${ m MAT~5798-Medida~e~Integração}$ ${ m IME-2020}$

http://www.ime.usp.br/ \sim glaucio/mat5798 Notas da Aula 9 (15/4)

I) Comparação entre as Integrais de Lebesgue e de Riemann

Proposição 1. Seja a < b reais. Considere o espaço de medida $([a,b],\mathcal{L}|_{[a,b]},m)$ e $f:[a,b] \to \mathbb{R}$ limitada. Defino:

$$s(f) \doteq \left\{ \int \phi : \phi \text{ simples e } \phi \leq f \right\}$$

$$S(f) \doteq \left\{ \int \phi : \phi \text{ simples e } \phi \geq f \right\}$$

Note que $s(f) \neq \emptyset$ e é limitado superiormente, $S(f) \neq \emptyset$ e é limitado inferiormente. Defina $\underline{\int} f \doteq \sup s(f)$ e $\overline{\int} f \doteq \inf S(f)$.

Então, $\int f = \overline{\int} f \Leftrightarrow f$ Lebesgue mensurável. Em caso afirmativo,

$$\int_{[a,b]} f = \underline{\int} f = \overline{\int} f$$

Proposição 2. Seja $f:[a,b] \to \mathbb{R}$ limitada.

(i) Se f for R-integrável, então f é Lebesgue-integrável e

$$\int_{a}^{b} f(x)dx = \int_{[a,b]} fdm$$

(ii) f é R-integrável see

$$m(\{x \in [a,b]|f \text{ descontinua em } x\}) = 0$$

• Prova:

(i) Seja $P = \{a = t_0 < t_1 < \dots < t_n = b\}$ partição de [a,b]. Para $1 \le i \le n$: $m_i = \inf\{f(t): t_{i-1} \le t \le t_i\}$ e $M_i = \sup\{f(t): t_{i-1} \le t \le t_i\}$.

$$\begin{split} s(f,P) &= \sum_{i=1}^n m_i \cdot (t_i - t_{i-1}) \\ S(f,P) &= \sum_{i=1}^n M_i \cdot (t_i - t_{i-1}) \\ \underbrace{\int_a^b f \doteq \sup\{s(f,P): P \text{ partição de } [a,b]\}}_{\bar{f}} \\ &= \inf\{s(f,P): P \text{ partição de } [a,b]\} \end{split}$$

Por hipótese: $\int_a^b f = \overline{\int_a^b} f \vdash f$ é Lebesgue-integrável e $\int_{[a,b]} f dm = \int_a^b f$. Com efeito, para cada partição $P = \{a = t_0 < \overline{t_1} < \dots < t_n = b\}$ de [a,b] como anteriormente, definimos:

$$g_P \doteq \sum_{i=1}^n m_i \cdot \chi_{(t_{i-1},t_i]} \qquad \text{(de modo que } \int g_P dp = s(f,P))$$

$$G_P \doteq \sum_{i=1}^n M_i \cdot \chi_{(t_{i-1},t_i]} \qquad (\therefore \int G_P dm = S(f,P))$$

1

Tome $(P_i)_{i\in\mathbb{N}}$ sequeência de partições tais que:

(i) $(\forall i)P_i \subset P_{i+1}$

(ii)
$$s(f, P_i) \to \int_a^b f \in S(f, P_i) \to \overline{\int_a^b} f$$

Tome $g_i \doteq g_{P_i}$ e $G_i \doteq G_{P_i}$, $i \in \mathbb{N}$, de modo que $(g_i)_{i \in \mathbb{N}}$ é sequência crescente (Se $P \subset Q$, $g_P \leq g_Q$.) e $(G_i)_{i \in \mathbb{N}}$ é decrescente e $(\forall i)$ $g_i \leq f \leq G_i$ m-q.s. (i.e. as designaldades valem em todo ponto, exceto, possivelmente, em a, pelo fato de termos tomado intervalos semiabertos à esquerda na definição de g_P e G_P). Tome $g = \lim g_i$ e $G = \lim G_i$ de modo que g e G são borelianas e $g \leq f \leq G$ m-q.s.

Afirmação: $g \in G$ são Lebesgue-integráveis e $\int g dm = \int_{\underline{a}}^{\underline{b}} f$, $\int G = \int_{\underline{a}}^{\underline{b}} f$. Nesse caso, $\int g dm = \int G dm$, i.e.

$$\int \underbrace{(G-g)}_{>0} dm = 0$$

 $\therefore g = G$ m-q.s., $\therefore f = g$ m-q.s., $\therefore f$ é Lebesgue-integrável e

$$\therefore \int_{[a,b]} f dm = \int g dm = \int_{\underline{a}}^{\underline{b}} f = \int_{\underline{a}}^{\underline{b}} f(x) dx$$

Prova da afirmação: $\exists m = \inf \text{ Im } f \in \mathbb{R} \text{ e } M = \sup \text{ Im } f \in \mathbb{R} \text{ de modo que, } \forall i \in \mathbb{N} \text{ e m-q.s. em } [a, b]$: $m \leq g_i \leq M \text{ e } m \leq G_i \leq M$, logo:

$$|g_i| \le \max\{M, -m\} \cdot \chi_{[a,b]}$$
$$|G_i| \le \max\{M, -m\} \cdot \chi_{[a,b]}$$

Pelo TCD:

$$\int g_i dm = \underbrace{s(f, P_i)}_{\rightarrow \underbrace{\int_a^b f}} \rightarrow \int g dm$$

$$\int G_i dm = \underbrace{S(f, P_i)}_{\rightarrow \underbrace{\int_a^b f}} \rightarrow \int G dm$$

Por unicidade do limite, segue

$$\int gdm = \underbrace{\int_a^b f}_{a}$$

$$\int Gdm = \underbrace{\int_a^b f}_{a}$$

- (ii) (Está como exercício na lista 7.)
- Exercício: Pode-se enunciar algo similar a (i) na última proposição para integrais de Riemann impróprias. Por exemplo: Seja $a \in \mathbb{R}$ e $f:[a,\infty) \to \mathbb{R}$ e R-integrável em $[a,b] \ \forall b>a$. Então, são equivalentes as seguintes condições:
 - (i) $\int_a^\infty f$ é absolutamente convergente (i.e. $\int_a^\infty |f| < \infty$).
 - (ii) f é Lebesgue-integrável em $[a, \infty)$

Em caso afirmativo, $\int_a^\infty f(x)dx = \int_{[a,\infty)} fdm$ (sugestão: tome uma sequência $b_n \nearrow \infty$ e use os teoremas de convergência para investigar os limites das integrais de $\chi_{[a,b_n]}|f|$ e $\chi_{[a,b_n]}f$.)

• Observação: Disso decorre que, se $\int_a^{\infty} f$ for condicionalmente convergente, f não é Lebesgue-integrável em $\overline{[a,\infty)}$.

II) Aplicações do Teorema da Convergência Dominada

TEOREMA 1. Sejam: (X, \mathcal{M}, μ) espaço de medida, $I \subset \mathbb{R}$ intervalo e $f: X \times I \to \mathbb{R}$ tal que $\forall t \in I, f(\cdot, t): X \to \mathbb{R}$ $\in \mathcal{L}^1(\mu)$. Defina:

$$F: I \to \mathbb{R}$$

 $t \mapsto \int f(x,t) d\mu(x)$

(a) Suponha que:

- (i) $\forall x \in X, f(x, \cdot) : I \to \mathbb{R}$ contínua em $t_0 \in I$.
- (ii) $\exists g \in \mathcal{L}^1(\mu)$ tal que $\forall (x,t) \in X \times I, |f(x,t)| \leq g(x)$

Então F é contínua em t_0 . Enunciado análogo vale para a continuidade sequencial de F com o parâmetro t num espaço topológico qualquer.

- (b) Suponha que:
 - (i) $\forall x \in X, f(x, \cdot) : I \to \mathbb{R}$ derivável
 - (ii) $\exists g \in \mathcal{L}^1(\mu)$ tal que $\forall (x, t) \in X \times I$,

$$\left|\frac{\partial}{\partial t}f(x,t)\right| \leq g(x)$$

Então F é derivável e $\forall t \in I$,

$$F'(t) = \int \frac{\partial}{\partial t} f(x, t) d\mu(x)$$

Em suma:

$$\frac{d}{dt} \int f(x,t) d\mu(x) = \int \frac{\partial}{\partial t} f(x,t) d\mu(t)$$

- Prova:
 - (a) Dado $t_0 \in I$, quero mostrar que $F(t_0) = \lim_{t \to t_0} F(t)$, i.e. que

$$\int f(x,t_0)d\mu = \lim_{t \to t_0} \int f(x,t)d\mu(x)$$

Com efeito, seja $(t_n)_{n\in\mathbb{N}} \prec I$ com $t_n \to t_0$. Então a sequência de funções $\{f(\cdot,t_n)\}_{n\in\mathbb{N}} \prec \mathcal{L}^1(\mu)$ é pontualmente convergente para $f(\cdot,t_0)$ e $|f(\cdot,t_n)| \leq g \in \mathcal{L}^1(\mu)$ em X. Pelo TCD,

$$\underbrace{\int f(\cdot, t_n) d\mu}_{F(t_n)} \to \underbrace{\int f(\cdot, t_0) d\mu}_{F(t_0)}$$

(b) Note que, fixado $t \in I$, tomando-se $(t_n)_{n \in \mathbb{N}} \prec I \setminus \{t\}$ com $t_n \to t$, tem-se: $\forall x \in X$

$$\underbrace{\frac{f(x,\cdot)'(t)}{\partial t}}_{=\frac{\partial}{\partial t}f(x,t)} = \lim_{n \to \infty} \frac{f(x,t_n) - f(x,t)}{t_n - t}$$

i.e.

$$\frac{\partial}{\partial t} f(\cdot, t) = \lim_{n \to \infty} \frac{f(\cdot, t_n) - f(\cdot, t)}{t_n - t}$$

é o limite pontual de uma sequência de funções mensuráveis $\therefore \frac{\partial}{\partial t} f(\cdot, t) : X \to \mathbb{R}$ é mensurável. Além disso, $\forall x \in X$, fixado t e tomando $(t_n)_{n \in \mathbb{N}}$ como acima, pelo TVM, $\exists \tau_n$ entre t e t_n tal que:

$$f(x,t_n) - f(x,t) = \frac{\partial}{\partial t} f(x,\tau_n) \cdot (t_n - t)$$

Daí:

$$\underbrace{\frac{f(x,t_n) - f(x,t)}{t_n - t}}_{\stackrel{n \to \infty}{\longrightarrow}} \underbrace{\frac{\partial}{\partial t} f(x,t)}_{(**)}$$

e como, $(\forall n)$,

$$\left| \frac{\partial}{\partial t} f(x, \tau_n) \right| \stackrel{(*)}{\leq} g(x)$$

segue, $(\forall x \in X)$

$$\left| \frac{\partial}{\partial t} f(x,t) \right| \le g(x)$$
 $\left(\therefore \frac{\partial}{\partial t} f(\cdot,t) \in \mathcal{L}^1(\mu) \right)$

Assim, para esse mesmo t e sequência $(t_n)_{n\in\mathbb{N}}$, tem-se:

$$\frac{F(t_n) - F(t)}{t_n - t} = \frac{\int f(x, t_n) d\mu(x) - \int f(x, t) d\mu}{t_n - t} = \int \underbrace{\frac{f(x, t_n) - f(x, t)}{t_n - t}}_{\underbrace{n \to \infty}} \frac{\partial}{\partial t} f(x, t) d\mu(x)$$

e a convergência é dominada por g, em vista de (*) e (**). Pelo TCD, conclui-se que

$$\lim_{n \to \infty} \frac{F(t_n) - F(t)}{t_n - t} = \int \frac{\partial}{\partial t} f(x, t) d\mu(x)$$

Como $(t_n)_n$ em $I\setminus\{t\}$ com $t_n\to t$ foi tomada de forma arbitrária, conclui-se que

$$\exists \lim_{x \to t} \frac{F(x) - F(t)}{x - t} = \int \frac{\partial}{\partial t} f(x, t) d\mu(x)$$

 $\therefore F$ derivável em t e

$$F'(t) = \int \frac{\partial}{\partial t} f(x, t) d\mu(x)$$

III) Funções mensuráveis no sentido estendido

DEFINIÇÃO 1. Sejam (X, \mathcal{M}, μ) espaço de medida e $f: \text{dom } f \subset X \to \mathbb{K}$ ($\mathbb{K} = \mathbb{R}$ ou $\overline{\mathbb{R}}$ ou \mathbb{C}). Diz-se que f é mensurável no sentido estendido ou mensurável definida q.s. se:

- (i) dom $f \in \mathcal{M}$, $\mu[(\text{dom } f)^c] = 0$
- (ii) $f: (\text{dom } f, \mathcal{M}|_{\text{dom } f}) \to \mathbb{K}$ é mensurável
 - Note que toda função $f: \text{dom } f \to \mathbb{K}$ mensurável no sentido estendido admite uma extensão mensurável $X \to \mathbb{K}$:
 - (i) Se (X, \mathcal{M}, μ) for completo, qualquer extensão de f é mensurável
 - (ii) $\tilde{f}: X \to \mathbb{K}$ dada por $\tilde{f}|_{\text{dom } f} = f$ e $\tilde{f}|_{(\text{dom } f)^c} = 0$. Definição: chama-se extensão canônica de f.

DEFINIÇÃO 2. Com a notação da definição acima, seja $f: \text{dom } f \to \mathbb{K}$ mensurável no sentido estendido. Diz-se que:

(i) f é quase integrável se \tilde{f} o for. Em caso afirmativo: $\int f = \int \tilde{f}$. Mais geralmente, $\forall E \in \mathcal{M}$:

$$\int_{E} f d\mu \doteq \int_{E} \tilde{f} d\mu = \int \chi_{E} \tilde{f} d\mu$$

- (ii) f é integrável se \tilde{f} o for.
 - (Note que a integral definida acima independe da extensão pois o complementar tem medida nula e a integral não enxerga conjuntos de medida nula.)
 - Observação: Daqui em diante, diremos, simplesmente, "mensurável" no lugar de "mensurável no sentido estendido" ou "mensurável definida q.s."

IV) O espaço de Banach L^1

DEFINIÇÃO 3. Seja (X, \mathcal{M}, μ) espaço de medida. Definimos:

$$\|\cdot\|_1: \mathcal{L}^1(\mu) \to [0,\infty)$$

 $f \mapsto \|f\|_1 \doteq \int |f| d\mu$

• Recorde: $\mathcal{L}^1(\mu) = \{ f : X \to \mathbb{C} | f \text{ integrável} \}$

Proposição 3. Com a notação acima, $\forall \alpha \in \mathbb{C}, \forall f, g \in \mathcal{L}^1(\mu)$:

- (i) $\|\alpha f\|_1 = |\alpha| \|f\|_1$
- (ii) [designaldade triangular]: $||f + g||_1 \le ||f||_1 + ||g||_1$
 - Prova:

(i)

$$\|\alpha f\|_1 = \int \underbrace{|\alpha f|}_{=|\alpha||f|} d\mu = |\alpha| \int |f| = |\alpha| \|f\|_1$$

(ii)

$$||f + g||_1 = \int \underbrace{|f + g|}_{\leq |f| + |g|} \leq \int (|f| + |g|) = \int |f| + \int |g| = ||f||_1 + ||g||_1$$

• Assim, $\|\cdot\|_1$ é uma seminorma, no sentido da:

DEFINIÇÃO 4. Sejam E \mathbb{K} -espaço vetorial. ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}) e $\|\cdot\|: E \to [0, \infty)$ tal que, $\forall \alpha \in \mathbb{K}, \forall x, y \in E$:

- (i) $\|\alpha x\| = |\alpha| \|x\|$
- (ii) $||x + y|| \le ||x|| + ||y||$ (designaldade triangular)

 $\|\cdot\|$ chama-se uma seminorma em E. Diz-se que $\|\cdot\|$ é uma norma se for uma seminorma tal que $\|x\|=0 \Rightarrow x=0$. Um espaço normado é um par $(E,\|\cdot\|)$, onde E \mathbb{K} -espaço vetorial e $\|\cdot\|$ norma em E.

• Observação: Todo espaço normado $(E, \|\cdot\|)$ é um espaço métrico com a métrica

$$d: E \times E \to [0, \infty)$$
$$(x, y) \mapsto ||x - y||$$

• (Para quem achar que precisa revisar Topologia Geral: estudar capítulos 4 e 5 do Folland.)

DEFINIÇÃO 5. Um espaço normado $(E, \|\cdot\|)$ diz-se um espaço de Banach se for completo com a métrica induzida por $\|\cdot\|$.

- IV.1) Como construir um espaço normado a partir de um \mathbb{K} -espaço vetorial munido de uma seminorma Proposição 4. Dados E \mathbb{K} -e.v. e $\|\cdot\|$ seminorma em E, $N \doteq \{x \in E | \|x\| = 0\}$ é \mathbb{K} -subespaço vetorial de E.
 - Prova: Se $\alpha, \beta \in \mathbb{K}$, $x, y \in \mathbb{N}$, tem-se:

$$\|\alpha x + \beta y\| \stackrel{\mathrm{des.}\triangle}{\leq} \underbrace{\|\alpha x\|}_{=|\alpha|} + \underbrace{\|\beta y\|}_{=0} = 0$$

 $\therefore \|\alpha x + \beta y\| = 0 \therefore \alpha x + \beta y \in N.$

DEFINIÇÃO 6 (quociente). Sejam $E \mathbb{K}$ -e.v. e $F \subset E \mathbb{K}$ -subespaço de E.

• Como conjunto,

$$E/F \doteq E/\sim$$

onde $x \sim y \doteq x - y \in F$. Ou seja,

$$E/F = \{[e] = \{e\} + F : e \in E\} \subset \mathbb{P}(E)$$

• A estrutura de K-e.v. em E/F é definida por:

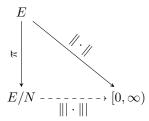
$$E/F \times E/F \xrightarrow{+} E/F$$
$$(x+F,y+F) \mapsto (x+y)+F$$
$$\mathbb{K} \times E/F \xrightarrow{\cdot} E/F$$
$$(\alpha,x+F) \mapsto \alpha x+F$$

• Exercício: Verifique que as operações acima estão bem definidas e, com essas operações, E/F é um \mathbb{K} -espaço vetorial, chamado quociente de E por F. Verifique que:

$$E \xrightarrow{\pi} E/F$$
$$x \mapsto x + F$$

é linear e sobre E/F.

• Diagrama (*):



PROPOSIÇÃO 5. Sejam E \mathbb{K} -e.v., $\|\cdot\|$ seminorma em E, $N = \{x \in E | \|x\| = 0\}$. Então existe uma única função $\|\|\cdot\|\| : E/N \to [0,\infty)$ que completa o diagrama (*) (i.e. torna o diagrama comutativo). Além disso, $\|\|\cdot\|\|$ é uma norma em E/N (chama-se norma induzida por $\|\cdot\|$. Doravante, usaremos a mesma notação para a seminorma e para a norma induzida).

Demonstração. A unicidade é clara. Para a existência, ponha $||x+N|| \doteq ||x||$; verifique que está bem definida e é uma norma.

- A construção acima vale, em particular, dado (X, \mathcal{M}, μ) espaço de medida, para $E = \mathcal{L}^1(\mu)$ e $\|\cdot\| = \|\cdot\|_1$: $\mathcal{L}^1(\mu) \to [0, \infty)$. Nesse caso:
 - 1. $N = \{ f \in \mathcal{L}^1(\mu) | ||f||_1 = 0 \} = \{ f : X \to \mathbb{C} \text{ mensurável } |f = 0 \text{ μ-q.s.} \}$
 - 2. Dada $f \in \mathcal{L}^1(\mu)$,

$$[f] = f + N = \{g : X \to \mathbb{C} \text{ mensurável } | g = f \mu\text{-q.s.} \}$$

3. **Definição**: $L^1(\mu) \doteq \mathcal{L}^1(\mu)/N$

$$\|\cdot\|_1: L^1(\mu) \to [0,\infty)$$

chama-se "norma L¹" ou "norma 1" (e de fato é uma norma, como visto acima). Assim, $(L^1(\mu), \|\cdot\|_1)$ é um espaço normado.

LEMA 1. Se $(E, \|\cdot\|)$ espaço vetorial normado (sobre \mathbb{R} ou \mathbb{C}). São equivalentes:

- (i) $(E, \|\cdot\|)$ é completo (i.e. toda sequência de Cauchy é convergente.)
- (ii) Toda série absolutamente convergente em E é convergente.
 - <u>Prova</u>:
 - (i)⇒(ii) Seja $\sum_{n=1}^{\infty} x_n$ uma série absolutamente convergente em E (i.e. tal que $\sum_{i=1}^{\infty} \|x_n\| < \infty$). Tome, $(\forall n), \ s_n = \sum_{k=1}^n x_k$. Então, $\forall n, m \text{ com } m < n$:

$$||s_n - s_m|| = \left\| \sum_{k=m+1}^n x_n \right\| \stackrel{\text{des } \triangle}{\leq} \sum_{k=m+1}^n ||x_k|| \leq \sum_{k=m+1}^\infty ||x_k|| \stackrel{m \to \infty}{\longrightarrow} 0$$

6

 $(s_n)_n$ é de Cauchy em $E (s_n)_n$ é convergente.

- (ii)⇒(i) Tome $(x_n)_n \prec E$ de Cauchy. ⊢ $(x_n)_n$ é convergente e, para tal, basta verificar que $(x_n)_n$ possui uma subsequência convergente. Para cada $k \in \mathbb{N}$, $\exists n_k \in \mathbb{N} | \forall m, n \geq n_k$, $||x_m - x_n|| < 2^{-k}$. Sem perda de generalidade (SPG) assimumos que $(n_k)_k$ é crescente. Tome $(y_k)_{k \in \mathbb{N}}$ dada por $(\forall k)y_k = x_{n_k}$. Afirmo que essa é uma subsequência convergente de $(x_n)_n$. Com efeito, $\forall k > 1$,

$$\|\underbrace{y_k}_{=x_{n_k}} - \underbrace{y_{k-1}}_{=x_{n_{k-1}}}\| < 2^{-(k-1)}$$

Seja $(z_n)_{n\in\mathbb{N}} \prec E$ dada por:

$$z_1 \doteq y_1$$

 $z_n \doteq y_n - y_{n-1}$, para $n > 1$

Note que, $\forall n > 1$, $\sum_{k=1}^{n} z_k = y_n$ e $||z_n|| = ||y_n - y_{n-1}|| < 2^{-(n-1)}$. Como $\sum_{n \in \mathbb{N}} 2^{-n} < \infty$, segue $\sum_{n \in \mathbb{N}} ||z_n|| < \infty$ e, pela hipótese (ii), $\sum z_n$ é convergente $\therefore (y_n)_n$ é convergente.

TEOREMA 2. Seja (X, \mathcal{M}, μ) espaço de medida. Então, $(L^1(\mu), \|\cdot\|_1)$ é um espaço de Banach.

- Observação: A mesma construção e um teorema análogo valem para $\mathcal{L}^1(\mu, \mathbb{R}) \doteq \{f : X \to \mathbb{R} | f \text{ \'e integrável}\}\$ (que é um \mathbb{R} -e.v.), com a seminorma $\|\cdot\|_1$.
- Prova do teorema: Tome $([f_n])_{n\in\mathbb{N}} \prec L^1(\mu)$ tal que

$$\sum_{n=1}^{\infty} \underbrace{\|[f_n]\|_1}_{=\|f_n\|_1} < \infty$$

 $\vdash \sum_{n=1}^{\infty} [f_n]$ é convergente em L^1 , i.e. $\exists [g] \in L^1(\mu)$ tal que $\sum_{k=1}^n [f_k] \to [g]$ em $(L^1(\mu), \|\cdot\|_1)$. Com efeito, tome $G: X \to [0, \infty]$ dada por $G(x) = \sum_{n=1}^{\infty} |f_n(x)|$, i.e. $G = \sum_{n \in \mathbb{N}} |f_n|$. Então $G \in L^+$ e, pelo TCM, tem-se:

$$\int Gd\mu = \int \sum_{n} |f_{n}| d\mu \stackrel{\text{TCM}}{=} \sum_{n \in \mathbb{N}} \underbrace{\int |f_{n}| d\mu}_{=||f_{n}||_{1}} < \infty$$

 \therefore G é integrável e, em particular, finita quase sempre. Assim, $\exists N \in \mathcal{M} | \mu(N^c) = 0$ e $(\forall x \in N)$ $G(x) < \infty$, i.e. $\sum_{n=1}^{\infty} |f_n(x)| < \infty$, logo $\sum_{n=1}^{\infty} f_n(x) < \infty$. Tome:

$$g: X \to \mathbb{C}$$

$$x \mapsto \begin{cases} \sum_{n=1}^{\infty} f_n(x) & \text{se } x \in N \\ 0 & \text{cc} \end{cases}$$

Então g é mensurável, pois $g|_N$ e $g|_{N^c}$ o são. Além disso, $(\forall x \in X) |g(x)| \leq G(x)$ e, como G é integrável, g também o é, i.e. $g \in \mathcal{L}^1(\mu)$. Afirmo que $\sum_{k=1}^n [f_k] \to [g]$ em $L^1(\mu)$, i.e. $||[g] - \sum_{k=1}^n [f_k]||_1 \xrightarrow{n \to \infty} 0$. De fato:

$$\left\| [g] - \sum_{k=1}^{n} [f_k] \right\|_{1} = \left\| [g - \sum_{k=1}^{n} f_k] \right\|_{1} = \left\| g - \sum_{k=1}^{n} f_k \right\|_{1} = \int |g - \sum_{k=1}^{n} f_k| d\mu =$$

$$= \int \left| \sum_{k=n+1}^{\infty} f_k| d\mu \le \sum_{k=n+1}^{\infty} \int |f_k| d\mu \xrightarrow{n \to \infty} 0,$$

pois $\sum_{n=1}^{\infty} ||f_n||_1 < \infty$.

• Notação: doravante, usaremos a mesma notação " $L^1(\mu)$ " para denotar $\mathcal{L}^1(\mu)$ ou $\mathcal{L}^1(\mu)/N$ (cujos elementos são classes de equivalência de funções integráveis). Desse modo, " $f \in L^1(\mu)$ " poderá significar " $f: X \to \mathbb{C}$ integrável" ou a classe de equivalência de uma tal f módulo funções mensuráveis nulas μ -q.s., i.e. $\{g: X \to \mathbb{C} \text{ mensurável } | g = f \mu$ -q.s. $\}$.

PROPOSIÇÃO 6. Seja (X, \mathcal{M}, μ) espaço de medida e $Y \doteq \{\varphi : X \to \mathbb{C} : \varphi \text{ simples e integrável}\}$. Então Y é denso em $L^1(\mu)$.

• Prova: Tome $f \in L^1(\mu)$. $\vdash \exists \ (\varphi_n)_n$ sequência de funções simples integráveis tal que $\varphi_n \xrightarrow{\|\cdot\|_1} f$ (de modo que, $\forall \varepsilon > 0$, $\exists n_0 \in \mathbb{N}$ tal que $[\varphi_{n_0}] \in B_{\varepsilon}([f])$, donde a densidade afirmada). Com efeito, existe $(\varphi_n)_{n \in \mathbb{N}}$ sequência de funções simples $X \to \mathbb{C}$ tal que $\varphi_n \xrightarrow{p} f$ e $(\forall n) \ |\varphi| \le |\varphi_{n+1}| \le |f|$. Assim, $\varphi_n - f \xrightarrow{p} 0$ e $(\forall n) \ |\varphi_n - f| \le |\varphi_n| + |f| \le 2|f|$ de modo que $\|\varphi_n - f\|_1 = \int |\varphi_n - f| d\mu \to 0$, pelo TCD.

COROLÁRIO 1. Considere o espaço de medida $(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \mu)$ com μ medida de Lebesgue-Stieltjes. Tem-se:

- (i) $\tilde{Y} \doteq \{\varphi : \mathbb{R} \to \mathbb{C} \text{ simples integrável da forma } \sum_{i=1}^n a_i \chi_{I_i}, \text{ com } (\forall i) I_i \text{ intervalo aberto} \}$ é denso em $L^1(\mu)$
- (ii) $\{f: \mathbb{R} \to \mathbb{C} \text{ contínua tal que supp } f \doteq \overline{\{x \in \mathbb{R} | f(x) \neq 0\}} \subset \mathbb{R} \}$ (i.e. o conjunto das funções contínuas com suporte compacto) é denso em $L^1(\mu)$.
 - Exercício: Sejam [a,b] intervalo compacto de \mathbb{R} , $C^0([a,b],\mathbb{C}) \doteq \{f: [a,b] \to \mathbb{C} \text{ contínua}\}$ e

$$\|\cdot\|_1: C^0([a,b],\mathbb{C}) \to [0,\infty)$$

$$f \mapsto \int_a^b |f(x)| dx$$

Então $(C^0([a,b],\mathbb{C}), \|\cdot\|_1)$ é um espaço normado e seu completamento é $(L^1([a,b],\mathcal{B}|_{[a,b]},m), \|\cdot\|_1)$.

• Dica para o exercício: Tome $f:[a,b]\to\mathbb{C}$ integrável, de modo que

$$\tilde{f}: \mathbb{R} \to \mathbb{C}$$

$$x \mapsto \begin{cases} f(x) & x \in [a, b] \\ 0 & cc \end{cases}$$

é um elemento de $L^1(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, m)$ e use (ii) do corolário anterior.

- Prova do corolário:
 - (i) Basta provar que, $\forall \varepsilon > 0$ e $\varphi : \mathbb{R} \to \mathbb{C}$ simples integrável, $\exists \psi \in \tilde{Y}$ tal que $\|\varphi \psi\|_1 < \epsilon$. Seja $\varphi = \sum_{i=1}^n a_i \chi_{E_i}$ na representação padrão de modo que $|\varphi| = \sum_{i=1}^n |a_i| \chi_{E_i}$ e

$$\infty > \int |\varphi| d\mu \stackrel{(\forall i)}{\geq} \int \chi_{E_i} |\varphi| = |a_i| \mu(E_i)$$

e, portanto, $\mu(E_i) < \infty$ se $a_i \neq 0$. Dado $\varepsilon' > 0$ (a ser escolhido posteriormente), posso, $\forall i$ tal que $a_i \neq 0$, tomar J_i uma união finita disjunta de intervalos abertos tal que $\mu(J_i \Delta E_i) < \varepsilon'$ (vide última proposição da lista de propriedades de regularidade das medidas de Lebesgue-Stieltjes). Ou seja:

$$\|\chi_{E_i} - \chi_{J_i}\|_1 = \int \chi_{J_i \Delta E_i} d\mu < \epsilon'.$$

Tome $\psi \doteq \sum_{i=1}^{n} a_i \chi_{J_i} \in \tilde{Y}$. Tem-se:

$$\underbrace{\|\varphi - \psi\|_{1}}_{= \sum_{i=1}^{n} a_{i}(\chi_{E_{i}} - \chi_{J_{i}})}^{\operatorname{des} \triangle} \underbrace{\sum_{i=1}^{n} |a_{i}|}_{= \sum_{i=1}^{n} a_{i}(\chi_{E_{i}} - \chi_{J_{i}})}^{\operatorname{des} \triangle} \underbrace{\sum_{i=1}^{n} |a_{i}|}_{= \sum_{i=1}^{n} a_{i}(\chi_{E_{i}} - \chi_{J_{i}})}^{\operatorname{des} \triangle}$$

Agora basta escolher ε' tal que

$$\varepsilon' < \frac{\varepsilon}{(\sum_{i=1}^{n} |a_i|) + 1}$$

e segue a tese.

(ii) Para cada intervalo aberto $J \subset \mathbb{R}$ de medida μ finita, aproxime χ_J na norma 1 por uma função contínua de suporte compacto, e a seguir aplique a parte (i).

8