second assertion is a consequence of the first and of proposition
4.57. �

Remark 4.62. The second assertion in the previous proposition is
also a consequence of the fact that, for any Banach space Y , the norm
‖·‖ of Y ∗ is weakly-star lower semicontinuous, since ‖·‖ = sup{〈y, ·〉 |
y ∈ Y, ‖y‖ ≤ 1} is the sup of a family of weakly-star continuous func-
tions.

Corollary 4.63. Let X be a locally compact separable metric space
and (µk)k∈N be a sequence of Rn-valued Radon measures on X such
that, for any K ⊂ X compact, sup{|µk|(K) | k ∈ N} <∞. Then there
exists an Rn-valued Radon measure µ on X and a subsequence (µkj)j∈N

of (µk)k∈N such that µkj
∗
⇀µ.

Proof. Let (Vm)m∈N be an increasing sequence of relatively com-
pact open subsets of X such that ∪m∈NVm = X. We apply De La
Vallée Poussin’s theorem 4.61 to each of the traces (µk|Vm)k∈N, m ∈ N,
and then we use a diagonal argument:

1) Since ∀k ∈ N,
∣∣µk|V1

∣∣ = |µk|
∣∣
V1

(by proposition 4.36) and supk∈N|µk|(V1) ≤
supk∈N|µk|(V 1) < ∞, there exists ν1 ∈ C0(V1,Rn)∗ and a subse-

quence µ1 = (µ1
k)k∈N of (µk)k such that µ1

k|V1

∗ f
⇀ν1.

2) Suppose that we have defined subsequences µ1, . . . , µi of (µk)k∈N
and νj ∈ C0(Vj,Rn)∗ for 1 ≤ j ≤ i such that µj is a subsequence

of µj−1 for 2 ≤ j ≤ i and µjk|Vj
∗ f
⇀νj for 1 ≤ j ≤ i. We reapply

to µi the argument of the previous item to find a subsequence µi+1

if µi and νi+1 ∈ C0(Vi+1,Rn)∗ such that µi+1
k |Vi+1

∗ f
⇀νi+1. Induc-

tively, we have thus defined a sequence (µi)i∈N of subsequences of
the original sequence (µk)k∈N and a sequence (νi)i∈N with ∀i ∈ N,
νi ∈ C0(Vi,Rn)∗.

3) Take the subsequence (λk)k∈N of (µk)k∈N given by λk := µkk. For all

i ∈ N, (λk)k∈N is a subsequence of µi, hence λk|Vi
∗ f
⇀νi. In particular,

given f ∈ Cc(X,Rn) and i ∈ N such that spt f b Vi, we have

λk · f =

ˆ
f · dλk =

ˆ
f |Vi · dλk|Vi

k→∞→ νi · f,

hence ν : Cc(X,Rn) → R given by f 7→ limλk · f (= νi · f for any
i ∈ N such that spt f b Vi) is a well-defined linear functional. It
is continuous, i.e. ν ∈ Cc(X,Rn)∗, since, for each K ⊂ X compact,
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we can take i ∈ N such that K b Vi, hence ν|CK
c (X,Rn) = νi|CK

c (X,Rn).

Since λk
∗
⇀ν, the thesis follows.

�





CHAPTER 5

Area and Coarea Formulas

In this chapter we study Lipschitz maps Rn → Rm and two gener-
alizations of the change of variables formula 1.82: the area formula, for
n ≤ m, and the coarea formula (which is also an extension of Fubini-
Tonelli’s theorem), for n ≥ m. Both theorems have the same statement
for n = m.

5.1. Lipschitz maps on Rn

Recall that, given metric spaces X and Y , a map f : X → Y is
called Lipschitz if there exists C ≥ 0 such that ∀x, y ∈ X, dY

(
f(x), f(y)

)
≤

CdX(x, y). If f is Lipschitz, there exists a smallest such constant C,
namely

Lip f := sup{
dY
(
f(x), f(y)

)
dX(x, y)

| x 6= y ∈ X},

called Lipschitz constant of f .
In this section we derive some basic properties of Lipschitz maps

Rn → Rm.

5.1.1. Extensions of Lipschitz maps. Let A ⊂ Rn and f : A→
Rm a Lipschitz map. As we will see in subsequent developments, it is
useful to be able to extend f to a Lipschitz map with the same Lipschitz
constant defined on all of Rn. The theorems stated below ensure the
existence of such extensions.

Firstly, we consider the case m = 1:

Theorem 5.1 (McShane’s lemma). Let A ⊂ Rn and f : A → R a
Lipschitz map. Define F : Rn → R by:

(5.1) F (x) := inf{f(a) + Lip f · ‖x− a‖ | a ∈ A}.
Then F extends f and LipF = Lip f .

That F is well defined (i.e. the second member in the previous
equality is > −∞, so that F indeed takes values in R) will be seen as
part of the proof.

The geometric idea behind formula (5.1) is the following: g : X → R
is a Lipschitz function on the metric space X iff there exists C ≥ 0

121
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such that gr g = {
(
x, g(x)

)
| x ∈ X} ⊂ X × R lies in the intersection

of all cones {(x, y) ∈ X×R | |y− g(a)| ≤ C‖x−a‖} for a ∈ X. If that
is the case, the least such C is the Lipschitz constant of g.

Proof.

1) The formula in the statement of the theorem defines F : Rn →
[−∞,∞). We shall prove that ImF ⊂ R.

2) If x ∈ A, it is clear that the infimum in (5.1) is attained for a = x,
since ∀a ∈ A, f(x) − f(a) ≤ |f(x) − f(a)| ≤ Lip f‖x − a‖, hence
f(x) ≤ inf{f(a) + Lip f · ‖x− a‖ | a ∈ A}. Thus, F (x) = f(x), i.e.
F extends f .

3) If x, y ∈ Rn and a ∈ A, F (x) ≤ f(a)+Lip f ·‖x−a‖ ≤ f(a)+Lip f ·
‖y−a‖+ Lip f · ‖x− y‖. Taking the infimum of the second member
over all a ∈ A, we conclude that F (x) ≤ F (y) + Lip f · ‖x− y‖. In
particular, if x ∈ A, we conclude that F (y) ≥ f(x)−Lip f ·‖x−y‖ >
−∞ for all y ∈ Rn, hence ImF ⊂ R.

Exchanging x and y, we also have F (y) ≤ F (x) + Lip f · ‖x−y‖,
so that |F (x)− F (y)| ≤ Lip f · ‖x− y‖. Hence, F is Lipschitz with
Lipschitz constant ≤ Lip f ; since it extends f , its Lipschitz constant
must be Lip f .

�

For a Lipschitz map f = (f1, . . . , fm) : A ⊂ Rn → Rm, we may ap-
ply McShane’s lemma to each component of f , yielding a map F =
(F1, . . . , Fm) : Rn → Rm which extends f with Lipschitz constant
LipF ≤

√
mLip f . It is possible, however, to obtain an extension

which has the same Lipschitz constant as f :

Theorem 5.2 (Kirszbraun’s theorem). Let A ⊂ Rn and f : A →
Rm a Lipschitz map. Then there exists a Lipschitz extension f : Rn →
Rm of f such that LipF = Lip f .

Proof. We refer the reader to [Mag12], page 69. �

5.1.2. Rademacher’s theorem. We prove in this subsection that
every Lipschitz function on Rn is differentiable in the sense of Fréchet
Ln-a.e. on Rn. Besides, its a.e. defined partial derivatives coincide
with its weak partial derivatives, introduced below.

If Ω is an open subset of Rn and X ∈ C1
c(Ω,Rn), then a direct

application of the Fundamental Theorem of Calculus combined with
Fubini-Tonelli’s theorem yieldsˆ

Ω

div X dLn = 0.
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If u ∈ C1(Ω) and ϕ ∈ C1
c(Ω,Rn), the previous equality applied to

X = uϕ yields the elementary Gauss-Green’s identity in divergence
form:

ˆ
Ω

〈∇u, ϕ〉 dLn = −
ˆ

Ω

u div ϕ dLn.

That motivates, for less regular u, let us say u ∈ L1
loc(Ln|Ω), the

introduction of the distributional gradient of u (that is, the gradient
of u in the sense of the theory of Schwartz distributions) as the linear
functional ∇u : C∞c (Ω,Rn) → R given by the second member in the
previous equality, i.e.

∇u · ϕ := −
ˆ

Ω

u div ϕ dLn.

Similarly, for 1 ≤ i ≤ n, the distributional i-th partial derivative of u
is the linear functional ∂u

∂xi
: C∞c (Ω)→ R given by

〈 ∂u
∂xi

, ϕ〉 := −
ˆ

Ω

u
∂ϕ

∂xi
dLn.

Whenever those linear functionals are representable as integration of ϕ
against an L1

loc function on Ω, we say that u admits weak gradient or
weak partial derivatives :

Definition 5.3 (weak derivatives and gradients). Let Ω be an open
subset of Rn and u ∈ L1

loc(Ln|Ω). We say that:

i) For 1 ≤ i ≤ n, u has weak i-th partial derivative vi ∈ L1
loc(Ln|Ω) if

∀ϕ ∈ C∞c (Ω), ˆ
Ω

viϕ dLn = −
ˆ

Ω

u
∂ϕ

∂xi
dLn.

ii) u has weak gradient v ∈ L1
loc(Ln|Ω,Rn) if ∀ϕ ∈ C∞c (Ω,Rn),

(5.2)

ˆ
Ω

〈v, ϕ〉 dLn = −
ˆ

Ω

u div ϕ dLn.

We denote the weak derivatives by the same notations used for the
classical derivatives, i.e. ∂u

∂xi
for the i-th weak partial derivative and ∇u

for the weak gradient of u, if they exist; if distinction is needed, we use
“∂

wu
∂xi

” or “∇w u” for the weak partial derivatives and gradient.

Exercise 5.4 (weak gradients, bis). Weak gradients may be also
characterized by means of Gauss-Green identity in gradient form. That
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is, let Ω be an open subset of Rn and u ∈ L1
loc(Ln|Ω); then u admits

weak gradient v ∈ L1
loc(Ln|Ω,Rn) iff ∀ϕ ∈ C∞c (Ω),

(5.3)

ˆ
Ω

ϕv dLn = −
ˆ

Ω

u∇ϕ dLn.

Exercise 5.5. Let Ω be an open subset of Rn, u ∈ L1
loc(Ln|Ω) and

1 ≤ i ≤ n. If there exists ∂wu
∂xi
∈ L1

loc(Ln|Ω), then ∀ϕ ∈ C1
c(Ω),

ˆ
Ω

∂wu

∂xi
ϕ dLn = −

ˆ
Ω

u
∂ϕ

∂xi
dLn.

Proposition 5.6. Let Ω be an open subset of Rn and u ∈ L1
loc(Ln|Ω).

i) If the weak partial derivatives or weak gradient of u exist, they are
unique up to Ln-null sets.

ii) u has weak gradient v = (v1, . . . , vn) ∈ L1
loc(Ln|Ω,Rn) iff ∀1 ≤ i ≤

n, u has i-th weak partial derivative vi ∈ L1
loc(Ln|Ω).

Proof. Part i) follows from the fundamental lemma of the calculus
of variations 4.34 and part ii) is immediate from exercise 5.4. �

It is clear that, if u ∈ C1(Ω), the classical and weak gradients of u
coincide. The converse holds in the following sense: if u ∈ L1

loc(Ln|Ω)
has weak gradient v ∈ C(Ω,Rn), then u ∈ C1(Ω). We postpone the
proof of this fact to exercise 6.22 in chapter 6.

Proposition 5.7 (vanishing weak gradient). Let Ω ⊂ Rn be a con-
nected open set and u ∈ L1

loc(Ln|Ω) such that ∀ϕ ∈ C∞c (Ω),
´

Ω
u∇ϕ dLn =

0. Then u coincides Ln-a.e. with a constant function.

Proof. 1) For each ε > 0, let Ωε := {x ∈ Rn | B(x, ε) ⊂ Ω} =
{x ∈ Rn | d(x,Ωc) > ε}, so that (Ωε)ε>0 is a family of open subsets
of Ω which increases to Ω as ε ↓ 0.

Let (φt)t>0 be the standard mollifier in Rn. Given ε > 0, let
uε : Rn → R be given by uε = u on Ωε/2 and uε = 0 on Rn \
Ωε/2. Since Ωε/2 ⊂ Ω, it follows that uε ∈ L1

loc(Ln) (because, for
each compact K ⊂ Rn,

´
K
|uε| dLn =

´
K∩Ωε/2

|u| dLn < ∞, since

K ∩ Ωε/2 is a compact subset of Ω). Take gε := φε/2 ∗uε. Then, by
proposition 1.108, gε ∈ C∞(Rn) and ∇gε = (∇φε/2) ∗uε. Therefore,
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since spt φε/2 ⊂ Bε/2, we have, ∀x ∈ Ωε:

∇gε(x) =

ˆ
∇φε/2(x− y)uε(y) dLn(y) =

= −
ˆ
∇[φε/2(x− ·)]uε dLn =

= −
ˆ
x+Bε/2

∇[φε/2(x− ·)]uε dLn
x+Bε/2⊂Ωε/2

=

= −
ˆ

Ω

∇[φε/2(x− ·)]u dLn = 0,

where the last equality is justified by the fact that spt φε/2(x− ·) ⊂
x + Bε/2 ⊂ Ω, so that φε/2(x − ·) ∈ C∞c (Ω). That is, ∇gε ≡ 0 in
the open set Ωε; by elementary Calculus, it then follows that gε is a
constant function in each connected component of Ωε.

2) We contend that gε is convergent to u in L1
loc(Ln|Ω) as ε → 0, i.e.

for each compact K ⊂ Ω, ‖gε − u‖L1(Ln|K) → 0. Indeed, given
K ⊂ Ω compact, let ε0 := 1

2
d(K,Ωc). Then, ∀ 0 < ε < ε0, both

gε = φε/2 ∗uε and φε/2 ∗uε0 coincide in each x ∈ Ωε0 ⊃ K with´
x+Bε/2

φε/2(x− y)u(y) dLn(y). By exercise 1.115,

φε/2 ∗uε0
ε→0→ uε0

in L1
loc(Ln); therefore, we conclude that gε|K → uε0|K = u|K in

L1(Ln|K), thus proving our contention.
3) Let (εn)n∈N be a sequence in (0,∞) with εn ↓ 0. It follows from the

contention in the previous item that (gn := gεn)n∈N is convergent
to u in L1

loc(Ln|Ω); therefore, for each compact K ⊂ Ω, there exists
a subsequence of (gn)n∈N which converges Ln-a.e. on K to u|K .
Since Ω is σ-compact, we may take a sequence of compact subsets
which increases to Ω and apply a diagonal argument to obtain a
subsequence of (gn)n∈N which converges Ln-a.e. on Ω to u. We
denote such subsequence with the same notation (gn)n∈N.

4) Let B be an arbitrary open ball with B b Ω. Since B is compact
and (Ωεn)n∈N increases to Ω as n ↑ ∞, there exists N ∈ N such
that B ⊂ Ωεn for all n ≥ N . Since B is connected, it follows from
part 1) that gn is constant on B for every n ≥ N . We then conclude
from part 3) that (gn)n∈N is pointwise convergent on B to a constant
function. By the arbitrariness of the open ball B b Ω, it follows
that (gn)n∈N converges pointwise on Ω to a locally constant function
g : Ω→ R; but, since Ω is connected, g must be a constant function.
As (gn)n∈N converges pointwise to g and converges pointwise Ln-a.e.
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to u, it finally follows that u = g Ln-a.e., i.e. u coincides Ln-a.e.
with a constant function, as we wanted to show.

�

Definition 5.8 (Sobolev spaces and functions). Let Ω be an open
subset of Rn, u : Ω→ R and 1 ≤ p ≤ ∞. We say that

i) u is a (1, p)-Sobolev function if u ∈ Lp(Ln|Ω) and, ∀1 ≤ i ≤ n, u
has weak partial derivatives ∂u

∂xi
∈ Lp(Ln|Ω). We use the notation

W1,p(Ω) to denote the space of (1, p)-Sobolev functions on Ω.
ii) u is a local (1, p)-Sobolev function if u ∈ Lp

loc(Ln|Ω) and, ∀1 ≤
i ≤ n, u has weak partial derivatives ∂u

∂xi
∈ Lp

loc(Ln|Ω). We use

the notation W1,p
loc(Ω) to denote the space of local (1, p)-Sobolev

functions on Ω.

It is immediate from the definitions that W1,p
loc (Ω) and W1,p(Ω) are

linear subspaces of RΩ, and the weak partial derivatives and weak gra-
dient are linear on these spaces. We further develop the basic theory of
weak derivatives and Sobolev spaces in chapter 6. For the moment, we
prove that Lipschitz functions on Rn belong to W1,∞

loc (Rn), but firstly
we introduce some notation.

Let u : Rn → R and τ ∈ Sn−1. For h ∈ R \ {0}, we denote by
τhu : Rn → R the incremental ratio of u in the direction τ :

τhu(x) :=
u(x+ hτ)− u(x)

h
.

Note that, by the invariance of the Lebesgue measure under trans-
lations, if u ∈ L1

loc(Rn), v : Rn → R bounded Ln-measurable with
compact support and h ∈ R \ {0}:ˆ

u(x+ hτ)v(x) dLn(x) =

ˆ
u(x)v(x− hτ) dLn(x),

hence

(5.4)

ˆ
τhu(x)v(x) dLn(x) = −

ˆ
u(x)τ−hv(x) dLn(x).

Proposition 5.9. Let f : Rn → R be a Lipschitz function. Then
f ∈ W1,∞

loc (Rn).

Proof. It is clear that f ∈ L∞loc(Ln). We show that f has weak
gradient in L∞(Ln,Rn).

Let τ ∈ Sn−1 and (hk)k∈N a sequence in (0,∞) convergent to 0.
Then ∀k ∈ N, ‖τhkf‖∞ ≤ Lip f . Since L1(Ln) is a separable Banach
space with L1(Ln)

∗ ≡ L∞(Ln) (in view of Riesz representation theorem
1.79), it follows from Banach-Alaoglu theorem that the closed balls in
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L∞(Ln) are compact and metrizable in the weak-star topology. Hence,
passing to a subsequence, if necessary, we may assume that there exists
gτ ∈ L∞(Ln) such that τhkf

∗
⇀gτ , i.e. for all v ∈ L1(Ln),

(5.5)

ˆ
v τhkf dLn k→∞→

ˆ
vgτ dLn.

Note that, ∀ϕ ∈ C∞c (Rn), ∀k ∈ N, τ−hkϕ has support in the compact
set K := spt ϕ + B(0, supk∈N hk). Thus, ∀x ∈ Rn, f(x)τ−hkϕ(x) →
f(x)∇ϕ(x) · τ and the convergence is dominated, since, by the mean
value inequality, ∀k ∈ N, |f τ−hkϕ| ≤ ‖∇ϕ‖∞ |f |χK ∈ L1(Ln). That
justifies the application of the dominated convergence theorem in the
last equality below, ∀ϕ ∈ C∞c (Rn):ˆ

gτ ϕ dLn (5.5)
= lim

k→∞

ˆ
τhkf ϕ dLn (5.4)

=

= − lim
k→∞

ˆ
f τ−hkϕ dLn 1.64

=

= −
ˆ
f ∇ϕ · τ dLn.

Taking τ = ei, 1 ≤ i ≤ n, we conclude that f has weak partial deriva-
tives gei ∈ L∞(Ln). �

Let U ⊂ Rn open and f : U → R. Recall that f is differentiable at
x0 ∈ U in the sense of Fréchet if there exists A ∈ L(Rn,R) such that

lim
h→0

f(x0 + h)− f(x0)− A · h
‖h‖

= 0.

If that is the case, f has first order partial derivatives at x0, A satisfying
the above condition is unique and coincides with 〈∇f(x0), ·〉 : Rn → R;
A is called Fréchet derivative of f at x0 and denoted by Df(x0).

Equivalently, f is differentiable at x0 if it satisfies the condition
stated in the exercise below. We will use the following two exercises in
the proof of Rademacher’s theorem.

Exercise 5.10 (characterization of Fréchet differentiability). Let
U ⊂ Rn open and f : U → R. Then f is differentiable at x0 ∈ U
iff there exists A ∈ L(Rn,R) and there exists r > 0 such that

lim
t→0+

f(x0 + tv)− f(x0)

t
= A · v

uniformly in v ∈ rSn−1. If so,

• the above condition holds for all r > 0 (i.e. if it holds for some
r > 0, then it holds for all r > 0);
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• A = Df(x0).

Exercise 5.11 (weak gradients under scaling and translations).
Let x ∈ Rn, h > 0, T : Rn → Rn given by τ 7→ x+hτ and u ∈ W1,1

loc(Rn).

Then u ◦ T ∈ W1,1
loc(Rn) and ∇w(u ◦ T )(τ) = h∇w u(x+ hτ).

Theorem 5.12 (Rademacher’s theorem). Let f : Rn → R be Lip-
schitz. Then f is differentiable in the sense of Fréchet Ln-a.e. and
∇f = ∇w f Ln-a.e.

Proof. Recall that f ∈ W1,∞
loc , by proposition 5.9, so that ∇w f ∈

L∞loc(Ln,Rn) ⊂ L1
loc(Ln,Rn). Furthermore, by corollary 3.31 applied to

each component of ∇w f ∈ L1
loc(Ln,Rn), Ln-almost every x ∈ Rn is a

Lebesgue point of ∇w f ; fix such a Lebesgue point x ∈ Rn. We will
show that f is differentiable at x and ∇f(x) = ∇w f(x).

For each h > 0, let gh : Rn → R be given by

gh(τ) :=
f(x+ hτ)− f(x)

h
.

By exercise 5.10, the thesis follows once we show that gh(τ) converges
to ∇w f(x) · τ uniformly with respect to τ on Sn−1.

Note that ∀h > 0, gh is Lipschitz with Lip gh ≤ Lip f and gh(0) = 0.
Let (hk)k∈N be a sequence in (0,∞) convergent to 0. We have:

1) By proposition 5.9, gh ∈ W1,∞
loc (Rn). Besides, by the linearity of the

weak gradient and exercise 5.11, ∀τ ∈ Rn:

∇w gh(τ) = ∇w f(x+ hτ).

Hence, the fact that x is a Lebesgue point of ∇w f implies that
ˆ
U(0,1)

|∇w gh(τ)−∇w f(x)| dτ =

ˆ
U(0,1)

|∇w f(x+ hτ)−∇w f(x)| dτ y=x+hτ
=

=
1

hn

ˆ
U(x,h)

|∇w f(y)−∇w f(x)| dy h→0→ 0,

i.e. ∇w gh converges to the constant function∇w f(x) in L1(Ln|U(0,1))
as h→ 0.

2) (gh)h>0 is equicontinuous and pointwise bounded. It then follows
from the Arzelà-Ascoli theorem that there exists g : Rn → R and a
subsequence (hkj)j∈N of (hk)k∈N such that gj := ghkj → g uniformly

on compact subsets of Rn. In particular, g is Lipschitz with Lip g ≤
Lip f and g(0) = 0.
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3) ∀ϕ ∈ C∞c (U(0, 1)),ˆ
∇w g ϕ dLn = −

ˆ
g ∇ϕ dLn =

= − lim
j→∞

ˆ
gj ∇ϕ dLn =

= lim
j→∞

ˆ
∇w gj ϕ dLn =

=

ˆ
∇w f(x) ϕ(y) dy.

Thus, from the fundamental lemma of the Calculus of Variations
4.34, it follows that ∇w g(y) = ∇w f(x) for Ln-a.e. y ∈ U(0, 1).

4) Define g0 : Rn → R by g0(τ) := g(τ) − ∇w f(x) · τ . Then g0 is
Lipschitz and, by the previous item, ∇w g0 = 0 on U(0, 1). Since
U(0, 1) is connected, it follows from proposition 5.7 that g0 coincides
Ln-a.e. on U(0, 1) with a constant function. As g0 is continuous
and g0(0) = 0, we conclude that g0 is identically null on U(0, 1)
and, by continuity, identically null on B(0, 1). Thus, ∀τ ∈ B(0, 1),
g(τ) = ∇w f(x) · τ . Hence, gj(τ) → ∇w f(x) · τ uniformly with
respect to τ ∈ B(0, 1). Since the sequence (hk)k∈N convergent to
0 was arbitrarily taken, we have shown that every such sequence
admits a subsequence (hkj)j∈N such that gj = ghkj converges to g in

the metric space
(
C(Bn), ‖·‖u

)
, which implies that limh→0 gh = g in

the same metric space. In particular,

lim
h→0+

f(x+ hτ)− f(x)

h
= ∇w f(x) · τ

uniformly with respect to τ ∈ Sn−1 ⊂ Bn.

By exercise 5.10, it follows that f is differentiable at x and ∇f(x) =
∇w f(x), as we wanted to show. �

Exercise 5.13. Let f : Rn → R be Lipschitz. The set Df of points
where f is differentiable in the sense of Fréchet is Borel measurable and
Df : Df → L(Rn,R) is Borelian.

Corollary 5.14. If Ω ⊂ Rn open and f : Ω → R is locally Lips-
chitz, then f is Ln|Ω-a.e. differentiable in the sense of Fréchet.

Proof. We may cover Ω with a countable family (Uk)k∈N of open
subsets of Ω such that ∀k ∈ N, f |Uk is Lipschitz. For each k ∈ N,
we may extend f |Uk to a Lipschitz function fk : Rn → R, which is
differentiable Ln-a.e. on Rn in view of Rademacher’s theorem. As
differentiability is a local notion, we conclude that f |Uk is differentiable
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on the complement of a Ln-null set Sk ⊂ Uk. Then f is differentiable
on the complement of the Ln-null set S = ∪k∈NSk. �

Remark 5.15. We postpone to 6.16 in chapter 6, after we prove
the locality of the weak derivative, the proof that that f : Ω → R
locally Lipschitz has weak gradient ∇w f ∈ L∞loc(Ln|Ω), which coincides
Ln|Ω-a.e. with ∇f .

Corollary 5.16. If Ω ⊂ Rn open and f : Ω → Rm is locally
Lipschitz, then f is Ln|Ω-a.e. differentiable in the sense of Fréchet.

Proof. Apply the previous corollary to each component of f . �

Corollary 5.17.

i) Let f : Rn → Rm be locally Lipschitz and Zf := {x ∈ Rn | f(x) =
0}. Then Df(x) = 0 for Ln-a.e. x ∈ Zf .

ii) Let f, g : Rn → Rn be locally Lipschitz and Y := {x ∈ Rn |
g
(
f(x)

)
= x}. Then Dg

(
f(x)

)
◦ Df(x) = idRn for Ln-a.e. x ∈ Y .

Proof.

1) It suffices to prove part i) for m = 1 (in the general case, we argue
componentwise).

2) Note that Zf ∈ BRn . Let x ∈ Zf such that ∃Df(x) and

lim
r→0

Ln
(
Z ∩ B(x, r)

)
Ln
(
B(x, r)

) = 1.

In view of Rademacher’s theorem 5.16 and of theorem 3.29 (with
Ln in place of µ and Zf in place of A), Ln-a.e. x ∈ Zf satisfies the
above conditions. Therefore, part i) will be proved once we show
that ∇f(x) = 0.

Suppose that ∇f(x) = a ∈ Rn \ {0}. Define S := {v ∈ Sn−1 |
〈a, v〉 > 1

2
‖a‖}. Note that S is an open neighborhood of a/‖a‖ in

Sn−1. For each r > 0, we define Sr := {tv | 0 < t ≤ r, v ∈ S} ⊂
B(0, r), so that Sr = rS1.

By exercise 5.10,

lim
t→0

f(x+ tv)− f(x)

t
= 〈a, v〉

uniformly on v ∈ Sn−1. It then follows, by the definition of S, that
there exists R > 0 such that, ∀0 < t < R and ∀ v ∈ S,

f(x+ tv)

t
=
f(x+ tv)− f(x)

t
>

1

2
‖a‖ > 0.
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In particular, ∀0 < r < R, f > 0 on x + Sr, i.e. Zf ∩ B(x, r) ⊂
B(x, r) \ (x+ Sr). Consequently, ∀0 < r < R,

Ln
(
Zf ∩ B(x, r)

)
Ln
(
B(x, r)

) ≤
Ln
(
B(x, r) \ (x+ Sr)

)
Ln
(
B(x, r)

) 1.4
=

= 1− L
n(S1)

α(n)
,

whence

lim sup
r→0

Ln
(
Zf ∩ B(x, r)

)
Ln
(
B(x, r)

) ≤ 1− L
n(S1)

α(n)
.

In view of our choice of x, the latter inequality implies 1− L
n(S1)
α(n)

≥ 1,

hence Ln(S1) = 0. As S1 has nonempty interior, we have reached a
contradiction, thus showing that ∇f(x) 6= 0 cannot occur.

3) To prove part ii), let F := g ◦ f − idRn . Then F is locally Lipschitz
and Y = ZF ; it then follows from part i) that D(g ◦ f)(x)− idRn =
DF (x) = 0 for Ln-a.e. x ∈ Y . Therefore, part ii) will be proved
once we show that D(g◦f)(x) = Dg

(
f(x)

)
◦Dg(x) for Ln-a.e. x ∈ Y .

Let Df := {x ∈ Rn | ∃Df(x)}, Dg := {x ∈ Rn | ∃Dg(x)}, and
X := Y ∩Df ∩ f−1(Dg). Then Y \X = (Y \Df ) ∪

(
Y \ f−1(Dg)

)
.

If x ∈ Y \ f−1(Dg), then f(x) ∈ Rn \ Dg, hence x = g
(
f(x)

)
∈

g(Rn \Dg). Therefore, Y \ f−1(Dg) ⊂ g(Rn \Dg), so that

Y \X ⊂ (Rn \Df ) ∪ g(Rn \Dg).

Since both Rn\Df and Rn\Dg are Ln-null sets (in view of Rademacher’s
theorem 5.17), and since the image of a Ln-null set by a locally Lip-
schitz map is Ln-null, it follows that Y \X is Ln-null. On the other
hand, ∀x ∈ X, ∃Df(x) and ∃Dg

(
f(x)

)
, hence the chain rule ensures

that ∃D(g ◦ f)(x) = Dg
(
f(x)

)
◦ Dg(x).

�

5.1.3. Linear maps and Jacobians. In this subsection we recall
some linear algebra and introduce pertinent notations that will be used
in the two main theorems which name this chapter.

Definition 5.18. Let V and W be finite-dimensional Hilbert spaces.

i) A linear map O : V→ W is called an orthogonal injection if ∀x, y ∈
V, 〈O ·x,O ·y〉 = 〈x, y〉. We denote the set of orthogonal injections
V → W by O(V,W); we abbreviate O(n,m):= O(Rn,Rm) and
O(n) := O(n, n).

ii) Let T : V → W be a linear map. We denote by T ∗ the adjoint of
T with respect to the inner products on V and W, i.e. the unique
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linear map such that ∀x ∈ V,∀y ∈ W, 〈x, T ∗ · y〉 = 〈T · x, y〉. If
V = W and T = T ∗, we call T self-adjoint or symmetric. We
denote by Sym(V) the set of symmetric linear maps in L(V); we
abbreviate Sym(n):= Sym(Rn).

iii) We say that a linear map T : V → V is positive if it is symmetric
and ∀x ∈ V, 〈T · x, x〉 ≥ 0.

Note that O(V,W) = ∅ if dim V > dim W.
Recall that, for any symmetric linear map T on a finite-dimensional

Hilbert space V, there exists an orthonormal basis of V formed by eigen-
vectors of T . Equivalently, there exist unique c1, . . . , ck ∈ R pairwise
distinct and unique P1, . . . , Pk ∈ L(V) such that ∀1 ≤ i, j ≤ k, Pi = P ∗i ,

P 2
i = Pi, PiPj = 0 if i 6= j,

∑k
i=1 Pi = idV and T =

∑k
i=1 ciPi; the ci’s

are the eigenvalues of T and the Pi’s are the orthogonal projections on
the corresponding eigenspaces. The decomposition T =

∑k
i=1 ciPi is

called the spectral resolution of T .

Theorem 5.19 (existence of square roots). If V is a finite-dimensional
Hilbert space and P ∈ L(V) is a positive operator, there exists a unique
positive operator N ∈ L(V) such that N2 = P .

Notation. We denote N by
√
P .

Proof. Let P =
∑k

i=1 ciEi be the spectral resolution of P . The

positiveness of P implies ci ≥ 0 for 1 ≤ i ≤ k. DefineN :=
∑k

i=1

√
ciEi;

then N is positive and N2 = P , thus proving the existence. On the
other hand, suppose that M is another positive operator such that
M2 = P . Let the spectral resolution of M be M =

∑j
i=1 diFi. Then

P = M2 =
∑j

i=1 d
2
iFi. By the uniqueness of the spectral resolution

of P , it then follows that j = k and, reordering the di’s if necessary,
ci = d2

i for 1 ≤ i ≤ k, thus proving the uniqueness. �

Theorem 5.20 (polar decomposition). Let V and W be finite-dimensional
Hilbert spaces and L : V→ W be a linear map.

i) If dim V ≤ dim W, there exists a positive S ∈ Sym(V) and O ∈
O(V,W) such that

L = O ◦ S.
Moreover, in the above decomposition, S ∈ Sym(V) positive is
unique, and so is O ∈ O(V,W) if L is injective.

ii) If dim V ≥ dim W, there exists a positive S ∈ Sym(W) and O ∈
O(W,V) such that

L = S ◦O∗.
Moreover, in the above decomposition, S ∈ Sym(W) positive is
unique, and so is O ∈ O(W,V) if L is surjective.
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Proof. Part ii) follows from part i) applied to L∗ : W → V, so it
is enough to prove part i).

1) (uniqueness) Suppose that there exists S ∈ Sym(V) andO ∈ O(V,W)
such that L = O ◦ S. Then, since O∗O = idV, it follows that
L∗L = S2. As L∗L is positive, we conclude that S is the (unique)
positive square root of L∗L given by theorem 5.19. Moreover, if L is
injective, so is S, hence S is invertible and we must have O = L◦S−1.

2) (existence) Let S :=
√
L∗L. For each v ∈ V, we must have O ·S ·v =

L·v. Thus, define O on the range of S by O·w := L·v if v ∈ V is such
that S · v = w. If v′ ∈ V is another vector such that S · v′ = w, we
must have ‖L·(v−v′)‖2 = 〈L∗L·(v−v′), v−v′〉 = 〈S2·(v−v′), v−v′〉 =
0, hence L·v = L·v′, which shows that O is well-defined on the range
of S. Besides, it is clearly linear and satisfies ∀v ∈ V, L ·v = O ·S ·v.
If w,w′ ∈ ImS and v, v′ ∈ V are such that S · v = w, S · v′ = w′, we
have:

〈O · w,O · w′〉 = 〈L · v, L · v′〉 =

= 〈L∗L · v, v′〉 = 〈S2 · v, v′〉 =

= 〈S · v, S · v′〉 = 〈w,w′〉,
hence O : ImS → W is orthogonal. Finally, since dim V ≤ dim W,
we have dim(ImS)⊥ ≤ dim(O · ImS)⊥, hence we may extend O to
an orthogonal injection on V (take any orthonormal set in (ImS)⊥

and map it to an orthonormal set on (O · ImS)⊥), thus yielding
O ∈ O(V,W) such that O ◦ S = L.

�

Definition 5.21 (Jacobian of a linear map). Let V and W be finite-
dimensional Hilbert spaces and L ∈ L(V,W), with polar decomposition
O ◦ S if dim V ≤ dim W or S ◦O∗ if dim V > dim W, cf. theorem 5.20.
We define the Jacobian JLK of L by:

JLK := |detS|.
Remark 5.22.

1) Note that JLK is well-defined, by the uniqueness of S in the polar
decomposition.

2) It is clear that

JLK = JL∗K =

{√
detL∗L if dim V ≤ dim W√
detLL∗ if dim V ≥ dim W.

The next theorem provides a useful formula for computing the Ja-
cobian of a linear map L : V → W between finite-dimensional Hilbert
spaces.
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Theorem 5.23 (Binet-Cauchy formula). Let V and W be finite-
dimensional Hilbert spaces with n = dim V ≤ dim W = m. If L ∈
L(V,W), then

JLK =

√ ∑
B∈µ(m,n)

(detB)2,

where µ(m,n) is the set of n×n minors in some matrix representation
of L with respect to orthonormal bases on V and W.

Choosing orthonormal bases on V and W, we identify V ≡ Rn and
W ≡ Rm. We will use the following notation:

Notation. Let n ≤ m.

1) We denote by:
• Φ(m,n) the set of all maps {1, . . . , n} → {1, . . . ,m}.
• Σ(m,n) := {λ ∈ Φ(m,n) | λ 1-1}. We abbreviate Σn :=

Σ(n, n) (i.e the set of permutaions of {1, . . . , n}).
• Λ(m,n):= {λ ∈ Σ(m,n) | λ strictly increasing}.

2) For λ ∈ Λ(m,n), let Sλ := 〈eλ(i) | 1 ≤ i ≤ n〉 ⊂ Rm and Pλ ∈
L(Rm, Sλ) the orthogonal projection onto Sλ, i.e. Pλ(x1, . . . , xm) :=
(xλ(1), . . . , xλ(n)).

Proof. With the above notation in force, we must prove that

JLK2 =
∑

λ∈Λ(m,n)

(detPλ ◦ L)2.

Let (Lij)m×n be the matrix of L with respect to the standard bases
of Rn and Rm. Then the matrix (Aij)n×n of A := L∗L ∈ L(Rn) with
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respect to the standard basis is given by Aij =
∑m

k=1 LkiLkj. Therefore:

JLK2 = detA =
∑
σ∈Σn

sgn (σ)
n∏
i=1

aiσ(i) =
∑
σ∈Σn

sgn (σ)
n∏
i=1

m∑
k=1

LkiLkσ(i) =

=
∑
σ∈Σn

sgn (σ)
∑

ϕ∈Φ(m,n)

n∏
i=1

Lϕ(i)iLϕ(i)σ(i)
(∗)
=

=
∑
σ∈Σn

sgn (σ)
∑

ϕ∈Σ(m,n)

n∏
i=1

Lϕ(i)iLϕ(i)σ(i)

Σ(m,n)=∪̇λ∈Λ(m,n) ∪θ∈Σnλ◦θ
=

=
∑
σ∈Σn

sgn (σ)
∑

λ∈Λ(m,n)

∑
θ∈Σn

n∏
i=1

Lλ◦θ(i),iLλ◦θ(i),σ(i) =

=
∑
σ∈Σn

sgn (σ)
∑

λ∈Λ(m,n)

∑
θ∈Σn

∏
{i=θ−1(j)|1≤j≤n}

Lλ◦θ(i),iLλ◦θ(i),σ(i) =

=
∑
σ∈Σn

sgn (σ)
∑

λ∈Λ(m,n)

∑
θ∈Σn

n∏
j=1

Lλ(j),θ−1(j)Lλ(j),σ◦θ−1(j) =

=
∑

λ∈Λ(m,n)

∑
θ∈Σn

∑
σ∈Σn

sgn (σ)
n∏
i=1

Lλ(i),θ(i)Lλ(i),σ◦θ(i) =

=
∑

λ∈Λ(m,n)

∑
θ∈Σn

∑
{σ=ρ◦θ−1|ρ∈Σn}

sgn (σ)
n∏
i=1

Lλ(i),θ(i)Lλ(i),σ◦θ(i)
sgn (σ)=sgn (ρ)·sgn (θ)

=

=
∑

λ∈Λ(m,n)

∑
θ∈Σn

∑
ρ∈Σn

sgn (ρ) · sgn (θ)
n∏
i=1

Lλ(i),θ(i)Lλ(i),ρ(i) =

=
∑

λ∈Λ(m,n)

(∑
θ∈Σn

sgn (θ)
n∑
i=1

Lλ(i),θ(i)

)2
=

=
∑

λ∈Λ(m,n)

(detPλ ◦ L)2,

where the equality (∗) is justified by the fact that, if ϕ ∈ Φ(m,n) is
not injective, then ∑

σ∈Σn

sgn (σ)
n∏
i=1

Lϕ(i)iLϕ(i)σ(i) = 0.

�

Remark 5.24. Theorem 5.23 may also be obtained as a corollary
of the Pythagorean theorem. Indeed, with the notation preceding the
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above proof in force, let ∀1 ≤ i ≤ n, vi := L · ei =
∑m

k=1 Lkiek ∈ Rm.
Consider the n-vector

(5.6) v = v1 ∧ · · · ∧ vn =
∑

λ∈Λ(m,n)

(detPλ ◦ L)eλ ∈
n∧
Rm,

where eλ := eλ(1) ∧ · · · ∧ eλ(n) ∈
∧nRm.

The Euclidean inner product on Rm induces an inner product on∧nRm for which {eλ | λ ∈ Λ(m,n)} is an orthonormal basis (cf.
[Fed69], page 32, or [dL65], page 113). For decomposable n-vectors
w = w1 ∧ · · ·wn, z = z1 ∧ · · · ∧ zn ∈

∧nRm, we have

〈w, z〉 = det
(
〈wi, zj〉

)
1≤i,j≤n.

Therefore, computing ‖v‖2 by the Pythagorean theorem:

JLK2 = detL∗L = det
(
〈L∗L · ei, ej〉

)
1≤i,j≤n =

= det
(
〈L · ei, L · ej〉

)
1≤i,j≤n =

= 〈v, v〉 Pythagoras+(5.6)
=

=
∑

λ∈Λ(m,n)

(detPλ ◦ L)2.

Definition 5.25 (Jacobian of Lipschitz maps). Let f : Rn → Rm

be Lipschitz. It follows from Rademacher’s theorem 5.12 (applied com-
ponentwise) and from exercise 5.13 that f is differentiable in the com-
plement of a Borel set of Ln-null measure and x 7→ Df(x) is Borelian
Ln-a.e. defined.

We define, for each point x where f is differentiable, the Jacobian
of f at x,

Jf(x) := JDf(x)K,

so that Jf is a Borelian function defined on the complement of a Borel
subset of Rn of Ln-null measure.

Exercise 5.26. With the notation above, check that Jf is indeed
Borelian.

Notation. For a Lipschitz map f : Rn → Rm, we will use hence-
forth the following notation:

• Df := {x ∈ Rn | ∃Df(x)};
• J+

f := {x ∈ Df | Jf(x) > 0};
• J0

f := {x ∈ Df | Jf(x) = 0}.
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5.2. The area formula

In this section we assume n ≤ m.

Lemma 5.27 (Area Formula, linear case). If L : Rn → Rm is linear
and n ≤ m, then ∀A ⊂ Rn,

(5.7) Hn
(
L(A)

)
= JLKLn(A).

Proof. Let L = O ◦ S be a polar decomposition of L, cf. theorem
5.20, where S ∈ Sym(n) positive and O ∈ O(n,m). Then JLK = |detS|.
We have:

1) If JLK = 0, then detS = 0, so that dim ImL = dim ImS ≤ n −
1. It then follows from exercise 2.23 that H-dim ImL ≤ n − 1,
hence Hn

(
L(Rn)

)
= 0, whence ∀A ⊂ Rn, Hn

(
L(A)

)
= 0 and both

members of (5.7) are zero.
2) If JLK > 0, then detS > 0 and O : Rn → Rm is a linear isometry

into Rn. It then follows from corollary 2.5 that, for each closed ball
B(x, r) ⊂ Rn:

Hn
(
L
(
B(x, r)

))
Ln
(
B(x, r)

) =
Hn
(
O ◦ S

(
B(x, r)

))
Ln
(
B(x, r)

) =

=
Hn
(
S
(
B(x, r)

))
Ln
(
B(x, r)

) 2.21
=

=
Ln
(
S
(
B(x, r)

))
Ln
(
B(x, r)

) 1.81.i)
=

= |detS| = JLK.

(5.8)

Define ∀A ⊂ Rn, ν(A) := Hn
(
L(A)

)
. We contend that ν is a

Radon measure on Rn and ν � Ln. Indeed,
• L : Rn → Rm is a linear isomorphism onto ImL. In partic-

ular, L : Rn → ImL is a homeomorphism (endowing ImL
with the relative topology), hence the pushforward operation
L# defines a bijection between Borel measures on Rn and Borel
measures on ImL, with inverse L−1

#; moreover, it is clear that
this bijection restricts to a bijection between Borel regular mea-
sures. Since Hn|ImL is a Borel regular measure (which can be
checked directly in view of the Borel regularity of Hn on Rm,
or from the fact that the trace Hn|ImL coincides with the m-
dimensional Hausdorff measure of ImL as a metric subspace of
Rm, by proposition 2.4.1), it follows that ν = L−1

#(Hn|ImL) is
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a Borel regular measure on Rn. Besides, ∀K ⊂ Rn compact,
it follows from proposition 2.4.3) that ν(K) = Hn

(
L(K)

)
≤

(LipL)nHn(K) = (LipL)nLn(K) < ∞. That is, ν is a locally
finite Borel regular measure on Rn, hence it is Radon by exer-
cise 1.32.
• If A ⊂ Rn is Ln-null, then it follows from proposition 2.4.3) that
ν(A) = Hn

(
L(A)

)
≤ (LipL)nHn(A) = (LipL)nLn(A) = 0,

hence ν � Ln, thus proving our contention.
It follows from (5.8) that ∀x ∈ Rn, Θν(Ln, x) = JLK. Recall that,

from proposition 3.23, every Borel measure on Rn has the symmetric
Vitaly property, so that theorem 3.40 applies to Radon measures on
Rn, from which we conclude that, ∀A ∈ BRn ,

ν(A) =

ˆ
A

Θν(Ln, x) dLn(x) = JLKLn(A).

By Borel regularity, both members must coincide for all A ⊂ Rn,
i.e. Hn

(
L(A)

)
= JLKLn(A), as we wanted to show.

�

Exercise 5.28. Let T ∈ L(Rn,Rm), n ≤ m.

a) If R ∈ L(Rn), then JT ◦RK = JT KJRK.
b) JT K ≤ ‖T‖n. If T is 1-1, then ‖T−1‖−n ≤ JT K ≤ ‖T‖n.
c) If m ≤ k and R ∈ L(Rm,Rk), then JR ◦ T K ≤ ‖R‖nJT K. If R is 1-1,

then ‖R−1‖−nJT K ≤ JR ◦ T K ≤ ‖R‖nJT K.

Lemma 5.29. Let f : Rn → Rm be Lipschitz, with n ≤ m, and
A ⊂ Rn Ln-measurable. Then:

i) f(A) is Hn-measurable.
ii) The function N(f |A) : Rm → [0,∞] given by y 7→ H0(A∩ f−1{y})

is Hn-measurable.
iii)

´
RmH

0(A ∩ f−1{y}) dHn(y) ≤ (Lip f)nLn(A).

Definition 5.30 (multiplicity function). With the notation from
the previous lemma, N(f |A) : y 7→ H0(A ∩ f−1{y}) is called the mul-
tiplicity function of f |A.

Remark 5.31. Concerning part a) of the previous lemma, for con-
tinuous images of Borel sets we have the following theorem. If X is a
complete, separable metric space, Y a Hausdorff topological space, µ a
Borel measure on Y and f : X → Y continuous, then ∀A ∈ BX , f(A)
is µ-measurable — see [Fed69], paragraph 2.2.13. Actually, ∀A ∈ BX ,
f(A) is a Suslin set. This result is pertinent to the so-called descrip-
tive set theory, for which we refer the interested reader to [Sri98] or
[Mos09].
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Proof.

i) Since Ln is σ-finite, we may take a sequence (Ak)k∈N in σ(Ln)
such that ∀k ∈ N, Ln(Ak) < ∞ and ∪k∈NAk = A. Then f(A) =
∪k∈Nf(Ak), so that f(A) ∈ σ(Hn) once we show that ∀k ∈ N,
f(Ak) ∈ σ(Hn). It is therefore enough to prove the case in which
Ln(A) < ∞. Since Ln is a Radon measure and Rn is σ-compact,
we may take (by exercise 1.31) an increasing sequence (Ki)i∈N of
compact subsets of A such that Ln(Ki) → Ln(A). Since A ∈
σ(Ln) and Ln(A) < ∞, it follows that Ln(A \ Ki) → 0, hence
Ln(A\∪i∈NKi) = 0. Therefore, by proposition 2.4.3), we conclude
that Hn

(
f(A \ ∪i∈NKi)

)
≤ (Lip f)nLn(A \ ∪i∈NKi) = 0. Since

∀i ∈ N, f(Ki) is compact, it follows that ∪i∈Nf(Ki) ∈ BRm ⊂
σ(Hn). As f(A) \ ∪i∈Nf(Ki) ⊂ f(A \ ∪i∈NKi), we conclude that
f(A) \ ∪i∈Nf(Ki) is Hn-null, i.e. f(A) is the union of a Borel set
with an Hn-null set, thus f(A) ∈ σ(Hn).

ii) We may take a sequence (Fi)i∈N such that
• ∀i ∈ N, Fi = (F i

j )j∈N is a disjoint family of Borel subsets of

Rn with ∀j ∈ N, diam F i
j ≤ 1/i and ∪̇j∈N F i

j = Rn;

• ∀i ∈ N, each F i+1
j is a subset of some F i

k (so that each F i
k is a

disjoint union of some of the terms of Fi+1).
Let (gi)i∈N be the sequence of functions Rm → [0,∞] defined

by, ∀i ∈ N,

gi :=
∑
j∈N

χf(A∩F ij )

(the idea is that, for each i ∈ N and y ∈ Rm, gi(y) is the number
of terms of Fi which intersect A ∩ f−1{y}; intuitively, gi increases
pointwise to the multiplicity function). The thesis then follows
once we show that each gi is Hn-measurable and (gi)i∈N increases
pointwise to the multiplicity function N(f |A) (which implies the
Hn-measurability of the latter function in view of theorem 1.41.iv).
That is done along the following steps:
1) ∀i, j ∈ N, A ∩ F i

j ∈ σ(Ln), hence χf(A∩F ij ) is Hn-measurable by

part i). Thus, ∀i ∈ N, gi :=
∑

j∈N χf(A∩F ij ) is Hn-measurable by

theorem 1.41.iv).
2) (gi)i∈N is pointwise increasing. Indeed, ∀y ∈ Rm and i ∈ N,

for each j ∈ N such that A ∩ f−1{y} cuts F i
j , i.e. such that

χf(A∩F ij )(y) = 1, the fact that F i
j is a union of terms of Fi+1

implies the existence of k = ki(j) ∈ N such that F i+1
k ⊂ F i

j

(thus ki(j) 6= ki(j
′) if j 6= j′, i.e. ki is 1-1) and A∩ f−1{y} cuts

F i+1
k , i.e. χf(A∩F i+1

k )(y) = 1. Then, defining Ni := {j ∈ N |
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A ∩ f−1{y} ∩ F i
j 6= ∅}, we have

gi(y) =
∑
j∈N

χf(A∩F ij )(y) =
∑
j∈Ni

χf(A∩F ij )(y) =

=
∑
j∈Ni

χf(A∩F i+1
ki(j)

)(y)
ki is 1-1

≤

≤
∑
j∈N

χf(A∩F i+1
j )(y) = gi+1(y).

3) ∀i ∈ N, gi ≤ N(f |A). Indeed, since Fi is a disjoint family, for
all y ∈ Rm, A ∩ f−1{y} = ∪̇j∈NA ∩ f−1{y} ∩ F i

j . As ∀j ∈
N, H0(A ∩ f−1{y} ∩ F i

j ) ≥ χf(A∩F ij )(y), it then follows that

N(f |A)(y) = H0(A ∩ f−1{y}) =
∑

j∈NH0(A ∩ f−1{y} ∩ F i
j ) ≥∑

j∈N χf(A∩F ij )(y) = gi(y).

4) ∀y ∈ Rm, ∀k ∈ N such that k ≤ N(f |A)(y), there exists i ∈
N such that gi(y) ≥ k. Indeed, since N(f |A)(y) = H0(A ∩
f−1{y}) ≥ k, we may choose k distinct points x1, . . . , xk ∈
A ∩ f−1{y}. Take i ∈ N such that ‖xp − xq‖ > 1/i for 1 ≤
p < q ≤ k. Since the terms of Fi are disjoint with diameters
≤ 1/i, it follows that ∀1 ≤ p ≤ k, xp belong to exactly one of
the terms of Fi, say F i

j(p), with p 7→ j(p) 1-1. Then gi(y) =∑
j∈N χf(A∩F ij )(y) ≥

∑
1≤p≤k χf(A∩F i

j(p)
)(y) = k, as asserted.

iii) Let (gi)i∈N be the same sequence of functions R→ [0,∞] from the
previous item, so that ∀y ∈ Rm, gi(y) ↑ N(f |A)(y). It follows from
the monotone convergence theorem 1.62 that:ˆ

Rm
N(f |A)(y) dHn(y) = lim

i→∞

ˆ
Rm

gi(y) dHn(y) =

= lim
i→∞

∑
j∈N

Hn
(
f(A ∩ F i

j )
) 2.4.3)

≤

≤ lim inf
i→∞

∑
j∈N

(Lip f)nLn(A ∩ F i
j ) =

= (Lip f)nLn(A).

�

Definition 5.32. Let f : Rn → Rm be a Lipschitz map with n ≤ m
and t > 1. We say that (E, S) is a t-linearization for f if E ∈ BRn

and S ∈ Sym(n) ∩GL(Rn) satisfy:

i) ∀x ∈ E, f is differentiable at x and Jf(x) > 0;
ii) ∀x, y ∈ E, t−1‖S · x− S · y‖ ≤ ‖f(x)− f(y)‖ ≤ t‖S · x− S · y‖;
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iii) ∀x ∈ E, ∀v ∈ Rn, t−1‖S · v‖ ≤ ‖Df(x) · v‖ ≤ t‖S · v‖.

Proposition 5.33. Let f : Rn → Rm be a Lipschitz map with
n ≤ m, t > 1, E ∈ BRn such that condition i) in definition 5.32 holds
and S ∈ Sym(n) ∩ GL(Rn). Then (E, S) is a t-linearization for f
iff f |E is 1-1 with Lipschitz inverse and satisfies:

ii’) Lip f |E ◦ S−1 ≤ t and LipS ◦ (f |E)−1 ≤ t;
iii’) ∀x ∈ E, ‖Df(x) ◦ S−1‖ ≤ t and ‖S ◦ Df(x)−1‖ ≤ t.

Proof. If (E, S) is a t-linearization for f , then:

1) f |E is 1-1 in view of the first inequality in ii);
2) f |E ◦ S−1 is Lipschitz, with Lip f |E ◦ S−1 ≤ t, in view of the second

inequality in ii) with S−1(x′) in place of x and S−1(y′) in place of y;
3) S ◦ (f |E)−1 is Lipschitz, with LipS ◦ (f |E)−1 ≤ t, in view of the first

inequality in ii) with f−1(x′) in place of x and f−1(y′) in place of y;
4) similarly, the second inequality in iii) implies ‖Df(x)◦S−1‖ ≤ t and

the first inequality in iii) implies ‖S ◦ Df(x)−1‖ ≤ t;
5) since S−1 and S ◦ (f |E)−1 are both Lipschitz, so is (f |E)−1 = S−1 ◦(

S ◦ (f |E)−1
)
.

Thus we have proved that f |E is 1-1 with Lipschitz inverse and satisfies
conditions ii’) and iii’).

With a similar argument, if f |E is 1-1 with Lipschitz inverse, then
conditions ii’) and iii’) imply ii) and iii), respectively, in definition 5.32,
thus proving the converse implication. �

Corollary 5.34. Let f : Rn → Rm be a Lipschitz map with n ≤
m, t > 1 and (E, S) a t-linearization for f . Then ∀x ∈ E,

(5.9) t−n|detS| ≤ Jf(x) ≤ tn|detS|.

Proof.

Jf(x) = JDf(x)K|detS−1||detS| 5.28.a)
=

= JDf(x) ◦ S−1K|detS|.

Hence, from exercise 5.28.b) with Df(x) ◦ S−1 in place of T and from
proposition 5.33.iii’), the thesis follows. �

Theorem 5.35 (Lipschitz linearization, [Fed69]). Let f : Rn →
Rm be a Lipschitz map with n ≤ m, t > 1 and J+

f = {x ∈ Rn |
∃Df(x) and Jf(x) > 0} (which is a Borel set, by exercises 5.13 and
5.26). Then there exists a countable disjoint family (Ek)k∈N in BRn

such that J+
f = ∪̇k∈NEk and, ∀k ∈ N, there exists Sk ∈ Sym(n) ∩

GL(Rn) such that (Ek, Sk) is a t-linearization for f .
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Proof. Fix ε > 0 such that t−1 + ε < 1 < t − ε. Let S be a
countable dense subset of Sym(n) ∩ GL(Rn) and G a countable dense
subset of J+

f . For all S ∈ S, k ∈ N and c ∈ G, we define E(S, k, c) :=

B(c, 1
2k

) ∩ F (S, k), where F (S, k) ⊂ J+
f is the set of all x ∈ J+

f such

that1:

F1) ∀v ∈ Rn, (t−1 + ε)‖S · v‖ ≤ ‖Df(x) · v‖ ≤ (t− ε)‖S · v‖;
F2) ∀v ∈ Rn such that ‖v‖ ≤ k−1, ‖f(x + v) − f(x) − Df(x) · v‖ ≤

ε‖S · v‖.
Since Df is Borelian (by exercise 5.13), it is clear that F (S, k) ∈

BRn , hence E(S, k, c) ∈ BRn . Furthermore,

1) For all S ∈ S, k ∈ N and c ∈ G, ∀x, y ∈ E(S, k, c),

‖f(y)− f(x)‖
F2)

≤ ‖Df(x) · (y − x)‖+ ε‖S · (y − x)‖
F1)

≤ t‖S · (y − x)‖,

‖f(y)− f(x)‖
F2)

≥ ‖Df(x) · (y − x)‖ − ε‖S · (y − x)‖
F1)

≥ t−1‖S · (y − x)‖.

Therefore, the condition ii) in definition 5.32 is satisfied for
(
E(S, k, c), S

)
.

Besides, in view of F1), condition iii) in the same definition is triv-
ially satisfied, so that

(
E(S, k, c), S

)
is a t-linearization for f .

2) We contend that J+
f is the union of the countable family {E(S, k, c) |

S ∈ S, k ∈ N, c ∈ G}. Once we prove this contention, we enumerate

this family as (Êk)k∈N and we take the disjoint sequence (Ek)k∈N
given by Ek := Êk \ ∪k−1

i=1 Êi, thus reaching the thesis in view of the
previous item.

To prove the contention, fix x ∈ J+
f and let the polar decom-

position of Df(x) be Df(x) = Px ◦ Sx, with Px ∈ O(n,m) and
Sx ∈ Sym(n). Note that, since Df(x) is 1-1, so is Sx, i.e. Sx ∈
1 The idea is the following:

• We want to ensure ii) and iii) in definition 5.32. In order to ensure iii)
we might take F1) with t instead of t− ε; however, with t− ε it will work
as well and, as we shall see, we need a little “space” for the estimate in
the next step.
• To ensure ii), we need to use somehow the differentiability of f . Assume

that x, y ∈ E ⊂ J+
f with diam (E) ≤ 1/k sufficiently small (to be chosen).

We then have

f(y)− f(x) = Df(x) · (y − x) +Rx(y − x).

Thus, in order to obtain the desired inequalities in ii) to ‖f(y)−f(x)‖, say
the second one, we must control the norms of both terms in the second
member. As ‖Df(x) · (y − x)‖ ≤ (t − ε)‖S · x − S · y‖ if F1) holds, we
must ensure that ‖Rx(y−x)‖ ≤ ε‖S ·x−S · y‖ = ε‖S · (y−x)‖ with 1/k
sufficiently small.
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GL(Rn). Moreover, since S is dense in Sym(n) ∩ GL(Rn), we may
take a sequence (Si)i∈N in S convergent to Sx; hence, by continuity,
Sx ◦S−1

i → idRn and Si ◦S−1
x → idRn . Taking i sufficiently large, we

then conclude that there exists S ∈ S such that

‖Sx ◦ S−1‖ ≤ t− ε and ‖S ◦ S−1
x ‖ ≤ (t−1 + ε)−1.

It then follows that, ∀v ∈ Rn,

‖Df(x) · v‖ = ‖Px · Sx · v‖ = ‖Sx · v‖ = ‖(SxS−1)S · v‖ ≤
≤ ‖SxS−1‖‖S · v‖ ≤ (t− ε)‖S · v‖,

(t−1 + ε)‖S · v‖ = (t−1 + ε)‖(SS−1
x )Sx · v‖ ≤

≤ (t−1 + ε)‖SS−1
x ‖‖Sx · v‖ ≤ ‖Sx · v‖ = ‖Df(x) · v‖.

That is, F1) is satisfied. Moreover, by the differentiability of f at
x, there exists R(x, ·) : Rn → [0,∞) continuous and null at v = 0,
such that ∀v ∈ Rn:

‖f(x+ v)− f(x)− Df(x) · v‖ = R(x, v)‖v‖ = R(x, v)‖S−1S · v‖ ≤
≤ R(x, v)‖S−1‖‖S · v‖.

Since limv→0R(x, v) = R(x, 0) = 0, we may take k ∈ N sufficiently
large so that R(x, v)‖S−1‖ ≤ ε for ‖v‖ ≤ k−1, hence F2) is satisfied
for this choice of k. We then conclude that x ∈ F (S, k). Finally,
since G is dense in J+

f , there exists c ∈ G such that c ∈ U(x, 1
2k

)⇔
x ∈ U(c, 1

2k
), so that x ∈ E(S, k, c) = B(c, 1

2k
)∩F (S, k), thus proving

our contention.

�

Theorem 5.36 (Area Formula). Let f : Rn → Rm be Lipschitz,
n ≤ m. Then, for all A ∈ σ(Ln),ˆ

A

Jf dLn =

ˆ
Rm
H0(A ∩ f−1{y}) dHn(y).

Proof. If Ln(A) = 0, the first member is trivially null, and so is
the second member in view of lemma 5.29.iii). Therefore, in view of
Rademacher’s theorem 5.12, we may assume that A ⊂ Df = {x ∈ Rn |
∃Df(x)}. Let J+

f = {x ∈ Df | Jf(x) > 0} and J0
f = {x ∈ Df | Jf(x) =

0}, so that Df = J+
f ∪̇ J0

f .

1) Case 1: A ⊂ J+
f . Fix t > 1. Let (Ek)k∈N be a sequence in BRn given

by the Lipschitz linearization theorem 5.35, i.e. such that J+
f =

∪̇k∈NEk and, for each k ∈ N, there exists Sk ∈ Sym(n) ∩ GL(Rn)
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such that (Ek, Sk) is a t-linearization for f . Then, ∀k ∈ N,

Hn
(
f(A ∩ Ek)

)
= Hn

(
f |Ek ◦ S−1

k ◦ Sk(A ∩ Ek)
) 2.4

≤

≤ (Lip f |Ek ◦ S−1
k )nHn

(
Sk(A ∩ Ek)

) 5.33.ii′)

≤
≤ tnHn

(
Sk(A ∩ Ek)

)
,

(5.10)

and

Hn
(
Sk(A ∩ Ek)

)
= Hn

(
Sk ◦ (f |Ek)−1 ◦ f(A ∩ Ek)

) 2.4

≤

≤ (LipSk ◦ (f |Ek)−1)nHn
(
f(A ∩ Ek)

) 5.33.ii′)

≤
≤ tnHn

(
f(A ∩ Ek)

)
,

(5.11)

On the other hand, it follows from corollary 5.34 that, ∀k ∈ N,
∀x ∈ Ek,

(5.12) t−nJSkK ≤ Jf(x) ≤ tnJSkK.

Therefore, ∀k ∈ N:

t−2nHn
(
f(A ∩ Ek)

) (5.10)

≤ t−nHn
(
Sk(A ∩ Ek)

) 5.27
=

= t−nJSkKLn(A ∩ Ek)
(5.12)

≤

≤
ˆ
A∩Ek

Jf(x) dLn(x)
(5.12)

≤

≤ tnJSkKLn(A ∩ Ek)
5.27
=

= tnHn
(
Sk(A ∩ Ek)

) (5.11)

≤
≤ t2nHn

(
f(A ∩ Ek)

)

(5.13)

Since, ∀k ∈ N, f |Ek is 1-1 (by proposition 5.33), we have ∀y ∈
Rm, H0(A ∩ Ek ∩ f−1{y}) = χf(A∩Ek)(y), so that

´
RmH

0(A ∩ Ek ∩
f−1{y}) dHn(y) = Hn

(
f(A∩Ek)

)
. Therefore, from (5.13) and from

the monotone convergence theorem 1.62, we conclude that:
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t−2n

ˆ
Rm
H0(A ∩ f−1{y}) dHn(y)

1.62
=
∑
k∈N

t−2n

ˆ
Rm
H0(A ∩ Ek ∩ f−1{y}) dHn(y) =

=
∑
k∈N

t−2nHn
(
f(A ∩ Ek)

) (5.13)

≤

≤
∑
k∈N

ˆ
A∩Ek

Jf(x) dLn(x)
1.62
=

ˆ
A

Jf(x) dLn(x)
(5.13)

≤

≤
∑
k∈N

t2nHn
(
f(A ∩ Ek)

)
=

=
∑
k∈N

t2n
ˆ
Rm
H0(A ∩ Ek ∩ f−1{y}) dHn(y)

1.62
=

= t2n
ˆ
Rm
H0(A ∩ f−1{y}) dHn(y),

thus t−2n
´
RmH

0(A∩f−1{y}) dHn(y) ≤
´
A

Jf dLn ≤ t2n
´
RmH

0(A∩
f−1{y}) dHn(y). Taking t ↓ 1, it follows that

´
RmH

0(A∩f−1{y}) dHn(y) =´
A

Jf dLn, as asserted.
2) Case 2: A ⊂ J0

f . Then
´
A

Jf dLn = 0; we must show that
´
H0(A∩

f−1{y}) dHn(y) = 0. We may assume that Ln(A) < ∞ (since the
general case is obtained from this and from the monotone conver-
gence theorem, writing A = ∪̇n∈NAn, with ∀n ∈ N, An ∈ σ(Ln)
and Ln(An) <∞, which is possible thanks to the σ-finiteness of the
Lebesgue measure).

Fix 0 < ε < 1. Define g : Rn → Rm+n ≡ Rm × Rn by g(x) :=(
f(x), εx

)
. Then g is Lipschitz 1-1 and ∀x ∈ Dg = Df , Dg(x) =(

Df(x), ε idRn
)
∈ L(Rn,Rm × Rn).

We contend that there exists C = C(n,m,Lip f) > 0 (in partic-
ular, C does not depend on ε) such that ∀x ∈ A, 0 < Jg(x) ≤ Cε.
Assuming this contention, we have, denoting by pr1 : Rm×Rn → Rm
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the projection on the first factor:

Hn
(
f(A)

)
= Hn

(
pr1 ◦ g(A)

) 2.4.3)

≤

≤ (Lip pr1)nHn
(
g(A)

) g 1-1 and Lip pr1=1
=

=

ˆ
Rm+n

H0(A ∩ g−1{y}) dHn(y)
case 1

=

=

ˆ
A

Jg dLn
contention

≤

≤ CεLn(A).

Thus, since 0 < ε < 1 was arbitrarily taken and we assumed
Ln(A) < ∞, it follows that Hn

(
f(A)

)
= 0. As the multiplic-

ity function N(f |A) : Rn → R, y 7→ H0(A ∩ f−1{y}), is sup-
ported on f(A), it then follows that

´
H0(A ∩ f−1{y}) dHn(y) =´

f(A)
H0(A ∩ f−1{y}) dHn(y) = 0, as asserted.

It remains to prove the contention. Since ∀x ∈ Dg = Df ,
Dg(x) =

(
Df(x), ε idRn

)
∈ L(Rn,Rm × Rn), the Jacobian matrix

of Dg(x) is the (m+ n)× n matrix written in block form:

(5.14) [Dg(x)] =

(
[Df(x)]
εIn

)
.

By the Binet-Cauchy formula 5.23,
(
Jg(x)

)2
is the sum of the squares

of the n × n-minors of the above matrix. In particular taking
the minor corresponding the the last n rows, we conclude that
∀x ∈ Dg = Df , Jg(x) ≥ εn > 0. On the other hand, to obtain
an upper bound for that sum:
• Note that the i-th row of the matrix [Df(x)] is∇f i(x), where f i

is the i-th component of f in the standard basis of Rm; the norm
of this row is therefore ‖∇f i(x)‖ = ‖Df i(x)‖ ≤ Lip f i ≤ Lip f .
• The sum of the squares of the n× n minors of [Dg(x)] may be

written as M1 + M2, where the terms in M1 are the squares

of the n × n minors with rows in [Df(x)], i.e. M1 =
(
Jf(x)

)2
,

and the terms in M2 are the squares of the other minors, i.e.
n × n minors which have at least one row in εIn. Since ε < 1
and the rows in [Df(x)] are bounded in norm by Lip f , each
minor of the latter type is bounded by ε · max{1, (Lip f)n−1}.
Since there are

(
m+n
n

)
−
(
m
n

)
summands in M2, M2 ≤

((
m+n
n

)
−(

m
n

))
ε2 ·max{1, (Lip f)n−1}2. Hence, ∀x ∈ Dg = Df :(

Jg(x)
)2 ≤

(
Jf(x)

)2
+
((m+ n

n

)
−
(
m

n

))
ε2 ·max{1, (Lip f)n−1}2.
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In particular, if x ∈ A ⊂ J0
f , we conclude that Jg(x) ≤ Cε,

where

C :=

√(
m+ n

n

)
−
(
m

n

)
max{1, (Lip f)n−1},

thus proving our contention.
3) General case: A ⊂ Df . It is a direct consequence of cases 1 and 2:ˆ
A

Jf dLn =

ˆ
A∩J+

f

Jf dLn +

ˆ
A∩J0

f

Jf dLn =

=

ˆ
Rm
H0(A ∩ J+

f ∩ f
−1{y}) dHn(y) +

ˆ
Rm
H0(A ∩ J0

f ∩ f−1{y}) dHn(y) =

=

ˆ
Rm
H0(A ∩ f−1{y}) dHn(y).

�

Corollary 5.37. If f : Rn → Rm is Lipschitz, n ≤ m, then for
Hn-a.e. y ∈ Rm, f−1{y} is countable.

Proof. Since ∀x ∈ Df , Jf(x)
5.28.b)

≤ ‖Df(x)‖n ≤ (Lip f)n, it fol-
lows from the area formula 5.36 that, ∀K ⊂ Rn compact,

´
RmH

0(K ∩
f−1{y}) dHn(y) =

´
K

Jf dLn <∞. Then, ∀K ⊂ Rn compact, for Hn-
a.e. y ∈ Rm, H0(K ∩f−1{y}) <∞. Since Rn is σ-compact, it then fol-
lows that forHn-a.e. y ∈ Rn, ∀K ⊂ Rn compact,H0(K∩f−1{y}) <∞.
For such y, f−1{y}∩K is finite for each compact K ⊂ Rn, hence f−1{y}
is countable. �

Corollary 5.38 (Change of variables formula). Let f : Rn → Rm

be Lipschitz, n ≤ m. Then for all g : Rn → R Ln-measurable with
g ≥ 0 or g summable,ˆ

Rn
g Jf dLn =

ˆ
Rm

( ∑
x∈f−1{y}

g(x)
)

dHn(y).

Proof. Suppose that g ≥ 0. By exercise 1.54, there exists a se-
quence (Ai)i∈N in σ(Ln) such that

g =
∞∑
i=1

1

i
χAi .

Let ψ : Rm → [0,∞] be given by ψ(y) :=
∑

x∈f−1{y} g(x). Given

y ∈ Rm, we may compute
∑

x∈f−1{y} g(x) by means of the monotone
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convergence theorem (with respect to the counting measure on f−1{y}):

ψ(y) =
∑

x∈f−1{y}

g(x) =
∑

x∈f−1{y}

∑
i∈N

1

i
χAi(x)

MCT 1.62
=

=
∑
i∈N

1

i

∑
x∈f−1{y}

χAi(x) =

=
∑
i∈N

1

i
H0(Ai ∩ f−1{y}).

Since, for each i ∈ N, the multiplicity function N(f |Ai) : y 7→ H0(Ai ∩
f−1{y}) is Hn-measurable, by lemma 5.29.ii), we therefore conclude
that ψ is Hn-measurable and ≥ 0. Besides, using the monotone con-
vergence theorem once more and the area formula, we have:ˆ

Rm
ψ(y) dHn(y) =

ˆ
Rm

∑
i∈N

1

i
H0(Ai ∩ f−1{y}) dHn(y)

MCT 1.62
=

=
∑
i∈N

1

i

ˆ
Rm
H0(Ai ∩ f−1{y}) dHn(y)

AF 5.36
=

=
∑
i∈N

1

i

ˆ
Ai

Jf dLn MCT 1.62
=

=

ˆ
Rn

∑
i∈N

1

i
χAi Jf dLn =

ˆ
Rn
g Jf dLn,

thus proving the case in which g ≥ 0.
If g : Rn → R is Ln-summable, we write g = g+− g− and apply the

case already proved to g+ and g−, from which the thesis follows.
�

Corollary 5.39. Let f : Rn → Rm be Lipschitz 1-1, n ≤ m.

i) ∀A ∈ σ(Ln), Hn
(
f(A)

)
=
´
A

Jf dLn. In particular, we have

(5.15) f#(Ln xJf) = Hn xIm f

(equality as Borel regular outer measures on Rm).
ii) If g : Rn → R is Ln-measurable with g ≥ 0 or g ∈ L1(Ln), then´

Im f
g◦f−1 dHn =

´
Rn g Jf dLn. In particular, if g : Im f → [0,∞]

is Borelian, then

(5.16)

ˆ
Im f

g dHn =

ˆ
g ◦ f Jf dLn.

Proof. If f is 1-1,
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i) ∀A ∈ σ(Ln), ∀y ∈ Rm, H0(A ∩ f−1{y}) = χf(A)(y). Hence,

Hn
(
f(A)

)
=

´
A

Jf dLn as a direct consequence of the area for-
mula 5.36. The proof of (5.15) is done along the following steps:
• Hn xIm f is a Borel regular outer measure. Indeed, since

Im f = ∪N∈Nf(BN) is σ-compact, hence Borelian, we may
apply proposition 1.36.i).
• f#(Ln xJf) is a Borel regular outer measure. Indeed, Ln xJf

is a Radon measure on Rn, in view of lemma 4.11; hence
f#(Ln xJf) is a Borel outer measure on Rm, since ∀U ⊂ Rm

open, f−1(U) is open by the continuity of f , thus Ln xJf -
measurable, so that U is f#(Ln xJf)-measurable in view of
proposition 1.15.iii). It remains to prove the Borel regular-
ity of f#(Ln xJf). Given T ⊂ Rm, the fact that Ln xJf is
Radon ensures the existence of a sequence of open sets (Uk)k∈N
in Rn such that ∀k ∈ N, Uk ⊃ f−1(T ) and inf{Ln xJf(Uk) |
k ∈ N} = Ln xJf

(
f−1(T )

)
. Since ∀k ∈ N, Uk is σ-compact,

so is f(Uk) (because f is continuous, hence it maps compact
sets to compact sets), thus f(Uk) ∈ BRm . Take ∀k ∈ N,
Bk := f(Uk) ∪ (Rm \ Im f) ∈ BRm . Then ∀k ∈ N, Bk ⊃ T
and, as f−1(Bk) = Uk, inf{f#(Ln xJf)(Bk) | k ∈ N} =
Ln xJf

(
f−1(T )

)
= f#(Ln xJf)(T ), which implies the Borel

regularity of f#(Ln xJf), as asserted.
• In view of the two previous items, it suffices to show that
Hn xIm f and f#(Ln xJf) coincide in each B ∈ BRm . In-
deed,

Hn xIm f(B) = Hn(Im f ∩B) = Hn
(
f [f−1(B)]

) (∗)
=

=

ˆ
f−1(B)

Jf dLn = f#(Ln xJf)(B),

where the equality (∗) is due to the area formula applied to
(∀y ∈ Rm)χf [f−1(B)](y) = H0

(
f−1(B) ∩ f−1{y}

)
(because f is

1-1).
ii) ∀y ∈ Rm,∑

x∈f−1{y}

g(x) =

{
g ◦ f−1(y) y ∈ Im f

0 y ∈ Rm \ Im f.

It then follows from corollary 5.38 that
´

Im f
g◦f−1 dHn =

´
Rn g Jf dLn.

If g : Im f → [0,∞] is Borelian, we may apply the latter equality
to g ◦ f in place of g, thus yielding (5.16).
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�

Example 5.40 (applications of the area formula).

1) (length of a curve) Let −∞ < a < b < ∞ and γ : [a, b] → Rm be
Lipschitz 1-1. We may extend γ to a Lipschitz function on R, which
we still denote by γ. Note that, for all t in the set Dγ of the points
of differentiability of γ,

Jγ(t) = ‖γ′(t)‖.

It then follows from the change of variables formula 5.38 with g =
χ[a,b] that

ˆ b

a

‖γ′(t)‖ dt =

ˆ
R
χ[a,b] Jγ dL1 5.38

=

=

ˆ
Rm

(
∑

x∈γ−1{y}

χ[a,b](x)) dH1(y) =

=

ˆ
Rm

χγ([a,b])(y) dH1(y) =

= H1
(
γ([a, b])

)
.

2) (area of a graph) Let g : Rn → R be Lipschitz and f : Rn → Rn+1 be
given by f(x) :=

(
x, g(x)

)
. Then f is Lipschitz 1-1 and, computing

by means of the Binet-Cauchy formula 5.23, ∀x ∈ Df = Dg,

Jf(x) =
√

1 + ‖∇g(x)‖2.

For each U ⊂ Rn open, it follows from corollary 5.39.i) that the
“surface area” of the graph of g over U , Γ = Γ(g;U) := {

(
x, g(x)

)
|

x ∈ U} = f(U), is given by:

Hn(Γ) =

ˆ
U

Jf dLn =

ˆ
U

√
1 + ‖∇g(x)‖2 dx.

Exercise 5.41 (Area Formula for locally Lipschitz maps). The
area formula and its corollaries remain valid for locally Lipschitz maps
defined on open subsets of Rn. That is, let n ≤ m, Ω ⊂ Rn open and
f : Ω→ Rm locally Lipschitz.

a) (area formula) For all Ln-measurable A ⊂ Ω, the multiplicity func-
tion N(f |A) : Rm → [0,∞], y 7→ H0(A∩ f−1{y}), is Hn-measurable
and ˆ

A

Jf dLn =

ˆ
Rm
H0(A ∩ f−1{y}) dHn(y).

b) For Hn-a.e. y ∈ Rm, f−1{y} is countable.
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c) (change of variables formula) If g : Ω → R is Ln|Ω-measurable and
g ≥ 0 or g ∈ L1(Ln|Ω), thenˆ

Ω

g Jf dLn =

ˆ
Rm

( ∑
x∈f−1{y}

g(x)
)

dHn(y),

meaning that the integral in the second member makes sense and the
equality holds. In particular, if f is 1-1, it follows that

´
Ω
g Jf dLn =´

Im f
g ◦ f−1 dHn.

The classical C1 change of variables formula 1.82 may be obtained
as a corollary of part c) of the previous exercise. The classical formula
actually holds with much weaker hypotheses on the change of variables
φ : U → Rn with U ⊂ Rn open; it suffices, for instance, that φ be a 1-1
C1-map (it need not be a diffeomorphism).

Exercise 5.42 (Hausdorff dimension and Lebesgue measure of a
k-dimensional Riemannian submanifold of Rn). For any smooth em-
bedded k-Riemannian submanifold M ⊂ Rn, the measure induced by
the Riemannian metric on M (i.e. the Lebesgue measure of M) coin-
cides with the trace Hk|M. Conclude that H-dim M = k and, if M is
closed (i.e. topologically closed), Hk xM is a Radon measure on Rn.

5.3. The coarea formula

In this section we assume n ≥ m. The coarea formula is a powerful
generalization of Fubini-Tonelli’s theorem 1.84.

Lemma 5.43 (Coarea formula, linear case). Let L : Rn → Rm be
linear, n ≥ m, A ∈ σ(Ln). Then:

i) N(L|A) : Rm → [0,∞] given by N(L|A)(y) := Hn−m(A ∩ L−1{y})
is Lm-measurable.

ii)

(5.17)

ˆ
Rm
Hn−m(A ∩ L−1{y}) dLm(y) = JLKLn(A)

Proof. Let O ∈ O(m,n) and S ∈ Sym(m) be given by theorem
5.20, i.e. such that L = S ◦O∗ is a polar decomposition of L.

(1) Case 1: dim ImL < m. Then, for Lm-a.e. y ∈ Rm, L−1{y} =
∅, thus N(L|A)(y) = Hn−m(A∩L−1{y}) = 0. That is, N(L|A)
is null Lm-a.e., hence it is Lm-measurable. On the other hand,
since ImL = ImS, we have JLK = |detS| = 0. Therefore,
both members of (5.17) are null.
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(2) Case 2: L = P : Rn ≡ Rm × Rn−m → Rm is the projection on
the first factor (hence O = P ∗ and S = idRm). Fix y ∈ Rm and
let pr2 : Rn ≡ Rm × Rn−m → Rn−m be the projection on the
second factor. Then the restriction pr2 : P−1{y} → Rn−m is an
isometry which maps A∩P−1{y} to the y-section Ay ⊂ Rn−m

(see notation preceding Fubini-Tonelli’s theorem 1.84). There-
fore, from proposition 2.4 parts i) and ii) and from theorem
2.21, we conclude that N(P |A)(y) = Hn−m(A ∩ P−1{y}) =
Hn−m(Ay) = Ln−m(Ay). Hence, from Fubini-Tonelli’s theo-
rem 1.84.ii) applied to the product measure Lm×Lm−n (which
coincides with Ln, in view of example 1.86), we conclude that
N(P |A) is Lm-measurable and

´
Rm N(P |A) dLm = Ln(A), thus

proving (5.17) (since JP K = 1).
(3) Case 3: L : Rn → Rm surjective. Note that, since ImL =

ImS, we have S ∈ Sym(m) ∩GL(Rm).
We contend that there exists Q ∈ O(n) such that O∗ =

P ◦ Q, where P : Rn ≡ Rm × Rn−m → Rm is the projection
on the first factor, as in the previous item. Indeed, extend
O ∈ O(m,n) to a linear isometry S : Rn ≡ Rm × Rn−m → Rn

and define Q := S∗. Since P ∗ : Rm → Rm × Rn−m is the
inclusion on the first factor, we have S ◦ P ∗ = O, hence O∗ =
P ◦ S∗ = P ◦Q, as we wanted.

With Q ∈ O(n) given by the contention proved above, we
have, ∀y ∈ Rm,

N(L|A)(y) = Hn−m(A ∩ L−1{y}) =

= Hn−m(A ∩ (S ◦ P ◦Q)−1{y}
)

=

= Hn−m(Q−1
[
Q(A) ∩ P−1{S−1(y)}

]) 2.4.2)
=

= Hn−m(Q(A) ∩ P−1{S−1(y)}
)

=

= N(P |Q(A)) ◦ S−1(y).

That is, N(L|A) = N(P |Q(A)) ◦ S−1. By the previous item,
N(P |Q(A)) is Lm-measurable, and S−1 is continuous, hence
Borelian; it then follows that the compositionN(L|A) = N(P |Q(A))◦
S−1 is Lm-measurable and ≥ 0. Moreover,ˆ

Rm
N(f |A)(y) dLm(y) =

ˆ
Rm

N(P |Q(A)) ◦ S−1(y) dLm(y)
1.81.ii)

=

= |detS|
ˆ
Rm

N(P |Q(A)) dLm Case 2
=

= |detS|Ln
(
Q(A)

) Q∈O(n)
= JLKLn(A),
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thus proving (5.17).

�

In the next lemma we make computations with the upper integral
introduced in exercise 1.68.

Lemma 5.44. Let n,m ∈ N, f : Rn → Rm be Lipschitz. Then,
∀k, l ∈ [0,∞) and ∀A ⊂ Rn,

ˆ ∗
Rm
Hk(A ∩ f−1{y}) dHl(y) ≤ α(k)α(l)

α(k + l)
(Lip f)lHk+l(A).

Note that we neither assume n ≥ m nor the measurability of A
in the statement of the lemma above. This is a particular case from
Federer’s theorem 2.10.25 in [Fed69]; the theorem actually holds for
any Lipschitz map f : X → Y between metric spaces X and Y . We
will prove only the case l = m, for which it is possible to make a simpler
argument, adapted from [EG91], thanks to the isodiametric inequality
2.19. Only this case will be needed in the proof of the coarea formula.

Proof for the case l = m. For each j ∈ N, by proposition 2.4.4)
there exists (Bj

i )i∈N cover of A by closed sets with diameters ≤ 1/j such
that

(5.18)
∑
i∈N

α(k +m)
(diam Bj

i

2

)k+m

≤ Hk+m
1/j (A) +

1

j
.

∀i, j ∈ N, define

gji := α(k)
(diam Bj

i

2

)k
χf(Bji ).

Since f(Bj
i ) is σ-compact (because Bj

i is closed, hence σ-compact, and

f is continuous), hence Borel measurable, gji is Borelian and ≥ 0, and

so is
∑

i∈N g
j
i : Rm → [0,∞]. Moreover, for each y ∈ Rm and j ∈ N,

A ∩ f−1{y} is contained in the union of the balls of (Bj
i )i∈N which cut

f−1{y}, i.e. such that y ∈ f(Bj
i ). It then follows that, ∀y ∈ Rm,

Hk
1/j(A ∩ f−1{y}) ≤

∑
i∈N

gji (y).
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Therefore,

ˆ ∗
Rm
Hk(A ∩ f−1{y}) dLm(y) =

=

ˆ ∗
Rm

lim
j→∞
Hk

1/j(A ∩ f−1{y}) dLm(y)
monotonicity of

´ ∗
≤

≤
ˆ ∗
Rm

lim inf
j→∞

∑
i∈N

gji (y) dLm(y)
1.68.b)

=

=

ˆ
Rm

lim inf
j→∞

∑
i∈N

gji (y) dLm(y)
Fatou 1.63

≤

≤ lim inf
j→∞

ˆ
Rm

∑
i∈N

gji (y) dLm(y)
MCT 1.62

=

= lim inf
j→∞

∑
i∈N

ˆ
Rm

gji (y) dLm(y) =

= lim inf
j→∞

∑
i∈N

α(k)
(diam Bj

i

2

)k
Lm
(
f(Bj

i )
) isodiametric 2.19

≤

≤ lim inf
j→∞

∑
i∈N

α(k)
(diam Bj

i

2

)k
α(m)

(diam f(Bj
i )

2

)m
≤

≤ α(k)α(m)

α(k +m)
(Lip f)m lim inf

j→∞

∑
i∈N

α(k +m)
(diam Bj

i

2

)k+m (5.18)

≤

≤ α(k)α(m)

α(k +m)
(Lip f)m lim inf

j→∞

(
Hk+m

1/j (A) +
1

j

)
=

=
α(k)α(m)

α(k +m)
(Lip f)mHk+m(A).

�

Lemma 5.45. Let f : Rn → Rm be Lipschitz, n ≥ m, A ∈ σ(Ln).
Then:

i) For Lm-a.e. y ∈ Rm, A ∩ f−1{y} is Hn−m-measurable.
ii) N(f |A) : Rm → [0,∞] given by N(f |A)(y) := Hn−m(A ∩ f−1{y})

is Lm-measurable.

Proof.

1) Case 1: A is compact. Fix t ≥ 0. For each i ∈ N, let Ui be defined
as the set of points y ∈ Rm such that there exist finitely many open
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sets (Sj)1≤j≤k satisfying the following conditions:

(5.19)


A ∩ f−1{y} ⊂ ∪kj=1Sj,

diam Sj ≤ 1
i
,∀1 ≤ j ≤ k,∑k

j=1 α(n−m)
(

diam Sj
2

)n−m
≤ t+ 1

i
.

2) Claim #1: ∀i ∈ N, Ui is open. Indeed, let y ∈ Ui. Take (Sj)1≤j≤k
satisfying the conditions (5.19). We contend that there exists r > 0
such that A ∩ f−1

(
U(y, r)

)
⊂ ∪kj=1Sj, from which we conclude that

U(y, r) ⊂ Ui, thus proving the claim. The contention is a direct
consequence of the fact that A is compact and f is continuous: if
there were no such r > 0, we could take a sequence (yh)h∈N in Rm

convergent to y such that ∀h ∈ N, there exists xh ∈ f−1{yh} ∩
A \ ∪1≤j≤kSj. Since A \ ∪1≤j≤kSj is compact, there would be a
subsequence of (xh)h∈N, which we assume to be (xh)h∈N itself up
to changing the notation, such that xh → x ∈ A \ ∪1≤j≤kSj. By
continuity, we conclude that f(x) = lim f(xh) = lim yh = y, hence
x ∈ f−1{y} \ ∪1≤j≤kSj, thus yielding a contradiction which proves
our contention.

3) Claim #2: {y ∈ Rm | Hn−m(A ∩ f−1{y}) ≤ t} = ∩i∈NUi, hence
it is a Borel set. Since {y ∈ Rm | Hn−m(A ∩ f−1{y}) ≤ t} = ∅
for t < 0, the claim then implies that N(f |A) is Borelian if A is
compact. Since ∀y ∈ Rm, A ∩ f−1{y} is compact, hence Borelian,
we achieve the proof of case 1 once we show the claim.

Proof of claim #2:
• Assume that Hn−m(A∩ f−1{y}) ≤ t. Then, ∀δ > 0, Hn−m

δ (A∩
f−1{y}) ≤ t. Given i ∈ N, choose δ ∈ (0, 1

i
). In view of

proposition 2.4.4), there exists a countable cover G ofA∩f−1{y}
by open subsets of Rn with diameters≤ δ such that

∑
S∈G α(n−

m)
(

diam S
2

)n−m
< t+ 1

i
. Since A ∩ f−1{y} is compact, we may

take a finite subcover (Sj)1≤j≤k of G satisfying (5.19), so that
y ∈ Ui. As i ∈ N is arbitrary, it then follows that y ∈ ∩i∈NUi.
• Conversely, if ∀ i ∈ N, y ∈ Ui, then (5.19) ensures thatHn−m

1/i (A∩
f−1{y}) ≤ t + 1

i
; hence, taking i → ∞, we conclude that

Hn−m(A ∩ f−1{y}) ≤ t.
4) Case 2: A is σ-compact (in particular, that holds if A is open).

Then ∀y ∈ Rm, A ∩ f−1{y} is σ-compact, hence Borelian. More-
over, we may take an increasing sequence (Ki)i∈N of compact subsets
of A whose union is A, so that ∀y ∈ Rm, the sequence of Borel sets
(Ki ∩ f−1{y})i∈N increases to A ∩ f−1{y}. Then, applying the con-
tinuity from below 1.11 for Hn−m, it follows that N(f |Ki) increases
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pointwise to N(f |A); from case 1 and from theorem 1.41.iv) we
therefore conclude that N(f |A) is Borelian.

5) Case 3: Ln(A) = 0. It follows from lemma 5.44 with k = n −
m and l = m, and from theorem 2.21, that

´ ∗
Rm N(f |A) dLm =

0. Hence, from exercise 1.68.a), N(f |A) is Lm-measurable and´
Rm N(f |A) dLm = 0, so that N(f |A) is Lm-a.e. null. That is,

for Lm-a.e. y ∈ Rm, Hn−m(A ∩ f−1{y}) = 0, which implies that
A ∩ f−1{y} is Hn−m-measurable.

6) Case 4: Ln(A) < ∞. Since Ln is a Radon measure, we may take
a decreasing sequence (Uk)k∈N of open sets containing A such that
inf{Ln(Uk) | k ∈ N} = Ln(A). Hence, taking B := ∩k∈NUk ∈ BRn ,
we have Ln(B) = Ln(A) <∞; as A is Ln-measurable, we conclude
that Ln(B \ A) = 0. In particular, it follows from case 3 that,
for Lm-a.e. y ∈ Rm, (B \ A) ∩ f−1{y} is Hn−m-null. For such y,
A∩f−1{y} = (B∩f−1{y})\

(
(B\A)∩f−1{y}

)
is Hn−m-measurable

and Hn−m(B ∩ f−1{y}) = Hn−m(A ∩ f−1{y}), thus showing that
N(f |A) = N(f |B) Lm-a.e., so that case 4 will be done once we prove
that N(f |B) is Lm-measurable. Indeed,
• for each y ∈ Rm and k ∈ N, Uk ∩ f−1{y} is Borelian and the

sequence (Uk ∩ f−1{y})k∈N decreases to B ∩ f−1{y};
• since Ln(A) < ∞ and Ln(Uk) ↓ Ln(A), we may assume that
Ln(U1) <∞ (discarding the first terms of the sequence (Uk)k∈N,
if necessary). It then follows from lemma 5.44 with k = n −
m and l = m that

´
Rm N(f |U1) dLm =

´ ∗
Rm N(f |U1) dLm <

∞. Hence, for Lm-a.e. y ∈ Rm, N(f |U1)(y) = Hn−m(U1 ∩
f−1{y}) < ∞; for such y, we may apply the continuity from
above 1.11 to conclude that N(f |Uk)(y) ↓ N(f |B)(y). That
is N(f |Uk) decreases Lm-a.e. to N(f |B). It then follows that
N(f |B) is Lm-measurable (in view of case 2 and of theorem
1.41.iv), as asserted.

7) General case. By the σ-finiteness of Ln, we may write A = ∪̇k∈NAk,
where ∀k ∈ N, Ak ∈ σ(Ln) and Ln(Ak) < ∞. Then A ∩ f−1{y} =
∪̇k∈N(Ak ∩ f−1{y}). It follows from case 4 that, for Lm-a.e. y ∈
Rm, ∀k ∈ N, Ak ∩ f−1{y} is Hn−m-measurable; hence, for such y,
A∩f−1{y} is Hn−m-measurable and N(f |A)(y) =

∑
k∈NN(f |Ak)(y)

by the σ-additivity of Hn−m. Then N(f |A) is Lm-measurable, in
view of case 4 and theorem 1.41.iv).

�

Lemma 5.46 (Lipschitz linearization, part II). Let t > 1, h : Rn →
Rn Lipschitz and J+

h = {x ∈ Dh | Jh(x) > 0}. Then there exists a
countable disjoint family (Ek)k∈N in BJ+

h
such that Ln(J+

h \∪k∈NEk) =
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0 and, ∀k ∈ N, h|Ek is 1-1 and there exists Sk ∈ Sym(n) ∩ GL(Rn)
satisfying

i) LipS−1
k ◦ h|Ek ≤ t and Lip(h|Ek)−1 ◦ Sk ≤ t;

ii) ∀x ∈ Ek, ‖S−1
k ◦ Dh(x)‖ ≤ t and ‖Dh(x)−1 ◦ Sk‖ ≤ t.

Remark 5.47. With the notation from the previous lemma:

1) Conditions i) and ii) are equivalent to, respectively:
i’) ∀x, y ∈ h(Ek),

t−1‖S−1
k · (x− y)‖ ≤ ‖(h|Ek)−1(x)− (h|Ek)−1(y)‖ ≤ t‖S−1

k · (x− y)‖;

ii’) ∀x ∈ Ek, ∀v ∈ Rn, t−1‖S−1
k · v‖ ≤ ‖Dh(x)−1 · v‖ ≤ t‖S−1

k · v‖.
The proof is immediate and similar to the argument used in propo-
sition 5.33.

2) Condition i) implies that h|Ek has Lipschitz inverse, since (h|Ek)−1 =
[(h|Ek)−1 ◦ Sk] ◦ S−1

k , whence Lip(h|Ek)−1 ≤ t‖S−1
k ‖.

3) Condition ii) implies that, ∀x ∈ Ek:

(5.20) t−n|detSk| ≤ Jh(x) ≤ tn|detSk|.

Indeed,

Jh(x) = |detSk||detS−1
k |JDh(x)K

5.28.a)
=

= |detSk|JS−1
k ◦ Dh(x)K,

hence (5.20) follows from ii) and from exercise 5.28.b) with S−1
k ◦

Dh(x) in place of T .

Proof.

1) Let (Fk)k∈N be a countable disjoint family in BRn such that J+
h =

∪̇k∈N Fk and ∀k ∈ N, h|Fk is 1-1 with Lipschitz inverse. The existence
of such a family follows from theorem 5.35 and proposition 5.33 with
h in place of f .

2) Fix k ∈ N. As (h|Fk)−1 : h(Fk) → Rn is Lipschitz, by theorem
5.1 (or theorem 5.2) it may be extended to a Lipschitz map hk :
Rn → Rn. Since h(Fk) ⊂ {x ∈ Rn | h ◦ hk(x) = x}, it follows
from corollary 5.17 with hk in place of f and h in place of g that
Dh
(
hk(x)

)
◦ Dhk(x) = idRn for Ln-a.e. x ∈ h(Fk). Thus, defining

Yk := {x ∈ Rn | ∃Dhk(x), ∃Dh
(
hk(x)

)
,Dh

(
hk(x)

)
◦ Dhk(x) = idRn}

then Yk ∈ BRn (in view of exercise 5.13) and h(Fk) \ Yk is Ln-null.
Besides, ∀x ∈ Yk, Jh

(
hk(x)

)
· Jhk(x) = 1, so that Jhk(x) > 0, hence

Yk ⊂ J+
hk

.
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3) Applying the Lipschitz linearization theorem 5.35 to hk, there exists
a countable disjoint family (Gk

j )j∈N in BRn and a sequence (Rk
j )j∈N

in Sym(n)∩GL(Rn) such that J+
hk

= ∪̇j∈NGk
j and ∀j ∈ N, (Gk

j , R
k
j )

is a t-linearization for hk. Define, for each j ∈ N,

Ek
j := Fk∩h−1(Gk

j∩Yk) ∈ BRn and Skj := (Rk
j )
−1 ∈ Sym(n)∩GL(Rn).

We will prove that the countable family (Ek
j , S

k
j )k,j∈N satisfies con-

ditions stated in the theorem.
4) It is clear that (Ek

j )k,j∈N is a disjoint family in BJ+
f

and ∀k, j ∈ N,

h|Ekj is 1-1 with Lipschitz inverse, since Ek
j ⊂ F k. Namely, (h|Ekj )−1

is the restriction of hk to h(Ek
j ) = h(Fk) ∩Gk

j ∩ Yk.
5) We contend that J+

h \ ∪k,n∈NEk,j is Ln-null. Indeed, since J+
h =

∪̇k∈N Fk, it suffices to show that, for each k ∈ N, Fk \ ∪j∈NEk
j is

Ln-null. Since h|Fk is bi-Lipschitz onto h(Fk), the latter condition
is equivalent to h(Fk \ ∪j∈NEk

j ) being Ln-null. As

h(Fk \ ∪j∈NEk
j ) = h

(
Fk \ [Fk ∩ h−1(Yk ∩ ∪j∈NGk

j )]
)

=

= h
(
Fk \ h−1(Yk ∩ J+

hk︸ ︷︷ ︸
=Yk

)
)

=

= h(Fk) \ Yk,

the contention follows from part 2).
6) ∀k, j ∈ N, hk|Gkj extends (h|Ekj )−1 (by part 4), hence (hk|Gkj )

−1 ex-

tends h|Ekj . Therefore, ∀k, j ∈ N,

Lip(Skj )−1 ◦ h|Ekj = LipRk
j ◦ h|Ekj ≤ LipRk

j ◦ (hk|Gkj )
−1 ≤ t,

Lip(h|Ekj )−1 ◦ Skj = Lip(h|Ekj )−1 ◦ (Rk
j )
−1 ≤ Liphk|Gkj ◦ (Rk

j )
−1 ≤ t,

where the last inequalities in both lines are justified by the fact that
(Gk

j , R
k
j ) is a t-linearization for hk and by proposition 5.33. Thus,

∀k, j ∈ N, condition i) in the statement of the lemma is fulfilled by
(Ek

j , R
k
j ).

7) ∀k, j ∈ N, ∀x ∈ Ek
j , we have h(x) ∈ Gk

j ∩ Yk and x = hk
(
h(x)

)
; in

particular, by the definition of Yk, Dh(x) ◦ Dhk
(
h(x)

)
= idRn , i.e.

Dh(x) = Dhk
(
h(x)

)−1
. It then follows that, ∀k, j ∈ N, ∀x ∈ Ek

j :

‖(Skj )−1 ◦ Dh(x)‖ = ‖Rk
j ◦ Dhk

(
h(x)

)−1‖ ≤ t,

‖Dh(x)−1 ◦ Skj ‖ = ‖Dhk
(
h(x)

)
◦ (Rk

j )
−1‖ ≤ t,

where the last inequalities in both lines are justified by the fact that
(Gk

j , R
k
j ) is a t-linearization for hk and by proposition 5.33. Thus,
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∀k, j ∈ N, condition ii) in the statement of the lemma is fulfilled by
(Ek

j , R
k
j ), which concludes the proof.

�

Theorem 5.48 (Coarea formula). Let f : Rn → Rm be Lipschitz,
n ≥ m. Then, for each Ln-measurable A ⊂ Rn,

(5.21)

ˆ
A

Jf dLn =

ˆ
Rm
Hn−m(A ∩ f−1{y}) dLm(y).

Remark 5.49.

1) Recall that N(f |A) : y 7→ Hn−m(A ∩ f−1{y}) is Lm-measurable, by
lemma 5.45, so that the integral in the second member of the coarea
formula makes sense.

2) If f : Rn ≡ Rm × Rn−m → Rm is the projection on the first factor,
we have Jf ≡ 1 and the coarea formula reduces to Fubini-Tonelli’s
theorem 1.84. The general case may be interpreted, therefore, as a
“curvilinear” generalization of Fubini-Tonelli’s theorem.

3) If n = m, the coarea formula coincides with the area formula 5.36.
4) If we take the Borel setA := (Rn\Df )∪J0

f = {x ∈ Rn | @Df(x) or Jf(x) =

0} in the coarea formula, we conclude that Hn−m(A ∩ f−1{y}) = 0
for Lm-a.e. y ∈ Rm. That may be interpreted as a measure theo-
retic version of Morse-Sard’s theorem: Lm-a.e. y ∈ Rm is a measure
theoretic “regular value” of f , in the sense that, up to Hn−m null
sets, f−1{y} lies in the set J+

f of points where Df has maximal rank.

Proof.

1) If A ⊂ Rn \ Df , then Ln(A) = 0 by Rademacher’s theorem 5.12,
hence the first member in (5.21) is null, and so is the second in view
of lemma 5.44 with k = n − m and l = m. Therefore, it suffices
to show (5.21) for A ⊂ Df = J+

f ∪̇ J0
f . Since both members are

additive on σ(Ln), it suffices to consider the cases A ⊂ J+
f and

A ⊂ J0
f .

2) Case 1: A ⊂ J+
f . For each λ ∈ Λ(n, n − m), define hλ : Rn →

Rm × Rn−m by
hλ(x) :=

(
f(x), Pλ(x)

)
,

where Pλ is the orthogonal projection onto 〈eλ(1), . . . , eλ(n−m)〉 ≡
Rn−m. For all x ∈ Dhλ = Df , we have Dhλ(x) =

(
Df(x), Pλ

)
∈

L(Rn); therefore, Jhλ(x) > 0 iff x ∈ Jλf , where

Jλf := {x ∈ J+
f | Pλ|kerDf(x) is 1-1 }.

For each x ∈ J+
f , there exists λ ∈ Λ(n, n−m) such that ker Df(x)

is transversal to 〈eλ(1), . . . , eλ(n−m)〉 ≡ Rn−m (hence x ∈ Jλf ). That
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is, J+
f = ∪λ∈Λ(n,n−m)J

λ
f . Therefore, we may decompose A as a dis-

joint union A = ∪̇λ∈Λ(n,n−m) Aλ, with Aλ ⊂ Jλf Ln-measurable. By
the additivity of both members of (5.21) on Ln, it then suffices
to show the equality for each Aλ. We may therefore assume that
A ⊂ Jλf = J+

hλ
for a given λ ∈ Λ(n, n−m).

3) For simplicity of notation, we put h := hλ : Rn → Rn. Let q : Rn ≡
Rm × Rn−m → Rm be the projection on the first factor, so that
f = q ◦ h.

Fix t > 1. Apply lemma 5.46 to h in order to obtain a disjoint
countable family (Ek)k∈N in BJ+

h
and a sequence (Sk)k∈N ∈ Sym(n)∩

GL(Rn) such that Ln(J+
h \ ∪̇k∈NEk) = 0 and ∀k ∈ N, h|Ek is 1-1

and conditions i), ii) in the statement of the lemma are fulfilled. Let
∀k ∈ N, Ak := A∩Ek ∈ σ(Ln), so that A\ ∪̇k∈NAk is Ln-null (since
A ⊂ J+

h ).
We contend that, ∀k ∈ N, ∀x ∈ Ak,

(5.22) t−mJq ◦ SkK ≤ Jf(x) ≤ tmJq ◦ SkK.

Indeed, since f = q ◦ h, Df(x) = q ◦Dh(x) = q ◦Sk ◦
(
S−1
k ◦Dh(x)

)
.

Thus, defining C := S−1
k ◦ Dh(x), we have q ◦ Sk = Df(x) ◦ C−1,

whence (q ◦ Sk)∗ = (C−1)
∗ ◦ Df(x)∗. Therefore, applying exercise

5.28.c) with Df(x)∗ : Rm → Rn in place of T and (C−1)
∗ ∈ GL(Rn)

in place ofR, and noting that (C−1)
∗

= (C∗)−1 and that the transpo-
sition (·)∗ preserves Jacobians and is a linear isometry, we conclude
that

‖C‖−m Jf(x) ≤ Jq ◦ SkK ≤ ‖C−1‖m Jf(x),

hence

Jf(x) ≤ ‖C‖mJq ◦ SkK
ii) from lemma 5.46

≤ tmJq ◦ SkK,

Jf(x) ≥ ‖C−1‖−mJq ◦ SkK
ii) from lemma 5.46

≥ t−mJq ◦ SkK,

thus proving our contention.
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4) ∀k ∈ N,

t−2n

ˆ
Rm
Hn−m(Ak ∩ f−1{y}) dLm(y) =

= t−2n

ˆ
Rm
Hn−m((S−1

k ◦ h|Ak)
−1 ◦ S−1

k ◦ h|Ak(Ak ∩ h
−1q−1{y})

)
dLm(y) =

= t−2n

ˆ
Rm
Hn−m((S−1

k ◦ h|Ak)
−1[S−1

k ◦ h(Ak) ∩ (q ◦ Sk)−1{y}]
)

dLm(y)
2.4.3)

≤

≤ [Lip(h|Ak)−1 ◦ Sk]n−m t−2n

ˆ
Rm
Hn−m(S−1

k ◦ h(Ak) ∩ (q ◦ Sk)−1{y}
)

dLm(y)
5.46.i)

≤

≤ t−n−m
ˆ
Rm
Hn−m(S−1

k ◦ h(Ak) ∩ (q ◦ Sk)−1{y}
)

dLm(y)
5.43
=

= t−n−mJq ◦ SkKLn
(
S−1
k ◦ h(Ak)

) 2.4.3)

≤

≤ t−n−mJq ◦ SkK(LipS−1
k ◦ h|Ak)

nLn(Ak)
5.46.i)

≤

≤ t−mJq ◦ SkKLn(Ak)
(5.22)

≤

≤
ˆ
Ak

Jf dLn
(5.22)

≤

≤ tmJq ◦ SkKLn(Ak) = tmJq ◦ SkKLn
(
(h|−1

Ak
◦ Sk) ◦ (S−1

k ◦ h|Ak)(Ak)
) 2.4.3)

≤

≤ tmJq ◦ SkK(Liph|−1
Ak
◦ Sk)nLn

(
S−1
k ◦ h|Ak(Ak)

) 5.46.i)

≤

≤ tm+nJq ◦ SkKLn
(
S−1
k ◦ h|Ak(Ak)

) 5.43
=

= tm+n

ˆ
Rm
Hn−m(S−1

k ◦ h(Ak) ∩ (q ◦ Sk)−1{y}
)

dLm(y) =

= tm+n

ˆ
Rm
Hn−m[(S−1

k ◦ h|Ak) ◦ (h|−1
Ak
◦ Sk)

(
S−1
k ◦ h(Ak) ∩ (q ◦ Sk)−1{y}

)]
dLm(y) =

= tm+n

ˆ
Rm
Hn−m[S−1

k ◦ h|Ak
(
Ak ∩ h|−1

Ak
q−1{y}

)]
dLm(y) =

= tm+n

ˆ
Rm
Hn−m[S−1

k ◦ h|Ak(Ak ∩ f
−1{y})

]
dLm(y)

2.4.3)

≤

≤ tm+n(LipS−1
k ◦ h|Ak)

n−m
ˆ
Rm
Hn−m(Ak ∩ f−1{y}) dLm(y)

5.46.i)

≤

≤ t2n
ˆ
Rm
Hn−m(Ak ∩ f−1{y}) dLm(y).
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In particular, ∀k ∈ N,

t−2n

ˆ
Rm
Hn−m(Ak ∩ f−1{y}) dLm(y) ≤

ˆ
Ak

Jf dLn ≤

≤ t2n
ˆ
Rm
Hn−m(Ak ∩ f−1{y}) dLm(y).

(5.23)

5) It follows from lemma 5.45 that, for Ln-a.e. y ∈ Rm, ∀k ∈ N,
Ak∩f−1{y} isHn−m-measurable, so thatHn−m(∪̇k∈NAk∩f−1{y}) =∑

k∈NHn−m(Ak ∩ f−1{y}). It then follows from the monotone con-
vergence theorem 1.62 that

(5.24)ˆ
Rm
Hn−m( ∪̇

k∈N
Ak∩f−1{y}) dLm(y) =

∑
k∈N

ˆ
Rm
Hn−m(Ak∩f−1{y}) dLm(y).

6) We contend that
(5.25)ˆ

Rm
Hn−m( ∪̇

k∈N
Ak∩f−1{y}) dLm(y) =

ˆ
Rm
Hn−m(A∩f−1{y}) dLm(y).

Indeed, since ∪̇k∈NAk ⊂ A, the inequality “≤” trivially holds in
(5.25). On the other hand, by subadditivity we have, ∀y ∈ Rm,
Hn−m(A∩f−1{y}) ≤ Hn−m(∪̇k∈NAk∩f−1{y})+Hn−m((A\∪̇k∈NAk)∩
f−1{y}

)
, whence

´
RmH

n−m(A∩f−1{y}) dLm(y) ≤
´
RmH

n−m(∪̇k∈NAk∩
f−1{y}) dLm(y)+

´
RmH

n−m((A\∪̇k∈NAk)∩f−1{y}
)

dLm(y). As A\
∪̇k∈NAk is Ln-null (by part 3), it follows from lemma 5.44 with k =
n−m and l = m that

´
RmH

n−m((A\∪̇k∈NAk)∩f−1{y}
)

dLm(y) = 0,
thus proving the reverse inequality and our contention follows.

It then follows from (5.24) and (5.25) that
(5.26)ˆ

Rm
Hn−m(A∩f−1{y}) dLm(y) =

∑
k∈N

ˆ
Rm
Hn−m(Ak∩f−1{y}) dLm(y).

7) Since A \ ∪̇k∈NAk is Ln-null, we have

(5.27)

ˆ
A

Jf dLn =

ˆ
∪̇k∈N Ak

Jf dLn MCT 1.62
=

∑
k∈N

ˆ
Ak

Jf dLn.

Thus, from (5.27), (5.26) and (5.23), we finally conclude that

t−2n

ˆ
Rm
Hn−m(A ∩ f−1{y}) dLm(y) ≤

ˆ
A

Jf dLn ≤

≤ t2n
ˆ
Rm
Hn−m(A ∩ f−1{y}) dLm(y).
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Since t > 1 was arbitrarily taken, making t ↓ 1 it follows thatˆ
Rm
Hn−m(A ∩ f−1{y}) dLm(y) =

ˆ
A

Jf dLn,

which concludes the proof of case 1.
8) Case 2: A ⊂ J0

f .
Note that both members in (5.21) are σ-additive on σ(Ln) (for

the second member, that is a consequence of lemma 5.45 and of the
monotone convergence theorem 1.62). By the σ-finiteness of Ln, we
may therefore assume that Ln(A) <∞.

Fix ε > 0 and define g : Rn×Rm → Rm by g(x, y) := f(x) + εy,
q : Rn × Rm → Rn and p : Rn × Rm → Rm the projections on
the first and second factors, respectively. Then g is Lipschitz and
∀ (x, y) ∈ Dg = Df × Rm, Dg(x, y) = Df(x) ◦ q + εp. Hence, the
transpose of the Jacobian matrix [Dg(x, y)] is the (n+m)×m matrix
written in block form as

[Dg(x, y)∗] =

(
[Df(x)∗]
εIm

)
,

i.e. it is of the same form of (5.14), exchanging m with n. Since
the i-th row of the matrix [Df(x)∗] is the i-th partial derivative of
f at x, i.e. Df(x) · ei, the norm of such row is ≤ Lip f . Therefore,
with exactly the same argument used in page 146 (case 2 of the area
formula), i.e. using Binet-Cauchy formula 5.23, we conclude that,
∀ (x, y) ∈ Dg = Df × Rm,

Jg(x, y) ≥ εm > 0,(
Jg(x, y)

)2 ≤
(
Jf(x)

)2
+
((n+m

m

)
−
(
n

m

))
ε2 ·max{1, (Lip f)m−1}2.

In particular, if (x, y) ∈ A × Rm ⊂ J0
f × Rm, we conclude that

Jg(x, y) ≤ Cε, where

C :=

√(
n+m

m

)
−
(
n

m

)
max{1, (Lip f)m−1}.

Hence, ∀ (x, y) ∈ A×Rm, 0 < Jg(x, y) ≤ Cε; in particular, A×Rm ⊂
J+
g , so that we may apply case 1 with g in place of f and any Ln+m-

measurable subset of A× Rm in place of A.
9) Recall that, by lemma 5.45, the map N(f |A) : Rm → [0,∞] given

by N(f |A)(y) = Hn−m(A ∩ f−1{y}) is Lm-measurable. Since η :
Rm ×Rm → Rm given by η(y, w) := y − εw is linear and surjective,
it is measurable as a map (R2m ≡ Rm × Rm,L R2m) → (Rm,L Rm)
(because it may be factored as η = q ◦ ψ, where ψ ∈ GL(R2m)
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and q : Rm × Rm → Rm is the projection on the first factor, and
linear isomorphisms preserve the Lebesgue σ-algebra). Therefore,
the composite map N(f |A) ◦ η is ≥ 0 and L2m-measurable, and
so is the map Rm × Rm → [0,∞] given by (y, w) 7→ χB(0,1)(w) ·
N(f |A)(y−εw). As L2m = Lm×Lm (by example 1.86), that justifies
the application of Fubini-Tonelli’s theorem 1.84 in the computation
below:

∀w ∈ Rm,

ˆ
Rm
Hn−m(A ∩ f−1{y}) dLm(y)

1.4
=

=

ˆ
Rm
Hn−m(A ∩ f−1{y − εw}) dLm(y) =

=
1

α(m)

ˆ
B(0,1)

ˆ
Rm
Hn−m(A ∩ f−1{y − εw}) dLm(y) dLm(w) =

=
1

α(m)

ˆ
Rm

ˆ
Rm

χB(0,1)(w) · Hn−m(A ∩ f−1{y − εw}) dLm(y) dLm(w)
Fubini 1.84

=

=
1

α(m)

ˆ
Rm

ˆ
Rm

χB(0,1)(w) · Hn−m(A ∩ f−1{y − εw}) dLm(w) dLm(y) =

=
1

α(m)

ˆ
Rm

ˆ
Rm

χB(0,1)(w) · Hn−m((A ∩ f−1{y − εw})× {w}
)

dLm(w) dLm(y),

(5.28)

where the last equality is due to corollary 2.5 with the isometry
Rn → Rn × Rm given by x 7→ (x,w).

10) Note that, if x ∈ Rn and w, y ∈ Rm, we have (x ∈ A and g(x,w) =
y) iff (x ∈ A and f(x) = y− εw) iff x ∈ A∩f−1{y− εw}. Therefore,
defining B := A× B(0, 1) ⊂ Rn × Rm, the following equality holds:

B ∩ g−1{y}∩ p−1{w} =

{
∅ if w 6∈ B(0, 1)

(A ∩ f−1{y − εw})× {w} if w ∈ B(0, 1).

Thus, ∀(y, w) ∈ Rm × Rm,

χB(0,1)(w)·Hn−m((A∩f−1{y−εw})×{w}
)

= Hn−m(B∩g−1{y}∩p−1{w}).

It then follows from (5.28) thatˆ
Rm
Hn−m(A ∩ f−1{y}) dLm(y) =

=
1

α(m)

ˆ
Rm

ˆ
Rm
Hn−m(B ∩ g−1{y} ∩ p−1{w}) dLm(w) dLm(y).

To continue this computation, we apply lemma 5.44 to the inner
integral, with B ∩ g−1{y} ∈ σ(Ln+m) in place of A, p : Rn × Rm →
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Rm in place of f , k = n−m and l = m, which yieldsˆ
Rm
Hn−m(A ∩ f−1{y}) dLm(y) ≤

=
1

α(m)

α(n−m)α(m)

α(n)

ˆ
Rm
Hn(B ∩ g−1{y}) dLm(y)

by case 1
=

=
α(n−m)

α(n)

ˆ
B

Jg dLn+m
part 8

≤

≤ α(n−m)

α(n)
Cε · Ln+m(B) =

=
α(n−m)α(m)

α(n)
Cε · Ln(A).

Since Ln(A) < ∞ (by the reduction in the first part of step 8)
and ε > 0 was arbitrarily taken, making ε ↓ 0 yieldsˆ

Rm
Hn−m(A ∩ f−1{y}) dLm(y) = 0 =

ˆ
A

Jf dLn,

which concludes the proof of case 2 and the thesis follows.

�

Corollary 5.50 (curvilinear Fubini-Tonelli’s theorem). Let f :
Rn → Rm be Lipschitz, n ≥ m. Then for all g : Rn → R Ln-measurable
with g ≥ 0 or g summable,

(5.29)

ˆ
Rn
g Jf dLn =

ˆ
Rm

(ˆ
f−1{y}

g(x) dHn−m(x)
)

dLm(y),

meaning that the iterated integrals in second member make sense and
the equality holds.

Proof. Suppose that g ≥ 0. By exercise 1.54, there exists a se-
quence (Ai)i∈N in σ(Ln) such that

g =
∞∑
i=1

1

i
χAi .

Hence, for all y ∈ Rm,

g · χf−1{y} =
∞∑
i=1

1

i
χAi∩f−1{y}.

It follows from lemma 5.45 that, for Lm-a.e. y ∈ Rm, ∀i ∈ N, χAi∩f−1{y}
is Hn−m-measurable; for such y, theorem 1.41 ensures that g · χf−1{y}
is Hn−m-measurable and ≥ 0, so that the inner integral in the second



166 5. AREA AND COAREA FORMULAS

member of (5.29) makes sense. Moreover, still for y satisfying the above
condition, it follows from the monotone convergence theorem 1.62 thatˆ

g(x) · χf−1{y}(x) dHn−m(x) =
∞∑
i=1

1

i
Hn−m(Ai ∩ f−1{y}).

Since the second member of the above equality defines a Lm-measurable
function Rm → [0,∞] (in view of lemma 5.45 and theorem 1.41),
we conclude that the Lm-a.e. defined positive function y 7→

´
g(x) ·

χf−1{y}(x) dHn−m(x) is Lm-measurable andˆ
Rm

(ˆ
f−1{y}

g(x) dHn−m(x)
)

dLm(y) =

=

ˆ
Rm

∞∑
i=1

1

i
Hn−m(Ai ∩ f−1{y}) dLm(y)

MCT 1.62
=

=
∞∑
i=1

1

i

ˆ
Rm
Hn−m(Ai ∩ f−1{y}) dLm(y)

CAF 5.48
=

=
∞∑
i=1

1

i

ˆ
χAi Jf dLn MCT 1.62

=

=

ˆ ∞∑
i=1

1

i
χAi Jf dLn =

ˆ
Rn
g Jf dLn,

thus proving the case in which g ≥ 0. For g : Rn → R Ln-summable,
we apply the case just proved to the positive and negative parts of
g. �

Exercise 5.51 (Coarea Formula for locally Lipschitz maps). The
coarea formula and its corollary remain valid for locally Lipschitz maps
defined on open subsets of Rn. That is, let n ≥ m, Ω ⊂ Rn open and
f : Ω→ Rm locally Lipschitz.

a) (coarea formula) For all Ln-measurable A ⊂ Ω,
• for Lm-a.e. y ∈ Rm, f−1{y} ∩ A is Hn−m-measurable;
• the function N(f |A) : Rm → [0,∞], y 7→ Hn−m(A∩ f−1{y}), is
Lm-measurable andˆ

A

Jf dLn =

ˆ
Rm
Hn−m(A ∩ f−1{y}) dLm(y).

b) (curvilinear Fubini-Tonelli’s theorem) If g : Ω→ R is Ln|Ω-measurable
and g ≥ 0 or g ∈ L1(Ln|Ω), thenˆ

Ω

g Jf dLn =

ˆ
Rm

(ˆ
f−1{y}

g(x) dHn−m(x)
)

dLn(y),
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meaning that the iterated integrals in the second member make
sense and the equality holds.

5.3.1. Applications of the coarea formula.

Proposition 5.52 (polar coordinates). If g : Rn → R is Ln-
measurable and g ≥ 0 or g ∈ L1(Ln), then

(5.30)

ˆ
Rn
g dLn =

ˆ ∞
0

(ˆ
∂B(0,r)

g dHn−1
)

dr.

Proof. Let f : Rn → R be given by f(x) = ‖x‖. Then f is
Lipschitz and ∀x ∈ Df = Rn \ {0}, ∇f(x) = x/‖x‖, hence Jf(x) =
‖∇f(x)‖ = 1. Since ∀r ∈ R, f−1{r} = ∂B(0, r) (in particular, = ∅ for
r < 0), (5.30) is a direct consequence of corollary 5.50. �

Proposition 5.53. Let Ω ⊂ Rn open and f : Ω → R be locally
Lipschitz. Thenˆ

Ω

‖∇f‖ dLn =

ˆ ∞
−∞
Hn−1({f = t}) dt.

Proof. It is a direct consequence of exercise 5.51.a), with A = Ω,
taking into account that Jf = ‖∇f‖. �





CHAPTER 6

Sobolev Spaces

In this chapter we study some basic theory of Sobolev spaces W1,p(Ω)
and W1,p

loc (Ω) on open sets Ω ⊂ Rn. Our primary purpose is to develop
some background for the study of functions of bounded variation and
Cacciopoli sets in the subsequent chapters. For a more extensive treat-
ment on this subject, we refer the reader to standard textbooks — for
instance, [Maz11] or [AF03].

Recall the definitions of weak derivatives and sobolev functions in-
troduced in the previous chapter in 5.3 and 5.8. In order to introduce
vector space topologies on the spaces W1,p(Ω) and W1,p

loc (Ω), we make
the following definition:

Definition 6.1. Let Ω ⊂ Rn open and f ∈ W1,1
loc(Ω), i.e. f ∈

L1
loc(Ln|Ω) admits weak partial derivatives of first order. We define

• for 1 ≤ p <∞, ‖f‖W1,p(Ω):= (
´

Ω
|f |p + ‖∇f‖p dLn)1/p ∈ [0,∞];

• for p =∞, ‖f‖W1,∞(Ω):=
∥∥|f |+ ‖∇f‖∥∥

L∞(Ω)
∈ [0,∞].

Thus, with the notation above, ∀1 ≤ p ≤ ∞, f ∈ W1,p(Ω) iff ‖f‖W1,p(Ω) <
∞, and it is clear that ‖·‖W1,p(Ω) is a seminorm on W1,p(Ω). Similarly
to the discussion on Lp spaces, the linear subspace N := {f ∈ W1,p(Ω) |
‖f‖W1,p(Ω) = 0} of W1,p(Ω) consists of the measurable functions on Ω
which are null almost everywhere. Therefore, the quotient W1,p(Ω)/N
consists of classes of equivalence of functions in W1,p(Ω) which coincide
almost everywhere, and ‖·‖W1,p(Ω) is a norm on this quotient, which
is complete by the following proposition. As in remark 1.61, we shall
henceforth overload the notation “W1,p(Ω)”, which will be used both
with its original meaning and also to denote the aforementioned quo-
tient space.

Proposition 6.2. Let Ω ⊂ Rn open. For 1 ≤ p ≤ ∞, W1,p(Ω)
is a Banach space (for p = 2, it is a Hilbert space). It is reflexive for
1 < p <∞ and it is separable for 1 ≤ p <∞.

169
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Proof. Let H := Lp(Ln|Ω)×Lp(Ln|Ω,Rn), which is a Banach space
with the norm

‖(f, F )‖ :=


(´

Ω
|f |p + ‖F‖p dLn

)1/p

for 1 ≤ p <∞,∥∥|f |+ ‖F‖∥∥
L∞(Ω)

for p =∞.

The fact that H is indeed a Banach space, reflexive for 1 < p <∞ and
separable for 1 ≤ p < ∞ follows from the corresponding properties of
the spaces Lp(Ln|Ω) and Lp(Ln|Ω,Rn) ≡ Lp(Ln|Ω)n and from the fact
that the topology ofH is the product topology. Moreover, for p = 2, the
norm defined above is induced by the inner product 〈(f, F ), (g,G)〉 :=
〈f, g〉L2(Ln|Ω) + 〈F,G〉L2(Ln|Ω,Rn), hence it is a Hilbert space in that case.

We contend that the graph of the weak gradient operator ∇w :
W1,p(Ω)→ Lp(Ln|Ω,Rn) is a closed subspace ofH. Indeed, let (uk, vk)k∈N
be a sequence in gr ∇w such that (uk, vk)→ (u, v) ∈ H. We must show
that u is weakly differentiable and ∇w u = v. Indeed, ∀ϕ ∈ C∞c (Ω,Rn),
∀k ∈ N, ˆ

Ω

uk div ϕ dLn = −
ˆ

Ω

〈vk, ϕ〉 dLn.

Since uk → u in Lp(Ln|Ω) and vk → v in in Lp(Ln|Ω,Rn), the above
equality holds with u in place of uk and v in place of vk, thus proving
our contention.

As a closed subspace of H, gr ∇w is also a Banach space (Hilbert
for p = 2), reflexive for 1 < p <∞ and separable for 1 ≤ p <∞. Since
the projection on the first factor gr ∇w → W1,p(Ω) is a linear isometry
onto W1,p(Ω) endowed with the norm defined in 6.1 (in other words,
that norm is the “graph norm”), the thesis follows. �

Proposition 6.3. Let 1 ≤ p ≤ ∞, Ω ⊂ Rn open and (uk)k∈N a
sequence in W1,p(Ω).

i) If (uk)k∈N is Lp-convergent to u ∈ Lp(Ln|Ω) and (∇uk)k∈N is Lp-
convergent to v ∈ Lp(Ln|Ω,Rn), then u ∈ W1,p(Ω) and ∇w u = v.

ii) If 1 < p ≤ ∞, (uk)k∈N is Lp-convergent to u ∈ Lp(Ln|Ω) and the
sequence (∇uk)k∈N is bounded in Lp(Ln|Ω,Rn), then u ∈ W1,p(Ω).

Proof. With the notation from the previous proof, the first asser-
tion is a direct consequence of the fact that gr ∇w is closed in H.

As to the second assertion, let 1 < p ≤ ∞ and q the conjugate
exponent of p. It follows from the Riesz representation theorem 1.79
that Lp(Ln|Ω,Rn) is the dual of Lq(Ln|Ω,Rn); hence, by the fact that
Lq(Ln|Ω,Rn) is separable (since 1 ≤ q <∞) and by the Banach-Alaoglu
theorem, strongly closed balls in Lp(Ln|Ω,Rn) are sequentially com-
pact in the weak-star topology. Thus, passing to a subsequence if
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necessary, we may assume that (∇uk)k∈N is weakly-star convergent to
v ∈ Lp(Ln|Ω,Rn). In particular, for every ϕ ∈ C∞c (Ω),ˆ

Ω

u div ϕ dLn = lim
k→∞

ˆ
Ω

uk div ϕ dLn =

= − lim
k→∞

ˆ
Ω

〈∇uk, ϕ〉 dLn =

= −
ˆ

Ω

〈v, ϕ〉 dLn

thus showing that u is weakly differentiable and∇w u = v ∈ Lp(Ln|Ω,Rn),
hence u ∈ W1,p(Ω). �

In order to establish the locality of the weak derivative, we recall
from Advanced Calculus the construction of smooth partitions of unity
(skip to theorem 6.13 if you don’t need to recall that stuff).

Definition 6.4 (point-finite and locally finite families). Let X be
a topological space. We say that a family (Fα)α∈A of subsets of X is

• point-finite if ∀x ∈ X, {α ∈ A | x ∈ Fα} is finite;
• locally finite if ∀x ∈ X, there exists a neighborhood V of x

such that {α ∈ A | V ∩ Fα 6= ∅} is finite.

Remark 6.5. Let X be a topological space.

1) If X is second countable and (Fα)α∈A is a locally finite family of
subsets of X, then A is countable, since we may cover X by count-
ably many open sets, each of which intersects subsets in the family
for at most finitely many indices.

2) It is clear that every locally finite family of subsets of X is point-
finite.

3) It is also clear that, if K ⊂ X is compact and (Fα)α∈A is a locally
finite family of subsets of X, then {α ∈ A | K ∩ Fα 6= ∅} is finite.

Definition 6.6 (smooth partitions of unity on open sets of Rn).
Let Ω ⊂ Rn open. A smooth partition of unity of Ω is a family (ξα)α∈A
such that:

PU1) ∀α ∈ A, ξα ∈ C∞(Ω, [0, 1]) and (spt ξα)α∈A is a locally finite
family of subsets of Ω;

PU2) ∀x ∈ Ω,
∑

α∈A ξα(x) = 1.

If F is an open cover of Ω, we say that a smooth partition of unity
(ξα)α∈A of Ω is subordinate to F if ∀α ∈ A, there exists U ∈ F such
that spt ξα ⊂ U .

With the notation above, note that, ∀x ∈ Ω, the sum in PU2) is
finite. Actually, thanks to PU1), there exists a neighborhood V ⊂ Ω
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of x such that AV := {α ∈ A | spt ξα∩V 6= ∅} is finite; hence, ∀y ∈ V ,∑
α∈A ξα(y) =

∑
α∈AV ξα(y) is a finite sum.

We will need the following theorem from General Topology :

Theorem 6.7 (shrinking lemma). Let X be a normal topological
space and (Uα)α∈A a point-finite open cover of X. Then there exists an
open cover (Vα)α∈A of X such that, ∀α ∈ A, Vα ⊂ Uα.

Proof. We refer the reader to [Eng89], theorem 1.5.18, page 44.
�

Theorem 6.8 (existence of partitions of unity on open sets of Rn).
Let Ω ⊂ Rn open and (Uα)α∈A a locally finite open cover of Ω with
∀α ∈ A, Uα b Ω. Then there exists a smooth partition of unity (ξα)α∈A
of Ω such that, ∀α ∈ A, spt ξα b Uα.

Proof. Apply the shrinking lemma 6.7 to the locally finite (hence
point-finite) open cover (Uα)α∈A of Ω endowed with the relative topol-
ogy. We obtain an open cover (Vα)α∈A of Ω such that, ∀α ∈ A,

Vα
Ω

= Vα ∩ Ω ⊂ Uα; in particular, since Uα b Ω, Vα = Vα
Ω

is a
compact subset of Uα. Then, for each α ∈ A, we may apply the differ-
entiable Urysohn’s lemma 1.114 to obtain ψα ∈ C∞c (Uα, [0, 1]) such that
ψα ≡ 1 on Vα. Since (spt ψα)α∈A is a locally finite family of subsets of
Ω, ψ :=

∑
α∈A ψα is a real-valued smooth function on Ω; it is strictly

positive, because (Vα)α∈A cover Ω. Define, ∀α ∈ A,

ξα :=
ψα
ψ
.

Then ∀α ∈ A, ξα ∈ C∞c (Ω), spt ξα b Uα, (spt ξα)α∈A is locally finite
family of subsets of Ω and ∀x ∈ Ω,

∑
α∈A ξα(x) = 1. �

Corollary 6.9. Let Ω ⊂ Rn be open and F an open cover of Ω.
Then there exists a partition of unity (ξα)α∈A of Ω subordinate to F
such that ∀α ∈ A, spt ξα is compact.

Proof. Take a refinement of F formed by open sets with compact
closures in Ω and then a locally finite open refinement G of the latter
cover, which exists, due the paracompactness of Ω. Then apply theorem
6.8 to Ω with the cover G. �

Corollary 6.10. Let K ⊂ Rn be compact and (Ui)1≤i≤N a cover
of K by open subsets of Rn. Then there exists (ξi)1≤i≤N such that

∀1 ≤ i ≤ N , ξi ∈ C∞c (Ui, [0, 1]) and
∑N

i=1 ξi ≡ 1 on K.

Proof. Let Ω := ∪1≤i≤NUi and apply the previous corollary to
obtain a smooth partition of unity (ηα)α∈A of Ω subordinate to the
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cover (Ui)1≤i≤N such that ∀α ∈ A, spt ηα is compact. Since (spt ηα)α∈A
is a locally finite family of subsets of Ω and K is a compact subset of
Ω, the set AK := {α ∈ A | spt ηα∩K 6= ∅} is finite. Since the partition
of unity is subordinate to (Ui)1≤i≤N , for each α ∈ AK we may choose
i(α) ∈ {1, . . . , N} such spt ηα ⊂ Ui(α). Define, for 1 ≤ i ≤ N ,

ξi :=
∑

{α∈AK |i(α)=i}

ηα,

recalling that the sum over the empty family is 0.
�

Corollary 6.11. Let Ω ⊂ Rn be open and F an open cover of Ω.
Then there exists a partition of unity (ξV )V ∈F of Ω strictly subordinate
to F , i.e. such that for all V ∈ F , spt ξV ⊂ V .

In general, it is not possible to choose such a strictly subordinate
partition of unit with compact supports, i.e. for each V ∈ F , the
support of ξV may be not compact.

Proof. We may apply corollary 6.9 to obtain a smooth partition
of unity (ηα)α∈A of Ω subordinate to the cover F such that ∀α ∈ A,
spt ηα is compact. For each α ∈ A we may choose V (α) ∈ F such
spt ηα ⊂ V (α). Define, for V ∈ F ,

ξV :=
∑

{α∈A|V (α)=V }

ηα.

Since the above sum is locally finite, for each V ∈ F , ξV is smooth
with 0 ≤ ξV ≤ 1 and

∑
V ∈F ξV ≡ 1 on Ω. Moreover, as the family

(spt ηα)α∈A is locally finite, for all V ∈ F , ∪V (α)=V spt ηV (α) ⊂ V is
closed in Ω (because it is the union of a locally finite family of closed
subsets of Ω), hence spt ξV = ∪V (α)=V spt ηV (α) ⊂ V . That is, (ξV )V ∈F
is a smooth partition of unity of Ω with spt ξV ⊂ V for all V ∈ F . �

Exercise 6.12 (differentiable Urysohn’s lemma, part II). Let F0

and F1 be disjoint closed subsets of Rn. There exists a smooth function
ξ ∈ C∞(Rn) such that ξ ≡ 0 on F0 and ξ ≡ 1 on F1.

Theorem 6.13 (locality of the weak derivative). Let Ω ⊂ Rn, f ∈
L1
loc(Ln|Ω) and F ⊂ 2Ω an open cover of Ω. Then f admits weak partial

derivatives of first order on Ω iff ∀U ∈ F , f |U admits weak partial
derivatives of first order on U . Moreover, weak derivatives commute
with restrictions.

Lemma 6.14. Let U ⊂ Rn open, 1 ≤ p ≤ ∞ and ξ ∈ C∞c (U).
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i) If f ∈ Lp
loc(Ln|U), then ξ · f (defined as 0 on Rn \ U) belongs to

Lp(Ln).
ii) If f ∈ W1,p

loc (U), then ξ · f ∈ W1,p(Rn) and, ∀1 ≤ i ≤ n,

∂w(ξ · f)

∂xi
=

∂ξ

∂xi
· f + ξ · ∂

wf

∂xi
.

Proof.

i) ξ · f is clearly Ln-measurable (for instance, by proposition 1.50).
If 1 ≤ p <∞,

´
Rn|ξ · f |

p dLn ≤ ‖ξ‖pu
´

spt ξ
|f |p dLn <∞; if p =∞,

‖ξ · f‖∞ ≤ ‖ξ‖u‖f‖L∞(Ln|spt ξ) <∞.
ii) For all 1 ≤ i ≤ n, it follows from the previous item that both ξ · f

and g := ∂ξ
∂xi
· f + ξ · ∂wf

∂xi
belong to Lp(Ln). It therefore suffices

to show that ξ · f admits weak i-th partial derivative equal to g.
Indeed, ∀ϕ ∈ C∞c (Rn),ˆ
Rn

(ξ · f) · ∂ϕ
∂xi

dLn =

ˆ
Ω

f ·
(∂(ξ · ϕ)

∂xi
− ∂ξ

∂xi
· ϕ
)

dLn =

= −
ˆ

Ω

(
ξ · ∂

wf

∂xi
· ϕ+ f · ∂ξ

∂xi
· ϕ
)

dLn =

= −
ˆ
Rn
g · ϕ dLn,

as asserted.

�

Proof of theorem 6.13. The implication “⇒” and the fact that
weak derivatives commute with restrictions are clear. We must prove
the converse implication, i.e. if 1 ≤ i ≤ n and ∀U ∈ F , f |U admits
weak i-th partial derivative ∂i(f |U) ∈ L1

loc(Ln|U), then f admits weak
i-th partial derivative on Ω.

1) We may assume that F is locally finite and ∀U ∈ F , U b Ω.
Indeed, in the general case, take a locally finite open refinement G
of F such that ∀U ∈ G, U b Ω. For each V ∈ G, there exists U ∈ F
such that V ⊂ U ; since f |U admits weak i-th partial derivative
∂i(f |U) ∈ L1

loc(Ln|U), it follows that f |V = (f |U)|V admits weak i-th
partial derivative, so that we may replace F by G.

2) Take a smooth partition of unity (ξV )V ∈F of Ω, given by theorem
6.8, such that ∀V ∈ F , ξV ∈ C∞c (V ). We contend that g :=∑

V ∈F ξV ∂i(f |V ) ∈ L1
loc(Ln|Ω). Indeed, g is clearly Ln-measurable

and, for each compact K ⊂ Ω, there are finitely many V1, . . . , VN ∈
F which intersect K, so that |g|χK ≤

∑N
j=1 ξVj |∂i(f |Vj)| ∈ L1(Ln)

by lemma 6.14.i), thus proving our contention.
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3) Let ϕ ∈ C∞c (Ω). Since spt ϕ is compact, there are finitely many
V1, . . . , VN ∈ F which intersect K. We then have

ˆ
Ω

g ϕ dLn =
N∑
j=1

ˆ
Ω

ξj∂i(f |Vj)ϕ dLn =

=
N∑
j=1

ˆ
Vj

∂i(f |Vj) · (ξjϕ) dLn =

= −
N∑
j=1

ˆ
Vj

f |Vj · ∂i(ξjϕ) dLn =

= −
N∑
j=1

ˆ
Ω

f · ∂i(ξjϕ) dLn =

= −
ˆ

Ω

f · ∂i(
N∑
j=1

ξjϕ) dLn =

= −
ˆ

Ω

f · ∂i(ϕ) dLn,

thus proving that ∂wi f = g on Ω.

�

Corollary 6.15. Let Ω ⊂ Rn open, 1 ≤ p ≤ ∞ and f : Ω → R
Lebesgue measurable. Then f ∈ W1,p

loc (Ω) iff for all open V b Ω, f |V ∈
W1,p(V ).

Proof. The implication “⇒” is clear, in view of the fact that weak
derivatives commute with restrictions. Conversely, assume that for all
open V b Ω, f |V ∈ W1,p(V ). In particular, for all open V b Ω,
f |V ∈ Lp(Ln|V ), hence f ∈ Lp

loc(Ln|Ω) ⊂ L1
loc(Ln|Ω). It then follows

from theorem 6.13 that ∃∇w f ∈ L1
loc(Ln|Ω,Rn); besides, for all open

V b Ω, (∇w f)|V = ∇w(f |V ) ∈ Lp(Ln|V ,Rn). That is, f ∈ Lp
loc(Ln|Ω)

and ∇w f ∈ Lp
loc(Ln|Ω,Rn), i.e. f ∈ W1,p

loc (Ω). �

Corollary 6.16. Let Ω ⊂ Rn open and f : Ω → Rn locally Lip-
schitz. Then f ∈ W1,∞

loc (Ω), f is differentiable in the sense of Fréchet
Ln-a.e. on Ω and ∇w f = ∇f Ln-a.e. on Ω.

Proof. We have already proved in corollary 5.14 that f is differ-
entiable in the sense of Fréchet Ln-a.e. on Ω. It therefore suffices to
show, in view of the locality of both the weak derivative 6.13 and of the
classical Fréchet derivative, that for each open V b Ω on which f has
Lipschitz restriction, f |V ∈ W1,∞(V ) and ∇w f = ∇f Ln-a.e. on V .



176 6. SOBOLEV SPACES

Indeed, by McShane’s theorem 5.1 we may extend f |V to a Lipschitz
map Rn → R, for which proposition 5.9 and theorem 5.12 apply. �

6.1. Approximation by smooth functions, part I

In this section we fix an open set Ω ⊂ Rn. Our goal is to derive
theorems on approximation of Sobolev functions on Ω by smooth func-
tions. In order to accomplish that, it will be convenient to generalize
the operation of convolution with the standard mollifier (φt)t>0 to func-
tions f : Ω → R. One possible approach is to proceed like we did in
the proof of proposition 5.7. Another approach, which we adopt here,
is to define the regularized functions ft = φt ∗ f on smaller subsets Ωt

of Ω, cf. definition 6.17 below. We call the reader’s attention to the
fact that, in general, it is not possible to simply extend f by zero on
Rn \ Ω and then regularize the extension f̄ : it might be the case that
f̄ 6∈ L1

loc(Rn), so that “φt ∗ f̄ ” would not be defined.

Definition 6.17. For each t > 0, let

Ωt := {x ∈ Rn | B(x, t) ⊂ Ω} = {x ∈ Rn | d(x,Ωc) > t},
so that (Ωt)t>0 is a family of open subsets of Ω which increases to Ω as
t ↓ 0.

Let (φt)t>0 be the standard mollifier in Rn. For each t > 0 and
f ∈ L1

loc(Ln|Ω), we define ft : Ωt → R by, ∀x ∈ Ωt,

ft(x) := (φt ∗ f)(x) =

ˆ
B(x,t)

f(y)φt(x− y) dLn(y).

We call ft the t-approximation or t-regularization of f .

Note that: 1) ft(x) is well-defined since, for x ∈ Ωt, B(x, t) ⊂ Ω; 2)
if Ω = Rn, then Ωt = Rn for all t > 0.

Notation. If f : Ω→ R, we denote by f̄ : Rn → R the extension
of f by zero on Rn \ Ω.

In order to simplify the notation, sometimes we omit the bar from
the extension, whenever no confusion arises.

Definition 6.18 (convergence in the sense of Lp
loc and W1,p

loc ). Let
1 ≤ p ≤ ∞, f : Ω → R Ln-measurable and, for each k ∈ N, let
fk : dom fk ⊂ Ω→ R be Ln-measurable.

• We say that (fk)k∈N converges to f in the sense of Lp
loc(Ln|Ω)

(notation: “fk → f in Lp
loc(Ln|Ω)”) if, for all open V b Ω, there

exists k0 ∈ N (possibly depending on V ) such that ∀k ≥ k0,
V ⊂ dom fk and ‖fk − f‖Lp(Ln|V ) → 0.
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• If ∀k ∈ N, dom fk is open, f and fk belong to L1
loc on their

domains and admit weak partial derivatives of first order, we
say that (fk)k∈N converges to f in the sense of W1,p

loc (Ω) (no-

tation: “fk → f in W1,p
loc (Ω)”) if, for all open V b Ω, there

exists k0 ∈ N (possibly depending on V ) such that ∀k ≥ k0,
V ⊂ dom fk and ‖fk − f‖W1,p(V ) → 0.

We make similar definitions of convergence in the sense of Lp
loc or in the

sense of W1,p
loc for a family (fε)ε>0 in place of (fk)k∈N.

Remark 6.19. Concerning the previous definition:

(1) What we have in mind is the family (ft)t>0 of the regularized
functions of some f ∈ L1

loc(Ln|Ω), cf. definition 6.18.
(2) For a sequence (fk)k∈N in Lp

loc(Ln|Ω) and f ∈ Lp
loc(Ln|Ω), the

convergence defined above coincides with the convergence in
the natural topology of Lp

loc(Ln|Ω), which is a Fréchet space
topology induced by the family of seminorms {‖·‖Lp(Ln|V ) |
V b Ω open}.

(3) Similarly, for a sequence (fk)k∈N in W1,p
loc(Ω) and f ∈ W1,p

loc (Ω),
the convergence defined above coincides with the convergence
in the natural topology of W1,p

loc (Ω), which is a Fréchet space
topology induced by the family of seminorms {‖·‖W1,p(V ) | V b
Ω open}.

Theorem 6.20 (mollifiers, part II). Let f ∈ L1
loc(Ln|Ω), (φε)ε>0 the

standard mollifier and fε = φε ∗ f : Ωε → R the ε-approximation of f ,
cf. definition 6.17.

i) ∀ε > 0, fε ∈ C∞(Ωε).
ii) ∀ε > 0, ∀ϕ ∈ C0

c(Ωε),
´
fεϕ dLn =

´
fϕε dLn.

iii) limε→0 fε(x) = f(x) if x ∈ Ω is a Lebesgue point of f ; in particular,
fε → f Ln-a.e. on Ω.

iv) If f ∈ C(Ω), fε → f uniformly on compact subsets of Ω.
v) If f ∈ Lp

loc(Ln|Ω) for some 1 ≤ p < ∞, then fε → f in the sense
of Lp

loc(Ln|Ω).

vi) If f ∈ W1,p
loc (Ω) for some 1 ≤ p ≤ ∞, then ∀ε > 0,∀1 ≤ i ≤ n,

∂fε
∂xi

= φε ∗
∂wf

∂xi
=
(∂wf
∂xi

)
ε

on Ωε.
vii) In particular, if f ∈ W1,p

loc (Ω) for some 1 ≤ p <∞, then fε → f in

the sense of W1,p
loc (Ω).
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We interpret the theorem above by saying that the ε-regularized
functions of f approximate f in the “natural topology” of its class of
regularity.

Proof.

i) That is a direct consequence of the dominated convergence theo-
rem, like we argued in the proof of proposition 1.108.j). Indeed, let
x0 ∈ Ωε and r > 0 such that U(x0, r) ⊂ Ωε. Then, ∀x ∈ U(x0, r),

fε(x) =

ˆ
K

φε(x− y)f(y) dLn(y),

where K := B(x0, r + ε) b Ω. It then follows that, for each multi-
index α ∈ Zn+, the integral which results from the second member
above by derivation under the integral sign (to be justified) is

ˆ
K

∂α(φε)(x− y)f(y) dLn(y),

whose integrand is dominated in absolute value by ‖∂αφε‖u|f |
∣∣
K
∈

L1(Ln|K). Therefore, we may differentiate successively under the
integral sign by means of the dominated convergence theorem, cf.
proposition 1.67, to conclude that ∀x ∈ U(x0, r), ∀α ∈ Zn+,

∃∂α(fε)(x) =

ˆ
K

∂α(φε)(x− y)f(y) dLn(y).

Since x0 ∈ Ωε was arbitrarily taken, we have proved that fε has
partial derivatives of all orders on all points of Ωε.

ii) If ε > 0 and ϕ ∈ C0
c(Ωε), we have:

ˆ
fεϕ dLn =

ˆ
spt ϕ

ϕ(x)

ˆ
Ω

f(y)φε(x− y) dy dx
Fubini 1.84

=

=

ˆ
Ω

f(y)

ˆ
spt ϕ

φε(x− y)ϕ(x) dx dy
φ(z)=φ(−z)

=

=

ˆ
Ω

f(y)

ˆ
spt ϕ

φε(y − x)ϕ(x) dx dy =

=

ˆ
f(y)ϕε(y) dy,
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where the application of Fubini’s theorem is justified by the fact
that

ˆ
spt ϕ×Ω

|f(y)| · φε(x− y) · |ϕ(x)| d(Ln × Ln)(x, y)
Tonelli 1.84

=

=

ˆ
Ω

|f(y)|
ˆ

spt ϕ

|ϕ(x)|φε(y − x) dx dy ≤

≤ ‖ϕ‖u‖φε‖u
ˆ

spt ϕ+B(0,ε)

|f(y)| dy <∞.

iii) Let x ∈ Ω be a Lebesgue point of f . Take δ > 0 such that x ∈ Ωδ.
Then, ∀ 0 < ε ≤ δ:

fε(x)− f(x) =

ˆ
B(x,ε)

φε(x− y)[f(y)− f(x)] dLn(y) =

=

ˆ
B(x,ε)

1

εn
φ(
x− y
ε

)[f(y)− f(x)] dLn(y),

so that

|fε(x)−f(x)| ≤ ‖φ‖u α(n)· 1

Ln
(
B(x, ε)

) ˆ
B(x,ε)

|f(y)−f(x)| dLn(y)
ε→0→ 0.

iv) Let K be a compact subset of Ω. Take δ > 0 such that Kδ :=
K+B(0, δ) b Ω. Let F := f · χKδ : Rn → R. Since f is bounded on
Kδ (because f is continuous and Kδ ⊂ Ω is compact), F ∈ L∞(Ln);
moreover, since f coincides with F on Kδ, F is continuous on
(Kδ)

o. It then follows from theorem 1.111.iii) that φε ∗F → F
uniformly on compact subsets of (Kδ)

o. On the other hand, as
F |Kδ = f |Kδ , we conclude that, ∀0 < ε ≤ δ, φε ∗F = fε on K,
whence fε → f uniformly on K.

v) Let K be a compact subset of Ω. Take δ > 0 such that Kδ :=
K + B(0, δ) b Ω. Let F := f · χKδ : Rn → R. Since Kδ is a
compact subset of Ω, f |Kδ ∈ Lp(Ln|Kδ), which implies F ∈ Lp(Ln).
It then follows from theorem 1.111.i) that φε ∗F → F in Lp(Ln).
On the other hand, as F |Kδ = f |Kδ , we conclude that, ∀0 < ε ≤ δ,
φε ∗F = fε on K, whence ‖fε − f‖Lp(Ln|K) → 0.
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vi) ∀ε > 0,∀1 ≤ i ≤ n,∀ϕ ∈ C∞c (Ωε),ˆ
fε
∂ϕ

∂xi
dLn (ii)

=

ˆ
fφε ∗

∂ϕ

∂xi
dLn 1.108

=

=

ˆ
f
∂(φε ∗ϕ)

∂xi
dLn =

= −
ˆ
∂wf

∂xi
ϕε dLn (ii)

=

= −
ˆ (∂wf

∂xi

)
ε
ϕ dLn,

thus showing that ∂fε
∂xi

=
(
∂wf
∂xi

)
ε
.

One alternative to the above proof is to use the formula ob-
tained in (i) for ∂fε

∂xi
, i.e. ∀x ∈ Ωε,

∂fε
∂xi

(x) =

ˆ
Ω

∂(φε)

∂xi
(x− y)f(y) dy =

= −
ˆ

Ω

∂

∂xi

∣∣∣∣
y

[
φε(x− ·)

]
f(y) dy

φε(x−·)∈C∞c (Ω)
=

=

ˆ
Ω

φε(x− y)
∂wf

∂xi
(y) dy =

= φε ∗
∂wf

∂xi
(x).

vii) fε → f in Lp
loc(Ln|Ω) by part v) and ∀1 ≤ i ≤ n, ∂fε

∂xi
=
(
∂wf
∂xi

)
ε
→

∂wf
∂xi

in Lp
loc(Ln|Ω) by parts vi) and v).

�

Corollary 6.21. Let 1 ≤ p < ∞, (φt)t>0 the standard mollifier
and f ∈ W1,p(Rn). Then:

i) ∀ε > 0, fε = φε ∗ f ∈ C∞(Rn) ∩W1,p(Rn) and fε → f in W1,p(Rn)
as ε→ 0.

ii) There exists a sequence (fk)k∈N in C∞c (Rn) such that fk → f in
W1,p(Rn).

Proof. It follows from theorem 6.20 with Ω = Rn that fε ∈
C∞(Rn) and∇(fε) = (∇w f)ε. Since f ∈ Lp(Ln) and∇w f ∈ Lp(Ln,Rn),
it follows from Young’s inequality 1.108.g) that fε ∈ Lp(Ln) and (∇w f)ε ∈
Lp(Ln,Rn), hence fε ∈ W1,p(Rn). Finally, from theorem 1.111.i), fε →
f in Lp(Rn) and ∇(fε) = (∇w f)ε → ∇w f in Lp(Rn), thus showing that
fε → f in W1,p(Rn).
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It remains to prove the second assertion. Let ∀k ∈ N, gk :=
φ1/k ∗ f ∈ C∞(Rn) ∩ W1,p(Rn), so that gk → f in W1,p(Rn) by part
i). Choose ζ ∈ C∞c (Rn, [0, 1]) such that ζ ≡ 1 on B(0, 1) and spt ζ ⊂
U(0, 2) (which exists, thanks to exercise 1.114). Define, ∀k ∈ N,
ζk ∈ C∞c

(
U(0, 2k)

)
by ζk(x) := ζ(x/k), and fk := ζk · gk. Then ∀k ∈ N,

fk ∈ C∞c (Rn). We will prove that fk → f in W1,p(Rn).

1) For all u ∈ Lp(Ln), ζk · u → u in Lp(Ln). Indeed, |u − ζk · u|p → 0
pointwise and |u − ζk · u|p ≤ 2p|u|p ∈ L1(Ln), hence the dominated
convergence theorem 1.64 yields the assertion.

2) Since f − fk = (f − ζk · f) + ζk · (f − gk), we have ‖f − fk‖p ≤
‖f − ζk · f‖p + ‖ζk‖u‖f − gk‖p → 0, since |ζk| ≤ 1, ‖f − ζk · f‖p → 0
by the previous item and ‖f − gk‖p ≤ ‖f − gk‖W1,p(Rn) → 0.

3) ∀x ∈ Rn,

∇fk(x) = ∇ζk(x) · gk(x) + ζk(x) · ∇gk(x) =

=
1

k
· ∇ζ(x/k) · gk(x) + ζk(x) · ∇gk(x).

Hence,

∇w f(x)−∇fk(x) = ∇w f(x)− ζk(x)∇w f(x)+

+ ζk(x)[∇w f(x)−∇gk(x)]− 1

k
· ∇ζ(x/k) · gk(x),

so that

‖∇w f−∇fk‖p ≤ ‖∇w f−ζk∇w f‖p+‖ζk‖u‖∇w f−∇gk‖p+
1

k
‖∇ζ‖u‖gk‖p.

Since ‖∇w f − ζk∇w f‖p → 0 by item 1), ‖∇w f − ∇gk‖p ≤ ‖f −
gk‖W1,p(Rn) → 0 and, as ‖gk‖p = ‖φ1/k ∗ f‖p ≤ ‖f‖p by Young’s
inequality 1.108.g), 1

k
‖∇ζ‖u‖gk‖p → 0, it follows that ‖∇w f −

∇fk‖p → 0. We have thus proved that fk → f in Lp(Rn) (by
the previous item) and ∇fk → ∇w f in Lp(Ln,Rn); that is, fk → f
in W1,p(Rn).

�

Exercise 6.22. If u ∈ C1(Ω), the classical and weak gradients of
u coincide. The converse holds in the following sense: if u ∈ L1

loc(Ω)
has weak gradient v ∈ C(Ω,Rn), then u coincides Ln-a.e. in Ω with a
function ũ ∈ C1(Ω).

Exercise 6.23 (Friedrichs’s theorem). Let 1 ≤ p < ∞. If u ∈
W1,p(Ω), there exists a sequence (uk)k∈N in C∞c (Rn) such that uk|Ω → u
in Lp(Ln|Ω) and ∇uk|Ω → ∇w u in Lp

loc(Ln|Ω,Rn).
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Theorem 6.24 (Meyers-Serrin’s theorem). Let 1 ≤ p < ∞ and
u ∈ W1,p(Ω). There exists a sequence (uk)k∈N in C∞(Ω)∩W1,p(Ω) such
that uk → u in W1,p(Ω).

Proof.

1) Let (Uk)k∈N be a locally finite open cover of Ω such that ∀k ∈ N,
Uk b Ω. Take a smooth partition of unity (ξk)k∈N of Ω, with ∀k ∈ N,
spt ξk b Uk, given by theorem 6.8.

2) Fix ε > 0 and k ∈ N. Let (φt)t>0 be the standard mollifier in Rn. It
follows from lemma 6.14.ii) that ξk · u ∈ W1,p(Rn), with spt ξk · u ⊂
spt ξk b Uk. We may therefore apply proposition 1.108.d) and
corollary 6.21.i) to obtain tk sufficiently small so that φtk ∗(ξk · u) ∈
C∞(Rn) ∩W1,p(Rn) has compact support in Uk and ‖φtk ∗(ξk · u)−
ξk · u‖W1,p(Rn) < 2−kε. Define uε : Ω→ R by

uε :=
∞∑
k=1

[
φtk ∗(ξk · u)

]
|Ω.

Note that the above sum is locally finite, since
(
spt φtk ∗(ξk ·u)

)
k∈N is

a locally finite family of subsets of Ω (because ∀k ∈ N, spt φtk ∗(ξk ·
u) b Uk). Hence, uε ∈ C∞(Ω)1. Similarly, we have locally finite
sums

uε − u =
∞∑
k=1

(
φtk ∗(ξk · u)− ξk · u

)
∇w(uε − u) =

∞∑
k=1

∇w
(
φtk ∗(ξk · u)− ξk · u

)
,

(6.1)

where the second equality holds because both members coincide on
each relatively compact open subset V b Ω (because on V the sum
is finite and the weak gradient is linear).

3) It follows from (6.1), definition 6.1 and from Minkowski’s inequality
for integrals 1.88 (with µ = Ln|Ω and ν the counting measure on N)

1note that
(
spt φtk ∗(ξk · u)

)
k∈N is a locally finite family of subsets of Ω (with

the relative topology), but not, in general, a locally finite family of subsets of Rn,
hence we cannot define a smooth function on Rn using the same formula.
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that

‖uε − u‖Lp(Ln|Ω) ≤
∞∑
k=1

‖φtk ∗(ξk · u)− ξk · u‖Lp(Ln|Ω) ≤

≤
∞∑
k=1

‖φtk ∗(ξk · u)− ξk · u‖W1,p(Ω) < ε,

‖∇w(uε − u)‖Lp(Ln|Ω) ≤
∞∑
k=1

‖∇w
(
φtk ∗(ξk · u)− ξk · u

)
‖Lp(Ln|Ω) ≤

≤
∞∑
k=1

‖φtk ∗(ξk · u)− ξk · u‖W1,p(Ω) < ε.

We therefore conclude that uε ∈ W1,p(Ω) and uε → u in W1,p(Ω) as
ε→ 0.

�

Exercise 6.25. Let Ω be an open subset of Rn, 1 < p ≤ ∞ and
f ∈ Lp(Ln|Ω). Then the following conditions are equivalent:

i) f ∈ W1,p(Ω).
ii) There exists a constant C ≥ 0 such that, for all ϕ ∈ C∞c (Ω) and

all 1 ≤ i ≤ n, ∣∣∣ˆ
Ω

f
∂ϕ

∂xi
dLn

∣∣∣ ≤ C‖ϕ‖Lp′ (Ω),

where p′ is the conjugate exponent of p.
iii) There exists a constant C ≥ 0 such that, for all relatively compact

open ω b Ω and all h ∈ Rn with ‖h‖ < d(ω,Ωc),

‖τhf − f‖Lp(Ln|ω) ≤ C‖h‖.

Moreover, we can take C = ‖∇w f‖Lp(Ln|Ω) in (ii) and (iii), and if Ω =
Rn, we have

‖τhf − f‖Lp(Ln) ≤ ‖∇w f‖Lp(Ln)‖h‖
for all h ∈ Rn.

6.2. Product and Chain Rules

Theorem 6.26 (Product rule). Let Ω be an open set in Rn and u, v
be real functions on Ω satisfying one of the following conditions:

i) u ∈ W1,1
loc(Ω) and v ∈ C1(Ω);

ii) u, v ∈ W1,1
loc(Ω) ∩ L∞loc(Ln|Ω).
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Then uv ∈ W1,1
loc(Ω) and

(6.2) ∇w(uv) = u∇w v + v∇w u.

Proof. Note that, assuming either i) or ii), the second member in
(6.2) belongs to L1

loc(Ln|Ω). In view of the locality of the weak derivative
6.13, it therefore suffices to show that, for each open V b Ω, uv has
weak gradient on V given by (6.2).

1) Suppose that i) holds. For each 0 < ε < d(V,Ωc), we denote by
uε ∈ C∞(Ωε) the ε-approximation of u, cf. definition 6.17. Note that
both v and ∇v are bounded on V ; it then follows from theorem 6.20
that:
• uεv ∈ L1(Ln|V ) and uεv → uv in L1(Ln|V ) as ε→ 0;
• ∇(uεv) = uε∇v + v∇uε ∈ L1(Ln|V ,Rn) and ∇(uεv) → u∇v +
v∇u in L1(Ln|V ,Rn).

Hence, applying proposition 6.3.i), we conclude that uv has weak
gradient on V given by (6.2), as asserted.

2) Suppose that ii) holds. For each 0 < ε < d(V,Ωc), we denote by
vε ∈ C∞(Ωε) the ε-approximation of v. It follows from part i) with
vε in place of v that uvε ∈ W1,1(V ) and ∇w(uvε) = u∇vε + vε∇w u.
Besides:
• since u ∈ L∞(Ln|V ) and vε → v in L1(Ln|V ) (by theorem

6.20.v), it follows that uvε → uv in L1(Ln|V );
• since ∇vε = (∇w v)ε → ∇w v in L1(Ln|V ,Rn) (by theorem

6.20.vi and 6.20.v, respectively) and u ∈ L∞(Ln|V ), we also
have u∇vε → u∇w v in L1(Ln|V ,Rn);
• vε → v Ln-a.e. on V (by 6.20.iii), hence vε∇w u − v∇w u → 0
Ln-a.e. on V . The latter convergence is dominated, since, fixing
0 < ε0 < d(V,Ωc), for all 0 < ε < ε0:

‖vε∇w u− v∇w u‖ ≤
(
‖vε‖L∞(V ) + ‖v‖L∞(V )

)
‖∇w u‖

vε=φε ∗ v
≤

≤ 2‖v‖
L∞
(
V+B(0,ε0)

)‖∇w u‖ ∈ L1(Ln|V ).

It then follows from the dominated convergence theorem 1.64
(taking ε → 0 along an arbitrary sequence) that vε∇w u →
v∇w u in L1(Ln|V ,Rn).

Therefore, uvε → uv in L1(Ln|V ) and∇w(uvε)→ u∇w v+v∇w u
in L1(Ln|V ,Rn); the thesis then follows from proposition 6.3.i).

�

Corollary 6.27. Let Ω be an open set in Rn, 1 ≤ p ≤ ∞ and
u, v ∈ W1,p(Ω) ∩ L∞(Ln|Ω). Then uv ∈ W1,p(Ω) ∩ L∞(Ln|Ω).
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Recall that, for a map F defined on an open set of Rn, we use the
notation DF for the set of points in which F is Fréchet-differentiable.

Theorem 6.28 (Chain rule). Let Ω be an open set in Rn, f ∈
W1,1

loc(Ω) and F : R → R Lipschitz with R \ DF countable. Define

F ′ ≡ 0 on R \DF . Then F ◦ f ∈ W1,1
loc(Ω) and

∇w(F ◦ f) = (F ′ ◦ f) · ∇w f.

Proof.

1) The thesis holds if f ∈ C1(Ω).
Since f is locally Lipschitz, so is F ◦ f . It then follows from

corollary 6.16 that F ◦ f is differentiable in the sense of Fréchet Ln-
a.e. on Ω, F ◦ f ∈ W1,∞

loc (Ω) ⊂ W1,1
loc(Ω) and ∇w(F ◦ f) = ∇(F ◦ f)

Ln-a.e. on Ω. Hence, it suffices to show that

(6.3) ∇(F ◦ f) = (F ′ ◦ f) · ∇f
Ln-a.e. on Ω. The latter equality holds on f−1(DF ) by the classical
chain rule; we must show that it holds Ln-a.e. on f−1(R \ DF ).
Indeed, for each t ∈ Rn \DF , the second member of (6.3) is null on
f−1{t} (since we defined F ′ ≡ 0 on R \ DF ) and the first member
is null Ln-a.e. on f−1{t} by corollary 5.17, thus showing that (6.3)
holds Ln-a.e. on f−1{t}. Since Rn \ DF is countable, we conclude
that (6.3) holds Ln-a.e. on f−1(Rn \DF ), as asserted.

2) General case: let f ∈ W1,1
loc(Ω). Note that

• ∀x ∈ Ω, |F ◦ f(x)| ≤ |F ◦ f(x) − F (0)| + |F (0)| ≤ (LipF ) ·
|f(x)|+ |F (0)|, hence F ◦ f ∈ L1

loc(Ln|Ω);
• ‖(F ′ ◦ f) · ∇w f‖ ≤ (LipF ) · ‖∇w f‖ ∈ L1

loc(Ln|Ω), hence (F ′ ◦
f) · ∇w f ∈ L1

loc(Ln|Ω).
In view of the locality of the weak derivative, it therefore suffices to
show that, for each open V b Ω, F ◦ f has weak derivative on V
given by (F ′ ◦ f) · ∇w f .

Let (φt)t>0 be the standard mollifier on Rn. Let 0 < ε0 <
d(V,Ωc) and (εk)k∈N a sequence in ]0, ε0[ with εk ↓ 0. With the
notation from definition 6.17 in force, let ∀k ∈ N, fk := fεk =
φεk ∗ f ∈ C∞(Ωεk). It follows from theorem 6.20 that fk → f in
W1,1(V ), fk → f Ln-a.e. on V and ∇fk = (∇w f)εk → ∇w f Ln-a.e.
on V .

Fix ϕ ∈ C∞c (V ). Since ∀k ∈ N, fk ∈ C1(V ), it follows from part
1) of the proof that, ∀k ∈ N:

(6.4) −
ˆ
V

F ◦ fk∇ϕ dLn =

ˆ
V

(F ′ ◦ fk) · ∇fk ϕ dLn.

The thesis then follows once we prove the following claims:



186 6. SOBOLEV SPACES

• Claim 1:
´
V
F ◦ fk∇ϕ dLn →

´
V
F ◦ f ∇ϕ dLn.

• Claim 2:
´
V

(F ′ ◦ fk) · ∇fk ϕ dLn →
´
V

(F ′ ◦ f) · ∇f ϕ dLn.

Proof of claim 1: We have:
i) ∀k ∈ N, ‖F ◦ fk∇ϕ‖ ≤ [(LipF )|fk|+ |F (0)|]‖∇ϕ‖u︸ ︷︷ ︸

gk:=

;

ii) F ◦ fk∇ϕ→ F ◦ f ∇ϕ Ln-a.e. on V ;
iii) gk → g := [(LipF )|f |+ |F (0)|]‖∇ϕ‖u Ln-a.e. on V ;
iv)

´
V
gk dLn →

´
V
g dLn <∞ (because fk → f in L1(Ln|V )).

An application of the generalized dominated convergence theorem
1.66 concludes the proof. �

Proof of claim 2: We have:
i) ∀k ∈ N, ‖(F ′ ◦ fk) · ∇fk ϕ‖ ≤ (LipF )‖ϕ‖u‖∇fk‖︸ ︷︷ ︸

gk:=

;

ii) (F ′ ◦ fk) · ∇fk ϕ→ (F ′ ◦ f) · ∇f ϕ Ln-a.e. on V ;
iii) gk → g := (LipF )‖ϕ‖u‖∇w f‖ Ln-a.e. on V ;
iv)

´
V
gk dLn →

´
V
g dLn <∞ (because∇fk → ∇w f in L1(Ln|V ,Rn)).

An application of the generalized dominated convergence theorem
1.66 concludes the proof. �

�

Corollary 6.29. Let Ω be an open set in Rn, f ∈ W1,1
loc(Ω) and

F : R → R sectionally C1 on each compact subinterval of R, with
F ′ ∈ L∞(R). Define F ′ ≡ 0 on R \DF . Then F ◦ f ∈ W1,1

loc(Ω) and

∇w(F ◦ f) = (F ′ ◦ f) · ∇w f.

Proof. The hypothesis on F implies F Lipschitz with R \ DF

countable. �

Corollary 6.30. Let Ω be an open set in Rn, f ∈ W1,p(Ω) and
F : R→ R Lipschitz with R \DF countable. Define F ′ ≡ 0 on R \DF .
If Ln(Ω) =∞, assume that F (0) = 0. Then F ◦ f ∈ W1,p(Ω) and

∇w(F ◦ f) = (F ′ ◦ f) · ∇w f.

Proof. Since ‖(F ′◦f)·∇w f‖ ≤ (Lip f)‖∇w f‖ ∈ Lp(Ln|Ω,Rn) and
|F◦f | ≤ (LipF )|f |+|F (0)| ∈ Lp(Ω), it follows that F◦f ∈ W1,p(Ω). �
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Corollary 6.31. Let Ω be an open set in Rn and f ∈ W1,1
loc(Ω).

Then f+, f−, |f | ∈ W1,1
loc(Ω) and

∇w f+ =

{
∇w f Ln-a.e. on {f > 0}
0 Ln-a.e. on {f ≤ 0},

∇w f− =

{
−∇w f Ln-a.e. on {f < 0}
0 Ln-a.e. on {f ≥ 0},

∇w|f | =


∇w f Ln-a.e. on {f > 0}
0 Ln-a.e. on {f = 0}
−∇w f Ln-a.e. on {f < 0}.

Proof. Apply theorem 6.28 to F ◦ f , where F is given by, respec-
tively, idR ·χ[0,∞), − idR ·χ(−∞,0] and |·|. �

Corollary 6.32. Let Ω be an open set in Rn and f ∈ W1,1
loc(Ω).

Then ∇w f = 0 Ln-a.e. on {f = 0}.
Proof. Apply the previous corollary and the linearity of the weak

derivative to f = f+ − f−. �

6.3. Approximation by smooth functions, part II

We resume the discussion started on section 6.1 on the approxi-
mation of Sobolev functions. With regard to Meyers-Serrin’s theorem
6.24, for instance, we may obtain better approximation results if we
impose some regularity on ∂Ω. For instance, if Ω is a Lipschitz do-
main, in the sense of following definition, we will prove that Sobolev
functions on Ω may be approximated by functions in C∞(Ω).

Notation. We will use the following notation for cylinders on
products of Euclidean spaces Rn ≡ Rk×Rn−k. Let p : Rk×Rn−k → Rk

and q : Rk × Rn−k → Rn−k be the projections on the first and second
factors, respectively. Given x ∈ Rn, 0 < r, h ≤ ∞, we define the open
and closed cylinders with center x, radius r and half-height h:

• C(x, r, h) := U(p · x, r)× U(q · x, h) ⊂ Rk × Rn−k.

• C(x, r, h) := B(p · x, r)× B(q · x, h) = C(x, r, h).

We use abbreviated notations C(x, r) := C(x, r, r) and C(x, r) :=
C(x, r, r).

Definition 6.33 (Lipschitz domains2). Let n ≥ 2, U ⊂ Rn ≡
Rn−1 × R open and Ω ⊂ U an open subset of U . We say that Ω is

2there is a weaker notion of “Lipschitz domain” which we do not consider here;
our definition corresponds to what sometimes is called a strong Lipschitz domain.
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a Lipschitz domain3 in U if for all x ∈ ∂UΩ = ∂Ω ∩ U (i.e. x in the
topological boundary of Ω in U), there exist:

1) a rigid motion Φ ∈ SE(n) with Φ(0) = x;
2) f : Rn−1 → R Lipschitz with f(0) = 0;
3) C(0, r, h) ⊂ Rn−1 × R open cylinder

satisfying the following conditions (see figure 1):

• C := Φ
(
C(0, r, h)

)
⊂ U ;

• Φ
(
gr f ∩ C(0, r, h)

)
= C ∩ ∂Ω

• Φ
(
epiS f ∩ C(0, r, h)

)
= C ∩ Ω,

where epiS f = {(x, y) ∈ Rn−1 ×R | y > f(x)} is the strict epigraph of
f .

Figure 1. Lipschitz Domain

Theorem 6.34 (Global approximation by smooth functions). Let
Ω ⊂ Rn be a Lipschitz domain. If 1 ≤ p < ∞ and f ∈ W1,p(Ω),
there exists (fk)k∈N in W1,p(Ω) ∩ C∞(Ω) such that fk → f in W1,p(Ω).
Moreover, if f ∈ W1,p(Ω) ∩ C(Ω), the sequence (fk)k∈N may be chosen
so that it also converges to f uniformly on Ω.

We devote the remaining of this section to the proof of the theorem
above, which will be done along the following lemmas.

Lemma 6.35. Let Ω ⊂ Rn open, 1 ≤ p ≤ ∞, f ∈ W1,p(Ω) and
ξ ∈ C∞(Rn) with spt ξ ⊂ Ω and ‖ξ‖W1,∞(Rn) <∞. Then ξ · f (defined
as 0 on Rn \Ω) belongs to W1,p(Rn) and ∇w(ξ ·f) = (∇ξ) ·f + ξ ·∇w f .

3our Lipschitz domains need not be connected, despite the usual meaning of
the term “domain”, i.e. an open connected set.
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Note that it is not required that spt ξ be compact.

Proof. It is clear that ξ ·f ∈ Lp(Ln) and g := (∇ξ) ·f + ξ ·∇w f ∈
Lp(Ln,Rn), thanks to the hypothesis ‖ξ‖W1,∞(Rn) <∞. Then it suffices
to show that ∇w(ξ · f) exists and coincides with g. Indeed, it follows
from theorem 6.26 that ξ ·f ∈ W1,1

loc(Ω) and that its weak gradient on Ω
coincides with g. The same holds for the restriction of ξ ·f to the open
set Rn\spt ξ (because ξ ≡ 0 on this open set). Since Ω∪Rn\spt ξ = Rn,
the thesis follows from the locality of the weak derivative 6.13. �

Lemma 6.36. Let Γ : Rn−1 → R Lipschitz, h > 0 and α := (Lip Γ)+
2. Then d

(
gr Γ, gr (Γ− h)

)
≥ h

α
.

Proof. Let P =
(
x,Γ(x)

)
∈ gr Γ and Q =

(
y,Γ(y)− h

)
∈ gr (Γ−

h). If ‖P −Q‖ = ε, then ‖x− y‖ ≤ ε, hence |Γ(x)− Γ(y)| ≤ (Lip Γ)ε.
Thus, putting R =

(
y,Γ(y)

)
, ‖R − P‖ ≤ ‖x − y‖ + |Γ(x) − Γ(y)| ≤

(1 + Lip Γ)ε. That implies, by the triangle inequality, h = ‖R −Q‖ ≤
‖R− P‖+ ‖P −Q‖ ≤ (2 + Lip Γ)ε. We therefore conclude that

‖P −Q‖ = ε ≥ h

α
,

which implies, by the arbitrariness of P ∈ gr Γ and Q ∈ gr (Γ − h),
that d

(
gr Γ, gr (Γ− h)

)
≥ h

α
. �

Notation. Given Γ : Rn−1 → R, Ω := epiS Γ = {(y′, yn) ∈ Rn−1×
R | yn > Γ(y′)} and h > 0, we denote by Ω−h the strict epigraph of
Γ−h, i.e. Ω−h = epiS (Γ−h) = {(y′, yn) ∈ Rn−1×R | yn > Γ(y′)−h}.

Notation. If A ⊂ Rn and f : A → R, we denote by spt f the
closure in A of {x ∈ A | f(x) 6= 0} (i.e the usual notation for the
support of f) and by spt f its closure in Rn.

Lemma 6.37. With the notation above in force, let Γ : Rn−1 → R
Lipschitz. For each h > 0, there exists Ψ ∈ C∞(Rn) ∩W1,∞(Rn) such
that 0 ≤ Ψ ≤ 1, Ψ ≡ 1 on Ω and spt Ψ ⊂ Ω−h.

Proof. Let (φε)ε>0 be the standard mollifier. Fix 0 < ε < h
2α

and
define Ψ := φε ∗χΩ−h/2 . It is clear that Ψ ∈ C∞(Rn) and 0 ≤ Ψ ≤ 1.
Moreover:

1) For all x ∈ Ω, B(x, ε) ⊂ Ω−h/2 by lemma 6.36, which implies Ψ ≡ 1

on Ω;
2) spt Ψ ⊂ spt χΩ−h/2+B(0,ε) = Ω−h/2 + B(0, ε) ⊂ Ω−h by lemma 6.36

applied to Γ− h
2

in place of Γ;
3) It follows from proposition 1.108 parts g) and j) that ‖∇Ψ‖∞ =
‖(∇φε) ∗χΩ−h/2‖ ≤ ‖∇φε‖1 <∞, hence Ψ ∈ W1,∞(Rn).
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�

Lemma 6.38. With the notation above in force, let Γ : Rn−1 → R
Lipschitz, Ω = epiS Γ and 1 ≤ p < ∞. Let f : Ω → R and, for each
h > 0, τ−hf : Ω−h → R be given by x 7→ f(x+ h). Then:

i) if f ∈ Lp(Ln|Ω), then τ−hf ∈ Lp(Ln|Ω−h) and (τ−hf)|Ω → f in
Lp(Ln|Ω) as h→ 0.

ii) if f ∈ W1,p(Ω), then τ−hf ∈ W1,p(Ω−h) and (τ−hf)|Ω → f in
W1,p(Ω) as h→ 0.

iii) if f is uniformly continuous, so is τ−hf and (τ−hf)|Ω → f uni-
formly as h→ 0.

Proof. (1) It is clear that τ−hf ∈ Lp(Ln|Ω−h). Moreover, us-

ing a bar to denote extensions by zero, τ−hf = τ−hf converges
to f in Lp(Ln) by lemma 1.110, which implies (τ−hf)|Ω → f
in Lp(Ln|Ω) as h→ 0.

(2) It is clear that τ−h maps W1,1
loc(Ω) to W1,1

loc(Ω−h) and that τ−h
commutes with weak derivatives. Hence, by the previous item,
if f ∈ W1,p(Ω), then∇w τ−hf = τ−h∇w f → ∇w f in Lp(Ln|Ω,Rn)
as h→ 0, from which we conclude that τ−hf ∈ W1,p(Ω−h) and
(τ−hf)|Ω → f in W1,p(Ω).

(3) It is immediate from the definition of uniform continuity.
�

Lemma 6.39. With the notation above in force, let Γ : Rn−1 → R
Lipschitz and Ω = epiS Γ. Then, ∀ε > 0, ∀1 ≤ p <∞:

i) If f ∈ W1,p(Ω), there exists g ∈ C∞c (Rn) such that ‖g|Ω−f‖W1,p(Ω) <
ε.

ii) If f ∈ W1,p(Ω) and f is bounded and uniformly continuous, there
exists g ∈ C∞(Rn) satisfying both ‖g|Ω − f‖W1,p(Ω) < ε and ‖g|Ω −
f‖u < ε.

In both cases, if U ⊂ Rn is open and the closure in Rn of spt f is a
compact subset of U , we can take g ∈ C∞c (U) satisfying the conditions
stated above.

Proof. Let f ∈ W1,p(Ω). Fix ε > 0. By lemma 6.38, we may take
h > 0 such that ‖τ−hf − f‖W1,p(Ω) < ε/2. Besides, if f is uniformly
continuous, by the same lemma we may choose h > 0 so that ‖τ−hf −
f‖u < ε/2 also holds on Ω.

Apply lemma 6.37 to obtain Ψ ∈ C∞(Rn) ∩ W1,∞(Rn) such that
0 ≤ Ψ ≤ 1, Ψ ≡ 1 on Ω and spt Ψ ⊂ Ω−h. It follows from lemma
6.35 with Ω−h in place of Ω and τ−hf in place of f that Ψ · τ−hf
belongs to W1,p(Rn). Since Ψ ≡ 1 on Ω, Ψ · τ−hf and τ−hf have the
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same restrictions to Ω; therefore, ‖Ψ · τ−hf − f‖W1,p(Ω) < ε/2 and, if f
uniformly continuous, we also have ‖Ψ · τ−hf − f‖u < ε/2 on Ω.

To prove part i), apply corollary 6.21.ii) to obtain g ∈ C∞c (Rn) such
that ‖g −Ψ · τ−hf‖W1,p(Rn) < ε/2, which yields ‖g|Ω − f‖W1,p(Ω) < ε.

To prove part ii), let (φt)t>0 be the standard mollifier. We contend
that Ψ·τ−hf : Rn → R is bounded and uniformly continuous. Assuming
this contention, to be proved below, we may apply theorem 1.111.ii)
to obtain t > 0 sufficiently small so that ‖φt ∗Ψ · τ−hf −Ψ · τ−hf‖u <
ε/2; besides, taking a smaller t if necessary, corollary 6.21.i) yields
‖φt ∗Ψ · τ−hf − Ψ · τ−hf‖W1,p(Rn) < ε/2. We therefore reach the thesis
with g := φt ∗Ψ · τ−hf ∈ C∞(Rn).

Proof of the contention in the previous paragraph: as f is bounded
and uniformly continuous, so is τ−hf : Ω−h → R. Then Ψ · τ−hf is
clearly bounded; it remains to show that it is uniformly continuous.
Note that Ψ is uniformly continuous, since it is smooth with bounded
derivative, hence it is Lipschitz. As Ψ · τ−hf is continuous (because so
are its restrictions to the open sets Ω and Rn \ spt Ψ) with support
contained in spt Ψ, and ∀x, y ∈ spt Ψ,

|Ψ(x) · τ−hf(x)−Ψ(y) · τ−hf(y)| ≤
≤ |Ψ(x)||τ−hf(x)− τ−hf(y)|+ |τ−hf(y)||Ψ(x)−Ψ(y)| ≤
≤ ‖Ψ‖u|τ−hf(x)− τ−hf(y)|+ ‖f‖u|Ψ(x)−Ψ(y)|,

we conclude that Ψ · τ−hf is uniformly continuous, as asserted.
Finally, if U ⊂ Rn is open and the closure in Rn of spt f is a

compact subset of U , take g̃ ∈ C∞(R) satisfying i) or ii) for a given
ε > 0 and ζ ∈ C∞c (Rn) with 0 ≤ ζ ≤ 1, spt ζ ⊂ U and ζ ≡ 1 on
the closure in Rn of spt f . Define g := ζg̃ ∈ C∞c (U). Since ζf = f ,
we have g − f = ζ(g̃ − f), hence (by theorem 6.26) ∇w(g − f) =
∇ζ · (g̃ − f) + ζ · ∇w(g̃ − f) on Ω, which implies

• ‖g − f‖W1,p(Ω) ≤ ‖ζ‖W1,∞(Rn)‖g̃ − f‖W1,p(Ω) < ‖ζ‖W1,∞(Rn)ε;
• in case ii), ‖g|Ω − f‖u ≤ ‖ζ‖u‖g̃|Ω − f‖u < ε.

Since ε > 0 was arbitrarily taken, the statements in i) and ii) are
fulfilled with g in place of g̃. �

Lemma 6.40. Let 1 ≤ p ≤ ∞, U ⊂ Rn open, Φ ∈ SE(n) a rigid
motion and V = Φ(U). The map (◦Φ) : f 7→ f ◦ Φ is:

1) a linear isometry Lp(V )→ Lp(U) with inverse (◦Φ−1);
2) a linear isometry W1,p(V )→ W1,p(U) with inverse (◦Φ−1);
3) a linear isometry Cb(V )→ Cb(U) with inverse (◦Φ−1).

Proof. Part 3) is immediate and part 1) is an immediate con-
sequence of Φ#Ln = Ln (since the Lebesgue measure is invariant by
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translations and rotations). Part 2) follows from part 1) and from the
fact that weak derivatives commute with (◦Φ), as it can be directly
checked.

�

Lemma 6.41. Let Ω ⊂ Rn open, f ∈ C(Ω) and ξ ∈ Cc(Rn). Then
ξ · f : Ω→ R is uniformly continuous.

Proof. We may extend f to a continuous function Ω→ R, which
on its turn may be extended, in view of Tietze’s extension theorem, to

a continuous function f̃ : Rn → R. Then ξ · f̃ ∈ Cc(Rn) ⊂ C0(Rn) is

uniformly continuous by lemma 1.109, and so is its restriction (ξ ·f̃)|Ω =
ξ · f : Ω→ R. �

Proof of theorem 6.34. Let (Ui)i≥0 be a countable open cover
of Rn, where U0 = Rn \ Ω, U1 = Ω and, for each i ≥ 2, Ui is obtained
by rigid motion of a cylinder centered at 0 ∈ Rn as in definition 6.33,
i.e. there exists a rigid motion Φi ∈ SE(n) with Φi(0) = xi ∈ ∂Ω and
there exists ri, hi > 0 and Γi : Rn−1 → R Lipschitz with Γi(0) = 0
such that Ui = Φi

(
C(0, ri, hi)

)
, Φi

(
gr Γi ∩ C(0, ri, hi)

)
= Ui ∩ ∂Ω and

Φi

(
epiS Γi ∩ C(0, ri, hi)

)
= Ui ∩ Ω.

Let (Vk)k∈N be a locally finite refinement of (Ui)i∈N formed by rel-
atively compact open subsets of Rn, and (ξk)k∈N a smooth partition of
unity of Rn such that for each k ∈ N, spt ξk b Vk, given by theorem
6.8. Note that, for each k ∈ N, the fact that ξk ∈ C∞c (Rn) and the
product rule 6.26 imply that:

• ξk · f ∈ W1,p(Ω) and spt ξk · f ⊂ spt ξk b Vk;
• if f belongs to C(Ω), it follows from lemma 6.41 that ξk · f :

Ω→ R is uniformly continuous.

Fix ε > 0.

1) Claim: for each k ∈ N, there exists gk ∈ C∞c (Vk) such that ‖gk|Ω−ξk ·
f‖W1,p(Ω) < 2−kε. Moreover, if f ∈ C(Ω), we may take gk ∈ C∞c (Vk)
so that ‖gk|Ω − ξk · f‖W1,p(Ω) < 2−kε and ‖gk|Ω − f‖u < 2−kε.

Indeed, there exists ik ∈ N such that Vk ⊂ Uik .
• If ik = 0, ξk · f is the null function on Ω and we may take
gk ≡ 0.
• If ik = 1, spt ξk b Vk ⊂ U1 = Ω, hence ξk · f ∈ W1,p(Rn)

by lemma 6.35 and spt ξk · f b Vk. Besides, if f ∈ C(Ω),
ξk · f ∈ Cc(Rn). Then, if (φt)t>0 is the standard mollifier,
by corollary 6.21 there exists t > 0 sufficiently small so that
φt ∗(ξk · f) ∈ C∞c (Vk) and ‖φt ∗(ξk · f) − ξk · f‖W1,p(Rn) < 2−kε.

If f ∈ C(Ω), the fact that ξk · f ∈ Cc(Rn) and theorem 1.111.ii)
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ensure the existence of a smaller t > 0 such that we also have
‖φt ∗(ξk · f)− ξk · f‖L∞(Rn) < 2−kε. Put gk := φt ∗(ξk · f).

• If ik ≥ 2, (ξk · f) ◦ Φik ∈ W1,p
(
C(0, rik , hik) ∩ epiS Γik

)
(by

lemma 6.40) and spt (ξk · f) ◦ Φik ⊂ Φ−1
ik

(spt ξk) b Φ−1
ik

(Vk) ⊂
C(0, rik , hik). Hence (ξk ·f)◦Φik ∈ W1,p(epiS Γik). Furthermore,
if f ∈ C(Ω), as we saw above ξk · f is uniformly continuous on
Ω, hence its restriction to Uik ∩ Ω is bounded (because it may
be continuously extended to the compact set Uik ∩ Ω, on which
it is therefore bounded) and uniformly continuous, and so is
(ξk · f) ◦ Φik : C(0, rik , hik) ∩ epiS Γik → R.
We contend that (ξk · f) ◦ Φik : epiS Γik → R is bounded and
uniformly continuous. Indeed, it is clearly bounded, since it
is null on the complement of the cylinder C(0, rik , hik) and its
restriction to C(0, rik , hik) ∩ epiS Γik is bounded. Moreover,

since spt (ξk · f) ◦ Φik b C(0, rik , hik) and the restriction (ξk ·
f) ◦ Φik : C(0, rik , hik) ∩ epiS Γik → R is uniformly continuous,

given ε > 0, we may take 0 < δ < δ0 := d(spt (ξk · f) ◦ Φik ,Rn \
C(0, rik , hik)) such that, putting F := (ξk · f) ◦ Φik , ∀x, y ∈
epiS Γik ∩ C(0, rik , hik) with ‖x − y‖ < δ, we have |F (x) −
F (y)| < ε. The same holds for all x, y ∈ epiS Γik with ‖x−y‖ <
δ because, if x ∈ Rn \ C(0, rik , hik) and ‖x − y‖ < δ, then

y ∈ Rn \ spt (ξk · f) ◦ Φik , hence F (x) = F (y) = 0. Thus, the
contention is proved.
Applying lemma 6.39 with (ξk · f) ◦ Φik in place of f and
Φ−1
ik

(Vk) in place of U , we obtain g̃k ∈ C∞c
(
Φ−1
ik

(Vk)
)

such that

‖g̃k|epiS Γik
− (ξk · f) ◦ Φik‖W1,p(epiS Γik ) < 2−kε and, if f ∈ C(Ω),

‖g̃k|epiS Γik
− (ξk · f) ◦ Φik‖u < 2−kε. Thus, in view of lemma

6.40, gk := g̃k ◦ Φ−1
ik

proves the claim.
2) Let g :=

∑
k≥0 gk. Since ∀k ∈ N, gk ∈ C∞c (Vk) and (Vk)k∈N is a

locally finite open cover of Rn, the sum which defines g is locally
finite and g ∈ C∞(Rn). Besides, since f =

∑
k≥0 ξk · f , we have

‖g|Ω − f‖W1,p(Ω) ≤
∑

k≥0‖gk|Ω − ξk · f‖W1,p(Ω) < 2ε and, if f ∈ C(Ω),
‖g|Ω − f‖u ≤

∑
k≥0‖gk|Ω − ξk · f‖u < 2ε.

�

Remark 6.42. With the same hypothesis and notation from theo-
rem 6.34, we have actually proved that there exists (fk)k∈N in W1,p(Ω)∩
C∞(Rn) such that fk → f in W1,p(Ω), which also converges to f uni-
formly on Ω if f ∈ W1,p(Ω) ∩ C(Ω).
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Corollary 6.43. Let Ω ⊂ Rn be a Lipschitz domain. If 1 ≤ p <∞
and f ∈ W1,p(Ω), there exists (fk)k∈N in C∞c (Rn) such that fk|Ω → f in
W1,p(Ω). Moreover, if f ∈ W1,p(Ω) ∩ C(Ω), the sequence (fk)k∈N may
be chosen so that it also converges to f uniformly on compact subsets
of Ω.

Proof. As it was noted in remark 6.42, there exists a sequence
(gk)k∈N in C∞(Rn) such that (∀k)gk|Ω ∈ W1,p(Ω) and gk|Ω → f in
W1,p(Ω), and such that (gk|Ω) also converges uniformly to f if f ∈
W1,p(Ω) ∩ C(Ω).

We now adapt the argument from part ii) of corollary 6.21. Choose
ζ ∈ C∞c (Rn, [0, 1]) such that ζ ≡ 1 on B(0, 1) and spt ζ ⊂ U(0, 2).
Define, ∀k ∈ N, ζk ∈ C∞c

(
U(0, 2k)

)
by ζk(x) := ζ(x/k), and fk := ζk ·gk.

Then ∀k ∈ N, fk ∈ C∞c (Rn). We will prove that fk|Ω → f in W1,p(Ω).
We omit restrictions for simplicity of notation; the p-norms are taken
with respect to Ln|Ω.

1) For all u ∈ Lp(Ln|Ω), ζk ·u→ u in Lp(Ln|Ω). Indeed, |u−ζk ·u|p → 0
pointwise and |u− ζk ·u|p ≤ 2p|u|p ∈ L1(Ln|Ω), hence the dominated
convergence theorem 1.64 yields the assertion.

2) Since f − fk = (f − ζk · f) + ζk · (f − gk), we have ‖f − fk‖p ≤
‖f − ζk · f‖p + ‖ζk‖u‖f − gk‖p → 0, since |ζk| ≤ 1, ‖f − ζk · f‖p → 0
by the previous item and ‖f − gk‖p ≤ ‖f − gk‖W1,p(Ω) → 0.

3) ∀x ∈ Rn,

∇fk(x) = ∇ζk(x) · gk(x) + ζk(x) · ∇gk(x) =

=
1

k
· ∇ζ(x/k) · gk(x) + ζk(x) · ∇gk(x).

Hence, ∀x ∈ Ω,

∇w f(x)−∇fk(x) = ∇w f(x)− ζk(x)∇w f(x)+

+ ζk(x)[∇w f(x)−∇gk(x)]− 1

k
· ∇ζ(x/k) · gk(x),

so that

‖∇w f−∇fk‖p ≤ ‖∇w f−ζk∇w f‖p+‖ζk‖u‖∇w f−∇gk‖p+
1

k
‖∇ζ‖u‖gk‖p.

Since ‖∇w f − ζk∇w f‖p → 0 by item 1), ‖∇w f − ∇gk‖p ≤ ‖f −
gk‖W1,p(Ω) → 0 and, as (gk)k∈N is bounded in Lp(Ln|Ω) (because it is
convergent in W1,p(Ω), hence in in Lp(Ln|Ω)), 1

k
‖∇ζk‖u‖gk‖p → 0, it

follows that ‖∇w f −∇fk‖p → 0. We have thus proved that fk → f
in Lp(Ln|Ω) (by the previous item) and∇fk → ∇w f in Lp(Ln|Ω,Rn);
that is, fk → f in W1,p(Ω), as asserted.
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Finally, if f ∈ W1,p(Ω) ∩ C(Ω), (fk|Ω)k∈N converges to f uniformly
on compact subsets of Ω, bacause so does (gk)k∈N, and for each k ∈ N,
fk ≡ gk on B(0, k). �

6.4. Lipschitz functions and W1,∞

Theorem 6.44. Let Ω ⊂ Rn be open and f : Ω → R. Then
f ∈ W1,∞

loc (Ω) if, and only if, f coincides Ln-a.e. on Ω with a locally
Lipschitz function.

Proof. We have already proved in corollary 6.16 that, if f is locally
Lipschitz, than f ∈ W1,∞

loc (Ω) (moreover, it is Fréchet-differentiable Ln-
a.e. and its Fréchet derivative coincides Ln-a.e. with its weak gradient).

It remains to prove the converse. Suppose that f ∈ W1,∞
loc (Ω). It

suffices to show that, for each relatively compact convex open subset
V b Ω, f |V coincides Ln-a.e. with a Lipschitz function, since Ω may
be covered by countably many such convex open sets. Let W b Ω
open such that V b W . Let ε0 := d(V ,W c) and (φt)t>0 the standard
mollifier. Then, for every 0 < ε < ε0, fε = φε ∗ f ∈ C∞(V ) and for each
x ∈ V ,

‖∇fε(x)‖ 6.20.vi)
= ‖

ˆ
B(x,ε)

∇w f(y)φε(x− y) dLn(y)‖ ≤

≤ ‖∇w f‖L∞(Ln|W ).

Thus, putting C := ‖∇w f‖L∞(Ln|W ), we have sup{‖∇fε‖L∞(Ln|V ) | 0 <
ε < ε0} ≤ C <∞. Therefore, for all x, y ∈ V and 0 < ε < ε0:

|fε(y)− fε(x)| = |
ˆ 1

0

∇fε
(
x+ t(y − x)

)
· (y − x) dLn(t)| ≤

≤ C‖y − x‖.
Hence, denoting by Lf the set of Lebesgue points of f , it follows from
theorem 6.20.iii) that, taking ε ↓ 0, for all x, y ∈ V ∩ Lf ,

|f(y)− f(x)| ≤ C‖y − x‖,
i.e. f |Lf∩V is Lipschitz. We may therefore extend this restriction to
a Lipschitz function on V (even on Rn). Since Ln(V \ Lf ) = 0, we
have proved that f coincides Ln-a.e. on V with a Lipschitz function,
as asserted. �

6.5. Traces and Extensions

We prove below a version of the Gauss-Green theorem for epigraphs
of Lipschitz functions which will be needed to prove theorems on traces
and extensions of Sobolev functions. This theorem will be generalized
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in chapter 7, theorem 7.18; it is essentially a consequence of the area
formula.

Theorem 6.45 (Gauss-Green theorem for Lipschitz epigraphs). Let
n ≥ 2, f : Rn−1 → R Lipschitz and Ω := epiS f (hence ∂Ω = gr f).
Then

i) Hn−1 x∂Ω is a Radon measure on Rn;
ii) there exists a Borel measurable unit vector field ν : ∂Ω → Rn,

unique up to Hn−1 x∂Ω-null sets, such that, for all ϕ ∈ C1
c(Rn),

(6.5)

ˆ
Ω

∇ϕ dLn =

ˆ
∂Ω

ϕν dHn−1,

or, equivalently, such that, for all ϕ ∈ C1
c(Rn,Rn),

(6.6)

ˆ
Ω

div ϕ dLn =

ˆ
∂Ω

ϕ · ν dHn−1.

Proof. Let Γ : Rn−1 → Rn ≡ Rn−1×R be given by x 7→
(
x, f(x)

)
.

Then Γ is Lipschitz 1-1 and Im Γ = gr f = ∂Ω. Thus, from corol-
lary 5.39.i), it follows that Hn−1 x∂Ω = Γ#(Ln−1 xJΓ), whence
Hn−1 x∂Ω is a Radon measure on Rn (because it is Borel regular and
finite on compact sets, as one can see directly from the above formula).

It remains to prove the existence and uniqueness up to Hn−1 x∂Ω-
null sets of ν : ∂Ω → Rn Borel measurable with ‖ν‖ ≡ 1 such that
(6.6) or, equivalently, (6.5) holds. Indeed, for each x =

(
x′, f(x′)

)
∈

Γ(Df ) ⊂ ∂Ω, where Df ⊂ Rn−1 is the differentiability set of f , let

(6.7) ν(x) =

(
∇f(x′),−1

)√
1 + ‖∇f(x′)‖2

,

and let ν be any constant unit vector field on ∂Ω \ Γ(Df ). Since Df ∈
BRn−1 , ∇f is Borelian on Df and Ln(Rn−1 \Df ) = 0 (by exercise 5.13
and by Rademacher’s theorem), it follows that ν is Borelian, ‖ν‖ ≡ 1
and ∂Ω\Γ(Df ) isHn−1 x∂Ω-null, so that ν is givenHn−1 x∂Ω-a.e. by
(6.7). We will prove that (6.5) holds with such ν. If ν ′ is another such
Borel unit vector field, then (ν,Hn−1 x∂Ω) and (ν ′,Hn−1 x∂Ω) are
polar decompositions of the same Rn-valued Radon measure, so that
ν = ν ′ Hn−1 x∂Ω-a.e. by the uniqueness of the polar decomposition.

Given δ > 0, let Fδ be the open strip of amplitude 2δ along the
graph of f (see figure 2), i.e. Fδ := {x = (x′, xn) ∈ Rn | |xn − f(x′)| <
δ}. We approximate the characteristic function χΩ of Ω = epiS f by a
Lipschitz function fδ defined as 1 on epi (f + δ), 0 on hyp (fδ), and by
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linear interpolation on Fδ, i.e. for all x = (x′, xn) ∈ Rn−1 × R,

fδ(x) :=


1 xn ≥ f(x′) + δ,

0 xn ≤ f(x′)− δ,
(2δ)−1

[
xn −

(
f(x′)− δ

)]
x ∈ Fδ.

It is then clear that 0 ≤ fδ ≤ 1, Lip fδ = (2δ)−1(1+Lip f) and fδ → χΩ

pointwise on Rn−1 \ gr f as δ ↓ 0; in particular, fδ → χΩ Ln-a.e. on
Rn, since Ln(gr f) = 0 (for instance, as an immediate consequence of
Fubini’s theorem). Furthermore, by a direct computation, the classical
gradient of fδ exists on Ln-a.e. x = (x′, xn) ∈ Rn and is given by:

∇fδ(x) =

{
0 if xn > f(x′) + δ or xn < f(x′)− δ
(2δ)−1

(
−∇f(x′), 1

)
if x ∈ Fδ and x′ ∈ Df .

Figure 2. Gauss-Green theorem for epigraphs
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We now compute, given ϕ ∈ C1
c(Rn) and taking a sequence (δk)k∈N

in (0,∞) with δk ↓ 0:ˆ
Ω

∇ϕ dLn DCT 1.64
= lim

k→∞

ˆ
fδk∇ϕ dLn

5.5,fδk Lipschitz
=

= − lim
k→∞

ˆ
ϕ∇w fδk dLn

∇w fδk=∇fδk by 5.12
=

= − lim
k→∞

ˆ
Fδk

ϕ(x)
1

2δk

(
−∇f(x′), 1

)
dLn(x)

Fubini 1.84
=

= lim
k→∞

ˆ
Rn−1

(
∇f(x′),−1

) 1

2δk

ˆ f(x′)+δk

f(x′)−δk
ϕ(x′, t) dLn(t) dLn−1(x′) =

= lim
k→∞

ˆ
prRn−1 spt ϕ︸ ︷︷ ︸

compact

bounded︷ ︸︸ ︷(
∇f(x′),−1

) 1

2δk

ˆ f(x′)+δk

f(x′)−δk
ϕ(x′, t) dLn(t)︸ ︷︷ ︸

≤‖ϕ‖u

dLn−1(x′)
DCT 1.64

=

=

ˆ
Rn−1

(
∇f(x′),−1

)
ϕ
(
x′, f(x′)

)
dLn−1(x′)

JΓ(x′)=
√

1+‖∇f(x′)‖2
=

=

ˆ
Rn−1

ϕ
(
Γ(y)

)
ν
(
Γ(y)

)
JΓ(y) dLn−1(y)

area formula 5.39.ii)
=

=

ˆ
∂Ω

ϕν dHn−1,

thus proving (6.5). �

Definition 6.46. With the notation from the previous theorem, ν
is called outer unit normal to ∂Ω.

Remark 6.47. With the notation from the previous theorem, we
have actually proved that, up toHn x∂Ω-null sets, on each point point
x =

(
x′, f(x′)

)
in ∂Ω = gr f whose abscissa x′ is a differentiability point

of f ,

(6.8) ν(x) =

(
∇f(x′),−1

)√
1 + ‖∇f(x′)‖2

.

In particular, if f is C1, ν coincides with the usual outer unit normal
from Differential Geometry.

Theorem 6.48 (Trace theorem for Sobolev functions on Lipschitz
epigraphs). Let n ≥ 2, Γ : Rn−1 → R Lipschitz, Ω := epiS Γ and
1 ≤ p <∞. Then:

i) There exists a unique bounded linear operator T : W1,p(Ω) →
Lp(Hn−1|∂Ω) such that, for all f ∈ C1

c(Rn), T · (f |Ω) = f |∂Ω.
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ii) The Gauss-Green formula holds for all f ∈ W1,1(Ω), i.e. denoting
by ν the unit outer normal to ∂Ω,

(6.9)

ˆ
Ω

∇w f dLn =

ˆ
∂Ω

T · f ν dHn−1,

with a similar equality in divergence form. Furthermore, for all
f ∈ W1,p(Ω) and ϕ ∈ C1

c(Rn,Rn),

(6.10)

ˆ
Ω

f div ϕ dLn = −
ˆ

Ω

〈∇w f, ϕ〉 dLn +

ˆ
∂Ω

T · f 〈ϕ, ν〉 dHn−1.

Proof. 1) Let (e1, . . . , en) be the standard basis of Rn ≡ Rn−1×R.
Since, for all x ∈ DΓ, ‖∇Γ(x)‖ ≤ Lip Γ, it follows from (6.8) that,
for all x ∈ DΓ,

−en · ν ≥
1√

1 + (Lip Γ)2
.

In particular, putting C :=
√

1 + (Lip Γ)2, we conclude that

(6.11) 1 ≤ C (−en · ν)

Hn−1 x∂Ω-a.e. on ∂Ω.
2) Given ε > 0, let βε : R → R be given by βε(t) := (t2 + ε2)1/2 − ε.

Note that βε ∈ C∞(R), βε ≥ 0, βε(t) increases to |t| as ε ↓ 0 and
|β′ε| ≤ 1.

3) Fix f ∈ C1
c(Rn). Then βε ◦ f ∈ C1

c(Rn) (since βε(0) = 0, hence
spt βε ◦ f ⊂ spt f). We compute:

ˆ
∂Ω

βε ◦ f dHn−1
(6.11)

≤ −C
ˆ
∂Ω

〈βε ◦ f en︸ ︷︷ ︸
∈C1

c(Rn,Rn)

, ν〉 dHn−1 (6.6)
=

= −C
ˆ

Ω

∂

∂xn
[ βε ◦ f︸ ︷︷ ︸
=β′ε◦f ·

∂f
∂xn

] dLn ≤

≤ C

ˆ
Ω

|β′ε
(
f(x)

)
|‖∇f(x)‖ dLn(x)

≤ C

ˆ
Ω

‖∇f‖ dLn.

Since βε ◦ f increases pointwise to |f | as ε ↓ 0, we may therefore
apply the monotone convergence theorem 1.62 to conclude that

(6.12)

ˆ
∂Ω

|f | dHn−1 ≤ C

ˆ
Ω

‖∇f‖ dLn.
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In particular, since C1
c(Rn) is dense in W1,1(Ω) by lemma 6.39.i),

f ∈ C1
c(Rn) 7→ f |∂Ω may be uniquely extended to a bounded linear

function W1,1(Ω)→ L1(Hn−1|∂Ω), thus proving part i) for p = 1.
4) For 1 < p < ∞, given f ∈ C1

c(Rn), note that |f |p ∈ C1
c(Rn) (since

|·|p ∈ C1(R) for p > 1 and it is null on 0) and ∇(|f |p) = p|f |p−1 ·
sgn f · ∇f by the chain rule. We may therefore apply (6.12) with
|f |p in place of f ; denoting by q ∈ (1,∞) the conjugate exponent to
p, we compute:ˆ

∂Ω

|f |p dHn−1 ≤ C

ˆ
Ω

‖∇(|f |p)‖ dLn =

= pC

ˆ
Ω

|f |p−1‖∇f‖︸ ︷︷ ︸
=
[
‖∇f‖p

]1/p[
|f |q(p−1)

]1/q
≤ ‖∇f‖

p

p
+
|f |p
q

dLn ≤

≤ C

ˆ
Ω

‖∇f‖p dLn +
pC

q

ˆ
Ω

|f |p dLn.

We therefore conclude that ‖f‖Lp(Hn−1|∂Ω) ≤ C(n, p,Lip Γ)‖f‖W1,p(Ω);
since C1

c(Rn) is dense in W1,p(Ω), by lemma 6.39.i), the linear map
f ∈ C1

c(Rn) 7→ f |∂Ω may be uniquely extended to a bounded linear
function W1,p(Ω) → Lp(Hn−1|∂Ω), thus proving part i) for 1 < p <
∞.

5) It remains to prove part ii). Let f ∈ W1,1(Ω). By lemma 6.39.i),
we may take a sequence (fk)k∈N in C∞c (Rn) such that fk → f in
W1,1(Ω). It then follows, by the continuity of the trace operator,
that fk|∂Ω = T · fk → T · f in L1(Hn−1|∂Ω). On the other hand, for
each k ∈ N, it follows from the Gauss-Green theorem (6.5) thatˆ

Ω

∇fk dLn =

ˆ
∂Ω

fk ν dHn−1.

Hence, taking k →∞, we obtain (6.9).
Similarly, if f ∈ W1,p(Ω) and ϕ ∈ C1

c(Rn,Rn), we may apply once
more lemma 6.39.i) to obtain a sequence (fk)k∈N in C∞c (Rn) such that
fk → f in W1,p(Ω). It then follows, by the continuity of the trace
operator, that fk|∂Ω = T · fk → T · f in Lp(Hn−1|∂Ω). On the other
hand, for each k ∈ N an application of (6.6) to fk · ϕ ∈ C1

c(Rn,Rn)
yieldsˆ

Ω

fk div ϕ dLn = −
ˆ

Ω

〈∇fk, ϕ〉 dLn +

ˆ
∂Ω

fk〈ϕ, ν〉 dHn−1.

Since spt ϕ is compact, we have fk div ϕ → f div ϕ, 〈∇fk, ϕ〉 →
〈∇w f, ϕ〉 and fk〈ϕ, ν〉 → T · f〈ϕ, ν〉 in L1; therefore, taking k →∞
in the last equality yields (6.10).
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�

Remark 6.49. With the notation from the previous theorem, for
p = 1 it follows from 6.12 and from the density of C1

c(Rn) in W1,1(Ω)
that the inequalityˆ

∂Ω

|T · f | dHn−1 ≤ C

ˆ
Ω

‖∇w f‖ dLn.

holds for all f ∈ W1,1(Ω), where C :=
√

1 + (Lip Γ)2.

Corollary 6.50 (Trace theorem for Sobolev functions on Lip-
schitz epigraphs). With the hypothesis from the previous theorem, if
f ∈ W1,p(Ω) ∩ C(Ω), then T · f = f |∂Ω.

Proof. It follows from corollary 6.43 that there exists (fk)k∈N in
C∞c (Rn) such that fk|Ω → f in W1,p(Ω) and (fk)k∈N converges to f
uniformly on compact subsets of Ω. Then fk|∂Ω = T · fk → T · f in
Lp(Hn−1|∂Ω) and fk|∂Ω → f |∂Ω uniformly on compact subsets of ∂Ω,
which implies T · f = f |∂Ω. �

The theorem below, which generalizes theorem 6.48 for Lipschitz
domains on Rn with bounded frontier, may be skipped on a first read-
ing. We shall need theorem 7.18, which ensures that every Lipschitz
domain Ω ⊂ Rn is a set of locally finite perimeter. The material covered
in chapter 7 up to its first section 7.1 is independent of the remaining
parts of this chapter, so that the reader may study it now if he wishes
to better understand the following theorem.

Theorem 6.51 (Trace theorem for Sobolev functions on Lipschitz
domains). Let n ≥ 2, Ω ⊂ Rn a Lipschitz domain with ∂Ω bounded,
and 1 ≤ p <∞. Then:

i) There exists a unique bounded linear operator T : W1,p(Ω) →
Lp(Hn−1|∂Ω) such that, for all f ∈ C1

c(Rn), T · (f |Ω) = f |∂Ω.
ii) The Gauss-Green formula holds for all f ∈ W1,1(Ω), i.e. denoting

by ν the unit outer normal to ∂Ω, cf. definition 7.12,

(6.13)

ˆ
Ω

∇w f dLn =

ˆ
∂Ω

T · f ν dHn−1,

with a similar equality in divergence form. Furthermore, for all
f ∈ W1,p(Ω) and ϕ ∈ C1

c(Rn,Rn),

(6.14)

ˆ
Ω

f div ϕ dLn = −
ˆ

Ω

〈∇w f, ϕ〉 dLn +

ˆ
∂Ω

T · f 〈ϕ, ν〉 dHn−1.

Proof.
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1) For each x ∈ ∂Ω, there exists an open set Ux ⊂ Rn such that x ∈ Ux
and Ux is obtained by rigid motion of a cylinder centered at 0 ∈ Rn

as in definition 6.33, i.e. there exists a rigid motion Φ ∈ SE(n) with
Φ(0) = x and there exists r, h > 0 and Γ : Rn−1 → R Lipschitz with
Γ(0) = 0 such that Ux = Φ

(
C(0, r, h)

)
, Φ
(
gr Γ∩C(0, r, h)

)
= Ux∩∂Ω

and Φ
(
epiS Γ ∩ C(0, r, h)

)
= Ux ∩ Ω.

2) From the open cover (Ux)x∈∂Ω of the compact set ∂Ω ⊂ Rn, we may
extract a finite subcover (Ui)1≤i≤N . For each 1 ≤ i ≤ N , let the
corresponding objects defined in the previous item be denoted with
a subscript i, so that Φi

(
C(0, ri, hi)

)
= Ui.

Let U0 := Ω and U−1 := Ω
c
, so that (Ui)−1≤i≤N is a finite open

cover of Rn. We may apply corollary 6.11 to obtain a smooth par-
tition of unity (ξi)−1≤i≤N of Rn with spt ξi ⊂ Ui for −1 ≤ i ≤ N .
Besides, for i ≥ 1, as spt ξi ⊂ Ui b Rn, it follows that spt ξi is a
compact subset of Ui.

3) Fix f ∈ C1
c(Rn) and 1 ≤ p < ∞. We contend that, for 1 ≤ i ≤ N ,

there exists Ci = Ci(n, p,Lip Γi) such that

‖(ξif)|∂Ω‖Lp(Hn−1|∂Ω) ≤ Ci‖ξi‖W1,∞(Rn)‖f‖W1,p(Ω).

Indeed, we have:

ˆ
∂Ω

|ξif |p dHn−1 =

ˆ
∂Ω∩Ui

|ξif |p dHn−1 =

=

ˆ
|ξif |p d

(
Hn−1 x∂Φi(epiS Γi)

) lemma 7.17
=

=

ˆ
|ξif |p d

(
Φi#

(
Hn−1 x∂ epiS Γi

)) ex. 1.70
=

=

ˆ
|(ξif) ◦ Φi|p d

(
Hn−1 x∂ epiS Γi

) thm. 6.48

≤

≤ Cp
i ‖(ξif) ◦ Φi‖p

W1,p
(

epiS Γi∩C(0,ri,hi)
) lemma 6.40

=

= Cp
i ‖ξif‖

p

W1,p
(
Ui∩Ω

) = Cp
i ‖ξif‖

p
W1,p(Ω)

product rule 6.26

≤

≤ Cp
i ‖ξi‖

p
W1,∞(Rn)

‖f‖pW1,p(Ω)
.

That Ci depends only on n, p and Lip Γi follows from part 4) of the
proof of theorem 6.48. Our contention is then proved.
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4) Since f |∂Ω =
∑N

i=1(ξif)|∂Ω, we have

‖f |∂Ω‖Lp(Hn−1|∂Ω) ≤
N∑
i=1

‖(ξif)|∂Ω‖Lp(Hn−1|∂Ω)

3)

≤

≤
( N∑
i=1

Ci‖ξi‖W1,∞(Rn)

)
‖f‖W1,p(Ω).

The above inequality shows that the linear map f ∈ {f |Ω | f ∈
C1
c(Rn)} 7→ f |∂Ω ∈ Lp(Hn−1|∂Ω) is continuous with respect to the

W1,p(Ω) relative topology on {f |Ω | f ∈ C1
c(Rn)}. Since the latter

subspace is dense in W1,p(Ω), by corollary 6.43, we conclude that
there exists a unique continuous linear map W1,p(Ω)→ Lp(Hn−1|∂Ω)
which extends the map f 7→ f |∂Ω on {f |Ω | f ∈ C1

c(Rn)}. Assertion
i) is therefore proved.

5) In view of theorem 7.18, (6.13) holds for f ∈ C∞c (Rn). Given f ∈
W1,1(Ω), by corollary 6.43 there exists a sequence (fi)i∈N in C∞c (Rn)
such that fi|Ω → f in W1,1(Ω); hence, by continuity of the trace
operator, fi|∂Ω = T · fi → T · f in L1(Hn−1|∂Ω). Therefore,ˆ

Ω

∇w f dLn = lim
i→∞

ˆ
Ω

∇fi dLn =

= lim
i→∞

ˆ
∂Ω

fi ν dHn−1 =

=

ˆ
∂Ω

T · f ν dHn−1,

thus proving assertion ii).
6) Equality (6.13) in divergence form readsˆ

Ω

div f dLn =

ˆ
∂Ω

〈T · f, ν〉 dHn−1,

for all f ∈ W1,1(Ω,Rn). Therefore, given f ∈ W1,p(Ω) and ϕ ∈
C1
c(Rn,Rn), (6.14) follows from the previous equality and from the

product rule 6.26 applied to fϕ componentwise, which yields div (fϕ) =
f div ϕ+ 〈∇w f, ϕ〉.

�

Corollary 6.52 (Trace theorem for Sobolev functions on Lip-
schitz domains). With the hypothesis from the previous theorem, if
f ∈ W1,p(Ω) ∩ C(Ω), then T · f = f |∂Ω.

Proof. It is identical to the proof of corollary 6.50. �
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Definition 6.53 (Extension by reflection with respect to Lipschitz
graphs). Let n ≥ 2, Γ : Rn−1 → R Lipschitz and Ω := epiS Γ. We
identify Rn ≡ Rn−1 × R.

1) The map ΦΓ : Rn → Rn given by (x′, xn) 7→
(
x′,Γ(x′) −

(
xn −

Γ(x′)
))

=
(
x′, 2Γ(x′)− xn

)
is called reflection with respect to Γ.

2) Given f : Rn → R, the function fΓ := f ◦ ΦΓ is said to be obtained
by f by reflection with respect to Γ.

3) Given f : Ω→ R, the extension of f by reflection with respect to Γ
is the function EΓ f : Rn → R given by

EΓ f(x) :=

{
f(x) if x ∈ Ω

f ◦ ΦΓ(x) if x ∈ Ωc.

Theorem 6.54 (Extension by reflection for Sobolev functions on
Lipschitz epigraphs). Let n ≥ 2, Γ : Rn−1 → R Lipschitz, Ω := epiS Γ
and 1 ≤ p < ∞. Then there exists a unique extension operator E :
W1,p(Ω) → W1,p(Rn), i.e. a bounded linear operator with (E f)|Ω = f
for all f ∈ W1,p(Ω), such that, for all f ∈ C1

c(Rn), E(f |Ω) = EΓ(f |Ω)
(i.e. the extension of f |Ω by reflection with respect to Γ).

Proof.

1) It suffices to prove that the extension by reflection EΓ is a bounded
linear operator defined on the subspace C1

c(Rn)|Ω := {f |Ω | f ∈
C1
c(Rn)} of W1,p(Ω), taking values in W1,p(Rn). Indeed, if that is the

case, since C1
c(Rn)|Ω is dense in W1,p(Ω) by lemma 6.39.i), EΓ may

be uniquely extended to a bounded linear operator E : W1,p(Ω) →
W1,p(Rn). Then E satisfies (E f)|Ω = f for all f ∈ W1,p(Ω) because,
as the restriction R : W1,p(Rn)→ W1,p(Ω) (i.e. given by f 7→ f |Ω) is
linear continuous, the composite R◦E : W1,p(Ω)→ W1,p(Ω) is linear
continuous and coincides with the identity on the dense subspace
C1
c(Rn)|Ω, hence R ◦ E is the identity. We then reach the thesis, i.e.

E is an extension operator which uniquely extends EΓ.
We must therefore prove that there exists C > 0 such that,

for each f ∈ C1
c(Rn), EΓ(f |Ω) ∈ W1,p(Rn) and ‖EΓ(f |Ω)‖W1,p(Rn) ≤

C‖f‖W1,p(Ω); then EΓ : C1
c(Rn)|Ω → W1,p(Rn) is a well defined map

and its linearity is clear, hence it is a bounded linear operator.
2) For all x = (x′, xn), y = (y′, yn) ∈ Rn, we have

‖ΦΓ(x)− ΦΓ(y)‖ =
∥∥(x′ − y′, 2[Γ(x′)− Γ(y′)]− (xn − yn)

)∥∥ ≤
≤ ‖x′ − y′‖+ 2 Lip Γ‖x′ − y′‖+ |xn − yn| ≤
≤ 2(Lip Γ + 1)‖x− y‖,
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hence ΦΓ is Lipschitz with Lip Φγ ≤ 2(Lip Γ + 1). It then fol-
lows from Rademacher’s theorem 5.12 that ΦΓ is Ln-a.e. Fréchet-
differentiable. Moreover, for all x ∈ DΦΓ

(thus for Ln-a.e. x in
Rn),

‖DΦΓ(x)‖ ≤ Lip ΦΓ ≤ 2(Lip Γ + 1)

JΦΓ(x) ≤ (Lip ΦΓ)n ≤ 2n(Lip Γ + 1)n.
(6.15)

3) Fix f ∈ C1
c(Rn). Since both f and ΦΓ are Lipschitz, so is fΓ = f◦ΦΓ.

It then follows that both EΓ(f |Ω)|Ω = f |Ω and EΓ(f |Ω)|Ωc = fΓ|Ωc are
Lipschitz. Hence EΓ(f |Ω) is Lipschitz since, if x ∈ Ω and y ∈ Ω

c
, the

closed segment [x, y], being connected, must intersect ∂Ω at some
point z; therefore∣∣EΓ(f |Ω)(x)− EΓ(f |Ω)(y)

∣∣ ≤
≤
∣∣EΓ(f |Ω)(x)− EΓ(f |Ω)(z)

∣∣+
∣∣EΓ(f |Ω)(z)− EΓ(f |Ω)(y)

∣∣ ≤
(Lip f)‖x− z‖+ (Lip fΓ)‖z − y‖ ≤
≤ max{Lip f,Lip fΓ}

(
‖x− z‖+ ‖z − y‖

)
=

= max{Lip f,Lip fΓ}‖x− y‖,

from which we conclude that Lip EΓ(f |Ω) ≤ max{Lip f,Lip fΓ} <
∞.

In particular, from Rademacher’s theorem it follows that EΓ(f |Ω)
is Ln-a.e. Fréchet-differentiable and its classical gradient coincides
with its weak gradient Ln-almost everywhere. Since ∂Ω = gr Γ is
Ln-null, and since EΓ(f |Ω) coincides with f on the open set Ω and
with fΓ = f ◦ ΦΓ on the open set Ω

c
, we conclude that the weak

gradient of EΓ(f |Ω) is given Ln-a.e. by

∇w
[
EΓ(f |Ω)

]
(x) =

{
∇f(x) if x ∈ Ω,

∇fΓ(x) = DΦΓ(x)∗ · ∇f
(
ΦΓ(x)

)
if x ∈ Ω

c ∩DΦΓ
,

where DΦΓ(x)∗ denotes the adjoint of DΦΓ(x) with respect to the
standard inner product of Rn. In particular, since ∀x ∈ DΦΓ

,
‖DΦΓ(x)∗‖ = ‖DΦΓ(x)‖ ≤ 2(Lip Γ + 1) by (6.15), it follows that

(6.16)
∥∥∇w

[
EΓ(f |Ω)

]∥∥ ≤ χΩ · ‖∇f‖+ χΩ
c · 2(Lip Γ + 1)‖(∇f) ◦ ΦΓ‖

Ln-a.e. on Rn.
4) We estimate the Lp norms of both EΓ(f |Ω) and of its weak gradient:
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ˆ
Rn
|EΓ(f |Ω)|p dLn =

ˆ
Ω

|f |p dLn +

ˆ
Ω
c
|f ◦ ΦΓ|p dLn

ΦΓ=Φ−1
Γ and AF 5.39.ii)

=

=

ˆ
Ω

|f |p dLn +

ˆ
Ω

|f |p JΦΓ dLn
(6.15)

≤

≤ [2n(Lip Γ + 1)n + 1]

ˆ
Ω

|f |p dLn.

(6.17)

Similarly, it follows from (6.16) that

ˆ
Rn

∥∥∇w
[
EΓ(f |Ω)

]∥∥p dLn ≤

≤
ˆ

Ω

‖∇f‖p dLn + 2p(Lip Γ + 1)p
ˆ

Ω
c
‖(∇f) ◦ ΦΓ‖p dLn AF 5.39.ii)

=

=

ˆ
Ω

‖∇f‖p dLn + 2p(Lip Γ + 1)p
ˆ

Ω

‖∇f‖p JΦΓ dLn
(6.15)

≤

≤ [2n+p(Lip Γ + 1)n+p + 1]

ˆ
Ω

‖∇f‖p dLn.

(6.18)

From (6.17) and (6.18), we therefore conclude that EΓ(f |Ω) ∈
W1,p(Rn) and, with C := [2n+p(Lip Γ+1)n+p+1]1/p, ‖EΓ(f |Ω)‖W1,p(Rn) ≤
C‖f‖W1,p(Ω).

�

Recall our convention from remark 1.57, i.e. we consider essential
supports only.

Corollary 6.55 (Extension by reflection for Sobolev functions on
Lipschitz epigraphs). With the notation from the previous theorem, if
f ∈ W1,p(Ω) and the closure of spt f in Rn is a compact subset of an
open set V ⊂ Rn, then spt E f b V ∪ VΓ, where VΓ = ΦΓ(V ).

Proof. Let W ⊂ Rn be a relatively compact open set such that
spt f b W b V . We may take, by lemma 6.39, a sequence (gk)k∈N in
C∞c (W ) such that gk|Ω → f in W1,p(Ω). Then E gk → E f in W1,p(Rn).
Since ∀k ∈ N, E gk = EΓ gk has compact support in W ∪WΓ, it follows
that, for all ϕ ∈ C∞c (W ∪WΓ

c
),
´

E f ϕ dLn = limk→∞
´

E gk ϕ dLn =
0. It then follows from the fundamental lemma of the Calculus of
Variations 4.34 that E f = 0 Ln-a.e. on W ∪WΓ

c
, so that spt E f ⊂

W ∪WΓ = W ∪W Γ b V ∪ VΓ, as asserted. �
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Theorem 6.56 (Extension of Sobolev functions on Lipschitz do-
mains). Let n ≥ 2, Ω ⊂ Rn a Lipschitz domain with ∂Ω bounded and
1 ≤ p < ∞. Then there exists an extension operator EΩ : W1,p(Ω) →
W1,p(Rn). Moreover, if Ω is bounded and V ⊂ Rn is an open set
such that Ω b V , we may choose EΩ so that, for all f ∈ W1,p(Ω),
spt (EΩ f) b V .

Proof.

1) For each x ∈ ∂Ω, there exists an open set Ux ⊂ Rn such that x ∈ Ux
and Ux is obtained by rigid motion of a cylinder centered at 0 ∈ Rn

as in definition 6.33, i.e. there exists a rigid motion Φ ∈ SE(n) with
Φ(0) = x and there exists r, h > 0 and Γ : Rn−1 → R Lipschitz with
Γ(0) = 0 such that Ux = Φ

(
C(0, r, h)

)
, Φ
(
gr Γ∩C(0, r, h)

)
= Ux∩∂Ω

and Φ
(
epiS Γ ∩ C(0, r, h)

)
= Ux ∩ Ω. If Ω is bounded and V ⊂ Rn

is an open set such that Ω b V , we may take smaller r and h
so that Ux ⊂ V . Moreover, since Γ is continuous and Γ(0) = 0,
taking smaller r if necessary we may assume that |Γ(y)| < h/4 for
y ∈ U(0, r) ⊂ Rn−1; with that assumption, using the notation from
the previous corollary, we have C(0, r/2, h/2) ∪ C(0, r/2, h/2)Γ ⊂
C(0, r, h). Let Wx := Φ

(
C(0, r/2, h/2)

)
b Ux.

2) From the open cover (Wx)x∈∂Ω of the compact set ∂Ω, we may ex-
tract a finite subcover (Wi)1≤i≤N . For each 1 ≤ i ≤ N , let the cor-
responding objects defined in the previous item be denoted with a
subscript i, so that Φi

(
C(0, ri/2, hi/2)

)
= Wi, Φi

(
C(0, ri, hi)

)
= Ui,

|Γi| < hi/4 on U(0, ri) ⊂ Rn−1.
Let W0 := Ω and W−1 := Ω

c
, so that (Wi)−1≤i≤N is an open cover

of Rn. We may apply corollary 6.11 to obtain a smooth partition of
unity (ξi)−1≤i≤N of unity of Rn with spt ξi ⊂ Wi for −1 ≤ i ≤ N .
Besides, for 1 ≤ i ≤ N , as spt ξi ⊂ Wi b Rn, it follows that spt ξi
is a compact subset of Wi.

We now define a sequence (Ei)0≤i≤N of bounded linear opera-
tors W1,p(Ω) → W1,p(Rn) whose sum will be the desired extension
operator.

3) For i = 0. For each f ∈ W1,p(Ω), let E0(f) := ξ0 · f . We contend
that ξ0 ∈ W1,∞(Rn). Indeed, ξ0 ∈ L∞(Rn) (because 0 ≤ ξ0 ≤ 1)

and, since
∑N

i=0 ξi ≡ 1 on Ω, we have ∇ξ0 = −
∑N

i=1∇ξi on Ω,
hence ∇ξ0|Ω ∈ L∞(Ω,Rn) (because ξi ∈ C∞c (Rn) ⊂ W1,∞(Rn) for
1 ≤ i ≤ N). As spt ξ0 ⊂ Ω, our contention is proved. Therefore,
ξ0 ∈ C∞(Rn)∩W1,∞(Rn), with spt ξ0 ⊂ Ω; an application of lemma
6.35 yields E0(f) = ξ0 · f ∈ W1,p(Rn) and ∇w[E0(f)] = (∇ξ0) · f +
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ξ0 · (∇w f). Hence

‖E0(f)‖Lp(Ln) ≤ ‖f‖Lp(Ln|Ω)∥∥∇w[E0(f)]
∥∥
Lp(Ln)

≤ ‖ξ0‖W1,∞(Rn)

(
‖f‖Lp(Ln|Ω) + ‖∇w f‖Lp(Ln|Ω,Rn)

)
,

thus showing that E0 : W1,p(Ω)→ W1,p(Rn) is a well defined bounded
linear operator.

4) For 1 ≤ i ≤ N . We define Ei : W1,p(Ω)→ W1,p(Rn) as the composite
of the following sequence of continuous linear maps:

W1,p(Ω)
Lξi−→ W1,p

(C)(Wi ∩ Ω)
(◦Φi)−→ W1,p

(C)

(
C(0, ri/2, hi/2) ∩ epiS Γi

) e0−→

e0−→ W1,p(epiS Γi)
E−→ W1,p(Rn)

(◦Φ−1
i )
−→ W1,p(Rn),

where W1,p
(C)(Wi ∩Ω) := {f ∈ W1,p(Wi ∩Ω) | spt f b Wi} is a linear

subspace of W1,p(Wi ∩ Ω), W1,p
(C)

(
C(0, ri/2, hi/2) ∩ epiS Γi

)
:= {f ∈

W1,p
(
C(0, ri/2, hi/2)∩ epiS Γi

)
| spt f b C(0, ri/2, hi/2)} is a linear

subspace of W1,p
(
C(0, ri/2, hi/2)∩ epiS Γi

)
, and the linear maps are

described below:
a) Lξi is the multiplication by ξi. The fact that ξi ∈ C∞c (Rn) and

the product rule 6.26 imply that, for each f ∈ W1,p(Ω), ξi · f ∈
W1,p(Ω) and spt ξi · f ⊂ spt ξi b Wi, so that Lξi : W1,p(Ω) →
W1,p

(C)(Wi ∩ Ω) is a well-defined linear map. Since ∇w(ξi · f) =

(∇ξi) · f + ξi · ∇w f , we have

‖Lξi(f)‖Lp(Wi∩Ω) ≤ ‖ξi‖u‖f‖Lp(Ω)∥∥∇w[Lξi(f)]
∥∥
Lp(Wi∩Ω,Rn)

≤ ‖∇ξi‖u‖f‖Lp(Ω) + ‖ξi‖u‖∇w f‖Lp(Ω,Rn),

hence Lξi is continuous.
b) By lemma 6.40, (◦Φi) : W1,p(Wi ∩ Ω) → W1,p

(
C(0, ri/2, hi/2) ∩

epiS Γi
)

is a surjective linear isometry and maps W1,p
(C)(Wi ∩ Ω)

onto W1,p
(C)

(
C(0, ri/2, hi/2)∩epiS Γi

)
, since spt f◦Φi = Φ−1

i (spt f).

Hence (◦Φi) : W1,p
(C)(Wi ∩Ω)→ W1,p

(C)

(
C(0, ri/2, hi/2)∩ epiS Γi

)
is

a surjective linear isometry.
c) e0 : W1,p

(C)

(
C(0, ri/2, hi/2)∩ epiS Γi

)
→ W1,p(epiS Γi) is the exten-

sion by 0. Note that, for each f ∈ W1,p
(C)

(
C(0, ri/2, hi/2)∩epiS Γi

)
,

• e0(f) ∈ Lp(epiS Γi) and

‖e0(f)‖Lp(epiS Γi) = ‖f‖
Lp
(
C(0,ri/2,hi/2)∩epiS Γi

);
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• since epiS Γi is the union of the open sets C(0, ri/2, hi/2)∩
epiS Γi and epiS Γi \ spt f , and since e0(f) has weak gra-
dients on both open sets (as on the latter its restriction is
null), by the locality of the weak derivative 6.13 we con-
clude that e0(f) has weak gradient given by ∇w[e0(f)] =
e0(∇w f) ∈ Lp(epiS Γi,Rn) and

‖∇w[e0(f)]‖Lp(epiS Γi,Rn) = ‖∇w f‖
Lp
(
C(0,ri/2,hi/2)∩epiS Γi,Rn

).
We therefore conclude that e0 is a well defined linear isometry
into W1,p(epiS Γi).

d) E : W1,p(epiS Γi) → W1,p(Rn) is the extension by reflection with
respect to Γ, cf. theorem 6.54, hence it is linear continuous.

e) (◦Φ−1
i ) : W1,p(Rn)→ W1,p(Rn) is a surjective linear isometry, cf.

lemma 6.40.
5) It follows from the two previous items that EΩ :=

∑N
i=0 Ei is a

well defined bounded linear operator W1,p(Ω) → W1,p(Rn). We
shall prove that (a) it is an extension operator, i.e. for each f ∈
W1,p(Ω), (EΩ f)|Ω = f and (b) in the case Ω bounded, for each
f ∈ W1,p(Ω), spt (EΩ f) b V (recall that V is given in the statement
of the theorem).

Fix 1 ≤ i ≤ N and f ∈ W1,p(Ω). Since the closure in Rn

of the support of (ξi · f) ◦ Φi ∈ W1,p
(C)

(
C(0, ri/2, hi/2) ∩ epiS Γi

)
is a compact subset of C(0, ri/2, hi/2), and since C(0, ri/2, hi/2) ∪
C(0, ri/2, hi/2)Γi ⊂ C(0, ri, hi), cf. the end of part 1) of the proof,
it follows from corollary 6.55 that spt E[(ξi · f) ◦ Φi] b C(0, ri, hi).
Thus, spt (Ei f) = Φi

(
spt E[(ξi · f) ◦ Φi]

)
b Φi

(
C(0, ri, hi)

)
= Ui.

We then conclude that:
• Ei f = 0 Ln-a.e. on Ω \ Ui;
• if x ∈ Ui ∩ Ω, Φ−1

i (x) ∈ C(0, ri, hi) ∩ epiS Γi, hence E[(ξi · f) ◦
Φi] ◦ Φ−1

i (x) = (ξi · f)) ◦ Φi ◦ Φ−1
i (x) = (ξi · f)(x).

We have thus proved that (Eif)|Ω = ξi · f Ln-a.e. on Ω. Therefore,
Ln-a.e. on Ω,

(EΩ f)|Ω =
N∑
i=0

(Ei f)|Ω =

=
N∑
i=0

ξi · f = f,

since
∑N

i=0 ξi ≡ 1 on Ω. That is, as elements of W1,p(Ω), (EΩ f)|Ω =
f , as asserted. Furthermore, in the case Ω bounded, spt (E0 f) =
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spt (ξ0 · f) b Ω ⊂ V and, for 1 ≤ i ≤ N , spt (Ei f) b Ui ⊂ V ,
whence spt (EΩ f) ⊂ ∪Ni=0 spt (Ei f) b V , which concludes the proof.

�

Remark 6.57. With the same proof and notation above, in the case
in which Ω is unbounded and V ⊂ Rn is an open set which contains
Ω, we may choose EΩ so that, for all f ∈ W1,p(Ω), spt (EΩ f) ⊂ V , but
not necessarily compact.

6.6. Sobolev Inequalities

In this section, for 1 ≤ p ≤ ∞ we want to find continuous injections
of W1,p(Rn) into Lq(Ln) for some q. We divide the problem into cases:
1 ≤ p < n, n < p ≤ ∞ and the limit case p = n.

6.6.1. Case 1 ≤ p < n.

Definition 6.58. Let 1 ≤ p < n. We define the Sobolev conjugate
exponent p∗ to p by

1

p∗
=

1

p
− 1

n
,

that is

p∗ =
np

n− p
.

Theorem 6.59 (Sobolev-Gagliardo-Nirenberg inequality). Let 1 ≤
p < n. Then there exists a constant C = C(n, p) such that, for all
f ∈ C1

c(Rn),
‖f‖p∗ ≤ C‖∇f‖p.

Remark 6.60. For 1 ≤ p < n, there can exist only one q ∈ [1,∞]
for which Sobolev’s inequality holds: it is precisely the Sobolev con-
jugate to p. That can be deduced by a scaling argument: suppose
that q ∈ [1,∞] and that for all f ∈ C1

c(Rn), ‖f‖q ≤ C‖∇f‖p for
some constant C = C(n, p). Fix f ∈ C1

c(Rn) and λ > 0. Then
fλ given by x 7→ f(λx) belongs to C1

c(Rn) and ∇fλ(x) = λ∇f(λx),
so that ‖fλ‖q = λ−n/q‖f‖q and ‖∇fλ‖p = λ1−n/p‖∇f‖p. Therefore,
‖fλ‖q ≤ C‖∇(λf)‖p is equivalent to ‖f‖q ≤ Cλ1−n/p+n/q‖∇f‖p. The
latter inequality must hold for all f ∈ C1

c(Rn) and λ > 0; if the expo-
nent of λ is not 0, sending λ to 0 or to∞ yields a contradiction. Hence
1− n/p+ n/q = 0, i.e. 1/q = 1/p− 1/n.

Notation. Let x = (x1, . . . , xn) ∈ Rn. For 1 ≤ i ≤ n, we denote
by x̂i ∈ Rn−1 the point obtained by deleting the i-th coordinate of x,
i.e. x̂i = (x1, . . . , xi−1, xi+1, . . . , xn) ∈ Rn−1.
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Lemma 6.61. Let n ≥ 2 and f1, . . . , fn : Rn−1 → [0,∞] Borelian
functions on Rn−1. Define f : Rn → [0,∞] by

f(x) :=
n∏
i=1

fi(x̂i).

Then f is Borelian on Rn and

‖f‖L1(Ln) ≤
n∏
i=1

‖fi‖Ln−1(Ln−1).

In particular, f ∈ L1(Ln) if fi ∈ Ln−1(Ln−1) for 1 ≤ i ≤ n.

Proof. For 1 ≤ i ≤ n, let pri : Rn → Rn−1 be the projection
x 7→ x̂i, which is continuous, hence Borelian; then fi ◦ pri is Borelian,
and so is the product f =

∏n
i=1 fi ◦ pri.

We prove the asserted inequality by induction on n:

1) For n = 2,

‖f‖1 =

ˆ
f1(x2)f2(x1) dL2(x1, x2)

Tonelli 1.84
=

=

ˆ
f1(x2) dx2 ·

ˆ
f2(x1) dx1 = ‖f1‖1‖f2‖1.

2) Induction step. Suppose that the inequality holds for n. We identify
Rn+1 ≡ Rn × R and use the notation x = (x′, xn+1) for x ∈ Rn+1.
Fix xn+1 ∈ R. It follows from Hölder’s inequality 1.73 that

ˆ
f(x1, . . . , xn, xn+1) dLn(x1, . . . , xn) =

ˆ n+1∏
i=1

fi(x̂i) dLn(x1, . . . , xn)
Hölder 1.73

≤

≤ ‖fn+1‖n
[ˆ n∏

i=1

fi(x̂i)
n′ dLn(x1, . . . , xn)

]1/n′
,

where n′ = n
n−1

is the conjugate exponent of n. By the induction

hypothesis with fn
′

i (·, xn+1) in place of fi, we have:

ˆ n∏
i=1

fi(x̂i)
n′ dLn(x1, . . . , xn) ≤

n∏
i=1

[

ˆ
fi(x̂i)

n′(n−1) dLn−1(x̂′i)]
1/(n−1).

It then follows from the two previous equalities that

ˆ
f(x1, . . . , xn, xn+1) dLn(x1, . . . , xn) ≤ ‖fn+1‖n

n∏
i=1

[

ˆ
fi(x̂i)

n dLn−1(x̂′i)]
1/n.
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The equality above holds for an arbitrarily fixed xn+1 ∈ R. There-
fore, integrating both members on xn+1 and applying Tonelli’s the-
orem, we obtain:

ˆ
f dLn+1 =

ˆ
R

ˆ
Rn
f(x1, . . . , xn, xn+1) dLn(x1, . . . , xn) dL1(xn+1) ≤

≤
ˆ
R
‖fn+1‖n

n∏
i=1

[

ˆ
fi(x̂i)

n dLn−1(x̂′i)]
1/n dL1(xn+1) =

= ‖fn+1‖n
ˆ
R

n∏
i=1

[

ˆ
fi(x̂i)

n dLn−1(x̂′i)]
1/n dL1(xn+1)

gen. Hölder 1.74

≤

≤ ‖fn+1‖n
n∏
i=1

[ˆ
R

ˆ
Rn
fi(x̂i)

n dLn−1(x̂′i) dL1(xn+1)
]1/n Tonelli

=

= ‖fn+1‖n
n∏
i=1

[ˆ
fi(x̂i)

n dLn(x̂i)
]1/n

=

=
n+1∏
i=1

‖fi‖n,

thus proving the induction step.

�

Proof of theorem 6.59. Let f ∈ C1
c(Rn). For 1 ≤ i ≤ n and

for all x = (x1, . . . , xn) ∈ Rn:

f(x) =

ˆ xi

−∞

∂f

∂xi
(x1, . . . , xi−1, t, xi+1, . . . , xn) dt,

hence

|f(x)| ≤
ˆ ∞
−∞

∣∣ ∂f
∂xi

(x1, . . . , xi−1, t, xi+1, . . . , xn)
∣∣ dt.

It then follows that

|f(x)|
n
n−1 ≤

n∏
i=1

[ˆ
R

∣∣ ∂f
∂xi

(x1, . . . , xi−1, t, xi+1, . . . , xn)
∣∣ dt]1/(n−1)︸ ︷︷ ︸

=:fi(x̂i)

.
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We therefore conclude from lemma 6.61 that
ˆ
|f |n/(n−1) dLn ≤

n∏
i=1

[ˆ
Rn−1

ˆ
R

∣∣ ∂f
∂xi

(x1, . . . , xi−1, t, xi+1, . . . , xn)
∣∣ dt dx̂i

]1/(n−1) Tonelli
=

=
n∏
i=1

[ˆ ∣∣ ∂f
∂xi

∣∣ dLn]1/(n−1) ≤

≤
n∏
i=1

[ˆ
‖∇f‖ dLn

]1/(n−1)
=
[ˆ
‖∇f‖ dLn

]n/(n−1)
,

which proves the thesis for p = 1 with C = 1.
For 1 < p < ∞, let f ∈ C1

c(Rn) and g := |f |γ, with γ > 1 to be
chosen later. Note that g ∈ C1

c(Rn) and ∇g = γ · sgn f · |f |γ−1 · ∇f .
We may therefore apply to g the inequality already proved, i.e. with
p = 1, which yields(ˆ

|f |
γn
n−1 dLn

)n−1
n ≤ γ

ˆ
|f |(γ−1)‖∇f‖ dLn

Hölder

≤

≤ γ
(ˆ
|f |

(γ−1)p
p−1

) p−1
p ‖∇f‖p.

We choose γ satisfying

γn

n− 1
=

(γ − 1)p

p− 1
,

i.e.

γ =
(n− 1)p

n− p
> 1.

Then

p∗ =
np

n− p
=

γn

n− 1
=

(γ − 1)p

p− 1
.

We then conclude that(ˆ
|f |p∗ dLn

)n−1
n ≤ γ

(ˆ
|f |p∗

) p−1
p ‖∇f‖p,

which yields the thesis with C = γ = γ(n, p).
�

Corollary 6.62. For 1 ≤ p < n, W1,p(Rn) ⊂ Lp∗(Rn) and the
Sobolev-Gagliardo-Nirenberg inequality 6.59 holds for all f ∈ W1,p(Rn).
In particular, the inclusion W1,p(Rn) ⊂ Lp∗(Rn) is continuous.
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Proof. Let f ∈ W1,p(Rn). By corollary 6.21, there exists a se-
quence (fk)k∈N in C∞c (Rn) such that fk → f in f ∈ W1,p(Rn). Pass-
ing to a subsequence, we may assume that fk → f Ln-almost ev-
erywhere. On the other hand, by theorem 6.59, for all j, k ∈ N,
‖fj − fk‖p∗ ≤ C‖∇fj − ∇fk‖p ≤ C‖fj − fk‖W1,p(Rn). That is, (fk)k∈N
is a Cauchy sequence in Lp∗(Ln). Hence it is convergent in Lp∗(Ln),
and since it converges Ln-a.e. fo f , we conclude that f ∈ Lp∗(Ln) and
fk → f in Lp∗(Ln). Therefore, since for all k ∈ N, ‖fk‖p∗ ≤ C‖∇fk‖p,
taking the limit as k →∞ in both members yields

‖f‖p∗ ≤ C‖∇w f‖p,

as asserted. �

Corollary 6.63. Let 1 ≤ p < n and Ω ⊂ Rn a Lipschitz do-
main with ∂Ω bounded. Then W1,p(Ω) ⊂ Lp∗(Ln|Ω) with continuous
inclusion.

Proof. Let E : W1,p(Ω) → W1,p(Rn) be an extension operator,
cf. theorem 6.56, and C = C(n, p) given by the Sobolev-Gagliardo-
Nirenberg inequality 6.59. Then, for all f ∈ W1,p(Ω),

‖f‖Lp∗ (Ln|Ω) ≤ ‖E f‖Lp∗ (Ln) ≤
≤ C‖∇w(E f)‖Lp(Ln,Rn) ≤ C‖E f‖W1,p(Rn) ≤
≤ C‖E‖‖f‖W1,p(Ω).

�

The Poincaré’s inequality, proved below, is a kind of local version
of the Sobolev-Gagliardo-Nirenberg inequality 6.59, 6.62.

Lemma 6.64. Let X, Y be metric spaces and f : X → Y bi-
Lipschitz with Lip f−1 = (Lip f)−1. Then, for all s ≥ 0 and A ⊂ X,
Hs
(
f(A)

)
= (Lip f)sHs(A), i.e. f−1

#Hs = (Lip f)sHs.

Proof.

Hs
(
f(A)

)
≤ (Lip f)sHs(A) ≤
≤ (Lip f)s(Lip f−1)sHs

(
f(A)

)
= Hs

(
f(A)

)
.

�

Lemma 6.65. For each 1 ≤ p < ∞, there exists a constant C =
C(n, p) such that, for all B(x, r) ⊂ Rn, f ∈ C1(Rn) and z ∈ B(x, r),ˆ

B(x,r)

|f(y)− f(z)|p dy ≤ Crn+p−1

ˆ
B(x,r)

‖∇f(y)‖p‖y − z‖1−n dy.
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Proof. 1) For y, z ∈ B(x, r), we have

f(y)−f(z) =

ˆ 1

0

d

dt
f
(
z+t(y−z)

)
dt =

ˆ 1

0

∇f
(
z+t(y−z)

)
·(y−z) dt.

Then

∣∣f(y)− f(z)
∣∣p ≤ |y − z|p(ˆ 1

0

‖∇f
(
z + t(y − z)

)
dt‖
)p Hölder

≤

≤ |y − z|p
ˆ 1

0

‖∇f
(
z + t(y − z)

)
‖p dt.

For s > 0, Hn−1 x∂B(z, s) is a finite Radon measure - the trace
Hn−1|∂B(z,s) actually coincides with the usual Lebesgue measure of
the sphere, cf. exercise 5.42. We may therefore apply Fubini-
Tonelli’s theorem to the product measure L1 ⊗ (Hn−1 x∂B(z, s))
in equality (∗) of the following computation:

ˆ
B(x,r)∩∂B(x,s)

∣∣f(y)− f(z)
∣∣p dHn−1(y) ≤

≤
ˆ
B(x,r)∩∂B(x,s)

|y − z|p
ˆ 1

0

‖∇f
(
z + t(y − z)

)
‖p dt dHn−1(y)

(∗)
=

= sp
ˆ 1

0

ˆ
B(x,r)∩∂B(x,s)

‖∇f
(
z + t(y − z)︸ ︷︷ ︸

=:g(y)

)
‖p dHn−1(y) dt =

= sp
ˆ 1

0

ˆ
χB((1−t)z+tx,tr)∩∂B(z,ts) ◦ g(y)‖(∇f) ◦ g(y)‖p dHn−1(y) dt =

= sp
ˆ 1

0

ˆ
χB((1−t)z+tx,tr)∩∂B(z,ts)‖(∇f)‖p d( g#Hn−1︸ ︷︷ ︸

=t1−nHn−1 by lemma 6.64

) dt =

= sp
ˆ 1

0

1

tn−1

ˆ
B((1−t)z+tx,tr)∩∂B(z,ts)

‖∇f(w)‖p dHn−1(w) dt
B((1−t)z+tx,tr)⊂B(x,r)

≤

≤ sp
ˆ 1

0

1

tn−1

ˆ
B(x,r)∩∂B(z,ts)

‖∇f(w)‖p dHn−1(w) dt =

= sn+p−1

ˆ 1

0

1

(ts)n−1

ˆ
B(x,r)∩∂B(z,ts)

‖∇f(w)‖p dHn−1(w) dt =

= sn+p−1

ˆ 1

0

ˆ
B(x,r)∩∂B(z,ts)

‖∇f(w)‖p‖w − z‖1−n dHn−1(w) dt.
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The latter integral may now be computed by means of the coarea
formula 5.50 with the Lipschitz map φ : Rn → R given by

φ(w) =
‖w − z‖

s
, Jφ =

1

s
Ln-q.s., φ−1{t} = ∂B(z, ts)

which yields, for all s > 0,ˆ
B(x,r)∩∂B(x,s)

∣∣f(y)− f(z)
∣∣p dHn−1(y) ≤

≤ sn+p−2

ˆ
B(x,r)∩B(z,s)

‖∇f(w)‖p‖w − z‖1−n dLn(w) ≤

≤ sn+p−2

ˆ
B(x,r)

‖∇f(w)‖p‖w − z‖1−n dLn(w).

We now integrate both members of the inequality above from s =
0 to s = 2r, applying once more the coarea formula 5.52 for the
integral of the first member, which yieldsˆ

B(x, r) ∩ B(z, 2r)︸ ︷︷ ︸
=B(x,r)

∣∣f(y)− f(z)
∣∣p dLn(y) ≤

≤ (2r)n+p−1

n+ p− 1

ˆ
B(x,r)

‖∇f(w)‖p‖w − z‖1−n dLn(w),

whence the thesis with

C =
2n−p+1

n− p+ 1
.

�

Notation. For f ∈ L1
loc(Ln) we define the average (f)x,r =

ffl
B(x,r)

f dLn

of f on B(x, r) by

(f)x,r :=

 
B(x,r)

f dLn :=
1

Ln
(
B(x, r)

) ˆ f dLn.

Theorem 6.66 (Poincaré’s inequality). For 1 ≤ p < n, there exists
a constant C = C(n, p) such that, for all B(x, r) and f ∈ W1,p

(
U(x, r)

)
,( 

B(x,r)

|f − (f)x,r|p
∗

dLn
)1/p∗

≤ Cr
( 

B(x,r)

‖∇w f‖p dLn
)1/p

.

Equivalently,

‖f − (f)x,r‖Lp∗ (B(x,r)) ≤ C ′‖∇w f‖Lp∗ (B(x,r))

for some constant C ′ = C ′(n, p) (compare with the Sobolev-Gagliardo-
Nirenberg inequality 6.59).
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Proof. 1) Let f ∈ C∞c (Rn). For all B(x, r) ⊂ Rn, we compute 
B(x,r)

|f − (f)x,r|p dLn =

=

 
B(x,r)

∣∣∣ 
B(x,r)

[f(y)− f(z)] dz
∣∣∣p dy

Hölder

≤

≤
 
B(x,r)

 
B(x,r)

∣∣f(y)− f(z)
∣∣p dz dy

lemma 6.65

≤

≤
 
B(x,r)

C
rn+p−1

α(n)rn

ˆ
B(x,r)

‖∇f(z)‖p‖y − z‖1−n dz dy
Fubini

=

=
Crp−1

α(n)

ˆ
B(x,r)

‖∇f(z)‖p
 
B(x,r)

‖y − z‖1−n dy dz ≤

≤ 2Cnrp
 
B(x,r)

‖∇f(z)‖p dz.

where, in the last inequality, we have estimated, for z ∈ B(x, r),ˆ
B(x,r)

‖y − z‖1−n dy ≤
ˆ
B(z,2r)

‖y − z‖1−n dy =

= nα(n)

ˆ 2r

0

ρ1−nρn−1 dρ = 2rnα(n).

2) Claim: there exists a constant C ′ = C ′(n, p) such that, for all g ∈
C∞c (Rn) and B(x, r) ⊂ Rn,( 
B(x,r)

|g|p∗ dLn
)1/p∗

≤ C ′
(
rp
 
B(x,r)

‖∇g‖p dLn +

 
B(x,r)

|g|p dLn
)1/p

.

Indeed:
a) For x = 0 and r = 1, we have, taking g := g|U(0, 1) and E :

W1,p(U(0, 1)) → W1,p(Rn) an extension operator, cf. theorem
6.56:(ˆ

B(0,1)

|g|p∗ dLn
)1/p∗

≤
(ˆ

Rn
|E g|p∗ dLn

)1/p∗ cor. 6.62

≤

≤ C
(ˆ

Rn
‖∇w(E g)‖p dy

)1/p

≤

≤ C‖E‖︸ ︷︷ ︸
=:C′=C′(n,p)

‖g‖W1,p(U(0,1)) =

= C ′
(ˆ

U(0,1)

‖∇g‖p + |g|p dLn
)1/p
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b) For arbitrary x ∈ Rn and r > 0, let g̃ ∈ C∞c (Rn) be given by
g̃(y) := g(ry + x), so that 

B(0,1)

|g̃|p∗ dLn =

 
B(x,r)

|g|p∗ dLn

 
B(0,1)

|g̃|p dLn =

 
B(x,r)

|g|p dLn

 
B(0,1)

‖∇g̃(y)‖p dLn(y) =

 
B(0,1)

‖r∇g(ry + x)‖p dLn(y) =

= rp
 
B(x,r)

‖∇g‖p dLn,

hence the claim follows from part a) applied to g̃ in place of g.
3) Applying part 2) to g := f − (f)x,r ∈ C∞c (Rn), we obtain( 

B(x,r)

|f − (f)x,r|p
∗

dLn
)1/p∗

≤

≤ C ′
(
rp
 
B(x,r)

‖∇f‖p dLn +

 
B(x,r)

|f − (f)x,r|p dLn
)1/p by 1)

≤

≤ C ′
(
rp
 
B(x,r)

‖∇f‖p dLn + 2Cnrp
 
B(x,r)

‖∇f‖p dLn
)1/p

≤
(
C ′ + C ′(2Cn)1/p

)︸ ︷︷ ︸
=C(n,p)

r
( 

B(x,r)

‖∇f‖p dLn
)1/p

,

thus reaching the thesis for f ∈ C∞c (Rn).
4) Let x ∈ Rn, r > 0 and f ∈ W1,p

(
U(x, r)

)
. By corollary 6.43,

there exists a sequence (fi)i∈N in C∞c (Rn) such that fi → f in
W1,p

(
U(x, r)

)
. For each i ∈ N, it follows from the previous step

of the proof that( 
B(x,r)

|fi − (fi)x,r|p
∗

dLn
)1/p∗

≤ Cr
( 

B(x,r)

‖∇fi‖p dLn
)1/p

.

As i → ∞, the second member of the inequality above has limit

Cr
(ffl

B(x,r)
‖∇w f‖p dLn

)1/p

, since ∇fi → ∇w f in Lp
(
U(x, r),Rn

)
. We

contend that the first member has limit
(ffl

B(x,r)
|f − (f)x,r|p

∗
dLn

)1/p∗

,

whence the thesis.
Indeed, applying the previous inequality with fi− fj in place of fi,

we conclude that the sequence {fi−(fi)x,r}i∈N is Cauchy in Lp∗
(
U(x, r)

)
,

hence convergent in that space. Its limit must be f − (f)x,r because
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(fi)x,r → (f)x,r and, passing to a subsequence if necessary, fi → f
Ln-a.e., hence fi − (fi)x,r → f − (f)x,r Ln-a.e., thus proving our con-
tention. �

6.6.2. Case n < p.

Definition 6.67 (Hölder spaces). Let Ω be an open subset of Rn

and 0 < γ ≤ 1. We say that f : Ω → R is Hölder continuous with
exponent γ on Ω if there exists a constant C ≥ 0 such that, for all
x, y ∈ Ω,

|f(x)− f(y)| ≤ C‖x− y‖γ.
Such functions form a linear subspace of RΩ. We shall denote by

C0,γ(Ω) the linear subspace of RΩ of all bounded Hölder continuous
functions on Ω.

Note that, for γ = 1, the definition above is equivalent to f being
Lipschitz.

Definition 6.68 (Hölder seminorm). Let Ω be an open subset of
Rn, 0 < γ ≤ 1 and f : Ω→ Rn. We define the C0,γ seminorm of f by

[f ]C0,γ(Ω) := sup{|f(x)− f(y)|
‖x− y‖γ

| x 6= y ∈ Ω} ∈ [0,∞].

With the notation above, note that f is Hölder continuous with
exponent γ on Ω if, and only if, [f ]C0,γ(Ω) <∞.

Proposition 6.69 (Hölder spaces are Banach). Let Ω be an open
subset of Rn and 0 < γ ≤ 1. Then C0,γ(Ω) is a Banach space endowed
with the norm

‖f‖C0,γ(Ω) := ‖f‖u + [f ]C0,γ(Ω)

Definition 6.70. Let Ω be an open subset of Rn and f : Ω → R.
We say that f ∗ : Ω→ R is a version of f if f ∗ = f Ln-a.e. on Ω.

Theorem 6.71 (Morrey’s inequality). Fix n < p <∞.

i) There exists a constant C = C(n, p) such that, for all B(x, r) ⊂ Rn

and all f ∈ W1,p
(
U(x, r)

)
,

(6.19) |f(y)− f(z)| ≤ Cr
( 

B(x,r)

‖∇w f‖p dLn
)1/p

for Ln-a.e. y, z in U(x, r).
ii) If f ∈ W1,p(Rn), then the limit

f ∗(x) := lim
r→0

(f)x,r
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exists for every x ∈ Rn and f ∗ is a Hölder continuous version of
f with exponent γ = 1− n/p, with

[f ∗]C0,γ(Rn) ≤ C‖∇w f‖Lp(Rn),

where C = C(n, p) is the constant from part i).

Remark 6.72. See theorem 6.44 for the case p =∞.

Proof.

1) Let f ∈ C1(Rn). Taking C = C(n, 1) given by lemma 6.65 with
p = 1, we compute, for all B(x, r) ⊂ Rn and y, z ∈ U(x, r),

|f(y)− f(z)| =
 
B(x,r)

|f(y)− f(z)| dw ≤

≤
 
B(x,r)

(
|f(y)− f(w)|+ |f(z)− f(w)|

)
dw

6.65

≤

≤ C

α(n)rn
rn
ˆ
B(x,r)

‖∇f(w)‖
(
‖y − w‖1−n + ‖z − w‖1−n) dw

Hölder

≤

≤ C

α(n)

(ˆ
B(x,r)

(
‖y − w‖1−n + ‖z − w‖1−n) p

p−1 dw
) p−1

p
(ˆ

B(x,r)

‖∇f‖p dLn
) 1
p
.

Since

(ˆ
B(x,r)

(
‖y − w‖1−n + ‖z − w‖1−n) p

p−1 dw
) p−1

p Minkowski

≤

≤
(ˆ

B(x,r)

(
‖y − w‖1−n) p

p−1 dw
) p−1

p
+
(ˆ

B(x,r)

(
‖z − w‖1−n) p

p−1 dw
) p−1

p ≤

≤
(ˆ

B(y,2r)

(
‖y − w‖1−n) p

p−1 dw
) p−1

p
+
(ˆ

B(z,2r)

(
‖z − w‖1−n) p

p−1 dw
) p−1

p ≤

≤ 2
(
α(n)

ˆ 2r

0

ρn−1ρ
(1−n)p
p−1︸ ︷︷ ︸

=ρ
1−n
p−1

dρ
) p−1

p p>n
=

= 2α(n)
p−1
p

((2r)
−n+p
p−1

−n+p
p−1

) p−1
p

=

= C(n, p)r
−n+p
p ,
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we obtain

|f(y)− f(z)| ≤ C(n, p)r1−n/p
(ˆ

B(x,r)

‖∇f‖p dLn
) 1
p

=

= C(n, p)r
( 

B(x,r)

‖∇f‖p dLn
)1/p

thus proving part i) for f ∈ C1(Rn).
2) Let x ∈ Rn, r > 0 and f ∈ W1,p

(
U(x, r)

)
. By corollary 6.43,

there exists a sequence (fi)i∈N in C∞c (Rn) such that fi → f in
W1,p

(
U(x, r)

)
. Passing to a subsequence, if necessary, we may as-

sume that fi → f on the complement of a Ln-null set N ⊂ U(x, r).
With C = C(n, p) obtained in part 1), we have, for all i ∈ N and all
y, z ∈ U(x, r),

|fi(y)− fi(z)| ≤ Cr
( 

B(x,r)

‖∇fi‖p dLn
)1/p

.

Taking i→∞, it follows that (6.19) holds for all y, z ∈ U(x, r) \N ,
which concludes the proof of part i).

3) Let f ∈ C1(Rn) and x 6= y in Rn. We take r = ‖x − y‖ and C =
C(n, p) obtained in step 1 of the proof, which yields the estimate

|f(x)− f(y)| ≤ C‖x− y‖1−n/p
(ˆ

B(x,r)

‖∇f‖p dLn
)1/p

≤

≤ C‖∇f‖Lp(Ln,Rn)‖x− y‖1−n/p.

4) Let f ∈ W1,p(Rn). By corollary 6.21, there exists a sequence (fi)i∈N
in C∞c (Rn) such that fi → f in W1,p(Rn). Passing to a subsequence,
if necessary, we may assume that fi → f on the complement of a
Ln-null set N ⊂ Rn. By the previous step, for each i ∈ N and x 6= y
in Rn, we have

|fi(x)− fi(y)| ≤ C‖∇fi‖Lp(Ln,Rn)‖x− y‖1−n/p.

Therefore, taking i→∞ in the previous equality, we conclude that,
for x, y ∈ Rn \N ,

(6.20) |f(x)− f(y)| ≤ C‖∇w f‖Lp(Ln,Rn)‖x− y‖1−n/p.

In particular, f is uniformly continuous on Rn \ N , which is dense
in Rn because N is Ln-null (thus it has empty interior). Hence

f |Rn\N may be extended to a continuous function f̃ : Rn → R,

which therefore coincides with f Ln-a.e. on Rn, i.e. f̃ is a version of
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f . By continuity, f̃ satisfies (6.20) for all x, y ∈ Rn, i.e. f̃ is Holder
continuous with exponent γ = 1− 1/n and

[f̃ ]C0,γ(Rn) ≤ C‖∇w f‖Lp(Rn).

Finally, for all x ∈ Rn and all r > 0, (f)x,r = (f̃)x,r, because

f = f̃ Ln almost everywhere. Since f̃ is continuous, it follows that

∃ limr→0(f)x,r = limr→0(f̃)x,r = f̃(x), i.e. f ∗ = f̃ , which concludes
the proof of part ii).

�

Remark 6.73. With the notation from the previous theorem, for
n < p the map W1,p(Rn) → C(Rn) given by f 7→ f ∗ is injective: if
f ∗ = g∗, then f = g Ln-a.e., hence they represent the same equivalence
class in W1,p(Rn). Thus, identifying each element f of W1,p(Rn) with
its continuous version f ∗, we obtain an inclusion W1,p(Rn) ⊂ C(Rn).
We shall see in the next corollary that we actually have a continuous
inclusion W1,p(Rn) ⊂ C0,1−n/p(Rn).

Corollary 6.74. If n < p <∞, then W1,p(Rn) ⊂ C0,γ(Rn), where
γ = 1− n/p, with continuous inclusion.

Proof.

1) Let f ∈ C∞c (Rn) and fix x ∈ Rn. Taking C = C(n, 1) given by
lemma 6.65 with p = 1, we compute,

|f(x)| ≤
 
B(x,1)

|f(x)− f(y)| dy +

 
B(x,1)

|f(y)| dy
6.65

≤

≤ C

α(n)

ˆ
B(x,1)

‖∇f(y)‖‖y − x‖1−n dy + C(n, p)‖f‖
Lp
(
B(x,1)

) Hölder

≤

≤ C(n, p)‖∇f‖Lp(Rn)

(ˆ
B(x,1)

‖y − x‖
(1−n)p
p−1 dy

) p−1
p

︸ ︷︷ ︸
=C(n,p)<∞, since

(1−n)p
p−1

>−n

+C(n, p)‖f‖Lp(Rn) ≤

≤ C(n, p)‖f‖W1,p(Rn).

Taking the sup over x ∈ Rn on the first member of the above in-
equality, it follows that f is bounded and

‖f‖u ≤ C(n, p)‖f‖W1,p(Rn).

2) Let f ∈ W1,p(Rn). By corollary 6.21, there exists a sequence (fi)i∈N
in C∞c (Rn) such that fi → f in W1,p(Rn). Passing to a subsequence,
if necessary, we may assume that fi → f on the complement of a
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Ln-null set N ⊂ Rn. By the previous step, for each i ∈ N and x in
Rn, we have

|fi(x)| ≤ C(n, p)‖fi‖W1,p(Rn).

Therefore, taking i→∞ in the previous equality, we conclude that,
for x ∈ Rn \N ,

|f(x)| ≤ C(n, p)‖f‖W1,p(Rn).

In view of part ii) of theorem 6.71, we therefore conclude that f ∗

is bounded and Hölder continuous with exponent γ = 1 − n/p, i.e.
f ∗ ∈ C0,γ(Rn), with

‖f ∗‖C0,γ(Rn) ≤ C(n, p)‖f‖W1,p(Rn).

�

Corollary 6.75. If n < p <∞ and Ω ⊂ Rn is a Lipschitz domain
with ∂Ω bounded, then W1,p(Ω) ⊂ C0,γ(Ω), where γ = 1 − n/p, with
continuous inclusion.

Proof. Let E : W1,p(Ω)→ W1,p(Rn) be an extension operator, cf.
theorem 6.56. The inclusion W1,p(Ω) ⊂ C0,γ(Ω) is the composite of the
following sequence of continuous linear maps:

W1,p(Ω)
E→ W1,p(Rn)→ C0,γ(Rn)→ C0,γ(Ω),

where the last arrow is the restriction f 7→ f |Ω and the middle arrow
is the inclusion from the previous corollary. �

6.7. Compactness

Lemma 6.76. Let 1 ≤ p < n and 1 ≤ q < p∗, where p∗ is the
Sobolev conjugate of p. Let (fi)i∈N be a bounded sequence in W1,p(Rn).
Suppose that there is a relatively compact open set V ⊂ Rn such that,
for all i ∈ N, spt fi b V . Then there exists a subsequence (fik)k∈N of
(fi)i which is convergent in Lq(Ln).

Note that, for 1 ≤ q ≤ p∗ and for each i ∈ N, fi ∈ Lq(Ln), in view
of Sobolev-Gagliardo-Nirenberg inequality 6.62 and of the fact that
spt fi b V . However, we cannot ensure the existence of a subsequence
as in the statement of the lemma for q = p∗.

We give two proofs for this lemma.

Proof 1. Let (φε)ε>0 be the standard mollifier on Rn. For each
ε > 0 and i ∈ N, we define

f εi := φε ∗ fi ∈ C∞c (Rn).
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Substituting V with V + U(0, 1), we may assume that, for all i ∈ N
and for all 0 < ε < 1,

spt f εi b V.

1) Claim 1: f εi → fi as ε→ 0 on Lq(Ln), uniformly on i ∈ N.
Indeed:

a) Fix 0 < ε < 1. For each i ∈ N, by corollary 6.43 we may take
gi ∈ C∞c (Rn) such that ‖fi − gi‖W1,p(Rn) < ε. Moreover, since
spt fi b V , we may assume spt gi b V .
For each i ∈ N and x ∈ Rn, we have

gi ∗φε(x)− gi(x) =

ˆ
B(0,ε)

[gi(x− y)− gi(x)]φε(y) dy
z=ε−1y

=

=

ˆ
B(0,1)

[gi(x− εz)− gi(x)]φ(z) dz =

=

ˆ
B(0,1)

φ(z)

ˆ 1

0

d

dt
[gi(x− tεz)] dt dz =

= −
ˆ
B(0,1)

φ(z)

ˆ 1

0

∇gi(x− tεz) · εz dt dz.

Thus

‖gεi − gi‖1 =

ˆ
Rn
|gεi (x)− gi(x)| dx ≤

≤ ε

ˆ
Rn

ˆ
B(0,1)

φ(z)

ˆ 1

0

‖∇gi(x− tεz)‖ dt dz dx
Tonelli

=

= ε

ˆ
B(0,1)

φ(z)

ˆ 1

0

ˆ
Rn
‖∇gi(x− tεz)‖ dx dt dz dx =

= ε

ˆ
Rn
‖∇gi‖ dLn spt gi⊂V= ε

ˆ
V

‖∇gi‖ dLn
Hölder

≤

≤ Ln(V )
p−1
p ε‖∇gi‖p ≤

≤ Ln(V )
p−1
p ε
(
‖∇fi‖p + ε

)
.
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b) Hence, for each i ∈ N, we have

‖f εi − fi‖1 ≤ ‖f εi − gεi‖1 + ‖gεi − gi‖1 + ‖gi − fi‖1

Hölder, Young 1.108.g) and a)

≤

≤ 2Ln(V )
p−1
p ‖fi − gi‖p + Ln(V )

p−1
p ε
(
‖∇fi‖p + ε

)
≤

≤ εLn(V )
p−1
p
(
2 + ε+ ‖∇fi‖p

)
≤

≤ εLn(V )
p−1
p
(
3 + sup{‖∇fi‖p | i ∈ N}

)︸ ︷︷ ︸
=:C<∞

.

c) It then follows from the interpolation inequality 1.77, with λ ∈
(0, 1] given by 1

q
= λ+ 1−λ

p∗
, that, for each i ∈ N,

‖f εi − fi‖q ≤ ‖f εi − fi‖λ1‖f εi − fi‖1−λ
p∗

6.62

≤
≤ (Cε)λ ‖∇(f εi − fi)‖1−λ

p︸ ︷︷ ︸
≤
(

2 sup{‖∇fi‖p|i∈N}
)1−λ

≤

≤ C ′ελ,

where C ′ = Cλ
(
2 sup{‖∇fi‖p | i ∈ N}

)1−λ
<∞, which concludes

the proof of claim 1.
2) Claim 2: for each 0 < ε < 1 fixed, (f εi )i∈N is uniformly bounded and

equicontinuous.
Indeed, for all i ∈ N, it follows from Young’s inequality 1.108.g)

that:

‖f εi ‖∞ = ‖φε ∗ fi‖∞ ≤ ‖φε‖∞‖fi‖1 ≤
C

εn
<∞,

‖∇f εi ‖∞ = ‖∇φε ∗ fi‖∞ ≤ ‖∇φε‖∞‖fi‖1 ≤
C ′

εn+1
<∞,

whence the claim.
3) Claim 3: for each δ > 0, there exists a subsequence (fik)k∈N of (fi)i

such that
lim sup
j,k→∞

‖fij − fik‖Lq(Ln) ≤ δ.

To prove claim 3, we firstly apply claim 1 to find 0 < ε < 1 such
that, for all i ∈ N, ‖f εi − fi‖Lq(Ln) ≤ δ

2
.

Since spt f εi b V b Rn for all i ∈ N, in view of claim 2 we
may apply Arzelà-Ascoli’s theorem to find a subsequence (fik)k∈N
such that f εik is uniformly convergent on Rn. Since Ln(V ) <∞, this
subsequence is also convergent in Lq(Ln), so that

lim sup
j,k→∞

‖f εij − f
ε
ik
‖Lq(Ln) = 0.
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Finally, since ‖fij − fik‖q ≤ ‖fij − f εi,j‖q + ‖f εij + f εik‖q + ‖f εik − fik‖q,
the claim follows.

4) We now apply claim 3 for δ = 1/m, m ∈ N, yielding for each m ∈ N
a subsequence fm = (fmi )i∈N of (fm−1

i )i∈N, with f 0 = (fi)i∈N, such
that, for all m ∈ N,

lim sup
j,k→∞

‖fmj − fmk ‖Lq(Ln) ≤
1

m
.

The diagonal (fmm )m∈N is therefore a subsequence of (fi)i which is
Cauchy in Lq(Ln), hence convergent in that space.

�

Proof 2. We apply the Kolmogorov-Riesz-Fréchet compactness
criterion 1.80.

Note that, in view of Sobolev-Gagliardo-Nirenberg inequality 6.62,
(fi)i∈N is bounded on Lp∗(Ln). Thus, since Ln(V ) <∞, it follows that,
for 1 ≤ q < p∗,

(6.21) sup{‖fi‖Lq(Ln) | i ∈ N} <∞.
On the other hand, it follows from exercise 6.25 for p > 1 and from

exercise 7.38 for p = 1 that, for all h ∈ Rn and all i ∈ N,

‖τhfi − fi‖Lp(Ln) ≤ ‖h‖ sup{‖∇w fi‖Lp(Ln) | i ∈ N}︸ ︷︷ ︸
=:C<∞

.

Thus, in view of Hölder’s inequality, for all h ∈ Rn and all i ∈ N,

‖τhfi − fi‖L1(Ln) ≤ ‖h‖CLn(V )
p−1
p .

Therefore, applying the interpolation inequality 1.77, it follows that,
for 1 ≤ q < p∗, h ∈ Rn and i ∈ N,

‖τhfi−fi‖Lq(Ln) ≤ ‖h‖λ
(
CLn(V )

p−1
p
)λ

sup{‖τhfi − fi‖Lp∗ (Ln) | i ∈ N}1−λ︸ ︷︷ ︸
:=C′

,

where λ ∈ (0, 1] is given by

1

q
= λ+

1− λ
p∗

.

Since

sup{‖τhfi − fi‖Lp∗ (Ln) | i ∈ N} ≤ 2 sup{‖fi‖Lp∗ (Ln) | i ∈ N} <∞,
we have C ′ <∞ and, since λ > 0, we conclude that

(6.22) lim
h→0
‖τhfi − fi‖Lq(Ln) = 0

uniformly in i ∈ N.



6.7. COMPACTNESS 227

With (6.21) and (6.22) in force, we may apply the Kolmogorov-
Riesz-Fréchet compactness criterion 1.80 to F := {fi | i ∈ N}. There-
fore, F|V has compact closure in Lq(Ln|V ); since each f ∈ F has sup-
port in V , we conclude that F has compact closure in Lq(Ln), whence
the thesis.

�

Theorem 6.77 (Rellich-Kondrachov). Let Ω be a bounded Lipschitz
domain in Rn, 1 ≤ p < n and 1 ≤ q < p∗, where p∗ is the Sobolev
conjugate of p. Then

W1,p(Ω) b Lq(Ln|Ω),

i.e. W1,p(Ω) ⊂ Lq(Ln|Ω) with compact inclusion.

Proof. We have continuous inclusions W1,p(Ω) ⊂ Lp∗(Ln|Ω) ⊂
Lq(Ln|Ω), the first in view of corollary 6.63 and the second in view
of the fact that Ln(Ω) <∞ and of Hölder’s inequality.

Therefore, it suffices to show that each bounded sequence (fi)i∈N in
W1,p(Ω) has a subsequence which is convergent in Lq(Ln|Ω).

Let V be an open relatively compact subset of Rn such that Ω b
V b Rn and E : W1,p(Ω) → W1,p(Rn) an extension operator, cf. the-
orem 6.56, such that spt E f b V for all f ∈ W1,p(Ω). Then (E fi)i∈N
is a bounded sequence in W1,p(Rn) with spt fi b V for all i ∈ N. We
may therefore apply lemma 6.76 to obtain a subsequence (fij)j∈N such
that (E fij)j∈N is convergent in Lq(Ln). Since fi = E fi|Ω for all i ∈ N,
we conclude that (fij)j∈N is convergent in Lq(Ln|Ω). �

Corollary 6.78. Let Ω be a bounded Lipschitz domain in Rn,
1 ≤ p < n and (fi)i∈N a bounded sequence in W1,p(Ω). Then there exists
a subsequence (fij)j∈N of (fi)i∈N which is convergent in each Lq(Ω), for
1 ≤ q < p∗.

Proof. Let (qm)m∈N be a sequence in [1, p∗) which increases to
p∗. For each m ∈ N, we may apply theorem 6.77 to find a subsequence
fm = (fmi )i∈N of fm−1, with f 0 = (fi)i∈N, such that fm is convergent in
Lqm(Ω) (hence on Lq(Ω) for 1 ≤ q ≤ qm, since Ln(Ω) <∞). The diag-
onal (fmm )m∈N is therefore a subsequence of (fi)i∈N which is convergent
in each Lq(Ω), for 1 ≤ q < p∗. �

Corollary 6.79. Let Ω be a bounded Lipschitz domain in Rn,
1 < p < n and (fi)i∈N a bounded sequence in W1,p(Ω). Then there exists
f ∈ W1,p(Ω) and a subsequence (fij)j∈N of (fi)i∈N such that fij → f in
each Lq(Ω), for 1 ≤ q < p∗.
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Proof. Let (fij)j∈N be a subsequence of (fi)i∈N which is convergent
in each Lq(Ω), for 1 ≤ q < p∗, cf. corollary 6.78. We contend that its
limit f belongs to W1,p(Ω). Indeed, since 1 ≤ p < p∗, f ∈ Lp(Ω) and
fij → f in Lp(Ω). As (∇fij)j∈N is bounded in Lp(Ln|Ω,Rn), it follows
from proposition 6.3.ii) that f ∈ W1,p(Ω), as asserted. �

Corollary 6.80. Let Ω be a bounded Lipschitz domain in Rn and
(fi)i∈N a bounded sequence in W1,1(Ω). Then there exists f ∈ L1∗(Ln|Ω)
and a subsequence (fij)j∈N of (fi)i∈N such that fij → f in each Lq(Ω),
for 1 ≤ q < 1∗.

Proof. Let (fij)j∈N be a subsequence of (fi)i∈N which is convergent
in each Lq(Ω), for 1 ≤ q < 1∗, cf. corollary 6.78. We contend that
its limit f belongs to L1∗(Ln|Ω). Indeed, since (fij)j∈N is bounded in

L1∗(Ln|Ω) (because it is bounded in W1,p(Ω) and corollary 6.63 may be
applied), it follows from Banach-Alaoglu’s theorem that there exists
a subsequence of (fij)j∈N which is weak-star convergent to some g ∈
L1∗(Ln|Ω); since it also converges to f ∈ L1(Ln|Ω), we conclude that
f = g ∈ L1∗(Ln|Ω), as asserted. �



CHAPTER 7

Functions of Bounded Variation and Sets of Finite
Perimeter

Let Ω ⊂ Rn open. We define functions of bounded variation on Ω as
L1
loc functions on Ω whose distributional gradient is an Rn-valued Radon

measure on Ω. For that purpose, we make the following generalization
of the notion of weak derivatives introduced in 5.3:

Definition 7.1 (weak derivatives and gradients, bis). Let Ω be an
open subset of Rn and u ∈ L1

loc(Ln|Ω). We say that:

i) For 1 ≤ i ≤ n, u has weak i-th partial derivative µi ∈Mloc(Ω,R) ≡
Cc(Ω,R)∗ if ∀ϕ ∈ C∞c (Ω),ˆ

Ω

u
∂ϕ

∂xi
dLn = −

ˆ
Ω

ϕ dµi.

ii) u has weak gradient µ ∈Mloc(Ω,Rn) ≡ Cc(Ω,Rn)∗ if ∀ϕ ∈ C∞c (Ω,Rn),

(7.1)

ˆ
Ω

u div ϕ dLn = −
ˆ

Ω

ϕ · dµ.

We use the same notations for weak derivatives introduced in definition
5.3.

Remark 7.2. With the notation from the definition above, it fol-
lows from the definition of Rn-valued Radon measures 4.1 and remark
4.4 that:

1) For 1 ≤ i ≤ n, u ∈ L1
loc(Ln|Ω) admits weak i-th partial derivative if,

for each compact K ⊂ Ω, there exists CK <∞ such that

sup{
ˆ

Ω

u
∂ϕ

∂xi
dLn | ϕ ∈ C∞c (Ω), spt ϕ ⊂ K, ‖ϕ‖u ≤ 1} ≤ CK .

2) u ∈ L1
loc(Ln|Ω) admits weak gradient if, for each compact K ⊂ Ω,

there exists CK <∞ such that

sup{
ˆ

Ω

u div ϕ dLn | ϕ ∈ C∞c (Ω,Rn), spt ϕ ⊂ K, ‖ϕ‖u ≤ 1} ≤ CK .

3) Weak partial derivatives or weak gradients, if exist, are unique.

229
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4) u ∈ L1
loc(Ln|Ω) has weak gradient µ = (µ1, . . . , µn) ∈ Mloc(Ω,Rn)

iff it has weak partial derivatives of first order µi ∈ Mloc(Ω,R) for
1 ≤ i ≤ n.

5) If u ∈ L1
loc(Ln|Ω) has weak i-th partial derivative vi ∈ L1

loc(Ln|Ω) in
the sense of definition 5.3, then it has weak i-th partial derivative
Ln xvi ∈ Mloc(Ω,R) in the sense of definition 7.1. Thus, consid-
ering the injection L1

loc(Ln|Ω) ⊂ Mloc(Ω,R) given by v 7→ Ln xv,
we see that definition 5.3 may be considered a particular case of
definition 7.1.

6) It is clear that the set of functions u ∈ L1
loc(Ln|Ω) which admit weak

gradient is a linear subspace of L1
loc(Ln|Ω) and that weak derivatives

and weak gradient are linear in this subspace. We denote it by
BVloc(Ω), cf. definition 7.5 below.

Exercises 5.4 and 5.5 admit the following counterparts for the ex-
tended notion of weak derivatives.

Exercise 7.3 (weak gradients, bis). Weak gradients may be also
characterized by means of Gauss-Green identity in gradient form. That
is, let Ω be an open subset of Rn and u ∈ L1

loc(Ln|Ω); then u admits
weak gradient µ ∈Mloc(Ω,Rn) iff ∀ϕ ∈ C∞c (Ω),

(7.2)

ˆ
Ω

u∇ϕ dLn = −
ˆ

Ω

ϕ dµ.

Exercise 7.4. Let Ω be an open subset of Rn, u ∈ L1
loc(Ln|Ω) and

1 ≤ i ≤ n. If there exists µi = ∂wu
∂xi
∈Mloc(Ω,R), then ∀ϕ ∈ C1

c(Ω),ˆ
Ω

u
∂ϕ

∂xi
dLn = −

ˆ
Ω

ϕ dµi

Definition 7.5. Let Ω be an open subset of Rn.

i) We denote by BVloc(Ω) the set of functions u ∈ L1
loc(Ln|Ω) which

admit weak partial gradient ∇w u ∈ Mloc(Ω,Rn). Such functions
are called of locally bounded variation on Ω.

ii) We say that u is a function of bounded variation on Ω if u ∈
L1(Ln|Ω) and u admits weak gradient ∇w u ∈ M(Ω,Rn), i.e. its
weak gradient is a finite Rn-valued Radon measure on Ω. We
denote by BV(Ω) the set of functions of bounded variation on Ω.

iii) We say that E ⊂ Ω is a set of locally finite perimeter in Ω if
χE ∈ BVloc(Ω). We say that E is a Caccioppoli set or a set of
finite perimeter in Ω if χE ∈ BVloc(Ω) and ∇w χE ∈M(Ω,Rn).

Example 7.6. Let Ω ⊂ Rn open and f ∈ W1,1
loc(Ω). It follows from

remark 7.2.5) that f ∈ BVloc(Ω) and its measure-weak gradient is given
by Ln x∇w f ∈Mloc(Ω,Rn).
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The inclusion W1,1
loc(Ω) ⊂ BVloc(Ω) is strict; for instance, if u =

χ(0,∞) on Ω = R, ∇w u coincides with the Dirac measure δ0 ∈M(R,R),

so that ∇w u ⊥ Ln, hence u ∈ BV(R) \W1,1
loc(R).

Theorem 7.7 (locality of the weak derivative). Let Ω ⊂ Rn open,
f ∈ L1

loc(Ln|Ω) and F ⊂ 2Ω an open cover of Ω. Then f admits weak
partial derivatives of first order on Ω iff ∀U ∈ F , f |U admits weak
partial derivatives of first order on U . Moreover, weak derivatives com-
mute with restrictions (for a Radon measure, “restriction” here means
“trace”).

Lemma 7.8. Let U ⊂ Rn open.

i) If µ ∈Mloc(Ω,Rn) and f ∈ L1(|µ|), then µ xf ∈M(Rn,Rn) and
|µ xf | = |µ| x|f |.

ii) If ξ ∈ C∞c (U) and f ∈ BVloc(U), then ξ ·f (defined as 0 on Rn \U)
belongs to BV(Rn) and

∇w(ξ · f) = Ln x(f∇ξ) +∇w f xξ.
Proof.

i) Let (ν, |µ|) be the polar decomposition of µ. Then, for all ϕ ∈
Cc(Rn,Rn), |µ xf · ϕ| = |

´
Ω
〈ϕf, ν〉 d|µ|| ≤ ‖ϕ‖u‖f‖L1(|µ|), thus

showing that µ xf ∈M(Rn,Rn). Besides, the same computation
shows that, for all ϕ ∈ Cc(Rn,Rn), µ xf ·ϕ =

´
Rn〈ϕ,

fν
|f |〉 d(µ x|f |),

hence the polar decomposition of µ xf is (fν|f | , µ x|f |).
ii) It follows from lemma 6.14 that f∇ξ ∈ L1(Ln,Rn). Let µ :=
Ln x(f∇ξ) + ∇w f xξ. Then µ ∈ M(Rn,Rn) by the previous
item; it therefore suffices to show that ξ · f admits weak gradient
equal to µ. Indeed, ∀ϕ ∈ C∞c (Rn),ˆ

Rn
(ξ · f) · ∇ϕ dLn =

ˆ
Ω

f ·
(
∇(ξ · ϕ)−∇ξ · ϕ

)
dLn =

= −
ˆ

Ω

ξϕ d∇w f −
ˆ

Ω

f · ∇ξ · ϕ dLn =

= −
ˆ
Rn
ϕ dµ,

as asserted.

�

Proof of theorem 7.7. The implication “⇒” and the fact that
weak derivatives commute with restrictions are clear. We must prove
the converse implication, i.e. if ∀U ∈ F , f |U admits weak gradient
∇w(f |U) ∈Mloc(U,Rn), then f admits weak gradient on Ω.
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1) We may assume that F is locally finite and ∀U ∈ F , U b Ω. Indeed,
in the general case, take a locally finite open refinement G of F such
that ∀U ∈ G, U b Ω. For each V ∈ G, there exists U ∈ F such that
V ⊂ U ; since f |U admits weak gradient ∇w(f |U) ∈ Mloc(U,Rn), it
follows that f |V = (f |U)|V admits weak gradient, so that we may
replace F by G.

2) Take a smooth partition of unity (ξV )V ∈F of Ω, given by theo-
rem 6.8, such that ∀V ∈ F , ξV ∈ C∞c (V ). We contend that
µ :=

∑
V ∈F ∇w(f |V ) xξV ∈ Mloc(Ω,Rn). Indeed, for each com-

pact K ⊂ Ω, there are finitely many V1, . . . , VN ∈ F which intersect
K, so that µ|CK

c (Ω,Rn) =
∑N

j=1∇w(f |Vi) xξVi is linear continuous by

lemma 7.8.i), thus proving our contention.
3) Let ϕ ∈ C∞c (Ω,Rn). Since spt ϕ is compact, there are finitely many

V1, . . . , VN ∈ F which intersect K. We then have
ˆ

Ω

ϕ · dµ =
N∑
j=1

ˆ
Ω

ξjϕ · d∇w(f |Vj) =

=
N∑
j=1

ˆ
Vj

(ξjϕ) · d∇w(f |Vj) =

= −
N∑
j=1

ˆ
Vj

f |Vj · div (ξjϕ) dLn =

= −
N∑
j=1

ˆ
Ω

f · div (ξjϕ) dLn =

= −
ˆ

Ω

f · div (
N∑
j=1

ξjϕ) dLn =

= −
ˆ

Ω

f · div ϕ dLn,

thus proving that ∇w f = µ on Ω.

�

Corollary 7.9. Let Ω ⊂ Rn open and f : Ω → R Lebesgue mea-
surable. Then f ∈ BVloc(Ω) iff for all open V b Ω, f |V ∈ BV(V ).

Proof. The implication “⇒” is clear, in view of the fact that weak
derivatives commute with restrictions. Conversely, assume that for
all open V b Ω, f |V ∈ BV(V ). In particular, for all open V b Ω,
f |V ∈ L1(Ln|V ), hence f ∈ L1

loc(Ln|Ω). It then follows from theorem 7.7
that ∃∇w f ∈Mloc(Ω,Rn), thus f ∈ BVloc(Ω). �
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Proposition 7.10. Let Ω be an open subset of Rn. Then BV(Ω)
is a Banach space with the norm

(7.3) ‖f‖BV(Ω) := ‖f‖L1(Ω) + |∇w f |(Ω).

Proof. It suffices to show that the graph of ∇w : BV(Ω) →
M(Ω,Rn) ≡ C0(Ω,Rn)∗ is closed in the Banach space H := L1(Ln|Ω)×
M(Ω,Rn). Indeed, let (uk, vk)k∈N be a sequence in gr ∇w such that
(uk, vk) → (u, v) ∈ H. We must show that u is weakly differentiable
and ∇w u = v. Indeed, ∀ϕ ∈ C∞c (Ω,Rn), ∀k ∈ N,ˆ

Ω

uk div ϕ dLn = −
ˆ

Ω

ϕ · dvk.

Since uk → u in L1(Ln|Ω) and vk → v in in M(Ω,Rn) (in particular,

vk
∗ f
⇀v), the above equality holds with u in place of uk and v in place

of vk, thus proving our contention. �

Remark 7.11. If Ω is an open subset of Rn, BVloc(Ω) admits a
Fréchet space topology induced by the family of seminorms {‖·‖BV(V ) |
V b Ω open}.

7.1. Gauss-Green Measures and Generalized Divergence
Theorem

Definition 7.12 (Gauss-Green measure, exterior normal and perime-
ter measure of a set of locally finite perimeter). Let Ω be an open
subset of Rn and E ⊂ Ω be a set of locally finite perimeter in Ω, i.e.
such that χE ∈ BVloc(Ω) (in particular, if E is a Caccioppoli set in Ω,
cf. definition 7.5). The Rn-valued Radon measure µE := −∇w χE ∈
Mloc(Ω,Rn) (attention to the minus sign) is called the Gauss-Green
measure of E.

Let (νE, |µE|) be the polar decomposition of µE. We call the positive
Radon measure P(E, ·):= |µE| on Ω the perimeter measure of E and
νE the exterior normal to E.

Remark 7.13. With the notation from the previous definition, let
E be a set of locally finite perimeter in Ω and ∂ΩE = Ω ∩ ∂E be the
topological boundary of E in Ω.

1) It is clear that spt µE ⊂ ∂ΩE. Since νE is determined up to |µE|-
null sets, we may and do assume henceforth that νE = 0 on Ω\∂ΩE
and we identify νE with a Borelian map ∂ΩE → Rn.

2) It follows from the definition of the polar decomposition and from
exercise 7.4 that, for all ϕ ∈ C1

c(Ω,Rn),

(7.4)

ˆ
E

div ϕ dLn =

ˆ
∂ΩE

ϕ · νE d|µE|.
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We call the above equality the generalized Gauss-Green theorem.

Exercise 7.14 (Complements of sets of locally finite perimeter).
Let Ω be an open subset of Rn and E ⊂ Ω be a set of locally finite
perimeter in Ω. Then Ω \ E has locally finite perimeter in Ω and

µΩ\E = −µE.

Exercise 7.15 (Sets of finite perimeter under scaling and trans-
lation). Let E be a set of locally finite perimeter in Rn, x ∈ Rn and
λ > 0. Then x+ λE is a set of locally finite perimeter in Rn and

µx+λE = Φ#µE,

where Φ : Rn → Rn is given by y 7→ x + λy. In particular, if E has
finite perimeter, so does x+ λE and P (x+ λE,Rn) = λn−1P (E,Rn).

Proposition 7.16 (Lipschitz epigraphs have locally finite perime-
ter). Let n ≥ 2, f : Rn−1 → R Lipschitz and Ω := epiS f . Then Ω
is a set of locally finite perimeter in Rn, |µΩ| = Hn−1 x∂Ω and νΩ

coincides with the unit outer normal to ∂Ω in the sense of definition
6.46, i.e.

ν(x) =

(
∇f(x′),−1

)√
1 + ‖∇f(x′)‖2

on each point point x =
(
x′, f(x′)

)
in ∂Ω = gr f whose abscissa x′ is

a differentiability point of f .

Proof. It follows from theorem 6.45 and remark 6.47 that χE ad-
mits weak gradient ∇w χE = (−ν,Hn−1 x∂E). �

We next generalize the previous proposition to Lipschitz domains.

Lemma 7.17. Let n ≥ 2, f : Rn−1 → R Lipschitz, U ′ an open
subset of Rn, E ′ := U ′ ∩ epiS f and ν ′ : ∂ epiS f → Rn the unit outer
normal to ∂ epiS f in the sense of definition 6.46 (which, in view of the
previous proposition, coincides with the exterior normal to epiS f in the
sense of definition 7.12); see figure 1. Let Φ ∈ SE(n) be a rigid motion,
U := Φ(U ′), E := Φ(E ′) and ν := Φ∗ν

′, i.e. ν : ∂Φ(epiS f) → Rn is
given by x 7→ DΦ

(
Φ−1(x)

)
· ν ′
(
Φ−1(x)

)
. Then:

i) Φ#

(
Hn−1 x∂ epiS f

)
= Hn−1 x∂Φ(epiS f).

ii) E is a set of locally finite perimeter in U , |µE| = Hn−1 x∂UE and
its exterior normal is given by νE = ν|∂UE.

In particular, Hn−1 x∂Φ(epiS f) is a Radon measure. Note that
∂ epiS f = gr f , ∂U

′
E ′ = U ′ ∩ ∂ epiS f and ∂UE = Φ(∂U

′
E ′) = U ∩

∂Φ(epiS f).
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Figure 1. Gauss-Green measure of a Lipschitz Domain

Proof.

i) Since Φ is an isometry onto Rn, Φ#Hn−1 = Hn−1. Therefore, for
all A ⊂ Rn,

Φ#

(
Hn−1 x∂ epiS f

)
(A) = Hn−1 x∂ epiS f

(
Φ−1(A)

)
=

= Hn−1
(
∂ epiS f ∩ Φ−1(A)

)
=

= Hn−1
[
Φ−1

(
∂Φ(epiS f) ∩ A

)]
=

= Φ#Hn−1
(
∂Φ(epiS f) ∩ A

)
=

= Hn−1 x∂Φ(epiS f)(A).

ii)
1) Since χE′ = χepiS f |U ′ , it follows from proposition 7.16 and from

theorem 7.7 that E ′ is a set of locally finite perimeter in U ′ and
its Gauss-Green measure µE′ coincides with the trace µepiS f |U ′ .
Moreover, by proposition 4.36, the polar decomposition of µE′
is (ν ′|∂U′E′ ,Hn−1).
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2) Let R ∈ SO(n) be the linear part of Φ, so that DΦ(x) =cte.= R.
We have, for all ϕ ∈ C∞c (U,Rn):

ˆ
E

div ϕ dLn AF 5.39,JΦ≡1
=

ˆ
E′

(div ϕ) ◦ Φ dLn (∗)
=

=

ˆ
E′

div (R−1 ◦ ϕ ◦ Φ︸ ︷︷ ︸
∈C∞c (U ′,Rn)

) dLn 7.4 and 1)
=

=

ˆ
∂U′E′
〈R−1 ◦ ϕ ◦ Φ, ν ′〉 dHn−1 =

=

ˆ
〈R−1 ◦ ϕ, ν ′ ◦ Φ−1〉 ◦ Φ d

(
Hn−1 x∂U ′E ′) =

=

ˆ
〈R−1 ◦ ϕ, ν ′ ◦ Φ−1〉︸ ︷︷ ︸
R∈SO(n)

= 〈ϕ,R◦ν′◦Φ−1〉

d Φ#

(
Hn−1 x∂U ′E ′)︸ ︷︷ ︸

by i)
= Hn−1 x∂UE

=

=

ˆ
〈ϕ, ν|∂UE〉 d

(
Hn−1 x∂UE),

where equality (∗) is justified by, for all x ∈ U ′,

div (R−1 ◦ ϕ ◦ Φ)(x) = tr D(R−1 ◦ ϕ ◦ Φ)(x)
chain rule

=

= tr
[
R−1 ◦ Dϕ(Φ · x) ◦R

]
=

= tr Dϕ(Φ · x) = (div ϕ) ◦ Φ(x).

�

Theorem 7.18 (Gaus-Green theorem for Lipschitz domains). Let
n ≥ 2 and Ω ⊂ Rn be a Lipschitz domain. Then Ω is a set of locally
finite perimeter in Rn and |µΩ| = Hn−1 x∂Ω.

Proof.

1) For each x ∈ ∂Ω, there exists an open set Ux ⊂ Rn such that x ∈ Ux
and Ux is obtained by rigid motion of a cylinder centered at 0 ∈ Rn

as in definition 6.33, i.e. there exists a rigid motion Φ ∈ SE(n) with
Φ(0) = x and there exists r, h > 0 and Γ : Rn−1 → R Lipschitz with
Γ(0) = 0 such that Ux = Φ

(
C(0, r, h)

)
, Φ
(
gr Γ∩C(0, r, h)

)
= Ux∩∂Ω

and Φ
(
epiS Γ ∩ C(0, r, h)

)
= Ux ∩ Ω.

2) From the open cover (Ux)x∈∂Ω of ∂Ω, we may extract a countable
subcover (Ui)i∈N by means of Lindelöf’s theorem. For each i ∈ N, let
the corresponding objects defined in the previous item be denoted
with a subscript i, so that Φi

(
C(0, ri, hi)

)
= Ui.
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Let U0 := Ω and U−1 := Ω
c
, so that (Ui)i≥−1 is a countable

open cover of Rn. We may apply corollary 6.11 to obtain a smooth
partition of unity (ξi)i≥−1 of Rn with spt ξi ⊂ Ui for i ≥ −1. Besides,
for i ≥ 1, as spt ξi ⊂ Ui b Rn, it follows that spt ξi is a compact
subset of Ui.

3) Claim 1: for each i ≥ −1, µi : C∞c (Rn,Rn) → R given by ϕ 7→´
Ω

div (ξiϕ) dLn is a finite Rn-valued Radon measure on Rn. Indeed,
it is clear that µ−1 = µ0 = 0, and for i ≥ 1 and ϕ ∈ C∞c (Rn,Rn),

ˆ
Ω

div (ξiϕ) dLn spt ξibUi=

ˆ
Ui∩Ω

div (ξiϕ) dLn lemma 7.17
=

=

ˆ
〈ϕξi, νi〉 d

(
Hn−1 x∂UiΩ),

where νi = Φi∗ν
′
i, cf. lemma 7.17. It then follows that, for all

ϕ ∈ C∞c (Rn,Rn),

|µi · ϕ| ≤
(
Hn−1 x∂UiΩ)(spt ξi)‖ϕ‖u.

SinceHn−1 x∂UiΩ is a Radon measure on Ui and spt ξi is a compact
subset of Ui, we conclude that ‖µi‖C0(Rn,Rn)∗ ≤

(
Hn−1 x∂UiΩ)(spt ξi) <

∞, thus proving the claim.
4) Claim 2: For each compact subset K of Rn, µK : C∞c (K,Rn) :=
{ϕ ∈ C∞c (Rn,Rn) | spt ϕ ⊂ K} → R given by ϕ 7→

´
Ω

div ϕ dLn is
continuous with respect to the topology of uniform convergence.

Indeed, since K is compact and (spt ξi)i≥−1 is a locally finite
family in Rn, K intersects the members of this family for at most
finitely many indices. That is, there exists N ∈ N such that K ∩
spt ξi = ∅ for i > N . Thus, for all ϕ ∈ C∞c (K,Rn), ϕ =

∑N
i=−1 ξiϕ,

hence div ϕ =
∑N

i=−1 div (ξiϕ), which implies µK =
∑N

i=−1 µi|C∞c (K,Rn),
where the µi’s were defined in the previous item. Therefore, claim
2 follows from claim 1.

5) It follows from claim 2 that ϕ ∈ C∞c (Rn,Rn) 7→
´

Ω
div ϕ dLn is

linear continuous in the LF topology of Cc(Rn,Rn), i.e. it is an
Rn-valued Radon measure on Rn. We have thus proved that χΩ ∈
BVloc(Rn), i.e. Ω is a set of locally finite perimeter in Rn.

Let (νΩ, |µΩ|) be the polar decomposition of µΩ.
6) Claim 3: with the notation from claim 1, for i ≥ 1, the trace of µΩ on

Ui has polar decomposition (νi,Hn−1 x∂UiΩ). In particular, from
the uniqueness of the polar decomposition it follows that |µΩ|

∣∣
Ui

=

Hn−1 x∂UiΩ and νΩ = νi |µΩ|-a.e. on ∂UiΩ.
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Indeed, for each ϕ ∈ C∞c (Ui,Rn),

µΩ · ϕ =

ˆ
Ω

div ϕ dLn spt ϕbUi=

=

ˆ
Ui

div ϕ dLn lemma 7.17
=

=

ˆ
〈ϕ, νi〉 d

(
Hn−1 x∂UiΩ),

whence the claim, since Hn−1 x∂UiΩ is a Radon measure on Ui and
‖νi‖ = 1 almost everywhere on Ui with respect to Hn−1 x∂UiΩ.

7) For i ≥ 1, ∂Ω ∩ Ui = ∂UiΩ. It then follows from claim 3 that the
Borel regular measure Hn−1 x∂Ω and the positive Radon measure
|µΩ| have the same traces on Ui, namely, Hn−1 x∂UiΩ. Since both
measures have support on ∂Ω, and since (Ui)i≥1 is a countable open
cover of ∂Ω, we conclude that |µΩ| = Hn−1 x∂Ω (since, for each
A ∈ BRn , we may write A∩∂Ω as a countable disjoint union ∪̇i≥1Ai
with Ai a Borel subset of Ui for each i ≥ 1).

�

Corollary 7.19. Let n ≥ 2 and Ω ⊂ Rn be a Lipschitz domain.
Then Hn−1 x∂Ω is a Radon measure.

Remark 7.20 (outer normal to a Lipschitz domain). With the no-
tation from the proof of the previous theorem, for each i ≥ 1, the exte-
rior normal to Ω coincides Hn−1 x∂Ω-a.e. with νi on ∂Ω∩Ui = ∂UiΩ.
In particular, it follows from remark 6.47 that, if ∂Ω is a C1 hypersurface
on a neighborhood of p ∈ ∂Ω, we may choose νΩ on this neighborhood
as the usual outer unit normal from Differential Geometry.

7.2. Regularization of Radon measures and BV functions

Proposition 7.21. Let (φt)t>0 be the standard mollifier on Rm.
Then, for each ε > 0, the convolution with φε defines a continuous
linear map φε ∗ : Cc(Rm,Rn)→ Cc(Rm,Rn).

Proof. GivenK ⊂ Rm compact, φε maps CK
c (Rm,Rn) to CKε

c (Rm,Rn),
where Kε := K + B(0, ε) is the ε-neighborhood of K. Since, for all
ϕ ∈ CK

c (Rm,Rn), ‖φε ∗ϕ‖u ≤ ‖ϕ‖u, the linear map φε ∗ : CK
c (Rm,Rn)→

CKε
c (Rm,Rn) is bounded with respect to the norm of uniform conver-

gence. �

With the same proof, given an open subset Ω ⊂ Rm, the convolution
with φε defines a continuous linear map φε ∗ : Cc(Ωε,Rn)→ Cc(Ω,Rn),
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where Ωε is given by definition 6.17. It then follows from proposition
4.39 that (φε ∗)t :Mloc(Ω,Rn)→Mloc(Ωε,Rn) is a well defined linear
map. We shall omit the “t” in the notation of this transpose, i.e. we
denote it with the same notation “φε ∗”.

Definition 7.22 (regularization of Rn-valued Radon measures).
Let Ω be an open subset of Rm, µ ∈Mloc(Ω,Rn) and (φt)t>0 the stan-
dard mollifier on Rm. We define the t-approximation or t-regularization
of µ by µt := φt ∗µ ∈Mloc(Ωt,Rn).

Remark 7.23. The definition above extends definition 6.17 for
L1
loc(Lm|Ω,Rn). That is, considering the embedding L1

loc(Lm|Ω,Rn) ⊂
Mloc(Ω,Rn) given by f 7→ Lm|Ω xf , we have

(Lm|Ω xf)ε = Lm|Ω x(fε) ∈Mloc(Ωε,R).

Indeed, for all f ∈ L1
loc(Lm|Ω,Rn) and all ϕ ∈ Cc(Ωε,Rn),

(Lm|Ω xf)ε · ϕ =

ˆ
Ω

(φε ∗ϕ) · f dLm 1.108.i),φ̌ε=φε
=

=

ˆ
Ω

ϕ · (φε ∗ f) dLm =

= Lm|Ω x(fε) · ϕ.

Proposition 7.24. With the notation from the previous definition,
let Ω ⊂ Rm open and µ ∈Mloc(Ω,Rn). Define µε : Ωε → Rn by

µε(x) :=

ˆ
Ω

φε(x− y) dµ(y).

Then µε ∈ C∞(Ωε,Rn) and

µε = Lm|Ωε xµε.
In particular, µε � Lm|Ωε and |µε| ≤ |µ|ε.

Proof. 1) Let (ν, |µ|) be the polar decomposition of µ. For each
closed ball B ⊂ Ωε and for each multi-index α ∈ Zm+ , we have, for
all x ∈ B and all y ∈ Ω,∣∣∂αx (φε(· − y)ν(y)

)∣∣ =
∣∣∂αφε(x− y)ν(y)

∣∣ ≤ ‖∂αφε‖uχB+B(0,ε)(y).

Since χB+B(0,ε) ∈ L1(|µ|), we may apply the dominated convergence
theorem to conclude that, for all x ∈ Bo,

∃∂αµε(x) =

ˆ
∂αφε(x− y) dµ(y).



240 7. FUNCTIONS OF BOUNDED VARIATION

2) For all ϕ ∈ Cc(Ωε,Rn), we have, for all x ∈ Ωε and all y ∈ Ω,

φε(x− y)‖ϕ(x)‖ ≤ ‖φε‖u‖ϕ‖uχspt ϕ(x)χspt ϕ+B(0,ε)(y),

hence (x, y) ∈ Ωε × Ω 7→ φε(x − y)ϕ(x) ∈ Rn is summable with
respect to Lm|Ωε ⊗ |µ|. That justifies the application of Fubini’s
theorem in the following computation:ˆ

Ωε

ϕ(x) · µε(x) dLm(x) =

=

ˆ
Ωε

ϕ(x)
(ˆ

Ω

φε(x− y) · ν(y) d|µ|(y)
)

dLm(x)
Fubini

=

=

ˆ
Ω

(ˆ
Ωε

φε(x− y)ϕ(x) dLm(x)
)
· ν(y) d|µ|(y)

φ̌ε=φε
=

=

ˆ
Ω

φε ∗ϕ(y) · dµ(y) =

= µε · ϕ,

thus showing that µε = Lm|Ωε xµε, as asserted. In particular,
since ‖µε‖ ≤ |µ|ε (by the triangle inequality), it follows that |µε| =
Lm|Ωε x‖µε‖ ≤ Lm|Ωε x|µ|ε = |µ|ε.

�

Theorem 7.25 (Weak-star convergence of regularized Radon mea-
sures). Let Ω be an open subset of Rm and µ ∈Mloc(Ω,Rn). Then, as
ε ↓ 0,

µε
∗
⇀µ and |µε|

∗
⇀|µ|,

in the sense that, for all ϕ ∈ Cc(Ω,Rn), µε ·ϕ→ µ ·ϕ and similarly for
the total variations. Moreover, for all ε > 0 and E ∈ BΩε,

|µε|(E) ≤ |µ|(Eε),

where Eε := E + U(0, ε) is the ε-neighborhood of E.

Proof.

1) Let ϕ ∈ Cc(Ω,Rn) and take ε0 > 0 such that spt ϕ ⊂ Ωε0 . Put
K := spt ϕ + B(0, ε0) b Ω and ϕε := φε ∗ϕ, where (φε)ε>0 is the
standard mollifier on Rm. Then, for all 0 < ε < ε0, spt ϕε ⊂ K and
ϕε → ϕ uniformly, by 1.111.ii). It then follows that

µε · ϕ = µ · ϕε → µ · ϕ

as ε ↓ 0, thus showing that µε
∗
⇀µ as ε ↓ 0.
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2) For all ε > 0, it follows from proposition 7.24 and remark 4.32 that
|µε| = Lm|Ωε x‖µε‖. On the other hand, it follows from the trian-
gle inequality that, for all x ∈ Ωε, ‖µε(x)‖ ≤

´
Ω
φε(x − y) d|µ|(y).

Therefore, for all ε > 0 and all E ∈ BΩε ,

|µε|(E) =

ˆ
E

‖µε(x)‖ dLm(x) ≤

≤
ˆ

Ωε

χE(x)
(ˆ

Ω

φε(x− y) d|µ|(y)
)

dLm(x)
Tonelli

=

=

ˆ
Ω

ˆ
Ωε

φε(x− y)χE(x) dLm(x)︸ ︷︷ ︸
≤χEε (y)

d|µ|(y) ≤

≤ |µ|(Eε).

3) Let V be a relatively compact open subset of Ω. Take ε0 > 0 such
that V b Ωε0 and (εk)k∈N a sequence in (0, ε0) with εk ↓ 0.

In view of part 1), (µεk |V ) is a sequence in Mloc(V,Rn) weak-
star convergent to µ|V . Thus, for all U ⊂ V open, it follows from
proposition 4.57 that |µ|

∣∣
V

(U) =
∣∣µ|V ∣∣(U) ≤ lim inf

∣∣µεk |V ∣∣(U) =

lim inf|µεk |
∣∣
V

(U).
On the other hand, given K ⊂ V compact, in view of part 2) we

have |µεk |(K) ≤ |µ|(Kεk) → |µ|(K) as k → ∞, since the sequence
of relatively compact open sets (Kεk)k∈N decreases to K. Hence,
lim sup|µεk |

∣∣
V

(K) = lim sup|µεk |(K) ≤ |µ|(K) = |µ|
∣∣
V

(K). There-
fore, applying theorem 4.54, we conclude that the sequence of traces
(|µεk |

∣∣
V

)k∈N is weak-star convergent to |µ|
∣∣
V

. Since the decreasing
sequence (εk)k∈N in (0, ε0) was arbitrarily taken, we conclude that,
for all ϕ ∈ Cc(V,R),

´
Ω
ϕ d|µε| →

´
Ω
ϕ d|µ| as ε → 0. Since the

relatively compact open subset V ⊂ Ω was arbitrarily taken, we
conclude that |µε|

∗
⇀|µ| and the thesis follows.

�

Proposition 7.26 (regularization of BV functions). Let Ω be an
open subset of Rn, f ∈ BVloc(Ω), (φε)ε>0 the standard mollifier on Rn,
fε := φε ∗ f ∈ C∞(Ωε) and (∇w f)ε := φε ∗∇w f ∈Mloc(Ωε,Rn). Then:

i) (∇w f)ε = Ln|Ωε x∇(fε).
ii) fε → f in the sense of L1

loc(Ω).
iii) For each open V b Ω,(
Ln|Ωε x∇(fε)

)
|V
∗ f
⇀(∇w f)|V and

(
Ln|Ωε x‖∇(fε)‖

)
|V
∗ f
⇀|∇w f |

∣∣
V

as ε ↓ 0.
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Proof. For each ϕ ∈ C∞c (Ωε,Rn),

Ln|Ωε x∇(fε) · ϕ =

ˆ
ϕ · ∇(fε) dLn =

= −
ˆ

div ϕfε dLn prop. 1.108.i)
=

= −
ˆ

(div ϕ)εf dLn prop. 1.108.j)
=

= −
ˆ

div (ϕε)f dLn =

=

ˆ
ϕε · d∇w f

def. 7.22
=

=

ˆ
ϕ · d(∇w f)ε,

thus showing assertion i).
Assertion ii) was already proved in 6.20.
To prove assertion iii), let V b Ω open. Take ε0 > 0 such that

V b Ωε0 . It follows from theorem 7.25 that (∇w f)ε|V
∗
⇀(∇w f)|V and

|(∇w f)ε|
∣∣
V

∗
⇀|∇w f |

∣∣
V

. Since, by theorem 7.25, sup{|(∇w f)ε|(V ) | 0 <
ε < ε0} ≤ |∇w f |(Vε0) < ∞, the thesis follows from part i) and from
proposition 4.49.

�

7.3. First properties of BV functions

Proposition 7.27. Let Ω be an open subset of Rn and (fk)k∈N a
sequence in BVloc(Ω).

i) If f ∈ BVloc(Ω) and fk → f in L1
loc(Ln|Ω), then ∇w fk

∗
⇀∇w f .

ii) If f ∈ L1
loc(Ln|Ω), fk → f in L1

loc(Ln|Ω) and there exists µ ∈
Mloc(Ω,Rn) such that ∇w fk

∗
⇀µ, then f ∈ BVloc(Ω) and ∇w f =

µ.

Proof.
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i) For all ϕ ∈ C∞c (Ω,Rn),ˆ
ϕ · d∇w fk = −

ˆ
div ϕfk dLn k→∞→

→ −
ˆ

div ϕf dLn =

=

ˆ
ϕ · d∇w f,

thus showing that ∇w fk
∗
⇀∇w f .

ii) For all ϕ ∈ C∞c (Ω,Rn),ˆ
ϕ · dµ = lim

k→∞

ˆ
ϕ · d∇w fk =

= − lim
k→∞

ˆ
div ϕfk dLn =

= −
ˆ

div ϕf dLn,

hence f admits weak gradient ∇w f = µ ∈ Mloc(Ω,Rn), i.e. f ∈
BVloc(Ω).

�

Corollary 7.28. Let Ω be an open subset of Rn, f ∈ L1
loc(Ln|Ω)

and (fi)i∈N a sequence in BVloc(Ω) such that fi → f in L1
loc(Ln|Ω).

i) If, for each compact K ⊂ Ω, sup{|∇w fi|(K) | i ∈ N} < ∞, then

f ∈ BVloc(Ω) and ∇w fi
∗
⇀∇w f .

ii) If sup{|∇w fi|(Ω) | i ∈ N} < ∞, then f ∈ BVloc(Ω) with ∇w f ∈
M(Ω,Rn) and ∇w fi

∗ f
⇀∇w f .

Proof.

i) By corollary 4.63, there exists a subsequence (fij)j∈N of (fi)i∈N

and µ ∈ Mloc(Ω,Rn) such that ∇w fij
∗
⇀µ. It then follows from

proposition 7.27.ii) that f ∈ BVloc(Ω) and ∇w f = µ. Then, from

7.27.i) we conclude that ∇w fi
∗
⇀∇w f , as asserted.

ii) By the previous item, f ∈ BVloc(Ω) and∇w fi
∗
⇀∇w f . By proposi-

tion 4.49, it then follows that∇w f ∈M(Ω,Rn) and∇w fi
∗ f
⇀∇w f .

�

Proposition 7.29 (Product rule for BV, part I). Let Ω be an open
subset of Rn, f ∈ BVloc(Ω) and g : Ω → R locally Lipschitz. Then
fg ∈ BVloc(Ω) and ∇w(fg) = ∇w f xg + Ln xf ∇w g.

Proof.
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1 Case 1: g ∈ C∞(Ω). Then, for all ϕ ∈ C∞c (Ω),

ˆ
∇ϕfg dLn =

ˆ
∇(ϕg)︸ ︷︷ ︸
∈C∞c (Ω)

f dLn −
ˆ
ϕ∇g f dLn =

= −
ˆ
ϕg d∇w f −

ˆ
ϕf∇g dLn,

whence the thesis.
2 General case. It is clear that fg ∈ L1

loc(Ln|Ω) and that µ := ∇w f xg+
Ln xf ∇w g ∈ Mloc(Ω,Rn). We must show that the weak gradient
of fg exists and coincides with µ. By the locality of the weak de-
rivative, cf. theorem 7.7, it suffices to prove the latter assertion for
the restriction of fg to a given V b Ω open. Let ε0 > 0 such that
V b Ωε0 and (φε)ε>0 the standard mollifier on Rn. Fix a sequence
(εi)i∈N in (0, ε0) decreasing to 0. Denoting by a subscript “ε” the
convolutions with φε, as usual, we have:
(a) gi := gεi ∈ C∞(Ωε0) and, in view of theorem 6.20.iv), gi → g

uniformly on V . Hence fgi → fg in L1
loc(V ).

(b) For each i ∈ N, we may apply case 1 with V in place of Ω to fgi
to conclude that fgi ∈ BVloc(V ) and ∇w(fgi) = ∇w f xgi +
Ln xf∇gi ∈Mloc(V,Rn).

(c) For each ϕ ∈ C∞c (V,Rn), giϕ→ gϕ pointwise on V and ‖giϕ‖ ≤
sup{‖gi|spt ϕ‖u | i ∈ N} · ‖ϕ‖ ∈ L1(|∇w f |), hence we may apply
the dominated convergence theorem to conclude that

ˆ
ϕ · d(∇w f xgi)→

ˆ
ϕ · d(∇w f xg),

i.e. ∇w f xgi ∗⇀∇w f xg on Mloc(V,Rn).
(d) Since g ∈ W1,∞

loc (Ω), it follows from theorem 6.20.vi) that, for
all i ∈ N, ∇gi = (∇w g)εi . Thus ‖∇gi‖ ≤ ‖∇w g‖L∞(Vε0 ) and,
by 6.20.iii), ∇gi → ∇w g Ln-a.e. on V . Hence, for each ϕ ∈
C∞c (V,Rn), ϕf∇gi → ϕf ∇w g Ln-a.e. on V , with ‖ϕf∇gi‖ ≤
‖∇w g‖L∞(Vε0 )|f |‖ϕ‖ ∈ L1(Ln|V ); therefore, by the dominated

convergence theorem,
´
ϕ·f∇gi dLn →

´
ϕ·f ∇w g dLn, whence

Ln xf∇gi ∗⇀Ln xf ∇w g on Mloc(V,Rn).

(e) From the two previous steps we conclude that ∇w(fgi)
∗
⇀µ on

Mloc(V,Rn). By proposition 7.27.ii) with V in place of Ω, it
follows that fg ∈ BVloc(V ) and ∇w(fg) = µ, as we wanted to
show.

�
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Given Ω ⊂ Rn open, it will be useful in the subsequent develop-
ments to consider the variation of a function in L1

loc(Ln|Ω), in the sense
of the definition below, even if it does not belong to BVloc(Ω).

Definition 7.30 (variation of a function in L1
loc). Let Ω ⊂ Rn open

and f ∈ L1
loc(Ω). We define, for each open V ⊂ Ω,

Var(f, V ) := sup{
ˆ
f div ϕ dLn | ϕ ∈ C∞c (V,Rn), ‖ϕ‖u ≤ 1}.

Exercise 7.31 (variation of a function in L1
loc). Let Ω ⊂ Rn open

and f ∈ L1
loc(Ω). Define, for each B ⊂ Ω,

Varf (B) := inf{Var(f, U) | U open, B ⊂ U}.

Then Varf is a Borel regular measure on U which extends the variation
Var(f, ·). Moreover, f ∈ BVloc(Ω) if, and only if, Varf is a positive
Radon measure on Ω, in which case it coincides with |∇w f |.

We call Varf the variation measure of f .

Proposition 7.32 (lower semicontinuity of the variation). Let Ω ⊂
Rn open, (fi)i∈N a sequence in L1

loc(Ln|Ω) and f ∈ L1
loc(Ln|Ω) such that

fi → f in L1
loc(Ln|Ω). Then, for all V ⊂ Ω open,

Var(f, V ) ≤ lim inf Var(fi, V ).

In particular, if fi ∈ BVloc(Ω) for all i ∈ N and the second member of
the equality above is finite for each open V b Ω, then f ∈ BVloc(Ω).

Proof. For each ϕ ∈ C∞c (V,Rn) with ‖ϕ‖u ≤ 1,ˆ
f div ϕ dLn = lim

ˆ
fi div ϕ dLn ≤ lim inf Var(fi, V ),

and taking the sup on the first member yields the thesis. �

We now prove a theorem on approximation of BV functions by
smooth functions.

Theorem 7.33 (Almgren). Let Ω be an open subset of Rn and
f ∈ BV(Ω). There exists a sequence (fi)i∈N ∈ BV(Ω) ∩ C∞(Ω) such
that fi → f in L1(Ln|Ω) and |∇w fi|(Ω)→ |∇w f |(Ω).

Proof. 1) Fix ε > 0. Choose N ∈ N sufficiently large so that,
putting

U := Ω 1
N︸︷︷︸

={x∈Ω|d(x,Ωc)> 1
N
}

∩U(0, N),
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we have |∇w f |(Ω− U) < ε. We can choose such N because |∇w f |
is a finite Radon measure and the second member above increases
to Ω as N →∞. We now define (Ui)i∈N by

U0 := U

Ui := Ω 1
N+i
∩ U(0, N + i), i ≥ 1.

Then (Ui)i is an increasing sequence of open relatively compact sub-
sets of Ω which increases to Ω.

Set U−1 := ∅ and define (Vi)i∈N by

Vi := Ui+1 \ Ui−1, i ≥ 0.

Note that, for each i < j ∈ N, Vi ∩ Vj = ∅ if j − 1 ≥ i + 1, i.e.
if j ≥ i + 2; hence, each Vi meets at most 3 other Vj’s (including
itself). Thus, (Vi)i∈N is a locally finite open cover of Ω with Vi b Ω
for each i ≥ 0. By theorem 6.8, there exists a smooth partition of
unity (ξi)i∈N of Ω such that, for all i ≥ 0, ξi ∈ C∞c (Vi).

2) Let (φt)t>0 be the standard mollifier on Rn. Note that fξi ∈ L1(Ln),
f∇ξi ∈ L1(Ln,Rn) and both functions have compact support con-
tained in spt ξi b Vi. Then, by proposition 1.108.d) and by theorem
1.111.i) we may choose, for each i ≥ 0, εi > 0 sufficiently small so
that

spt φεi ∗(ξif) b Viˆ
|φεi ∗(fξi)− fξi| dLn < ε/2i+1

ˆ
‖φεi ∗(f∇ξi)− f∇ξi‖ dLn < ε/2i+1.

(7.5)

3) Define

fε :=
∞∑
i=0

φεi ∗(fξi).

Since spt φεi ∗(fξi) b Vi for each i ≥ 0 and since (Vi)i≥0 is a locally
finite family of subsets of Ω, the sum above is locally finite, hence
fε ∈ C∞(Ω).

Since f =
∑∞

i=0 fξi, it follows from (7.5) and from the monotone
convergence theorem that

‖fε − f‖L1(Ln|Ω) ≤
∞∑
i=0

‖φεi ∗(fξi)− fξi‖L1(Ln|Ω) < ε,

i.e. fε → f in L1(Ln|Ω) as ε→ 0.
It remains to show that fε ∈ BV(Ω) and |∇fε|(Ω) → |∇w f |(Ω)

as ε→ 0.
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4) It follows from the previous step and proposition 7.32 that

|∇w f |(Ω) = Var(f,Ω) ≤ lim inf
ε→0

Var(fε,Ω).

We will then achieve the thesis once we show that lim supε→0 Var(fε,Ω) ≤
|∇w f |(Ω).

5) For all ϕ ∈ C∞c (Ω,Rn) with ‖ϕ‖ ≤ 1, we have, noting that fε div ϕ =∑∞
i=0 φεi ∗(fξi) div ϕ is a finite sum (because spt ϕ is compact sub-

set of Ω and (spt ξi)i∈N is a locally finite family of subsets of Ω):ˆ
Ω

fε div ϕ dLn =
∞∑
i=0

ˆ
Ω

φεi ∗(fξi) div ϕ dLn prop. 1.108.i,j)
=

=
∞∑
i=0

ˆ
Ω

fξi div (φεi ∗ϕ) dLn =

=
∞∑
i=0

ˆ
Ω

f div (ξi[φεi ∗ϕ]) dLn −
∞∑
i=0

ˆ
Ω

〈f∇ξi, φεi ∗ϕ〉︸ ︷︷ ︸
=〈φεi ∗(f∇ξi),ϕ〉

dLn
∑∞
i=0∇ξi≡0

=

=
∞∑
i=0

ˆ
Ω

f div (ξi[φεi ∗ϕ]) dLn︸ ︷︷ ︸
=:I1

−
∞∑
i=0

ˆ
Ω

〈ϕ, φεi ∗(f∇ξi)− f∇ξi〉 dLn︸ ︷︷ ︸
=:I2

.

It follows from (7.5) that |I2| < ε. On the other hand, since
‖ξi[φεi ∗ϕ]‖ ≤ 1 for all i ≥ 0, we have

|I1| =
∣∣∣ˆ

Ω

f div (ξ0[φε0 ∗ϕ]) dLn +
∞∑
i=1

ˆ
Ω

f div (ξi[φεi ∗ϕ]) dLn
∣∣∣ ≤

≤ |∇w f |(Ω) +
∞∑
i=1

|∇w f |(Vi).

Note that, since Vi does not intersect Vj if j ≥ i+ 2, we have

V1 ∪̇V3 ∪̇V5 · · · ⊂ Ω \ U
V2 ∪̇V4 ∪̇V6 · · · ⊂ Ω \ U,

whence
∑∞

i=1|∇w f |(Vi) ≤ 2|∇w f |(Ω \ U) < 2ε by our choice of U
in part 1). It then follows that |I1| ≤ |∇w f |(Ω) + 2ε, whence

Var(fε,Ω) ≤ |∇w f |(Ω) + 3ε.

Therefore, lim supε→0 Var(fεΩ) ≤ |∇w f |(Ω), as asserted.
�

Remark 7.34. With the same hypothesis from theorem 7.33, if
f ∈ BV(Ω)∩L∞(Ln|Ω), there exists a sequence (fi)i∈N ∈ BV(Ω)∩C∞(Ω)
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such that fi → f in L1(Ln|Ω), |∇w fi|(Ω) → |∇w f |(Ω) and, for all
i ∈ N, ‖fi‖L∞(Ln|Ω) ≤ 3‖f‖L∞(Ln|Ω). That follows from the same proof
of theorem 7.33, noting that, for each ε > 0 and for each x ∈ Ω, the
sum in step 3 of the proof defining fε(x) has at most 3 nonzero terms
(since x belongs to at most 3 of the Vi’s), each of which bounded by
‖f‖L∞(Ln|Ω).

Corollary 7.35 (approximation by smooth functions). Let Ω =
Rn or Ω be a Lipschitz domain in Rn, and f ∈ BV(Ω). There ex-
ists a sequence (fi)i∈N ∈ C∞c (Rn) such that fi|Ω → f in L1(Ln|Ω) and
|∇w fi|(Ω)→ |∇w f |(Ω).

Proof. For each i ∈ N, by theorem 7.33 there exists gi ∈ BV(Ω)∩
C∞(Ω) such that ‖gi−f‖L1(Ln|Ω) <

1
i

and
∣∣|∇w gi|(Ω)−|∇w f |(Ω)

∣∣ < 1/i.
Since BV(Ω) ∩ C∞(Ω) ⊂ W1,1(Ω), we may apply corollary 6.43 (or
6.21 for Ω = Rn) to find, for each i ∈ N, fi ∈ C∞c (Rn) such that

‖gi− fi‖L1(Ln|Ω) <
1
i

and
∣∣∣´Ω

(
‖∇fi‖−‖∇gi‖

)
dLn

∣∣∣ < 1
i
. It then follows

that

fi|Ω → f ∈ L1(Ln|Ω) and |∇w fi|(Ω) =

ˆ
Ω

‖∇fi‖ dLn → |∇w f |(Ω).

�

Proposition 7.36 (Product rule for BV, part II). Let Ω be an open
subset of Rn. If f, g ∈ BV(Ω) ∩ L∞(Ln|Ω), then fg ∈ BV(Ω).

Proof. By theorem 7.33 and remark 7.34, there exist sequences
(fi)i∈N and (gi)i∈N in BV(Ω) ∩ C∞(Ω) ∩ L∞(Ln|Ω) such that

• fi → f in L1(Ln|Ω) and gi → g in L1(Ln|Ω);
• |∇w fi|(Ω)→ |∇w f |(Ω) and |∇w gi|(Ω)→ |∇w g|(Ω);
• for all i ∈ N, ‖fi‖L∞(Ln|Ω) ≤ C and ‖gi‖L∞(Ln|Ω) ≤ C, where
C = 3(‖f‖L∞(Ln|Ω) + ‖g‖L∞(Ln|Ω)) <∞.

It is then clear that, for all i ∈ N, figi ∈ L1(Ln|Ω), fg ∈ L1(Ln|Ω)
and figi → fg in L1(Ln|Ω). Moreover,

lim inf|∇w(figi)|(Ω) ≤ lim inf

ˆ
Ω

(
|fi|‖∇gi‖+ |gi|‖∇fi‖

)
dLn ≤

≤ C
(
|∇w f |(Ω) + |∇w g|(Ω)

)
<∞.

It then follows from proposition 7.32 that Var(fg,Ω) ≤ C
(
|∇w f |(Ω)+

|∇w g|(Ω)
)
<∞, so that fg ∈ BV(Ω), as asserted.

�

Remark 7.37. With the notation from the previous proposition,
it is not true, in general, that ∇w(fg) = ∇w f xg + ∇w g xf . For
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instance, take Ω = Rn, E a closed subset of Rn such that χE ∈ BV(Rn)
and f = g = χE, so that fg = χ2

E = χE. Then ∇w χE = ∇w χE xE
does not coincide with 2∇w χE xE if 0 < Ln(E) <∞.

Exercise 7.38. If p = 1 in exercise 6.25, we have (i)⇒ (ii)⇔ (iii).
Moreover,

• (ii) or (iii) are equivalent to f ∈ BV(Ω) and we may take
C = Var(f,Ω) = |∇w f |(Ω) in both cases;
• If Ω = Rn, for all h ∈ Rn

‖τhf − f‖L1(Ln) ≤ ‖h‖ · |∇w f |(Rn).

7.4. Traces and Extensions

Theorem 7.39 (Trace theorem for BV functions on Lipschitz epigraphs).
Let n ≥ 2, Γ : Rn−1 → R Lipschitz and Ω := epiS Γ. Then:

i) There exists a unique bounded linear operator T : BV(Ω)→ L1(Hn−1|∂Ω)
such that, for all f ∈ BV(Ω) and all ϕ ∈ C1

c(Rn,Rn),

(7.6)

ˆ
Ω

f div ϕ dLn = −
ˆ

Ω

ϕ · d∇w f +

ˆ
∂Ω

Tf ϕ · ν dHn−1,

where ν the unit outer normal to ∂Ω.
ii) For all f ∈ BV(Ω) and for Hn−1-a.e. x ∈ ∂Ω,

(7.7) lim
r→0

 
B(x,r)∩Ω

∣∣f(y)− Tf(x)
∣∣ dLn(y) = 0,

so that, for such x,

Tf(x) = lim
r→0

 
B(x,r)∩Ω

f dLn.

Proof.
As usual, we identify Rn ≡ Rn−1 × R and, by means of this identi-

fication, we write, for each y ∈ Rn, y = (y′, yn).

1) Given f ∈ BV(Ω), suppose that there exist Tf, T ′f ∈ L1(Hn−1|∂Ω)
such that (7.6) holds for all ϕ ∈ C1

c(Rn,Rn). Then, for all such ϕ,ˆ
∂Ω

(Tf − T ′f)ϕ · ν dHn−1 = 0,

hence the Rn-valued Radon measure (Hn−1 x∂Ω) x(Tf − T ′f)ν
is null. Then so is its total variation (Hn−1 x∂Ω) x|Tf − T ′f |,
which means that Tf = T ′f Hn−1-a.e. on ∂Ω.

In particular, if the bounded operator T satisfying (7.6) exists,
it must be unique.
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2) We define T on C∞c (Rn)|Ω := {f |Ω | f ∈ C∞c (Rn)} by Tf := f |∂Ω ∈
Cc(∂Ω) ⊂ L1(Hn−1|∂Ω).

Since Ω is the epigraph of a Lipschitz function, for all ϕ ∈
C1
c(Rn,Rn) we may apply the Gauss-Green theorem 6.45 to fϕ ∈

C1
c(Rn,Rn), which yieldsˆ

Ω

div (fϕ) dLn =

ˆ
∂Ω

fϕ · ν dHn−1,

where ν is the outer unit normal to ∂Ω = gr Γ. Taking into account
that div (fϕ) = ∇f ·∇ϕ+ f div ϕ, we obtain (7.6) for f ∈ C∞c (Rn).

3) Fix ε > 0 and f ∈ C∞c (Rn). Let fε : ∂Ω → R be defined by, for all
y =

(
y′,Γ(y′)

)
∈ gr Γ = ∂Ω,

fε(y) := f
(
y′,Γ(y′) + ε

)
.

Note that fε ∈ L1(Hn−1|∂Ω), because fε ∈ Cc(∂Ω) and Hn−1|∂Ω is a
Radon measure on ∂Ω.

We also define:

Ωε := {y = (y′, yn) ∈ Rn ≡ Rn−1 × R | Γ(y′) < yn < Γ(y′) + ε},
Ωε := Ω \ Ωε = epiS (Γ + ε).

For all y =
(
y′,Γ(y′)

)
∈ ∂Ω, fε(y)− Tf(y) =

´ ε
0

∂f
∂xn

(
y′,Γ(y′) +

t
)

dt, so that

|fε(y)− Tf(y)| ≤
ˆ ε

0

∣∣ ∂f
∂xn

(
y′,Γ(y′) + t

)∣∣ dt ≤
≤
ˆ ε

0

∥∥∇f(y′,Γ(y′) + t
)∥∥ dt.

Therefore, computing by means of the area formula,

ˆ
∂Ω

|fε(y)− Tf(y)| dHn−1(y)

≤
ˆ
∂Ω

(ˆ ε

0

∥∥∇f(y + ten)
∥∥ dt

)
dHn−1(y)

AF 5.40.2)
=

=

ˆ
Rn−1

(ˆ ε

0

∥∥∇f(y′,Γ(y′) + t
)∥∥ dt

)√
1 + ‖∇Γ(y′)‖2︸ ︷︷ ︸
≤
√

1+(Lip Γ)2=:C

dLn−1(y′)
Tonelli

≤

≤ C

ˆ
Ωε

‖∇f‖ dLn.

(7.8)

4) For an arbitrary f ∈ BV(Ω), we may apply corollary 7.35 to obtain
a sequence (fi)i∈N in C∞c (Rn) such that fi|Ω → f in L1(Ln|Ω) and
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|∇w fi|(Ω) → |∇w f |(Ω). In particular, it follows from propositions
7.27.i), 4.49 and 4.58.ii) that

∇w fi|Ω
∗ f
⇀→ ∇w f and

∣∣∇w fi|Ω
∣∣ ∗ f⇀→ |∇w f |.

Fix ε > 0. For each i ∈ N, let f εi : ∂Ω→ R be defined by, for all
y =

(
y′,Γ(y′)

)
∈ ∂Ω,

f εi (y) :=
1

ε

ˆ ε

0

fi
(
y′,Γ(y′) + t

)
dt =

=
1

ε

ˆ ε

0

(fi)t(y) dt.

Note that, for all i ∈ N, f εi ∈ Cc(∂Ω) and, by (7.8) (applied to
fi ∈ C∞c (Rn)),ˆ
∂Ω

|Tfi − f εi | dHn−1 ≤ 1

ε

ˆ
∂Ω

ˆ ε

0

|Tfi(y)− (fi)t(y)| dHn−1(y) dt
Tonelli

=

=
1

ε

ˆ ε

0

ˆ
∂Ω

|Tfi(y)− (fi)t(y)| dHn−1(y) dt
7.8

≤

≤ C|∇w fi|(Ωε).

Hence, for all i, j ∈ N,

ˆ
∂Ω

|Tfi − Tfj| dHn−1 ≤
ˆ
∂Ω

|Tfi − f εi | dHn−1 +

ˆ
∂Ω

|f εi − f εj | dHn−1 +

ˆ
∂Ω

|Tfj − f εj | dHn−1 ≤

≤ C
(
|∇w fi|(Ωε) + |∇w fj|(Ωε)

)
+

ˆ
∂Ω

|f εi − f εj | dHn−1.

(7.9)

We now estimate

ˆ
∂Ω

|f εi − f εj | dHn−1
Tonelli

≤

≤ 1

ε

ˆ ε

0

ˆ
∂Ω

∣∣(fi)t − (fj)t
∣∣ dHn−1 dt

AF 5.40.2)
=

=
1

ε

ˆ ε

0

ˆ
Rn−1

∣∣fi(y′,Γ(y′) + t
)
− fj

(
y′,Γ(y′) + t

)∣∣√1 + ‖∇Γ(y′)‖2︸ ︷︷ ︸
≤
√

1+(Lip Γ)2=C

dy′ dt
Tonelli

≤

≤ C

ε

ˆ
Ωε

|fi − fj| dLn
i,j→∞→ 0,

(7.10)
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since fi → f in L1(Ln|Ω). On the other hand,

|∇w fi|(Ωε) ≤ |∇w fi|(Ωε ∩ Ω) = |∇w fi|(Ω)− |∇w fi|(Ωε).

Since |∇w fi|(Ω)→ |∇w f |(Ω) and, by proposition 4.57, |∇w f |(Ωε) ≤
lim inf|∇w fi|(Ωε), we conclude that

lim sup|∇w fi|(Ωε) = |∇w f |(Ω)− lim inf|∇w fi|(Ωε) ≤
≤ |∇w f |(Ω)− |∇w f |(Ωε) =

= |∇w f |(Ωε ∩ Ω).

(7.11)

It then follows from (7.9), (7.10) and (7.11) that

lim sup
i,j→∞

ˆ
∂Ω

|Tfi − Tfj| dHn−1 ≤ 2C|∇w f |(Ωε ∩ Ω).

Therefore, since ε > 0 was arbitrarily taken, |∇w f | is a finite
Radon measure and Ωε ∩ Ω decreases to ∅ as ε→ 0, it follows that
(Tfi)i∈N is a Cauchy sequence in L1(Hn−1|∂Ω), thus it is convergent
in that space. We define

Tf := limTfi ∈ L1(Hn−1|∂Ω).

As it was seen in step 2 of the proof, since fi ∈ C∞c (Rn) for
each i ∈ N, equality (7.6) holds for fi in place of f . Thus, taking
i → ∞ and taking into account that fi → f in L1(Ω) and Tfi →
Tf in L1(Hn−1|∂Ω), we conclude that (7.6) also holds for f . In
particular, our definition of Tf is independent of the choice of the
sequence (fi)i∈N in C∞c (Rn) such that fi|Ω → f in L1(Ln|Ω) and
|∇w fi|(Ω)→ |∇w f |(Ω). Indeed, if (f ′i)i∈N is another such sequence
and T ′f := limTf ′i in L1(Hn−1|∂Ω), then both T ′f and Tf satisfy
(7.6), which implies, in view of step 1 of the proof, that T ′f = Tf
Hn−1-a.e. on ∂Ω.

The map T : BV(Ω) → L1(Hn−1|∂Ω) is therefore well-defined,
it is clearly linear and (7.6) is verified for all f ∈ BV(Ω) and all
ϕ ∈ C1

c(Rn,Rn).
5) Let (fi)i∈N be a sequence in BV(Ω) and f ∈ BV(Ω). We contend

that, if fi → f in L1(Ln|Ω) and |∇w fi|(Ω)→ |∇w f |(Ω), then Tfi →
Tf in L1(Hn−1|∂Ω). In particular, that proves the continuity of
T : BV(Ω)→ L1(Hn−1|∂Ω), thus reaching the conclusion of the proof
of part i).

Indeed, for each i ∈ N we may take a sequence (gij)j∈N in C∞c (Rn)

such that limj→∞ g
i
j|Ω → fi in L1(Ln|Ω) and limj→∞|∇w gij|(Ω) →

|∇w fi|(Ω). By the previous step, it then follows that limj→∞ Tg
i
j =
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Tfi in L1(Hn−1|∂Ω). Hence, we may take j = j(i) sufficiently large
in order that gi := gij(i) satisfy

‖fi − gi‖L1(Ln|Ω) <
1

i
,∣∣|∇w fi|(Ω)− |∇w gi|(Ω)
∣∣ < 1

i
and

‖Tfi − Tgi‖L1(Hn−1|∂Ω) <
1

i
.

Then (gi)i∈N is a sequence in C∞c (Rn) such that gi → f in L1(Ln|Ω)
and |∇w gi|(Ω) → |∇w f |(Ω); by the previous step of the proof, it
follows that Tgi → Tf in L1(Hn−1|∂Ω). Then limTfi = limTgi =
Tf in L1(Hn−1|∂Ω), which proves our contention.

6) We now prove part ii). Fix f ∈ BV(Ω) up to the end of the proof.
For all x ∈ ∂Ω and all r > 0, we estimate

1

Ln
(
B(x, r) ∩ Ω

) ˆ
B(x,r)∩Ω

∣∣f(y)− Tf(x)
∣∣ dLn(y) ≤

≤ 1

Ln
(
B(x, r) ∩ Ω

) ˆ
B(x,r)∩Ω

∣∣f(y)− Tf
(
y′,Γ(y′)

)∣∣ dLn(y)︸ ︷︷ ︸
1©

+

+
1

Ln
(
B(x, r) ∩ Ω

) ˆ
B(x,r)∩Ω

∣∣Tf(y′,Γ(y′)
)
− Tf(x)

∣∣ dLn(y)︸ ︷︷ ︸
2©

(7.12)

We estimate 1© and 2© along the following steps.
7) For x′ ∈ Rn−1 and r ∈ (0,∞], we generalize the estimate (7.8) with

the infinite closed cylinder C(x′, r,∞) = B(x′, r) × R in place of
Rn−1 × R.

For ε > 0, we define fε, Ωε and Ωε as in step 3) of the proof.
Note that, assuming f Borelian (which we may assume without loss
of generality — i.e. in each equivalence class of BV(Ω) we may take
a Borelian representative, in view of corollary 1.118), fε : ∂Ω → R
is clearly Borelian.

We extend the notation from step 3) to denote intersections with
the closed cylinder C(x′, r,∞):
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Ω(x′, r) := Ω ∩ C(x′, r,∞),

Ω(x′, r)ε := Ωε ∩ C(x′, r,∞),

Ω(x′, r)ε := Ωε ∩ C(x′, r,∞).

Note that Ω(x′,∞) = Ω.
Claim 1: for L1-a.e. ε > 0,

(7.13)

ˆ
∂Ω∩C(x′,r,∞)

|Tf − fε| dHn−1 ≤ C|∇w f |
(
Ω(x′, r)ε

)
,

where C =
√

1 + ‖Lip Γ‖2.
If f ∈ C∞c (Rn), the claim follows from the same argument used

in estimate (7.8), with ∂Ω ∩ C(x′, r,∞) in place of ∂Ω, B(x′, r) in
place of Rn−1 and Ω(x′, r)ε in place of Ωε.

To prove claim 1 for f ∈ BV(Ω), we shall apply the coarea
formula with the Lipschitz function g : Rn → R given by, for all
y = (y′, yn) ∈ Rn,

g(y) = yn − Γ(y′),

whose level sets are translations of gr Γ in the en direction. Note
that, for all y = (y′, yn) ∈ Rn such that y′ ∈ DΓ,∇g(y) =

(
−∇Γ(y′), 1

)
,

hence Jg(y) =
√

1 + ‖∇Γ(y)‖2 ≤
√

1 + (Lip Γ)2 = C.
Take (fi)i∈N in C∞c (Rn) such that fi|Ω → f in L1(Ln|Ω) and

|∇w fi|(Ω)→ |∇w f |(Ω). We have, for all i ∈ N,

ˆ ∞
0

ˆ
g−1{t}∩Ω(x′,r)

|fi − f | dHn−1 dt
coarea f. 5.50

=

=

ˆ
Ω(x′,r)

|fi − f | Jg dLn ≤

≤ C

ˆ
Ω(x′,r)

|fi − f | dLn
i→∞→ 0,

since fi → f in L1(Ln|Ω). Thus, passing to a subsequence, if neces-
sary, we conclude that, for L1-a.e. t > 0,

ˆ
∂Ω∩C(x′,r,∞)

∣∣(fi)t − ft∣∣ dHn−1 ∗=

ˆ
g−1{t}∩Ω(x′,r)

|fi − f | dHn−1 i→∞→ 0,

(7.14)

where in equality (∗) we have used the fact that the isometry y 7→
y + ten of ∂Ω = g−1{0} onto g−1{t} preserves Hn−1 measure.
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On the other hand, we may estimate, for all ε > 0 and all i ∈ N,

ˆ
∂Ω∩C(x′,r,∞)

|Tf − fε| dHn−1 ≤
ˆ
∂Ω∩C(x′,r,∞)

∣∣(fi)ε − fε∣∣ dHn−1︸ ︷︷ ︸
i→∞→ 0 for a.e. ε>0, by (7.14)

+

+

ˆ
∂Ω∩C(x′,r,∞)

∣∣Tfi − (fi)ε
∣∣ dHn−1︸ ︷︷ ︸

≤C|∇w fi|(Ω(x′,r)ε) by the case f∈C∞c (Rn)

+

ˆ
∂Ω∩C(x′,r,∞)

|Tf − Tfi| dHn−1︸ ︷︷ ︸
i→∞→ 0 by step 5

.

(7.15)

Besides, adapting the estimate from (7.11), we have, for all ε > 0,

lim sup|∇w fi|(Ω(x, y)ε) ≤ lim sup|∇w fi|(Ω(x, y)ε ∩ Ω) ≤

≤ |∇w f |(Ω(x, y)ε ∩ Ω).

But, since |∇w f | is a Radon measure on Ω, it follows from propo-
sition 4.53 that, for Ln-a.e. ε > 0, |∇w f |(g−1{ε}) = 0; for such
ε,

|∇w f |(Ω(x, y)ε ∩ Ω) = |∇w f |(Ω(x, y)ε).

The claim therefore follows taking lim supi→∞ on both members of
(7.15).

8) Note that, for all x =
(
x′,Γ(x′)

)
∈ ∂Ω and all r > 0, if y = (y′, yn) ∈

B(x, r) ∩ Ω, then

0 < g(y) = yn − Γ(y′) = (yn − xn) +
(
Γ(x′)− Γ(y′)

)
≤

≤ |yn − xn|+ (Lip Γ)‖y′ − x′‖ ≤ r(1 + Lip Γ).

That is, B(x, r) ∩ Ω ⊂ g−1
(
]0, r(1 + Lip Γ)]

)
∩ C(x′, r,∞). Hence,

using the estimate from claim 1 in the previous step and the coarea
formula, we compute:
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ˆ
B(x,r)∩Ω

∣∣f(y)− Tf
(
y′,Γ(y′)

)∣∣ dLn(y)
Jg≥1

≤

≤
ˆ
g−1
(

]0,r(1+Lip Γ)]
)
∩C(x′,r,∞)

∣∣f(y)− Tf
(
y′,Γ(y′)

)∣∣ Jg(y) dLn(y)
5.50
=

=

ˆ r(1+Lip Γ)

0

ˆ
g−1{t}∩C(x′,r,∞)

∣∣f(y)− Tf
(
y′,Γ(y′)

)∣∣ dHn−1(y) dt
Hn−1 invariant by isometries

=

=

ˆ r(1+Lip Γ)

0

ˆ
∂Ω∩C(x′,r,∞)

∣∣ft(y)− Tf
(
y′,Γ(y′)

)∣∣ dHn−1(y) dt
claim 1

≤

≤ Cr(1 + Lip Γ)|∇w f |
(
Ω(x′, r)r(1+Lip Γ)

)
,

where C =
√

1 + (Lip Γ)2.
On the other hand, if y = (y′, yn) ∈ Ω(x′, r)r(1+Lip Γ), then ‖y′ −

x′‖ ≤ r and Γ(y′) < yn < Γ(y′) + r(1 + Lip Γ), hence

yn − xn = yn − Γ(x′) ≤
≤ r(1 + Lip Γ) + Γ(y′)− Γ(x′) ≤ r(1 + 2 Lip Γ),

−(yn − xn) = −
(
yn − Γ(x′)

)
≤ −

(
Γ(y′)− Γ(x′)

)
≤ r Lip Γ,

whence |yn−xn| ≤ r(1+2 Lip Γ). Thus ‖y−x‖ ≤ r(2+2 Lip Γ), i.e.
Ω(x′, r)r(1+Lip Γ) ⊂ B(x, r(2 + 2 Lip Γ)) ∩ Ω. We therefore conclude
that ˆ

B(x,r)∩Ω

∣∣f(y)− Tf
(
y′,Γ(y′)

)∣∣ dLn(y) ≤

≤ Cr(1 + Lip Γ)|∇w f |
(
B(x, r(2 + 2 Lip Γ)) ∩ Ω

)
.

(7.16)

Similarly, for all x =
(
x′,Γ(x′)

)
∈ ∂Ω and all r > 0,

ˆ
B(x,r)∩Ω

∣∣Tf(y′,Γ(y′)
)
− Tf(x)

∣∣ dLn(y)
Jg≥1

≤

≤
ˆ
g−1
(

]0,r(1+Lip Γ)]
)
∩C(x′,r,∞)

∣∣Tf(y′,Γ(y′)
)
− Tf(x)

∣∣ Jg(y) dLn(y)
5.50
=

=

ˆ r(1+Lip Γ)

0

ˆ
g−1{t}∩C(x′,r,∞)

∣∣Tf(y′,Γ(y′)
)
− Tf(x)

∣∣ dHn−1(y) dt
Hn−1 invariant by isometries

=

=

ˆ r(1+Lip Γ)

0

ˆ
∂Ω∩C(x′,r,∞)

∣∣Tf(y)− Tf(x)
∣∣ dHn−1(y) dt =

= r(1 + Lip Γ)

ˆ
∂Ω∩C(x′,r,∞)

∣∣Tf(y)− Tf(x)
∣∣ dHn−1(y)
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Besides, if y = (y′, yn) ∈ ∂Ω∩C(x′, r,∞), then ‖y′−x′‖ ≤ r and
|yn − xn| =

∣∣Γ(y′)− Γ(x′)
∣∣ ≤ r Lip Γ. Thus, y ∈ B(x, r(1 + Lip Γ)),

which implies ∂Ω ∩ C(x′, r,∞) ⊂ B(x, r(1 + Lip Γ)) ∩ ∂Ω. It then
follows that

ˆ
B(x,r)∩Ω

∣∣Tf(y′,Γ(y′)
)
− Tf(x)

∣∣ dLn(y) ≤

≤ r(1 + Lip Γ)

ˆ
B(x,r(1+Lip Γ))∩∂Ω

∣∣Tf(y)− Tf(x)
∣∣ dHn−1(y)

(7.17)

9) Claim 2: for Hn−1-a.e. x ∈ ∂Ω,

(7.18) lim
r→0

|∇w f |
(
B(x, r) ∩ Ω

)
rn−1

= 0.

Indeed, it suffices to prove that Hn−1(Aη) = 0 for each η > 0,
where

Aη :=
{
x ∈ ∂Ω | lim sup

r→0

|∇w f |
(
B(x, r) ∩ Ω

)
rn−1

> η
}
.

Fix η > 0 and δ > 0; we shall estimate Hn−1
10δ (Aη). For each

x ∈ Aη and each 0 < ε < δ, there exists 0 < r < ε such that

(7.19)
|∇w f |

(
B(x, r) ∩ Ω

)
rn−1

> η.

It then follows that Fε := {B(x, r) | x ∈ Aη, 0 < r < ε and (7.19) holds}
is a cover of Aη by nondegenerate closed balls with diameters less
than 2ε < 2δ. We may therefore apply the 5-times covering lemma
2.10 to obtain a countable disjoint subfamily Gε ⊂ Fε such that
A ⊂ ∪Fε ⊂ ∪B∈Gε5B. Hence, denoting by Uε the open subset of Ω
given by {x ∈ Ω | d(x,Ωc) < ε}, we compute

Hn−1
10δ (Aη) ≤

∑
B=B(x,r)∈Gε

α(n− 1)5n−1rn−1 ≤

≤
∑

B=B(x,r)∈Gε

α(n− 1)5n−1

η
|∇w f |

(
B(x, r) ∩ Ω

) r<ε
≤

≤ α(n− 1)5n−1

η
|∇w f |(Uε).

Since ε with 0 < ε < δ was arbitrarily taken, |∇w f | is a finite
Radon measure and Uε decreases to ∅ as ε → 0, we conclude that
Hn−1

10δ (Aη) = 0, for all δ > 0. It then follows that Hn−1(Aη) = 0,
which concludes the proof of the claim.
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10) Claim 3: Let K be the cone with vertex at the origin given by
{(y′, yn) ∈ Rn−1 × R | yn > (Lip Γ)‖y′‖} and, for each r > 0,
Kr := B(0, r) ∩K. Then, for all x ∈ ∂Ω,

(7.20)
1

Ln
(
B(x, r) ∩ Ω

) ≤ α(n)

Ln(K1)

1

Ln
(
B(x, r)

) .
Indeed, in view of the translation invariance of Lebesgue mea-

sure, replacing Γ by Γ(· + x′) − xn, we may assume x = 0. If
y = (y′, yn) ∈ hyp |Γ|, i.e. if yn ≤ |Γ(y′)|, then

yn ≤ |Γ(y′)| = |Γ(y′)− Γ(x′)| ≤ (Lip Γ)‖y′ − x′‖ = (Lip Γ)‖y′‖,

hence y ∈ Kc. That is, hyp |Γ| ⊂ Kc. Thus, for each r > 0,

Kr = B(x, r) ∩K ⊂ B(x, r) ∩ epiS |Γ| ⊂
⊂ B(x, r) ∩ epiS Γ = B(x, r) ∩ Ω.

It then follows that

rnLn(K1) = Ln(Kr) ≤ Ln
(
B(x, r) ∩ Ω

)
Ln
(
B(x, r) ∩ Ω

)
≥ Ln(Kr) =

= Ln(K1)rn =
Ln(K1)

α(n)
Ln
(
B(x, r)

)
,

whence the claim.
11) Fix x ∈ ∂Ω such that

lim
r→0

|∇w f |
(
B(x, r) ∩ Ω

)
rn−1

= 0 and

lim
r→0

 
B(x,r)∩∂Ω

∣∣Tf − Tf(x)
∣∣ dHn−1 = 0.

(7.21)

For such x, we estimate below 1© and 2© from step 6). Note that
(7.21) holds Hn−1-a.e. on ∂Ω: the first equality holds Hn−1-a.e. in
view of claim 2 in step 9) of the proof, and the second holdsHn−1-a.e.
by the Lebesgue differentiation theorem 3.30 (which may be applied
because Tf ∈ L1(Hn−1|∂Ω) and Hn−1|∂Ω is a Radon measure on ∂Ω).
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For each r > 0, with C =
√

1 + (Lip Γ)2,

1© =
1

Ln
(
B(x, r) ∩ Ω

) ˆ
B(x,r)∩Ω

∣∣f(y)− Tf
(
y′,Γ(y′)

)∣∣ dLn(y)
(7.16)

≤

≤ Cr(1 + Lip Γ)

Ln
(
B(x, r) ∩ Ω

) |∇w f |
(
B(x, r(2 + 2 Lip Γ)) ∩ Ω

) claim 3

≤

≤ Cr(1 + Lip Γ)

Ln(K1)rn
|∇w f |

(
B(x, r(2 + 2 Lip Γ)) ∩ Ω

)
=

=
C(1 + Lip Γ)(2 + 2 Lip Γ)n−1

Ln(K1)

|∇w f |
(
B(x, r(2 + 2 Lip Γ)) ∩ Ω

)
rn−1(2 + 2 Lip Γ)n−1

.

Thus, in view of (7.21), we conclude that

(7.22) lim
r→0

1© = 0.

Similarly, for each r > 0,

2© =
1

Ln
(
B(x, r) ∩ Ω

) ˆ
B(x,r)∩Ω

∣∣Tf(y′,Γ(y′)
)
− Tf(x)

∣∣ dLn(y)
(7.17)

≤

≤ r(1 + Lip Γ)

Ln
(
B(x, r) ∩ Ω

) ˆ
B(x,r(1+Lip Γ))∩∂Ω

∣∣Tf(y)− Tf(x)
∣∣ dHn−1(y)

claim 3

≤

≤ (1 + Lip Γ)

Ln(K1)rn−1

ˆ
B(x,r(1+Lip Γ))∩∂Ω

∣∣Tf(y)− Tf(x)
∣∣ dHn−1(y)

On the other hand, since prRn−1

(
B(x, r(1 + Lip Γ)) ∩ ∂Ω

)
⊂

B(x′, r(1 + Lip Γ)), it follows from the area formula that

Hn−1
(
B(x, r(1 + Lip Γ)) ∩ ∂Ω

) 5.39
=

=

ˆ
prRn−1

(
B(x,r(1+Lip Γ))∩∂Ω

)√1 +∇Γ(y′) dLn−1(y′) ≤

≤ CLn−1
(
B(x′, r(1 + Lip Γ))

)
= Cα(n− 1)rn−1(1 + Lip Γ)n−1,

whence
1

rn−1
≤ Cα(n− 1)(1 + Lip Γ)n−1

Hn−1
(
B(x, r(1 + Lip Γ)) ∩ ∂Ω

) .
We therefore conclude that

2© ≤ C ′

Hn−1
(
B(x, r(1 + Lip Γ)) ∩ ∂Ω

) ˆ
B(x,r(1+Lip Γ))∩∂Ω

∣∣Tf(y)−Tf(x)
∣∣ dHn−1(y).

where

(7.23) C ′ =

√
1 + (Lip Γ)2α(n− 1)(1 + Lip Γ)n

Ln(K1)
.
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That implies, in view of (7.21),

(7.24) lim
r→0

2© = 0.

Finally, from (7.12), (7.22) and (7.24), it follows that (7.7) holds
for x ∈ ∂Ω satisfying (7.21), i.e. it holds Hn−1-a.e. on ∂Ω, which
concludes the proof.

�

Corollary 7.40. With the same hypothesis of theorem 7.39, if
f ∈ BV(Ω) ∩ C(Ω), then Tf = f |∂Ω.

Remark 7.41. With the notation from theorem 7.39:

1) We have actually proved in step 5) of the proof that the continu-
ity of T : BV(Ω) → L1(Hn−1|∂Ω) holds in a stronger sense, i.e. if
a sequence (fi)i∈N in BV(Ω) and f ∈ BV(Ω) are such that fi →
f in L1(Ln|Ω) and |∇w fi|(Ω) → |∇w f |(Ω), then Tfi → Tf in
L1(Hn−1|∂Ω).

2) The trace operator from theorem 6.48 for W1,1(Ω) is the restriction
of the trace operator from theorem 7.39.

Lemma 7.42. Let U ⊂ Rn open, Φ ∈ SE(n) a rigid motion and
U ′ = Φ(U). If f ∈ BVloc(U

′), then f ◦ Φ ∈ BVloc(U). Moreover, if
DΦ = R ∈ SO(n) and if (ν, |∇w f |) is the polar decomposition of ∇w f ,
then the polar decomposition of ∇w(f ◦ Φ) is(

Φ−1
∗ ν,Φ

−1
#|∇w f |

)
,

where Φ−1
∗ ν = R−1 ◦ν ◦Φ. In particular, f ◦Φ ∈ BV(U) if f ∈ BV(U ′).

Proof. We have, for all ϕ ∈ C∞c (U,Rn):ˆ
U

(f ◦ Φ) div ϕ dLn AF 5.39,JΦ−1≡1
=

ˆ
U ′
f(div ϕ) ◦ Φ−1 dLn (∗)

=

=

ˆ
U ′
f div (R ◦ ϕ ◦ Φ−1︸ ︷︷ ︸

∈C∞c (U ′,Rn)

) dLn 7.4
=

= −
ˆ
U ′
〈R ◦ ϕ ◦ Φ−1, ν〉 d|∇w f | =

= −
ˆ
〈R ◦ ϕ, ν ◦ Φ〉 ◦ Φ−1 d|∇w f | =

= −
ˆ
〈R ◦ ϕ, ν ◦ Φ〉︸ ︷︷ ︸

R∈SO(n)
= 〈ϕ,R−1◦ν◦Φ〉

d
(
Φ−1

#|∇w f |
)

=

=

ˆ
〈ϕ,Φ−1

∗ ν〉 d
(
Φ−1

#|∇w f |
)
,
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where equality (∗) is justified by, for all x ∈ U ′,

div (R ◦ ϕ ◦ Φ−1)(x) = tr D(R ◦ ϕ ◦ Φ−1)(x)
chain rule

=

= tr
[
R ◦ Dϕ(Φ−1 · x) ◦R−1

]
=

= tr Dϕ(Φ−1 · x) = (div ϕ) ◦ Φ−1(x).

�

Theorem 7.43 (Trace theorem for BV functions on Lipschitz do-
mains). Let n ≥ 2 and Ω ⊂ R a Lipschitz domain with ∂Ω bounded.
Then:

i) There exists a unique bounded linear operator T : BV(Ω)→ L1(Hn−1|∂Ω)
such that, for all f ∈ BV(Ω) and all ϕ ∈ C1

c(Rn,Rn),

(7.25)

ˆ
Ω

f div ϕ dLn = −
ˆ

Ω

ϕ · d∇w f +

ˆ
∂Ω

Tf ϕ · ν dHn−1,

where ν the unit outer normal to ∂Ω.
ii) For all f ∈ BV(Ω) and for Hn−1-a.e. x ∈ ∂Ω,

(7.26) lim
r→0

 
B(x,r)∩Ω

∣∣f(y)− Tf(x)
∣∣ dLn(y) = 0,

so that, for such x,

Tf(x) = lim
r→0

 
B(x,r)∩Ω

f dLn.

Proof. We proceed as in the proof of theorem 6.51. Fix f ∈
BV(Ω).

1) For each x ∈ ∂Ω, there exists an open set Ux ⊂ Rn such that x ∈ Ux
and Ux is obtained by rigid motion of a cylinder centered at 0 ∈ Rn

as in definition 6.33, i.e. there exists a rigid motion Φ ∈ SE(n) with
Φ(0) = x and there exists r, h > 0 and Γ : Rn−1 → R Lipschitz with
Γ(0) = 0 such that Ux = Φ

(
C(0, r, h)

)
, Φ
(
gr Γ∩C(0, r, h)

)
= Ux∩∂Ω

and Φ
(
epiS Γ ∩ C(0, r, h)

)
= Ux ∩ Ω.

2) From the open cover (Ux)x∈∂Ω of the compact set ∂Ω ⊂ Rn, we may
extract a finite subcover (Ui)1≤i≤N . For each 1 ≤ i ≤ N , let the
corresponding objects defined in the previous item be denoted with
a subscript i, so that Φi

(
C(0, ri, hi)

)
= Ui.

Let U0 := Ω and U−1 := Ω
c
, so that (Ui)−1≤i≤N is a finite open

cover of Rn. We may apply corollary 6.11 to obtain a smooth par-
tition of unity (ξi)−1≤i≤N of Rn with spt ξi ⊂ Ui for −1 ≤ i ≤ N .
Besides, for i ≥ 1, as spt ξi ⊂ Ui b Rn, it follows that spt ξi is a
compact subset of Ui.
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Note that, in view of the product rule 7.29, for 0 ≤ i ≤ N ,
fi := ξif ∈ BV(Ω). Moreover, f =

∑N
i=0 fi and spt fi ⊂ spt ξi ⊂ Ui.

3) For 1 ≤ i ≤ N , it follows from lemma 7.42 that fi◦Φi ∈ BV
(
epiS Γi∩

C(0, ri, hi)
)

and spt fi ◦ Φi ⊂ Φ−1
i (spt ξi) b C(0, ri, hi). Extending

the latter function by 0, we may consider fi ◦ Φi ∈ BV(epiS Γi).
Denoting by T the trace operator given by theorem 7.39 applied
to epiS Γi, we may take T · (fi ◦ Φi) ∈ L1(Hn−1|∂ epiS Γi); moreover,

by (7.7), spt T · (fi ◦ Φi) ⊂ spt (fi ◦ Φi) b C(0, ri, hi). Since the
composition with Φi induces a linear isometry of L1(Hn−1|∂Ω∩Ui)
onto L1(Hn−1|∂ epiS Γi∩C(0,ri,hi)), it makes sense to define

Ti · f := T · (fi ◦ Φi) ◦ Φ−1
i ∈ L1(Hn−1|∂Ω∩Ui) ⊂ L1(Hn−1|∂Ω),

where the latter inclusion is given by the extension by 0. Note that
spt Tif ⊂ spt ξi.

The map Ti : BV(Ω)→ L1(Hn−1|∂Ω) is clearly linear continuous,
since it is the composition of the sequence of linear continuous maps
described in its definition above. Actually, the continuity of Ti holds
in a stronger sense: if a sequence (fk)k∈N in BV(Ω) and f ∈ BV(Ω)
are such that fk → f in L1(Ln|Ω) and |∇w fk|(Ω)→ |∇w f |(Ω), then
Tifk → Tif in L1(Hn−1|∂Ω). Indeed,

• It is clear that ξifk
k→∞→ ξif in L1(Ln|Ω). Moreover, in view of

propositions 7.27.i) and 4.58.ii), we have |∇w fk|
∗ nc
⇀|∇w f | (see

exercise 4.56 for the definition of the narrow convergence
∗ nc
⇀),

so that
´

Ω
ξi d|∇w fk| →

´
Ω
ξi d|∇w f | (because ξi|Ω ∈ Cb(Ω)).

It then follows that

|∇w(ξifk)|(Ω)
product rule 7.29

=

ˆ
Ω

ξi d|∇w fk|+
ˆ

Ω

fk‖∇ξi‖ dLn k→∞→

k→∞→
ˆ

Ω

ξi d|∇w f |+
ˆ

Ω

f‖∇ξi‖ dLn =

= |∇w(ξif)|(Ω).

• It follows from the previous item that (ξifk) ◦Φi
k→∞→ (ξif) ◦Φi

in L1(Ln|epiS Γi) and, since |∇w[(ξifk) ◦ Φi]| = Φ−1
i #|∇w(ξifk)|

by lemma 7.42,

|∇w[(ξifk) ◦ Φi]|(epiS Γi)
k→∞→ |∇w[(ξif) ◦ Φi]|(epiS Γi).

We then conclude from remark 7.41.1) that

T · [(ξifk) ◦ Φi]
k→∞→ T · [(ξif) ◦ Φi]

in L1(Hn−1|∂ epiS Γi), whence Tifk → Tif in L1(Hn−1|∂Ω), as as-
serted.
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4) For 1 ≤ i ≤ N , with the definition of Tif in step 3), we have (recall
that fi = ξif):
• For each x ∈ ∂Ω∩ spt ξi and each r > 0 such that B(x, r) ⊂ Ui,

 
B(x,r)∩Ω

∣∣fi(y)− Tif(x)
∣∣ dLn(y) =

=

 
B(Φ−1

i (x),r)∩epiS Γi

∣∣fi ◦ Φi(y)− T · (fi ◦ Φi)
(
Φ−1
i (x)

)∣∣ dLn(y).

Since Φi is a linear isometry of ∂ epiS Γi∩C(0, ri, hi) onto ∂Ω∩Ui
(hence it preserves Hn−1 measure), by (7.7) it follows that

(7.27) lim
r→0

 
B(x,r)∩Ω

∣∣fi(y)− Tif(x)
∣∣ dLn(y) = 0

for Hn−1 a.e. x ∈ ∂Ω ∩ spt ξi. Since the above equality holds
trivially if x ∈ ∂Ω \ spt ξi (because spt Tif ⊂ spt ξi, as it was
noted in step 3), and because B(x, r)∩spt ξi = ∅ for sufficiently
small r > 0), we conclude that the latter equality holds forHn−1

a.e. x ∈ ∂Ω.
• For all ϕ ∈ C1

c(Rn,Rn), denoting by ν ′ the unit outer normal
to epiS Γi and by (νi, |∇w fi|) the polar decomposition of ∇w fi,
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we have:

ˆ
Ω

fi div ϕ dLn =

ˆ
epiS Γi

fi ◦ Φi (div ϕ) ◦ Φi dLn
put Ri:=DΦi∈SO(n)

=

=

ˆ
epiS Γi

fi ◦ Φi div (R−1
i ◦ ϕ ◦ Φi︸ ︷︷ ︸
∈C1

c(Rn,Rn)

) dLn (7.7)
=

= −
ˆ

epiS Γi

(R−1
i ◦ ϕ ◦ Φi) · d∇w(fi ◦ Φi)+

+

ˆ
∂ epiS Γi

T (fi ◦ Φi) (R−1
i ◦ ϕ ◦ Φi) · ν ′ dHn−1 7.42

=

= −
ˆ

epiS Γi

〈R−1
i ◦ ϕ ◦ Φi, R

−1
i ◦ νi ◦ Φi〉 d

(
Φ−1
i #|∇

w fi|
)
+

+

ˆ
T (fi ◦ Φi) 〈ϕ,Ri ◦ ν ′ ◦ Φ−1

i 〉 ◦ Φi d
(
Hn−1 x∂ epiS Γi

) 7.17
=

= −
ˆ

Ω

〈ϕ, νi〉 d|∇w fi|+

+

ˆ [
T (fi ◦ Φi) ◦ Φ−1

i

]
〈ϕ, ν〉 d

(
Hn−1 x∂Φi(epiS f)

)
=

= −
ˆ

Ω

ϕ · d∇w fi +

ˆ
∂Ω

Tif 〈ϕ, ν〉 dHn−1.

(7.28)

5) We define T :=
∑N

i=1 Ti : BV(Ω) → L1(Hn−1|∂Ω). It follows from
step 3) that T is linear continuous. Besides, we have:

• For each x ∈ ∂Ω and each y ∈ Ω,
∣∣f(y)−Tf(x)

∣∣ =
∣∣∑N

i=0 fi(y)+∑N
i=1 Tif(x)

∣∣ ≤ |f0(y)| +
∑N

i=1

∣∣fi(y) − Tif(x)
∣∣. Thus, for each

x ∈ ∂Ω and each r > 0,

 
B(x,r)∩Ω

∣∣f(y)− Tf(x)
∣∣ dLn(y) ≤

 
B(x,r)∩Ω

∣∣f0(y)
∣∣ dLn(y)+

+
N∑
i=1

 
B(x,r)∩Ω

∣∣fi(y)− Tif(x)
∣∣ dLn(y).
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Since spt f0 ⊂ spt ξ0 ⊂ Ω, for each x ∈ ∂Ω and r > 0 suffi-
ciently small f0 is null on B(x, r) ∩ Ω, hence

lim
r→0

 
B(x,r)∩Ω

∣∣f0(y)
∣∣ dLn(y) = 0.

It then follows from (7.27) that (7.26) holds for Hn−1-a.e. x ∈
∂Ω.
• Fix ϕ ∈ C∞c (Rn,Rn).

Since ξ0ϕ ∈ C∞c (Ω,Rn), we have

−
ˆ

Ω

ξ0ϕ · d∇w f =

ˆ
Ω

f div (ξ0ϕ) dLn =

=

ˆ
Ω

ξ0f div ϕ dLn +

ˆ
Ω

f∇ξ0 · ϕ dLn.

Thus

ˆ
Ω

f0 div ϕ dLn = −
ˆ

Ω

ϕ · d
(
∇w f xξ0 + Ln xf∇ξ0

) product rule 7.29
=

= −
ˆ

Ω

ϕ · d∇w f0.

(7.29)

Therefore, from (7.28) and (7.29),

ˆ
Ω

f div ϕ dLn =

ˆ
Ω

f0 div ϕ dLn +
N∑
i=1

fi div ϕ dLn =

= −
ˆ

Ω

ϕ · d∇w f0 −
N∑
i=1

ˆ
Ω

ϕ · d∇w fi+

+
N∑
i=1

ˆ
∂Ω

Tif ϕ · ν dHn−1 =

= −
ˆ

Ω

ϕ · d∇w f +

ˆ
∂Ω

Tf ϕ · ν dHn−1,

thus (7.25) is verified.
6) We have thus proved the existence of a continuous linear map T :

BV(Ω) → L1(Hn−1|∂Ω) satisfying (7.26) and (7.25). It remains to
prove the uniqueness stated in part i), for which we reapply the
argument used in the proof of the same statement for epigraphs:
given f ∈ BV(Ω), suppose that there exist Tf, T ′f ∈ L1(Hn−1|∂Ω)
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such that (7.25) holds for all ϕ ∈ C1
c(Rn,Rn). Then, for all such ϕ,ˆ

∂Ω

(Tf − T ′f)ϕ · ν dHn−1 = 0,

hence the Rn-valued Radon measure (Hn−1 x∂Ω) x(Tf − T ′f)ν
is null. Then so is its total variation (Hn−1 x∂Ω) x|Tf − T ′f |,
which means that Tf = T ′f Hn−1-a.e. on ∂Ω.

�

Corollary 7.44. With the same hypothesis of theorem 7.43, if
f ∈ BV(Ω) ∩ C(Ω), then Tf = f |∂Ω.

Remark 7.45. With the notation from theorem 7.43:

1) We have actually proved that the continuity of T : BV(Ω)→ L1(Hn−1|∂Ω)
holds in a stronger sense, i.e. if a sequence (fi)i∈N in BV(Ω) and
f ∈ BV(Ω) are such that fi → f in L1(Ln|Ω) and |∇w fi|(Ω) →
|∇w f |(Ω), then Tfi → Tf in L1(Hn−1|∂Ω). Indeed, that was proved
in step 3) of the proof for each Ti : BV(Ω) → L1(Hn−1|∂Ω), for

1 ≤ i ≤ N , hence it also holds for T =
∑N

i=1 Ti.
2) The trace operator from theorem 6.51 for W1,1(Ω) is the restriction

of the trace operator from theorem 7.43.

Theorem 7.46 (Extension of BV functions on Lipschitz epigraphs
or Lipschitz domains). Let n ≥ 2 and Ω an open subset of Rn which
is a Lipschitz epigraph or a Lipschitz domain with ∂Ω bounded. Given
f ∈ BV(Ω) and g ∈ BV(Rn \ Ω), let F be Ln-measurable function
defined by

F (x) :=

{
f(x) x ∈ Ω

g(x) x ∈ Rn \ Ω.

Then F ∈ BV(Rn) and

(7.30) ∇w F = i#∇w f + i#∇w g −Hn−1 x∂Ω x(Tf − Tg)ν,

where i#∇w f and i#∇w g are the pushforwards of ∇w f ∈ M(Ω,Rn)

and ∇w g ∈ M(Ω
c
,Rn) by the respective inclusions (the pushforward

is taken in the sense of remark 4.46), ν is the unit outer normal of Ω
and T denotes both trace operators BV(Ω),BV(Ω

c
)→ L1(Hn−1|∂Ω). In

particular,

|∇w F | = i#|∇w f |+ i#|∇w g|+Hn−1 x∂Ω x|Tf − Tg|.
Note that, since Ln(∂Ω) = 0 (because, as we have already seen,

H-dim ∂Ω = n − 1), F is indeed an almost everywhere defined Ln-
measurable function. Besides, if Ω is a Lipschitz epigraph or a Lipschitz
domain with bounded frontier, so is Ω

c
, so that the trace operator
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BV(Ω
c
) → L1(Hn−1|∂Ω) exists. By exercise 7.14 and by the fact that

χΩ
c = χΩc Ln-a.e., the Gauss-Green measure of Ω

c
is −µΩ.

Proof.

1) For all ϕ ∈ C∞c (Rn,Rn) with ‖ϕ‖u ≤ 1,

ˆ
Rn
F div ϕ dLn =

ˆ
Ω

f div ϕ dLn +

ˆ
Ω
c
g div ϕ dLn (7.6) or (7.25)

=

= −
ˆ

Ω

ϕ · d∇w f −
ˆ

Ω
c
ϕ · d∇w g+

+

ˆ
∂Ω

(Tf − Tg)ϕ · ν dHn−1.

(7.31)

Therefore,

Var(F,Rn) ≤ |∇w f |(Ω) + |∇w g|)(Ωc
) +

ˆ
∂Ω

|Tf − Tg| dHn−1 <∞,

which implies F ∈ BV(Rn), as asserted.
2) It remains to prove the formulas for ∇w F and |∇w F |. Since Rn =

Ω ∪̇ ∂Ω ∪̇Ω
c
, we have

∇w F = ∇w F xΩ +∇w F xΩ
c

+∇w F x∂Ω.

We must compute the three measures appearing in the second mem-
ber above. Since Ω and Ω

c
are open sets, by the locality of the weak

gradient it is clear that ∇w F |Ω = ∇w f and ∇w F |Ωc = ∇w g, hence

∇w F xΩ = i#∇w f and ∇w F xΩ
c

= i#∇w g.

We contend that

∇w F x∂Ω = −Hn−1 x∂Ω x(Tf − Tg)ν.

Indeed, fix ε > 0 and let Ωε := ∂Ω + U(0, ε) be the open
ε-neighborhood of ∂Ω. By exercise 6.12 (differentiable Urysohn
lemma) We may take ζε ∈ C∞(Rn) such that 0 ≤ ζε ≤ 1, ζε ≡ 1 on
∂Ω and ζε ≡ 0 on Ωc

ε; in particular, spt ζε ⊂ Ωε ⊂ ∂Ω + B(0, ε).
For each ϕ ∈ C∞c (Rn,Rn), applying (7.31) with ϕζε in place of

ϕ yields

−
ˆ
Rn
ϕζε · d∇w F = −

ˆ
Ω

ϕζε · d∇w f −
ˆ

Ω
c
ϕζε · d∇w g+

+

ˆ
∂Ω

(Tf − Tg)ϕ · ν dHn−1.

As ε → 0, ϕζε converges pointwise to ϕχ∂Ω, and ‖ϕζε‖ ≤ ‖ϕ‖ ∈
L1(|∇w F |) ∩ L1(|∇w f |) ∩ L1(|∇w g|). We may therefore apply the
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dominated convergence theorem along a sequence convergent to 0,
which yields

−
ˆ
∂Ω

ϕ · d∇w F =

ˆ
∂Ω

(Tf − Tg)ϕ · ν dHn−1,

thus proving our contention.
Finally, since ∇w F xΩ, ∇w F xΩ

c
and ∇w F x∂Ω are pair-

wise mutually singular, it follows from proposition 4.15 that

|∇w F | = |∇w F xΩ|+ |∇w F xΩ
c|+ |∇w F x∂Ω|

which yields the stated formula for |∇w F |.
�

Corollary 7.47 (Extension of BV functions on Lipschitz epigraphs
or Lipschitz domains). Let n ≥ 2 and Ω an open subset of Rn which
is a Lipschitz epigraph or a Lipschitz domain with ∂Ω bounded. The
extension by 0 defines a bounded linear operator BV(Ω)→ BV(Rn).

Proof. For each f ∈ BV(Ω), its extension by 0 f̄ : Rn → R
coincides Ln-a.e. with F defined in the previous theorem by means of
f and g ≡ 0, hence f̄ ∈ BV(Rn). Moreover, it follows from (7.30) and
from the continuity of the trace operator that ‖f̄‖BV(Rn) = ‖f̄‖L1(Ln) +

|∇w f̄ |(Rn) = ‖f‖L1(Ln|Ω) + |∇w f |(Ω) + ‖Tf‖L1(Hn−1|∂Ω) ≤ C‖f‖BV(Ω).
�

Corollary 7.48. Let n ≥ 2 and Ω an open subset of Rn which
is a Lipschitz epigraph or a Lipschitz domain with ∂Ω bounded. Given
f ∈ W1,1(Ω) and g ∈ W1,1(Rn \ Ω) such that Tf = Tg, then F defined
in theorem 7.46 belongs to W1,1(Rn).

Proof. We have F ∈ BV(Rn) and, by (7.30), ∇w F = i#∇w f +
i#∇w g = Ln x∇w f + Ln x∇w g ∈ L1(Ln,Rn). �

7.5. Compactness

Theorem 7.49 (Compactness theorem for BV). Let Ω ⊂ Rn be a
bounded Lipschitz domain and (fi)i∈N a sequence in BV(Ω) such that

sup{‖fi‖BV(Ω) | i ∈ N} <∞.

Then there exists f ∈ BV(Ω) and a subsequence (fij)j∈N of (fi)i such
that fij → f in L1(Ln|Ω).

We present two proofs for this theorem.
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Proof 1. For each i ∈ N, we may apply theorem 7.33 to obtain
gi ∈ C∞(Ω)∩BV(Ω) such that ‖fi− gi‖L1(Ω) ≤ 1/i and

´
Ω
‖∇gi‖ dLn ≤

|∇w fi|(Ω) + 1/i. In particular,

sup{
ˆ

Ω

‖∇gi‖ dLn | i ∈ N} <∞.

It then follows that (gi)i∈N is a bounded sequence in W1,1(Ω) ⊂ BV(Ω).
We may therefore apply Rellich-Kondrachov’s theorem 6.77 to obtain
a subsequence (gij)j∈N of (gi)i and f ∈ L1(Ω) 1 such that gij → f in
L1(Ω). Thus, fij → f in L1(Ω). Moreover, it follows from proposition
7.32 that

Var(f,Ω) ≤ lim inf Var(fij ,Ω)︸ ︷︷ ︸
=|∇w fij |(Ω)

≤ sup{‖fi‖BV(Ω) | i ∈ N} <∞,

whence f ∈ BV(Ω). �

Proof 2. By means of the extension by 0, cf. corollary 7.47, we
may assume that (fi)i∈N a sequence in BV(Rn) and spt fi ⊂ Ω b Rn.

It is clear that (fi)i∈N is bounded in L1(Ln), since it is bounded in
BV(Ω). Moreover, it follows from exercise 7.38 that

‖τhf − f‖L1(Ln) ≤ ‖h‖ · sup{|∇w fi|(Rn) | i ∈ N}︸ ︷︷ ︸
<∞

,

so that limh→0‖τhfi − fi‖L1(Ln) = 0 uniformly on i ∈ N. The thesis
then follows from the Kolmogorov-Riesz-Fréchet compactness criterion
1.80. �

7.6. Sets of Finite Perimeter and Existence of Minimal
Surfaces

In this section we develop some basic properties of sets of finite
perimeter and we apply the direct method of the Calculus of Vari-
ations to prove the existence of minimizers in some geometric varia-
tional problems. Recall the definitions and notations for sets of finite
perimeter in 7.5 and 7.12.

7.6.1. Support of the Gauss-Green measure. Let Ω be an
open set in Rn, E ⊂ Ω a set of locally finite perimeter in Ω and
µE ∈Mloc(Ω,Rn) its Gauss-Green measure. As we have already noted
in 7.13.1), it is clear that spt µE ⊂ ∂ΩE. Actually, we have the follow-
ing precise description of spt µE. We use |·| to denote the Lebesgue
measure in Rn.

1actually f ∈ L1
∗
(Ω), by corollary 6.80
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Proposition 7.50. If E ⊂ Ω is a set of locally finite perimeter in
the open subset Ω of Rn, then

spt µE = {x ∈ Ω | ∀r > 0, 0 < |E ∩ U(x, r)| < α(n)rn} ⊂ ∂ΩE.

Moreover, there exists a Borel set F ⊂ Ω in the same L1
loc class of E

such that µF = ∂ΩF .

Proof.

1) Let x ∈ Ω. If there exists r > 0 such that |E ∩ U(x, r)| = 0 (re-
spectively, such that |E ∩ U(x, r)| = α(n)rn), then χE = 0 (respec-
tively, χE = 1) Ln-a.e. on the open set Ω ∩ U(x, r), which implies
∇w χE = 0 on Ω∩U(x, r) by the locality if the weak derivative 7.7,
hence Ω ∩ U(x, r) ⊂ Ω \ spt µE.

Conversely, if x ∈ Ω \ spt µE, there exists r > 0 such that
U(x, r) ⊂ Ω and ∇w χE = 0 on U(x, r). It then follows from propo-
sition 5.7 that χE coincides Ln-a.e. with a constant function on
U(x, r), hence χE = 0 a.e. on U(x, r) or χE = 1 a.e. on U(x, r),
which implies |E ∩ U(x, r)| = 0 or |E ∩ U(x, r)| = α(n)rn, respec-
tively.

We have thus proved that x ∈ Ω \ spt µE if, and only if, there
exists r > 0 such that |E ∩ U(x, r)| = 0 or |E ∩ U(x, r)| = α(n)rn.

2) Up to modifying E on a Ln-null set, we may assume that E ∈ BΩ.
Define:

A0 := {x ∈ Ω | ∃r > 0, |E ∩ U(x, r)| = 0},
A1 := {x ∈ Ω | ∃r > 0, |E ∩ U(x, r)| = α(n)rn} =

= {x ∈ Ω | ∃r > 0, |(Ω \ E) ∩ U(x, r)| = 0}.

Then A0 and A1 are disjoint open subsets of Ω with |E ∩ A0| = 0
and |A1 \ E| = 0. Define F := (E ∪ A1) \ A0 ∈ BΩ. Then:
• E \ F ⊂ E ∩ A0 and F \ E ⊂ A1 \ E, so that |E4F | = 0.
• It follows from the previous item that µF = µE, hence ∂ΩF ⊃

spt µF = spt µE = Ω \ (A0 ∪ A1) by part 1) of the proof.

• Since A1 ⊂ F o and F
Ω ⊂ Ω \ A0, we conclude that ∂ΩF ⊂

Ω \ (A0 ∪ A1), whence the thesis.

�

7.6.2. Operations with Sets of Finite Perimeter, part I.

Proposition 7.51. Let Ω be an open subset of Rn. If E,F are
sets of (locally) finite perimeter in Ω, then so are E ∪ F and E ∩ F .
Moreover,

(7.32) |µE∪F |+ |µE∩F | ≤ |µE|+ |µF |.
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Proof. It follows from proposition 7.36 and of the locality of the
weak derivative that both χE∩F = χEχF and χE∪F = χE +χF −χEχF
belong to BVloc(Ω).

In order to prove (7.32), it suffices to show that the inequality holds
when both members are computed in each open A b Ω. Fix such an
open A b Ω, let (φε)ε>0 be the standard mollifier in Rn and take ε0 > 0
such that A b Ωε0 .

Define, for 0 < ε < ε0, fε := φε ∗χE ∈ C∞(Ωε0) and gε := φε ∗χF ∈
C∞(Ωε0), so that 0 ≤ fε, gε ≤ 1, fεgε → χE∩F in L1

loc(Ωε0) and hε :=
fε + gε − fεgε → χE∪F in L1

loc(Ωε0). Then:

1) It follows from proposition 7.26 that, for all open V b Ωε0 ,

|∇w fε|
∣∣
V

∗
⇀|µE|

∣∣
V

and |∇w gε|
∣∣
V

∗
⇀|µF |

∣∣
V
.

In particular, taking an open set V such that A b V b Ωε0 , we
conclude that

lim sup|∇w fε|(A) ≤ lim sup|∇w fε|(A)
4.54.ii)

≤ |µE|(A),

and, similarly, lim sup|∇w gε|(A) ≤ |µF |(A).
2) For 0 < ε < ε0,

|∇w(fεgε)|(A) ≤
ˆ
A

(
fε‖gε‖+ gε‖fε‖

)
dLn,

|∇w hε|(A) ≤
ˆ
A

(
(1− gε)‖fε‖+ (1− fε)‖gε‖

)
dLn,

hence

|∇w(fεgε)|(A) + |∇w hε|(A) ≤ |∇w fε|(A) + |∇w gε|(A).

3) Taking the lim inf of both members in the previous equality along
the sequence ε = 1/k, it follows from step 1) and from the lower
semicontinuity of the variation 7.32 that

|µE∪F |(A) + |µE∩F |(A) ≤ |µE|(A) + |µF |(A).

The previous inequality holds for each open A b Ω. In particular,
given such an open A b Ω, it may be applied to Ak := {x ∈ A |
d(x,Ac) > 1

k
}, for each k ∈ N, which yields

|µE∪F |(Ak) + |µE∩F |(Ak) ≤ |µE|(Ak) + |µF |(Ak) ≤ |µE|(A) + |µF |(A).

Since the sequence (Ak)k∈N increases to A, taking limk→∞ in the first
member of the previous inequality allows us to conclude that

|µE∪F |(A) + |µE∩F |(A) ≤ |µE|(A) + |µF |(A),

which proves (7.32), whence the thesis. �
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7.6.3. Compactness from perimeter bounds.

Definition 7.52. Let (Ei)i∈N be a sequence of Lebesgue measur-
able sets in Rn and E a Lebesgue measurable set in Rn. We say that

Ei⇀E

if ‖χEi − χE‖L1(Ln) = |Ei4E| → 0.

We say that Ei
loc
⇀E if χEi → χE in L1

loc(Ln).

Theorem 7.53 (Compactness from perimeter bounds). Let R > 0
and (Ei)i∈N be a sequence of sets of finite perimeter in Rn such that

sup
i∈N

P(Ei) <∞,

Ei ⊂ U(0, R) ∀i ∈ N.

Then there exists a set E ⊂ U(0, R) of finite perimeter in Rn and
a subsequence (Eij)j∈N of (Ei)i∈N such that

Eij ⇀E and µEij
∗
⇀µE.

Proof. Let Ω = U(0, R), which is a bounded Lipschitz domain.
Note that, given f ∈ L1(Ln|Ω) ⊂ L1(Ln), it follows from corollary 7.47
that f ∈ BV(Ω) if, and only if, its extension by 0 belongs to BV(Rn).

The hypothesis implies that (χEi)i∈N is a bounded sequence in
BV(Ω) since, for all i ∈ N, ‖χEi‖L1(Ln|Ω) ≤ α(n)Rn and |∇w(χEi |Ω)|(Ω) =

|∇w χEi |
∣∣
Ω

(Ω) ≤ P(Ei) ≤ supi∈N P(Ei) < ∞. It then follows from
theorem 7.49 that there exists a subsequence (Eij)j∈N of (Ei)i∈N and
f ∈ BV(Ω) such that χEij → f in L1(Ln|Ω). Since there exists a sub-

sequence of χEij which converges Ln-a.e. to f on Ω, we conclude that

there exists E ∈ BΩ such that f = χE Ln-a.e. on Ω, hence χE ∈ BV(Ω)
and Eij ⇀E. By the remark on the first paragraph of the proof, we
have χE ∈ BV(Rn), i.e. E is a set of finite perimeter in Rn. Finally,

it follows from proposition 7.27.i) that µEij
∗
⇀µE, which completes the

proof. �

Lemma 7.54. Let Ω ⊂ Rn be a bounded Lipschitz domain and E ⊂
Rn be a set of locally finite perimeter. Then E ∩ Ω is a set of finite
perimeter in Rn and

P(E ∩ Ω) ≤ P(E,Ω) + P(Ω).

Proof. We know from proposition 7.51 (with Rn in place of Ω
and Ω in place of F ) that E ∩ Ω is a set of locally finite perimeter
in Rn. It then suffices to prove the asserted inequality, which implies
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P(E ∩Ω) <∞, since P(E,Ω) <∞ (because E is a set of locally finite
perimeter in Rn and Ω b Rn) and P(Ω) <∞ (because ∂Ω is bounded).

Consider F in theorem 7.46 given by f = χE|Ω and g = 0. As
elements of L1

loc(Ln), we have F = χE∩Ω; it then follows from theorem
7.46 that ∇w F = ∇w χE∩Ω is given by (7.30). In particular, since
|Tf | ≤ 1 by (7.26), it follows that

P(E ∩ Ω) = |∇w F |(Rn) ≤ |∇w f |(Ω) +

ˆ
∂Ω

|Tf | dHn−1 =

= |∇w χE|
∣∣
Ω

(Ω)︸ ︷︷ ︸
=|µE |(Ω)=P(E,Ω)

+

ˆ
∂Ω

|Tf | dHn−1 ≤

≤ P(E,Ω) +Hn−1(∂Ω) = P(E,Ω) + P(Ω),

as asserted. �

Corollary 7.55 (Compactness from perimeter bounds). Let (Ei)i∈N
be a sequence of sets of locally finite perimeter in Rn such that, for all
R > 0,

sup
i∈N

P
(
Ei,U(0, R)

)
<∞.

Then there exists a set E of locally finite perimeter in Rn and a
subsequence (Eij)j∈N of (Ei)i∈N such that

Eij
loc
⇀E and µEij

∗
⇀µE.

Proof. For each N ∈ N, it follows from lemma 7.54 that, for all
i ∈ N, Ei ∩ U(0, N) is a set of finite perimeter in Rn and

sup
i∈N

P
(
Ei ∩ U(0, N)

)
≤ sup

i∈N
P
(
Ei,U(0, N)

)
+ P

(
U(0, N)

)
<∞.

We may therefore apply theorem 7.53 to obtain a subsequence
(E1

j )j∈N of (Ei)i∈N and for each k ≥ 2 a subsequence (Ek
j )j∈N of (Ek−1

j )j∈N
such that for all k ∈ N, χEkj ∩U(0,k) converges in L1(Ln) to a set of finite

perimeter Ek ⊂ U(0, k) of Rn. The diagonal (Ek
k )k∈N is therefore a sub-

sequence of (Ei)i∈N such that χEkk∩U(0,N) is L1(Ln) convergent for each

N ∈ N. That is, χEkk is a convergent sequence in L1
loc(Ln) and its limit

is the characteristic function of a Borel measurable set F ⊂ Rn such
that |

(
F ∩ U(0, k)

)
4Ek| = 0 for each k ∈ N, i.e. F ∩ U(0, k) is a set

of finite perimeter in Rn for each k ∈ N, hence χF |U(0,k) ∈ BV
(
U(0, k)

)
for each k ∈ N. We have thus proved that χF ∈ BVloc(Rn), i.e. F is a

set of locally finite perimeter in Rn, and Ek
k

loc
⇀F . It then follows from

proposition 7.27.i) that µEkk
∗
⇀µF , which completes the proof. �
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7.6.4. Existence of Minimizers. In this subsection we apply
the direct method of the Calculus of Variations to prove the existence
of minimizers of two classes of geometric variational problems. Such
application rests on the compactness theorems 7.53, 7.55 and on the
lower semicontinuity of the perimeter 7.32.

Firstly we consider the Plateau problem in a compact subset K of
Rn with boundary data given by a set M of locally finite perimeter in
Rn. The problem consists in finding a set E0 ⊂ Rn of locally finite
perimeter which has least perimeter in K among the sets E ⊂ Rn with
locally finite perimeter whose boundaries are “fixed” by M , in the sense
that E \K = M \K — see figure 2.

Figure 2. Plateau problem in K with boundary data M

Proposition 7.56 (Minimizers for the Plateau problem in K with
boundary data M). Let K ⊂ Rn be a compact set and M be a set of
locally finite perimeter in Rn. Then there exists E0 ⊂ Rn of locally
finite perimeter which minimizes the functional

E 7→ P(E,K)

in the class E := {E ⊂ Rn | χE ∈ BVloc(Rn) and E \K = M \K}.

Proof. Note that E 6= ∅, since M ∈ E . Let m := inf{P(E,K) |
E ∈ E} (hence 0 ≤ m < ∞), and (Ei)i∈N a sequence in E such that
P(Ei, K)→ m. Take R > 0 such that Ω := U(0, R) ⊃ K.

For all i ∈ N, we have

P(Ei,Ω) = P(Ei,Ω \K) + P(Ei, K) =

= P(M,Ω \K) + P(Ei, K) ≤ C(Ω).
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It then follows from corollary 7.55 that there exists a set of locally
finite perimeter E0 ⊂ Rn and a subsequence (Eij)j∈N of (Ei)i such

that Eij
loc
⇀E0. Modifying E0 on a Ln-null set, if necessary, me may

assume that E0 \ K = M \ K, so that E0 ∈ E . Besides, by the
lower semicontinuity of the variation 7.32 it follows that P(E0,Ω) ≤
lim inf P(Eij ,Ω), that is

P(M,Ω \K) + P(E0, K) ≤
≤ lim inf

(
P(M,Ω \K) + P(Eij , K)

)
=

= P(M,Ω \K) + lim inf P(Eij , K),

whence P(E0, K) ≤ lim inf P(Eij , K) = lim P(Ei, K) = m. Since E0 ∈
E , we also have the opposite inequality m ≤ P(E0, K), hence m =
P(E0, K). �

Figure 3. Relative isoperimetric problem in Ω

Given an open set Ω ⊂ Rn, the relative isoperimetric problem in Ω
is the problem of finding sets with least perimeter in Ω with a fixed
prescribed volume — see figure 3. Precisely, given m ∈ (0, |Ω|) (note
that |Ω| is not assumed to be finite), we want to decide whether the
following infimum is realized by a set of finite perimeter in Ω:

α(m,Ω) := inf{P(E,Ω) | E ⊂ Ω, χE ∈ BV(Ω), |E| = m}.
We say that a set E ⊂ Ω of finite perimeter in Ω is a relative isoperi-
metric set in Ω if if is normalized according to proposition 7.50 so
that spt µE = ∂ΩE and it is a minimizer of the above problem, i.e. if
P(E,Ω) = α(|E|,Ω). If Ω is a bounded Lipschitz domain, the existence
of such minimizers may be proved once more by a direct application of
the direct method of the Calculus of Variations:

Proposition 7.57 (Existence of relative isoperimetric sets on bounded
Lipschitz domains). Let Ω be a bounded Lipschitz domain and m ∈
(0, |Ω|]. Then there exists a set E ⊂ Ω such that χE ∈ BV(Ω), |E| = m
and P(E,Ω) = α(m,Ω).
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Proof. Let E := {P(E,Ω) | E ⊂ Ω, χE ∈ BV(Ω), |E| = m}.
1) We contend that E is not empty. Indeed, for each t ∈ Rn, define

Ωt := Ω ∩ {x ∈ Rn | x1 < t}, so that χΩt ∈ BV(Ω). By a direct
application of the dominated convergence theorem, t ∈ R 7→ |Ωt| ∈
R is a continuous function which is null in t0 such that Ωt0 = ∅
and |Ω| in t1 such that Ωt1 = Ω (such t0 and t1 exist because Ω
is bounded). Therefore, by the intermediate value theorem, there
exists t ∈ [t0, t1] such that |Ωt| = m, hence Ωt ∈ E .

2) It follows from the previous item that 0 ≤ α(m,Ω) < ∞. Let
(Ei)i∈N be a sequence in E such that P(Ei,Ω) → α(m,Ω). Lemma
7.54 ensures that, for all i ∈ N, Ei is a set of finite perimeter in Rn

and
P(Ei) ≤ P(Ei,Ω) + P(Ω),

so that sup{P(Ei) | i ∈ N} < ∞. Since Ω is bounded, we may
therefore apply the compactness criterion 7.53 to obtain E ⊂ Ω
such that χE ∈ BV(Rn) and such that, passing to a subsequence if
necessary, Ei⇀E. Then |Ei| → |E|, so that |E| = m, i.e. E ∈ E .
Besides, by the lower semicontinuity of the variation 7.32 it follows
that P(E,Ω) ≤ lim inf P(Ei,Ω) = m; since E ∈ E , we also have the
opposite inequality, hence P(E,Ω) = m and we are done.

�



Bibliography

[AF03] Robert A. Adams and John J. F. Fournier, Sobolev spaces, second
ed., Pure and Applied Mathematics (Amsterdam), vol. 140, Else-
vier/Academic Press, Amsterdam, 2003. MR 2424078

[AFP00] Luigi Ambrosio, Nicola Fusco, and Diego Pallara, Functions of bounded
variation and free discontinuity problems, Oxford Mathematical Mono-
graphs, The Clarendon Press, Oxford University Press, New York, 2000.
MR 1857292

[Bou87] N. Bourbaki, Topological vector spaces. Chapters 1–5, Elements of Mathe-
matics (Berlin), Springer-Verlag, Berlin, 1987, Translated from the French
by H. G. Eggleston and S. Madan. MR 910295
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