Medida e Integração - IME - 2020

Gláucio Terra glaucio@ime.usp.br https://www.ime.usp.br/~glaucio/mat5798

> Departamento de Matemática IME - USP

4 de março de 2020

Introdução

Henri Lebesgue, 1902: Intégrale, Longueur, Aire.

Introdução

- Gerald B. Folland, Real analysis, second ed., Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1999, Modern techniques and their applications, A Wiley-Interscience Publication.
- Walter Rudin, Real and complex analysis, third ed., McGraw-Hill Book Co., New York, 1987.

O Problema da Medida

Definição

Seja X um conjunto. Uma função de conjuntos em X é uma função cujo domínio é um subconjunto de 2^X .

Definição

Seja X um conjunto e $\mu: \mathcal{A} \subset 2^X \to [0, \infty]$. Diz-se que μ é:

finitamente aditiva se

$$A_1, \dots, A_n \text{ disjuntos em } \mathcal{A}$$

 $A = \bigcup_{i=1}^n A_i \in \mathcal{A}$ $\Rightarrow \mu(A) = \sum_{i=1}^n \mu(A_i)$

• σ -aditiva (ou enumeravelmente aditiva) se

$$(A_i)_{i\in\mathbb{N}}$$
 família disjunta em \mathcal{A} $A = \bigcup_{i\in\mathbb{N}} A_i \in \mathcal{A}$ $A = \bigcup_{i\in\mathbb{N}} A_i \in \mathcal{A}$

Tentativa de se definir um "volume *n*-dimensional" em \mathbb{R}^n Ideia natural: $\mu: 2^{\mathbb{R}^n} \to [0, \infty]$ tal que

- μ σ-aditiva;
- Se A congruente a B em \mathbb{R}^n , $\mu(A) = \mu(B)$;
- $\mu([0,1]^n)=1.$

Não existe tal $\mu!!$

Sejam U, V abertos limitados em \mathbb{R}^n (n \geq 3). Então $\exists k \in \mathbb{N}$ e

- * E_1, \dots, E_k disjuntos em \mathbb{R}^n cuja reunião é U
- * F_1, \dots, F_k disjuntos em \mathbb{R}^n cuja união é V
- * E_i congruente a F_i para 1 < i < n

Remediaremos esta situação, definindo-se μ num domínio menor que o conjunto das partes.

Linguagem e Notação Preliminares

- Linguagem da teoria dos conjuntos: seção 0 do Folland.
- A reta estendida:

$$\overline{\mathbb{R}} \doteq \mathbb{R} \cup \{-\infty, +\infty\}$$

- Relação de ordem em $\overline{\mathbb{R}}$: a < b se
 - a, b ∈ ℝ e a < b ou
 - $a=-\infty$, $b\neq -\infty$ ou
 - $b = +\infty$, $a \neq +\infty$

- < é uma relação de ordem total (i.e. quaisquer dois elementos se comparam) e completa (i.e. todo conjunto não vazio e limitado superiormente admite supremo). Além disso, todo conjunto não vazio é limitado superiormente (por $+\infty$) e inferiormente (por $-\infty$), portanto admite supremo e ínfimo.
- Em $\overline{\mathbb{R}}$, consideramos a topologia da ordem, i.e., gerada pela sub-base:

$$\left\{ \{x \in \overline{\mathbb{R}} | x < a\}, \{x \in \overline{\mathbb{R}} | x > b\} : a, b \in \mathbb{R} \right\}$$

compacto (é uma compactificação de R). Além disso, as operações $+: \overline{\mathbb{R}} \times \overline{\mathbb{R}} \setminus \{(+\infty, -\infty), (-\infty, +\infty)\} \to \overline{\mathbb{R}}$ e $\cdot: \overline{\mathbb{R}} \times \overline{\mathbb{R}} \setminus \{(\pm \infty, 0), (0, \pm \infty)\} \to \overline{\mathbb{R}}$, definidas da maneira óbvia, são contínuas.

$$\overline{\lim} x_n = \inf_{n \in \mathbb{N}} \sup_{k \ge n} x_k = \lim_{n \to \infty} \sup_{k \ge n} x_k$$
$$\underline{\lim} x_n = \sup_{n \in \mathbb{N}} \inf_{k \ge n} x_k = \lim_{n \to \infty} \inf_{k \ge n} x_k$$

• Analogamente, dada $f : \mathbb{R} \to \overline{\mathbb{R}}$ e $a \in \mathbb{R}$:

$$\overline{\lim}_{x \to a} f(x) = \inf_{\delta > 0} \sup \{ f(x) : 0 < |x - a| < \delta \}$$
$$\underline{\lim}_{x \to a} f(x) = \sup_{\delta > 0} \inf \{ f(x) : 0 < |x - a| < \delta \}$$

Definição

$$0 \cdot \pm \infty \doteq 0$$
 e $\pm \infty \cdot 0 \doteq 0$

• $: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ não é contínua em $(0, \pm \infty)$ e $(\pm \infty, 0)$. De fato: Tome $(x_n, y_n) \doteq (+\infty, \frac{1}{n})$. Então:

$$(x_n, y_n) \rightarrow (+\infty, 0)$$

 $x_n \cdot y_n = \infty \neq +\infty \cdot 0 = 0$

- $\cdot : [0, \infty] \times [0, \infty] \to [0, \infty]$ obtida por restrição:
 - é "upward continuous", ou seja:

se
$$\left\{ \begin{array}{l} x_n \uparrow x \text{ em } [0,\infty] \\ y_n \uparrow y \text{ em } [0,\infty] \end{array} \right.$$
 então $x_n \cdot y_n \to x \cdot y$

não é "downward continuous":

$$x_n = +\infty$$
$$y_n = \frac{1}{n}$$

é tal que $x_n \downarrow +\infty$, $y_n \downarrow 0$ mas $x_n \cdot y_n = +\infty$.

Essa assimetria surge pela forma como se definiu $0\cdot\pm\infty=0$ e acarretará outras assimetrias mais adiante.

σ -álgebras

Definição

Sejam X um conjunto $\emptyset \neq \mathcal{A} \in 2^X$. Diz-se que \mathcal{A} é uma álgebra (respectivamente, uma σ -álgebra) se for fechada por complementação e por união finita (respectivamente, por união enumerável).

Exemplo

Seja X um conjunto.

- 1. 2^X é uma σ -álgebra.
- 2. $\{\emptyset, X\} \subset 2^X$ é uma σ -álgebra
- 3. $A \doteq \{A \subset X | A \text{ \'e finito ou } A^c \text{ \'e finito}\}$ \'e uma álgebra.
- 4. $A \doteq \{A \subset X | A \text{ \'e enumer\'avel ou } A^c \text{ \'e enumer\'avel} \}$ é σ -álgebra.

Proposição

Seja $A \sigma$ -álgebra de subconjuntos de X. Tem-se:

- (i) $\emptyset, X \in \mathcal{A}$.
- (ii) A é fechada por intersecção enumerável.

Demonstração.

(i) é imediato e (ii) segue das *Regras de Morgan*: Seja $(A_{\alpha})_{\alpha \in A}$ família em 2^X , então:

$$\left(\bigcup_{\alpha \in A} A_{\alpha}\right)^{c} = \bigcap_{\alpha \in A} A_{\alpha}^{c}$$
$$\left(\bigcap_{\alpha \in A} A_{\alpha}\right)^{c} = \bigcup_{\alpha \in A} A_{\alpha}^{c}$$

Notação

- 1. $(x_n)_{n\in\mathbb{N}} \prec X$ para denotar $x: \mathbb{N} \to X$ (i.e. $x \in \text{uma}$ sequência a valores no conjunto X).
- 2. $(x_n)_{n\in\mathbb{N}} \prec X$ para denotar $(x_n)_{n\in\mathbb{N}} \prec X$ e $x_n \cap x_m = \emptyset$ se $n \neq m$ (assumindo que os elementos de X sejam conjuntos).

Proposição

Seja $A \subseteq 2^X$ uma álgebra. São equivalentes:

- (a) A é fechada por união enumerável.
- (b) A é fechada por união enumerável crescente, i.e. $(B_n)_{n\in\mathbb{N}} \prec \mathcal{A} \text{ crescente} \Rightarrow \bigcup_{n\in\mathbb{N}} B_n \in \mathcal{A}.$
- (c) A é fechada por união enumerável disjunta, i.e. $(B_n)_{n\in\mathbb{N}} \prec A \Rightarrow \bigcup_{n\in\mathbb{N}} B_n \in A.$

Proposição

Seja X um conjunto, $(A_{\alpha})_{\alpha \in A}$ família de σ -álgebras de X. Então $\cap_{\alpha \in A} \mathcal{A}_{\alpha} \subset 2^X$ é uma σ -álgebra.

Definição (σ -álgebra gerada por um conjunto)

Sejam X conjunto, $S \subset 2^X$. Pela proposição anterior existe uma σ -álgebra $\sigma(S) \subset 2^X$ tal que:

- (i) $S \subset \sigma(S)$
- (ii) $\forall A \subset 2^X \ \sigma$ -álgebra com $S \subset A$, $\sigma(S) \subset A$.

A saber, $\sigma(S) = \bigcap \{ A \subset 2^X | A \sigma \text{-\'algebra e } S \subset A \}. \ \sigma(S)$ chama-se σ -álgebra gerada por S.

Observação

De forma análoga, dado $S \subset 2^X$, faz sentido considerar faz sentido considerar a álgebra gerada por S: é a interseção de todas as álgebras que contém S.

0000

Definição (σ -álgebra de Borel)

Seja (X, τ) espaço topológico. A σ -álgebra $\sigma(\tau)$ chama-se σ -álgebra de Borel de (X, τ) e denota-se por $\mathcal{B}(X)$ ou \mathcal{B}_X .

Definição (Medidas)

Seja X um conjunto, $\emptyset \in S \subset 2^X$.

- (i) Uma *medida em S* é uma função de conjunto σ -aditiva $\mu: S \to [0, \infty]$ tal que $\mu(\emptyset) = 0$.
- (ii) Uma medida finitamente aditiva em S é uma função de conjunto finitamente aditiva $\mu:S\to [0,\infty]$ tal que $\mu(\emptyset)=0$.

Exemplo

- 1. Sejam X conjunto, $\mathcal{M} = 2^X$ e $\mu : \mathcal{M} \to [0, \infty]$ dada por $\mu(A) \doteq |A|$ se A finito e $\mu(A) = \infty$ caso contrário. Então μ é uma medida, chamada *medida de contagem* em X. Qualquer restrição de μ também é chamada pelo mesmo nome.
- 2. Sejam X conjunto, $\mathcal{M} = 2^X$, $x_0 \in X$ e $\mu : \mathcal{M} \to [0, \infty]$ dada por $\mu(A) \doteq 1$ se $x_0 \in A \mu(A) = 0$ caso contrário. Então μ é uma medida, chamada *medida de Dirac* centrada em x_0 , a qual se denota por δ_{x_0} . Qualquer restrição de δ_{x_0} também é chamada pelo mesmo nome.

Definição (Espaço Mensurável e Espaço de Medida)

Sejam X um conjunto, $A \subset 2^X$ uma σ -álgebra em X e $\mu: A \to [0, \infty]$ medida.

- o par (X, A) chama-se espaço mensurável;
- a terna (X, A, μ) chama-se *espaço de medida*.

Diz-se que μ é:

- (i) semi-finita se $\forall A \in \mathcal{A} | \mu(A) = \infty$, $\exists B \in \mathcal{A} | B \subset A$ e $0 < \mu(B) < \infty$.
- (ii) σ -finita se $\exists (A_n)_{n\in\mathbb{N}} \prec A$ tal que

$$\begin{cases}
(\forall n) \ \mu(A_n) < \infty \\
\bigcup_{n \in \mathbb{N}} A_n = X
\end{cases}$$

- (iii) finita se $\mu(X) < \infty$.
- (iv) de probabilidade se $\mu(X) = 1$.