${ m MAT~5798-Medida~e~Integração}$ ${ m IME-2020}$

http://www.ime.usp.br/~glaucio/mat5798 Lista 11 - Integral de Bochner

Fixemos um espaço de medida completo (X, \mathcal{M}, μ) até o final desta lista. As duas primeiras questões foram enunciadas na lista 6 (exercícios complementares 1 e 2).

Questão 1-) Sejam Y espaço metrizável e $(f_n)_{n\in\mathbb{N}}$ sequência de funções mensuráveis $X\to Y$ que converge μ -q.s. para $f:X\to Y$. Então f é mensurável.

Demonstração. Por hipótese, existe $E \in \mathcal{M}$ tal que $\mu(E) = 0$ e $f_n|_{E^c}$ converge pontualmente para f. Redefinido todas as f_n 's e a f como sendo nulas em E (o que não altera a sua mensurabilidade, pela completude do espaço de medida), se necessário, podemos supor $f_n \to f$ pontualmente. Seja d métrica que metrize a topologia de Y. Sejam $E \subset Y$ aberto e $(\forall i \in \mathbb{N})E_i \doteq \{x \in E : d(x, Y \setminus E) \geq 1/i\}$. Então $f^{-1}(E) = \bigcup_{i \in \mathbb{N}} \liminf_k f_k^{-1}(E_i) = \bigcup_{i \in \mathbb{N}} \bigcup_{j \in \mathbb{N}} \bigcap_{k > j} f_k^{-1}(E_i) \in \mathcal{M}$.

DEFINIÇÃO 1 (funções simples). Sejam (Y, τ_Y) espaço topológico e $f: X \to Y$. Diz-se que f é simples se for mensurável e tiver imagem finita.

Questão 2-) Sejam (Y, τ_Y) espaço metrizável e separável. Se $f: X \to Y$ for mensurável, existe uma sequência de funções simples $X \to Y$ que converge pontualmente para f. Observação. aqui o espaço de medida não precisa ser completo.

Demonstração. Tome d métrica que metrize a topologia de Y e $X = \{x_n : n \in \mathbb{N}\}$ conjunto enumerável denso em Y. Para cada $n \in \mathbb{N}$, defina $F_n \doteq \{x_1, \ldots, x_n\}$ e $(\forall x \in X) f_n(x) \doteq x_{k(x)}$ onde $k(x) = \min\{k \in \{1, \ldots, n\} : d(x, F_n) = d(x, x_k)\}$. Verifique que, para todo $n \in \mathbb{N}$, f_n está bem definida, é mensurável, tem imagem finita e $(f_n)_n$ converge pontualmente para f.

Questão 3-) Sejam Y espaço de Banach (sobre $\mathbb{K} = \mathbb{R}$ ou \mathbb{C}) e $A(\mu, Y) \doteq \{f : X \to Y \text{ mensurável} : \exists Z \subset Y \text{ subespaço separável com } \mu(f^{-1}(Y \setminus Z)) = 0\}$. Então $A(\mu, Y)$ é um \mathbb{K} -subespaço vetorial de Y^X .

DEFINIÇÃO 2. Com a notação acima, os elementos de $A(\mu, Y)$ chamam-se funções mensuráveis com imagem essencialmente separável.

Demonstração. Sejam $f, g \in A(\mu, Y)$ e $\alpha, \beta \in \mathbb{K}$. Existem $Z_f, Z_g \subset Y$ subespaços separáveis tais que $\mu(f^{-1}(Y \setminus Z_f)) = 0$ e $\mu(g^{-1}(Y \setminus Z_g)) = 0$. Tome Z o subespaço gerado por Z_f e Z_g ; então Z é separável e $(\alpha f + \beta g)^{-1}(Y \setminus Z) \subset f^{-1}(Y \setminus Z_f) \cup g^{-1}(Y \setminus Z_g)$ tem medida nula, portanto $\alpha f + \beta g$ tem imagem essencialmente separável. Resta verificar que $\alpha f + \beta g$ é mensurável; para tal, podemos supor SPG que Im $f \subset Z_f$ e Im $g \subset Z_g$ (caso contrário, bastaria redefinir f e g como sendo zero no complementar do conjunto nulo $f^{-1}(Y \setminus Z_f) \cup g^{-1}(Y \setminus Z_g)$ e usar a completude do espaço de medida). Como $Z_f \times Z_g$ é metrizável e separável, sua σ -álgebra de Borel coincide com a σ -álgebra produto, logo $(f,g): X \to Z_f \times Z_g$ é mensurável; por outro lado, a aplicação $\phi: Z_f \times Z_g \to \mathbb{K}$ dada por $(x,y) \mapsto \alpha x + \beta y$ é contínua (portanto boreliana). A composta $\phi \circ (f,g)$ é, pois, mensurável.

Questão 4-) Sejam Y espaço de Banach e $A(\mu, Y)$ como acima. Mostre que:

a) $A(\mu, Y)$ é fechado por convergência μ -q.s., i.e. se $(f_n)_{n\in\mathbb{N}} \prec A(\mu, Y)$ converge μ -q.s. para $f: X \to Y$, então $f \in A(\mu, Y)$.

b) Para toda $f \in A(\mu, Y)$, existe $(\phi_n)_{n \in \mathbb{N}}$ sequência de funções simples $X \to Y$ que converge μ -q.s. para f e, $(\forall x \in X, \forall n \in \mathbb{N}) \|\phi_n(x)\| \le 2\|f(x)\|$.

Demonstração. a) Por hipótese, existe $E \in \mathcal{M}$ tal que $\mu(E) = 0$ e $f_n|_{E^c}$ converge pontualmente para f. Então f é mensurável, pela questão 1). Além disso, f tem imagem essencialmente separável: para cada $n \in \mathbb{N}$, $\exists Z_n$ subespaço separável de Y tal que $\mu(f_n^{-1}(Y \setminus Z_n)) = 0$; tome Z o fecho em Y do subespaço gerado por $(Z_n)_{n \in \mathbb{N}}$. Então Z é separável e, como $f|_{E^c}$ é o limite pontual da sequência $(f_n)_n$, segue-se que $f^{-1}(Y \setminus Z) \subset E \cup \bigcup_{n \in \mathbb{N}} f_n^{-1}(Y \setminus Z_n)$ tem medida nula. Então $f \in A(\mu, Y)$, como afirmado.

• Redução: podemos supor Y separável. Com efeito, existe $Z \subset Y$ subespaço fechado e separável tal que $f^{-1}(Y \setminus Z)$ tem medida nula; daí basta redefinir f como sendo zero no complementar deste conjunto nulo e substituir Y por Z (lembrando que, como Z é subespaço topológico de Y, a σ -álgebra de Borel de Z coincide com a σ -álgebra traço, e daí vale a propriedade de invariância da mensurabilidade com relação à mudança de contradomínio).

• Pela questão 2, existe $(\psi_n)_{n\in\mathbb{N}}$ sequência de funções simples $X\to Y$ que converge μ -q.s. para f. Agora basta definir $(\forall n\in\mathbb{N}, \forall x\in X)$:

$$\phi_n(x) \doteq \begin{cases} \psi_n(x) & \text{se } \|\psi_n(x)\| \le 2\|f(x)\| \\ f(x) & \text{cc} \end{cases}$$

DEFINIÇÃO 3. Sejam Y espaço de Banach e $f \in A(\mu, Y)$. Definimos $||f||_1 \doteq \int ||f|| \, d\mu$. Note que $||f||: X \to \mathbb{R}$ é mensurável, portanto a definição faz sentido.

DEFINIÇÃO 4. Dado Y espaço de Banach, definimos $\mathsf{L}^1(\mu,Y) \doteq \{f \in A(\mu,Y) : ||f||_1 < \infty\}$.

Questão 5-) Com a notação acima, $\mathsf{L}^1(\mu,Y)$ é \mathbb{K} -subespaço vetorial de $A(\mu,Y)$ e $\|\cdot\|_1 : \mathsf{L}^1(\mu,Y) \to \mathbb{R}$ é uma seminorma. O subespaço $N \doteq \{f \in \mathsf{L}^1(\mu,Y) : \|f\|_1 = 0\}$ coincide com o subconjunto de $A(\mu,Y)$ formado pelas funções nulas quase sempre. O quociente $\mathsf{L}^1(\mu,Y)/N$ com a norma induzida é completo, i.e. um espaço de Banach.

Notação. Usaremos, como é de praxe, a mesma notação $L^1(\mu, Y)$ para o quociente.

Demonstração. Provaremos apenas que o quociente $\mathsf{L}^1(\mu,Y)/N$ é completo, pois as outras afirmações são de verificação imediata. Verifiquemos, pois, que toda série absolutamente convergente no quociente $\mathsf{L}^1(\mu,Y)/N$ é convergente. O argumento é idêntico ao feito em aula para provar que $\mathsf{L}^1(\mu,\mathbb{C})$ é completo.

Seja $([f_n])_{n\in\mathbb{N}} \prec \mathsf{L}^1(\mu,Y)/N$ tal que $\sum_{n=1}^\infty \|[f_n]\|_1 < \infty$. Defina $G: X \to [0,\infty]$ por $G(x) \doteq \sum_{n=1}^\infty \|f(x)\|$. Então $G \in \mathsf{L}^+(X,\mathcal{M})$ e, pelo teorema da convergência monótona, $\int G \, \mathrm{d}\mu = \sum_{n=1}^\infty \|f_n\|_1 < \infty$. Em particular, G é finita μ -q.s. e $G \in \mathsf{L}^1(\mu)$. Como Y é espaço de Banach, para todo $x \in X$ tal que $G(x) < \infty$, a série $\sum_{n=1}^\infty f_n(x)$ é convergente (pois é absolutamente convergente). Defina $g: X \to Y$ por g = 0 em $E \doteq \{x \in X: G(x) = \infty\}$ e $g(x) = \sum_{n=1}^\infty f_n(x)$ em $X \setminus E$. Sendo g o limite μ -q.s. de uma sequência de funções em $A(\mu, Y)$, segue-se $g \in A(\mu, Y)$, pela questão 4. Como $\|g\| \leq G$, segue-se $g \in \mathsf{L}^1(\mu, Y)$; afirmo que a sequência das reduzidas da série $\sum_{n=1}^\infty [f_n]$ converge para [g] em $\mathsf{L}^1(\mu, Y)/N$, o que concluirá a demonstração. De fato:

$$(\forall n \in \mathbb{N}) \| \sum_{k=1}^{n} [f_k] - [g] \|_1 = \int \| \sum_{k=1}^{n} f_k - g \| d\mu = \int \| \sum_{k=n+1}^{\infty} f_k \| d\mu \le \int \int \sum_{k=n+1}^{\infty} \|f_k\| d\mu = \sum_{k=n+1}^{\infty} \int \|f_k\| d\mu,$$

sendo a penúltima desigualdade por monotonicidade da integral e a última igualdade pelo teorema da convergência monótona. Sendo $\sum_{n=1}^{\infty} ||[f_n]||_1 < \infty$, o rabo da série vai a zero, o que conclui a prova da afirmação.

Com a notação das definições e questões anteriores, dados Y espaço de Banach e $f \in L^1(\mu, Y)$, gostaríamos de definir a integral de f, $\int f \, d\mu$, como sendo um elemento de Y. A ideia natural é defini-la como sendo um elemento $\ell \in Y$ tal que $(\forall \alpha \in Y^*)\langle \alpha, \ell \rangle = \int \alpha \circ f \, d\mu$, caso exista um tal elemento; se existir, será único pelo teorema de Hahn-Banach. Para provar a existência, use o roteiro proposto na questão abaixo:

Questão 6-) Com a notação acima, tem-se:

- i) Dada $f \in \mathsf{L}^1(\mu,Y)$, defina $\sigma(f): Y^* \to \mathbb{K}$ por $\langle \alpha, \sigma(f) \rangle \doteq \int \alpha \circ f \, \mathrm{d}\mu$. Então $\sigma(f)$ está bem definida e é linear contínua, i.e. $\sigma(f) \in Y^{**}$. Fica bem definida, pois, $\sigma: \mathsf{L}^1(\mu,Y) \to Y^{**}$.
- ii) Dada $f \in L^1(\mu, Y)$, verifique que $\sigma(f): Y^* \to \mathbb{K}$ é $\sigma(Y^*, Y)$ -contínua (i.e. contínua em Y^* com a topologia fraca-*). Sugestão: Este é o ponto delicado do argumento. Siga o seguinte subroteiro:
 - a) Redução: pode-se assumir Y separável.
 - b) $\sigma(f): Y^* \to \mathbb{K}$ é sequencialmente $\sigma(Y^*, Y)$ -contínua (use o teorema da convergência dominada; a dominação será feita com o uso do princípio da limitação uniforme [PLU]).
 - c) use o teorema de Krein-Smulian (vide [1], teorema 12.1, página 259, e corolário 12.8, página 161) para concluir que $\sigma(f): Y^* \to \mathbb{K}$ é $\sigma(Y^*, Y)$ -contínua.
- iii) Segue do item anterior que a imagem de $\sigma: L^1(\mu, Y) \to Y^{**}$ está contida em $Y \subset Y^{**}$.

- Demonstração. i) $\forall \alpha \in Y^*$, $\alpha \circ f : X \to \mathbb{K}$ é mensurável e $|\alpha \circ f| \le ||\alpha|| ||f||$, logo $\alpha \circ f$ é integrável e $\sigma(f)$ está bem definida. Além disso, $|\int \alpha \circ f \, \mathrm{d}\mu| \le \int |\alpha \circ f| \, \mathrm{d}\mu \le \int ||\alpha|| ||f|| \, \mathrm{d}\mu = ||\alpha|| ||f||_1$, donde $\sigma(f) \in Y^*$ e $||\sigma(f)|| \le ||f||_1$.
- ii) a) Como $f \in A(\mu, Y)$, f tem imagem essencialmente separável, i.e. $\exists Z \subset Y$ subespaço fechado e separável tal que $f^{-1}(Y \setminus Z)$ tem medida nula. Redefinindo f como sendo zero neste conjunto, i.e. modificando f num conjunto de medida nula, o que não altera a classe de equivalência de f em $\mathsf{L}^1(\mu, Y)$ nem $\sigma(f)$, podemos assumir que f toma valores no espaço de Banach separável Z, e agora basta substituir Y por Z para se conseguir a redução sugerida.
 - b) Sejam $(\alpha_n)_{n\in\mathbb{N}} \prec Y^*$ e $\alpha \in Y^*$ tais que $\alpha_n \stackrel{w^*}{\to} \alpha$. Então $(\alpha_n)_n$ é pontualmente limitada e, pelo [PLU], uniformemente limitada, i.e. $M \doteq \sup\{\|\alpha_n\| : n \in \mathbb{N}\} < \infty$. Daí, para toda $f \in \mathsf{L}^1(\mu,Y)$, $\alpha_n \circ f$ converge pontualmente para $\alpha \circ f$, e a convergência é dominada, pois $(\forall n \in \mathbb{N}) | \alpha_n \circ f| \leq \|\alpha_n\| \|f\| \leq M \|f\| \in \mathsf{L}^1(\mu)$. Portanto, pelo teorema da convergência dominada, $\int \alpha_n \circ f \, \mathrm{d}\mu \to \int \alpha \circ f \, \mathrm{d}\mu$, i.e. $\langle \sigma(f), \alpha_n \rangle \to \langle \sigma(f), \alpha \rangle$. Portanto, $\sigma(f)$ é sequencialmente contínua em Y^* com a topologia fraca-*. Como Y é separável, segue-se do teorema de Krein-Smulian, mencionado supra, que $\sigma(f)$ é contínua em Y^* com a topologia fraca-*.
- iii) Um elemento de Y^{**} está na imagem de Y no bidual se, e somente se, for contínuo em Y^* com a topologia fraca-*.

Definição 5 (integral de Bochner). Com a notação acima, dada $f \in L^1(\mu, Y)$, defina $\int f d\mu \doteq \sigma(f) \in Y$.

Note que $\int f d\mu$ satisfaz $(\forall \alpha \in Y^*) \langle \int f d\mu, \alpha \rangle = \int \langle f, \alpha \rangle d\mu$ e, por Hahn-Banach, é o único elemento de Y com esta propriedade.

Questão 7 (propriedades da integral de Bochner)-) Seja Y espaço de Banach.

- i) $\int \cdot : L^1(\mu, Y) \to Y$ é linear.
- ii) (desigualdade triangular) $\forall f \in \mathsf{L}^1(\mu, Y), \| \int f \, \mathrm{d}\mu \| \leq \int \| f \| \, \mathrm{d}\mu.$
- iii) Sejam $f \in L^1(\mu, Y)$ e Z subespaço fechado de Y tal que $f^{-1}(Y \setminus Z)$ tem medida nula. Então $\int f d\mu \in Z$.
- iv) Sejam Z espaço de Banach e $T:Y\to Z$ linear contínua. Para toda $f\in\mathsf{L}^1(\mu,Y),\ T\circ f\in\mathsf{L}^1(\mu,Z)$ e $\int T\circ f\,\mathrm{d}\mu=T\cdot\int f\,\mathrm{d}\mu.$
- v) Se $f: X \to Y$ é uma função simples, então $f \in \mathsf{L}^1(\mu,Y)$ see $(\forall a \in F \setminus \{0\}) \ \mu(f^{-1}(a)) < \infty$. Em caso afirmativo, e se $f = \sum_{i=1}^n a_i \chi_{A_i}$, com $(a_i)_{1 \le i \le n} \prec Y$ e $(A_i)_{1 \le i \le n} \prec \mathcal{M}$, então $\int f = \sum_{i=1}^n a_i \mu(A_i)$.
- $\begin{array}{ll} \textit{Demonstração.} & \text{i) Dadas } f,g \in \mathsf{L}^1(\mu,Y) \text{ e } r,s \in \mathbb{K}, \text{ tem-se, } (\forall \alpha \in Y^*), \ \langle \alpha, \int (rf+sg) \, \mathrm{d}\mu \rangle = \int \langle \alpha,rf+sg \rangle \, \mathrm{d}\mu = \\ r \int \langle \alpha,f \rangle \, \mathrm{d}\mu + s \int \langle \alpha,g \rangle \, \mathrm{d}\mu = \langle \alpha,r \int f \, \mathrm{d}\mu + s \int g \, \mathrm{d}\mu \rangle. \text{ Pelo teorema de Hahn-Banach, conclui-se } \int (rf+sg) \, \mathrm{d}\mu = \\ r \int f \, \mathrm{d}\mu + s \int g \, \mathrm{d}\mu, \text{ donde a linearidade afirmada.} \end{array}$
- ii) Pelo teorema de Hahn-Banach, existe $\alpha \in Y^*$ tal que $\|\alpha\| = 1$ e $\langle \alpha, \int f d\mu \rangle = \|\int f d\mu\|$. Portanto, $\|\int f d\mu\| = \langle \alpha, \int f d\mu \rangle = \int \alpha \circ f d\mu \leq \int |\alpha \circ f| d\mu \leq \|\alpha\| \|f\|_1 = \|f\|_1$.
- iii) Para todo $\alpha \in Z^{\perp}$, $\langle \alpha, \int f \, \mathrm{d}\mu \rangle = \int \alpha \circ f \, \mathrm{d}\mu = 0$, pois $\alpha \circ f$ é nula quase sempre. Então, pelo teorema de Hahn-Banach, $\int f \, \mathrm{d}\mu \in Z$.
- iv) $T \circ f$ é mensurável e, dado $F \subset Y$ subespaço separável tal que $f^{-1}(Y \setminus F)$ tem medida nula, $F' \doteq T(F)$ é um subespaço separável de Z tal que $(T \circ f)^{-1}(Z \setminus F')$ tem medida nula. Portanto, $T \circ f \in A(\mu, Z)$. Além disso, $||T \circ f|| \leq ||T|| ||f||$, logo $T \circ f \in L^1(\mu, Z)$. Finalmente, $\forall \alpha \in Z^*$, $\langle \alpha, T \cdot \int f \, d\mu \rangle = \langle \alpha \circ T, \int f \, d\mu \rangle = \int \alpha \circ T \circ f \, d\mu = \langle \alpha, \int T \circ f \, d\mu \rangle$, donde, pelo teorema de Hahn-Banach, $T \cdot \int f \, d\mu = \int T \circ f \, d\mu$.
- v) Se $f = \sum_{i=1}^n a_i \chi_{A_i}$ for a representação padrão de f, então $||f|| = \sum_{i=1}^n ||a_i|| \chi_{A_i}$, donde $\int ||f|| = \sum_{i=1}^n ||a_i|| \mu(A_i)$, portanto $\int ||f|| < \infty$ see $\mu(A_i) < \infty$ para todo i tal que $a_i \neq 0$; disso decorre a primeira afirmação. Quanto à segunda, se $f = \sum_{i=1}^n a_i \chi_{A_i}$ e $\alpha \in Y^*$, então $\alpha \circ f = \sum_{i=1}^n \alpha(a_i) \chi_{A_i}$, portanto $\langle \alpha, \int f \rangle = \sum_{i=1}^n \alpha(a_i) \mu(A_i) = \langle \alpha, \sum_{i=1}^n a_i \mu(A_i) \rangle$. Pela arbitrariedade do $\alpha \in Y^*$ tomado, segue do teorema de Hanh-Banach que $\int f = \sum_{i=1}^n a_i \mu(A_i)$.

Questão 8 (teorema da convergência dominada)-) Sejam $(f_n)_{n\in\mathbb{N}} \prec \mathsf{L}^1(\mu,Y)$ convergente μ -q.s. para $f:X\to Y$ e $g\in \mathsf{L}^1(\mu)$ tal que $(\forall n\in\mathbb{N})\|f_n\|\leq g$ μ -q.s. em X. Então $f\in \mathsf{L}^1(\mu,Y)$ e $f_n\stackrel{\mathsf{L}^1}{\to} f$; em particular, $\int f_n \,\mathrm{d}\mu \to \int f \,\mathrm{d}\mu$.

Demonstração. Pela questão 4, $f \in A(\mu, Y)$. E, como $||f|| \leq g$ quase sempre, conclui-se que $f \in \mathsf{L}^1(\mu, Y)$. Finalmente, como $(\forall n \in \mathbb{N}) ||f_n - f|| \leq 2||g||$, $g \in \mathsf{L}^1(\mu)$ e $||f_n - f||$ converge μ -q.s. para zero, o teorema da convergência dominada para funções a valores escalares implica $\int ||f_n - f|| \, \mathrm{d}\mu \to 0$, i.e. $f_n \stackrel{\mathsf{L}^1}{\to} f$, e é claro que isso implica, pela desigualdade triangular, $\int f_n \, \mathrm{d}\mu \to \int f \, \mathrm{d}\mu$.

Questão 9-) Seja $f: X \to Y$. São equivalentes:

- i) $f \in L^1(\mu, Y)$.
- ii) existe $(\phi_n)_{n\in\mathbb{N}} \prec \mathsf{L}^1(\mu,Y)$ sequência de funções simples integráveis que converge μ -q.s. para $f \in \int ||f \phi_n|| \, \mathrm{d}\mu \to 0$.

Em caso afirmativo, tomando $(\phi_n)_n$ como na segunda condição, $\int \phi_n d\mu \to \int f d\mu$.

Demonstração. i)⇒ ii) Segue imediatamente a partir da questão 4 e do teorema da convergência dominada.

ii) \Rightarrow i) Basta notar que $f \in A(\mu, Y)$, pela questão 4, e, tomando n tal que $\int ||f - \phi_n|| d\mu < \infty$, tem-se $\int ||f|| d\mu \leq \int ||\phi_n|| d\mu + \int ||f - \phi_n|| d\mu < \infty$, donde $f \in \mathsf{L}^1(\mu, Y)$.

Questão 10-) Seja Y espaço de Banach separável. As seguintes σ -álgebras de subconjuntos de Y coincidem:

- i) \mathcal{B}_Y
- ii) $W_Y \doteq \sigma$ -álgebra induzida por Y^* (recorde a definição da σ -álgebra induzida por uma família de aplicações, c.f. notas da aula 2).
- iii) $\mathcal{B}_{\left(Y,\sigma(Y,Y^*)\right)}$, i.e. a σ -álgebra de Borel de Y munido da topologia fraca.

SUGESTÃO: É claro que $W_Y \subset \mathcal{B}_{\left(Y,\sigma(Y,Y^*)\right)} \subset \mathcal{B}_Y$. Para verificar $\mathcal{B}_Y \subset \mathcal{W}_Y$, tendo em vista que Y é separável (: todo aberto é união enumerável de bolas abertas), é suficiente mostrar que toda bola aberta é mensurável com respeito a \mathcal{W}_Y . Para tal, mostre que \mathcal{W}_Y é invariante por translações, e que toda bola aberta centrada na origem é mensurável com respeito a \mathcal{W}_Y . Finalmente, para mostrar a última afirmação: tome $\{x_n:n\in\mathbb{N}\}$ subconjunto enumerável denso em Y e $(\lambda_n)_{n\in\mathbb{N}} \prec Y^*$ tal que $(\forall n\in\mathbb{N})||\lambda_n||=1$ e $(\lambda_n,x_n)=||x_n||$. Verifique que $(\forall x\in Y)||x||=\sup\{|\langle \lambda_n,x\rangle|:n\in\mathbb{N}\}$ e conclua que $\|\cdot\|$ é mensurável com respeito a \mathcal{W}_Y .

Demonstração. Toda $\alpha \in Y^*$ é uma aplicação $\sigma(Y,Y^*)$ -contínua, portanto mensurável com respeito a σ -álgebra de Borel de Y munido da topologia fraca; então $\mathcal{W}_Y \subset \mathcal{B}_{\left(Y,\sigma(Y,Y^*)\right)}$. Além disso, como a topologia fraca de Y está contida na topologia (forte) de Y, a inclusão $\mathcal{B}_{\left(Y,\sigma(Y,Y^*)\right)} \subset \mathcal{B}_Y$ é clara.

Resta verificar, pois, a inclusão $\mathcal{B}_Y \subset \mathcal{W}_Y$. Para tal, basta verificar que todo aberto de Y está em \mathcal{W}_Y (pois os abertos de Y geram \mathcal{B}_Y); e, como todo aberto de Y é união enumerável de bolas abertas, basta verificar que toda bola aberta de Y está em \mathcal{W}_Y . Isso decorre do seguinte argumento:

- 1. W_Y é invariante por translações, i.e. $\forall a \in Y, \tau_a : Y \to Y$ dada por $x \mapsto x + a$ é um isomorfismo mensurável $(Y, W_Y) \to (Y, W_Y)$. Com efeito, para toda $\alpha \in Y^*, \alpha \circ \tau_a = \tau_{\alpha(a)} \circ \alpha$ é W_Y -mensurável (pois $\tau_{\alpha(a)} : \mathbb{K} \to \mathbb{K}$ é homeomorfismo e τ_a é W_Y -mensurável), o que implica, pela proposição 3 das notas da aula 2, $\tau_a : (Y, W_Y) \to (Y, W_Y)$ mensurável, e sua inversa τ_{-a} também o é.
- 2. Tendo em vista o item anterior, basta verificar que toda bola aberta centrada na origem é mensurável com respeito a W_Y . Tome $\{x_n : n \in \mathbb{N}\}$ subconjunto enumerável denso em Y (que existe, pela separabilidade de Y) e, usando o teorema de Hahn-Banach, $(\lambda_n)_{n\in\mathbb{N}} \prec Y^*$ tal que $(\forall n \in \mathbb{N}) \|\lambda_n\| = 1$ e $\langle \lambda_n, x_n \rangle = \|x_n\|$. Seja, para $x \in Y$, $p(x) \doteq \sup\{|\langle \lambda_n, x \rangle| : n \in \mathbb{N}\}$. Então p é uma seminorma em Y e, $(\forall x \in Y)p(x) \leq \|x\|$, portanto p é contínua. Além disso, p e $\|\cdot\|$ coincidem no conjunto denso $\{x_n : n \in \mathbb{N}\}$, portanto $p = \|\cdot\|$ por continuidade. Segue-se daí que $\|\cdot\| : (Y, W_Y) \to \mathbb{R}$ é mensurável, pois é o supremo de uma sequência de aplicações (Y, W_Y) -mensuráveis.

Questão 11-) Sejam Y espaço de Banach e $f: X \to Y$ com imagem essencialmente separável, i.e. tal que $\exists Z \subset Y$ subespaço separável com $f^{-1}(Y \setminus Z)$ nulo. São equivalentes:

a) f é mensurável, i.e. $f \in A(\mu, Y)$.

¹agradecimento ao Daniel Tausk por esta sugestão.

b) $(\forall \alpha \in Y^*) \alpha \circ f$ é mensurável.

SUGESTÃO: É corolário da questão anterior e da proposição 3 das notas da aula 2.

Demonstração. a) \Rightarrow b) decorre do fato de que composta de aplicações mensuráveis é mensurável. Para verificar b) \Rightarrow a), podemos supor, alterando f, se necessário, no conjunto nulo $f^{-1}(Y \setminus Z)$ (o que não altera a mensurabilidade de f pelo fato de o espaço de medida ser completo), que f toma valores no fecho \overline{Z} de Z, o qual é um espaço de Banach separável. Então, tendo em vista que a mudança de contradomínio também não altera a mensurabilidade (pois a σ -álgebra traço em \overline{Z} coincide com a sua σ -álgebra de Borel), e tendo em vista que $\mathcal{B}_{\overline{Z}}$ coincide com $\mathcal{W}_{\overline{Z}}$ pela questão anteior, obtém-se a tese aplicando-se a proposição 3 das notas da aula 2.

Questão 12 (teorema de Fubini para a integral de Bochner)-) Sejam (X, \mathcal{M}, μ) , (Y, \mathcal{N}, ν) espaços de medida σ -finitos e completos, e $(X \times Y, \overline{\mathcal{M} \otimes \mathcal{N}}, \lambda)$ o completamento de $(X \times Y, \mathcal{M} \otimes \mathcal{N}, \mu \times \nu)$. Sejam E espaço de Banach e $f \in \mathsf{L}^1(\lambda, E)$. Então:

- i) para μ -q.t. $x \in X$, $f_x \doteq f(x, \cdot) : E \to \mathbb{K}$ é Bochner-integrável, i.e. está em $\mathsf{L}^1(\nu, E)$, e a função definida μ -quase sempre $x \mapsto \int f_x(y) \, \mathrm{d}\nu(y) \in E$ é Bochner integrável. Enunciado análogo para seções " f^y ".
- ii) A integral de f pode ser calculada fazendo-se integrações iteradas:

$$\int f \, d\lambda = \int \left(\int f_x(y) \, d\nu(y) \right) d\mu(x) = \int \left(\int f^y(x) \, d\mu(x) \right) d\nu(y).$$

SUGESTÃO: Combine: uma generalização da proposição 2.12 do Folland, o teorema de Fubini-Tonelli para funções escalares, a questão anterior e o teorema de Hahn-Banach.

Demonstração. 1. Existe uma função \overline{f} $\overline{\mathcal{M} \otimes \mathcal{N}}$ -mensurável a valores num subespaço fechado e separável $F \subset E$ que coincide com f no complementar de um conjunto nulo; por uma generalização da proposição 2.12 do Folland, existe $\tilde{f}: X \times Y \to F$ $\mathcal{M} \otimes \mathcal{N}$ -mensurável que coincide com \overline{f} no complementar de um conjunto nulo (verifique). Portanto, existem $N \in \mathcal{M} \otimes \mathcal{N}$ nulo e $\tilde{f}: X \times Y \to E$ $\mathcal{M} \otimes \mathcal{N}$ -mensurável que coincide com f em N^c . As seções ($\forall x \in X, \forall y \in Y$) N_x e N^y são mensuráveis e, pelo teorema de Tonelli para funções escalares, para μ -q.t. $x \in X$, $\nu(N_x) = 0$, e para ν -q.t. $y \in Y$, $\mu(N_y) = 0$.

Portanto, para μ -q.t. $x \in X$, f_x e \tilde{f}_x coincidem ν -q.s., donde, pela completude do espaço de medida, f_x é mensurável (pois as seções de \tilde{f} são todas mensuráveis, uma vez que \tilde{f} é mensurável com respeito à σ -álgebra produto) e toma valores q.s. no subespaço separável F. Ou seja, para μ -q.t. $x \in X$, $f_x \in A(\nu, E)$; analogamente, para ν -q.t. $y \in Y$, $f^y \in A(\mu, E)$.

- 2. Como f e \tilde{f} coincidem λ -q.s. e $f \in \mathsf{L}^1(\lambda, E)$ por hipótese, segue-se $\tilde{f} \in \mathsf{L}^1(\lambda, E)$, de modo que $\int \|\tilde{f}\| \, \mathrm{d}\lambda < \infty$. E, como \tilde{f} é $\mathcal{M} \otimes \mathcal{N}$ -mensurável, segue-se que $\|\tilde{f}\|$ é $\mathcal{M} \otimes \mathcal{N}$ -mensurável e $\int \|\tilde{f}\| \, \mathrm{d}(\mu \times \nu) = \int \|\tilde{f}\| \, \mathrm{d}\lambda < \infty$. Além disso, podemos calcular $\int \|\tilde{f}\| \, \mathrm{d}(\mu \times \nu)$ por meio do teorema de Tonelli (para funções escalares), calculandose integrais iteradas; conclui-se daí que, para μ -q.t. $x \in X$, $\int \|\tilde{f}_x\| \, \mathrm{d}\nu < \infty$, i.e. $\tilde{f}_x \in \mathsf{L}^1(\nu, E)$; portanto, conclui-se a partir do item anterior que, para μ -q.t. $x \in X$, $f_x \in \mathsf{L}^1(\nu, E)$; analogamente, para ν -q.t. $y \in Y$, $f^y \in \mathsf{L}^1(\mu, E)$.
- 4. Pelos itens anteriores, faz sentido calcular $\int f d\lambda$ bem como as integrais iteradas $\int (\int f_x(y) d\nu(y)) d\mu(x)$ e $\int (\int f^y(x) d\mu(x)) d\nu(y)$. Idem para as integrais de \tilde{f} , e as integrais correspondentes de f e \tilde{f} coincidem. Para verificar que $\int f d\lambda$ coincide com as integrais iteradas de f, conforme afirmado em ii), basta

verificar a afirmação análoga para \tilde{f} . Para tal, basta aplicar o teorema de Hahn-Banach, observandose que, para todo $\alpha \in E^*$, aplicando-se α em cada uma das integrais $\int \tilde{f} \, \mathrm{d}\lambda$, $\int \left(\int \tilde{f}_x(y) \, \mathrm{d}\nu(y)\right) \, \mathrm{d}\mu(x)$ e $\int \left(\int \tilde{f}^y(x) \, \mathrm{d}\mu(x)\right) \, \mathrm{d}\nu(y)$, obtém-se, respectivamente, $\int \alpha \circ \tilde{f} \, \mathrm{d}\lambda = \int \alpha \circ \tilde{f} \, \mathrm{d}(\mu \times \nu)$, $\int \left(\int \alpha \circ \tilde{f}_x(y) \, \mathrm{d}\nu(y)\right) \, \mathrm{d}\mu(x)$ e $\int \left(\int \alpha \circ \tilde{f}^y(x) \, \mathrm{d}\mu(x)\right) \, \mathrm{d}\nu(y)$, as quais coincidem pelo teorema de Fubini (para funções escalares) aplicado a função $\mu \times \nu$ -integrável $\alpha \circ \tilde{f} : X \times Y \to \mathbb{K}$.

Referências

 $[1] \ \ \text{J. Conway}, \ \textit{A \ Course in Functional Analysis}, \ \text{Graduate Texts in Mathematics}, \ \text{Springer New York}, \ 1994.$