${ m MAT~5798-Medida~e~Integração}$ ${ m IME-2020}$

http://www.ime.usp.br/~glaucio/mat5798 Notas da aula de 6/7

I) Funções de Variação Limitada Nesta seção, aplicaremos o teorema de diferenciação de Lebesgue em dimensão 1, o que resultará numa generalização do Teorema Fundamental do Cálculo para a integral de Lebesgue.

Notação: Dada f função real, usaremos a notação $f(x\pm)$ para denotar $\lim_{y\to x^{\pm}} f(y)$.

PROPOSIÇÃO 1. Sejam $f: \mathbb{R} \to \mathbb{R}$ crescente e $g: \mathbb{R} \to \mathbb{R}$ dada por $g(x) \doteq f(x+)$. Então:

- 1) g é crescente e contínua à direita.
- 2) o conjunto dos pontos de descontinuidade de f é enumerável.
- 3) $f \in q$ são deriváveis m-q.s. e f' = q' m-q.s.

Demonstração. 1. deixado como exercício.

2. se $x \neq y$, os intervalos (f(x-), f(x+)) e (f(y-), f(y+)) são disjuntos. Além disso, se |x| < N, $(f(x-), f(x+)) \subset (f(-N), f(N))$, de modo que $\{(f(x-), f(x+))\}_{|x| < N}$ é uma família disjunta de subintervalos de (f(-N), f(N)). Portanto, para cada N > 0:

$$\sum_{|x| < N} m\big(f(x-), f(x+)\big) \le m\big(f(-N), f(N)\big) < \infty$$

o que implica que $\{x \in (-N, N) : f(x-) \neq f(x+)\}$ é enumerável. Como $\mathbb{R} = \bigcup_{N \in \mathbb{N}} (-N, N)$, conclui-se que $\{x \in \mathbb{R} : f(x-) \neq f(x+)\}$ é enumerável.

3. Note que g é crescente e contínua à direita, $f \leq g$ e vale a igualdade onde f for contínua; em particular, o conjunto dos pontos onde as duas funções diferem é enumerável.

Seja μ_g a medida de Lebesgue-Stieltjes induzida por g. Como μ_g é finita nos compactos, i.e. uma medida de Radon, o teorema de diferenciação de diferenciação de Lebesgue pode ser aplicado, escolhendo-se, para cada $x \in \mathbb{R}$, as famílias $\{(x-r,x]\}_{r>0}$ e $\{(x,x+r]\}_{r>0}$, as quais convergem agradavelmente para x. Como

$$\frac{\mu_g(x-r,x]}{m(x-r,x]} = \frac{g(x) - g(x-r)}{r} e^{\frac{\mu_g(x,x+r]}{m(x,x+r]}} = \frac{g(x+r) - g(x)}{r}$$

conclui-se que a derivada de g existe m-q.s. e coincide m-q.s. com a derivada de Radon-Nikodym da parte absolutamente contínua de μ_g com respeito a m.

Pondo $h \doteq g - f$, provemos que h é derivável m-q.s. e que sua derivada se anula m-q.s.; daí, como f = g - h, concluir-se-á que f é derivável m-q.s. e sua derivada coincide m-q.s. com a de g, donde a tese.

Conforme observado anteiormente, $h \geq 0$ e h se anula no complementar de um conjunto enumerável; seja $(x_i)_{i \in \mathbb{N}}$ uma enumeração do tal conjunto. Considere a medida positiva $\mu \doteq \sum_{i \in \mathbb{N}} h(x_i) \delta_{x_i}$; afirmo que μ é de Radon, i.e. finita nos compactos. Isso decorre do mesmo argumento da parte 2. — $\forall N > 0$, $\mu((-N,N)) = \sum_{x_i \in (-N,N)} h(x_i) \leq m(f(-N),f(N)) < \infty$. Além disso, $\mu \perp m$, pois $A \doteq \{x_i : i \in \mathbb{N}\}$ é um boreliano para o qual $m(A) = 0 = \mu(A^c)$. Assim sendo, para $x \in \mathbb{R}$ e $r \neq 0$:

$$\left| \frac{h(x+r) - h(x)}{r} \right| \le \frac{h(x+r) + h(x)}{|r|} \le 4 \frac{\mu(x-2|r|, x+2|r|)}{4|r|}$$

o que, pelo teorema de diferenciação de Lebesgue para medidas, tem limite 0 para $r \to 0$ para quase todo $x \in \mathbb{R}$, pois $\{(x-2r,x+2r)\}_{r>0}$ é uma família de converge agradavelmente para x e a parte absolutamente contínua de μ com respeito a m é nula.

As medidas de Radon em \mathbb{R} (i.e. as medidas de Lebesgue-Stieltjes) foram descritas anteriormente por meio de funções crescentes de contínuas à direita $\mathbb{R} \to \mathbb{R}$, c.f. notas da aula 5. Descreveremos, a seguir, através de uma construção similar, como são as medidas complexas em $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$. Para tal, usaremos, no lugar de funções crescentes, funções de $variação\ limitada$, conforme definido abaixo.

1

DEFINIÇÃO 1. Seja $f: \mathbb{R} \to \mathbb{C}$. A função variação total de f é a função $T_f: \mathbb{R} \to [0, \infty]$ dada por:

$$T_f(x) \doteq \sup \{ \sum_{j=1}^N |f(t_j) - f(t_{j-1})| : N \in \mathbb{N}, -\infty < t_0 < t_1 < \dots < t_N = x \}$$
 (1)

Note que T_f é crescente, pois, trivialmente, se x < y, $T_f(y) \ge T_f(x) + |f(y) - f(x)|$. Assim sendo, para $f: \mathbb{R} \to \mathbb{C}$, existem $T_f(-\infty) \le T_f(+\infty) \in [0, \infty]$.

DEFINIÇÃO 2. Com a notação acima, diz-se que $f: \mathbb{R} \to \mathbb{C}$ é de variação limitada (NOTAÇÃO: $f \in BV$) se $T_f(+\infty) < \infty$.

Analogamente, $f:[a,b] \to \mathbb{C}$ diz-se de variação limitada (NOTAÇÃO: $f \in BV([a,b])$) se a sua variação $var_{[a,b]}(f) \doteq \sup\{\sum_{j=1}^N |f(t_j) - f(t_{j-1})| : N \in \mathbb{N}, a = t_0 < t_1 < \dots < t_N = b\}$ for finita.

Note que, se $f : \mathbb{R} \to \mathbb{C}$, $\forall x < y \in \mathbb{R}$, $T_f(y) = T_f(x) + \mathrm{var}_{[x,y]}(f)$. Portanto, se $f \in \mathrm{BV}$, então $\mathrm{Im}\,T_f \subset \mathbb{R}$ e as restrições de f aos subintervalos compactos de \mathbb{R} são de variação limitada.

Toda função $f \in BV([a,b])$ pode ser estendida a uma função $\tilde{f} \in BV$; por exemplo, $\tilde{f} : \mathbb{R} \to \mathbb{C}$ dada por $\tilde{f}|_{[a,b]} = f$, f(x) = f(a) para $x \leq a$ e f(x) = f(b) para $x \geq b$. Através desta extensão, teoremas relativos às funções de BV têm versões correspondentes para funções em BV([a,b]). Por esta razão, enunciaremos apenas propriedades para BV, ficando subentendido que em BV([a,b]) valem propriedades análogas.

EXEMPLO 1: a) Se $f: \mathbb{R} \to \mathbb{R}$ for crescente, então $f \in BV$ see f limitada. Basta observar que, se f crescente, $(\forall x \in \mathbb{R})T_f(x) = f(x) - f(-\infty)$.

- b) BV é um \mathbb{C} -subespaço vetorial de $\mathbb{C}^{\mathbb{R}}$. Basta observar que, se $f,g:\mathbb{R}\to\mathbb{C}$ e $a,b\in\mathbb{C}$, $(\forall x\in\mathbb{R})T_{af+bg}(x)\leq |a|T_f(x)+|b|T_g(x)$.
- c) Se $f: \mathbb{R} \to \mathbb{C}$ derivável e f' limitada, então $f \in \mathrm{BV}([a,b])$ para todo $[a,b] \subset \mathbb{R}$. Basta aplicar o teorema do valor médio.
- d) $\sin \notin BV$, mas $\sin \in BV([a,b])$ para todo $[a,b] \subset \mathbb{R}$.

TEOREMA 1. Seja $f: \mathbb{R} \to \mathbb{C}$.

- i) $f \in BV$ see $Re f \in BV$ $e Im <math>f \in BV$.
- ii) Se $f: \mathbb{R} \to \mathbb{R}$ está em BV, $T_f \pm f$ são crescentes e limitadas (portanto estão em BV).
- iii) $f: \mathbb{R} \to \mathbb{R}$ pertence a BV see for a diferença de duas funções crescentes e limitadas. Em caso afirmativo, podemos tomar estas funções como sendo $\frac{1}{2}(T_f + f)$ e $\frac{1}{2}(T_f f)$.
- iv) Se $f \in BV$, $T_f(-\infty) = 0$. Além disso, dado $x \in \mathbb{R}$, f é contínua à direita em x see T_f o for. Idem para continuidade à esquerda em x.

Demonstração. i) Não há o que fazer.

- ii) Sejam x < y reais. Então $|f(y) f(x)| \le \operatorname{var}_{[x,y]}(f) = T_f(y) T_f(x)$, de modo que:
 - (a) $f(y) f(x) \le T_f(y) T_f(x)$, portanto $T_f(x) f(x) \le T_f(y) f(y)$, donde se conclui que $T_f f$ é crescente.
 - (b) $f(x) f(y) \le T_f(y) T_f(x)$, portanto $T_f(x) + f(x) \le T_f(y) + f(y)$, donde se conclui que $T_f + f$ é crescente.

Além disso, fixado $a \in \mathbb{R}$, $\forall x \in \mathbb{R}$, $|f(x)| \le |f(a)| + |f(x) - f(a)| \le T_f(x) - T_f(a) + |f(a)|$, o que implica f limitada, pois T_f o é. Então $T_f \pm f$ são limitadas.

- iii) È corolário do item anterior e do exemplo 1, parte a).
- iv) Fixe $a \in \mathbb{R}$. Dado $\epsilon > 0$, existe $-\infty < x_0 < \cdots < x_N = a$ tais que $T_f(a) < \sum_{j=1}^N |f(x_i) f(x_{i-1})| + \epsilon \le \operatorname{var}_{[x_0,a]}(f) + \epsilon = T_f(a) T_f(x_0) + \epsilon$. Portanto, $T_f(x_0) < \epsilon$, donde $T_f(x) < \epsilon$ se $x \le x_0$, i.e. $T_f(-\infty) = 0$. Para todo x < a, $T_f(x) + |f(x) f(a)| \le T_f(a)$. Tomando $\lim_{x \to a^-}$, conclui-se que $T_f(a^-) + |f(a^-) f(a)| \le T_f(a)$, de modo que $|f(a^-) f(a)| \le T_f(a) T_f(a^-)$. Por outro lado, dado $\epsilon > 0$, fixe $x_0 < a$ e tome $x_0 < x_1 < \cdots < x_N = a$ tais que $T_f(a) T_f(x_0) < \sum_{j=1}^N |f(x_i) f(x_{i-1})| + \epsilon$. Então, para todo $x \in (x_{N-1}, a)$:

$$T_{f}(x) - T_{f}(x_{0}) + |f(x) - f(a)| \ge T_{f}(x_{N-1}) - T_{f}(x_{0}) + |f(x_{N-1}) - f(x)| + |f(x) - f(a)| \ge \sum_{j=1}^{N-1} |f(x_{i}) - f(x_{i-1})| + |f(x_{N-1}) - f(x)| + |f(x) - f(a)| \ge \sum_{j=1}^{N} |f(x_{i}) - f(x_{i-1})| > T_{f}(a) - T_{f}(x_{0}) - \epsilon$$

donde $|f(x)-f(a)| \ge T_f(a) - T_f(x) - \epsilon$. Tomando $\lim_{x \to a^-}$, conclui-se que $|f(a-)-f(a)| \ge T_f(a) - T_f(a) - \epsilon$. Daí, pela arbitrariedade do ϵ positivo tomado, segue-se $|f(a-)-f(a)| \ge T_f(a) - T_f(a)$.

Portanto, $|f(a-) - f(a)| = T_f(a) - T_f(a-)$. Analogamente se prova $|f(a+) - f(a)| = T_f(a+) - T_f(a)$. Estas duas igualdades mostram que f é contínua à esquerda (respectivamente, à direita) em a see T_f for contínua à esquerda (respectivamente, à direita) em a.

DEFINIÇÃO 3. Com a notação do teorema acima, se $f \in BV$ for a valores reais, $v^+f \doteq \frac{1}{2} (T_f + f)$ e $v^-f \doteq \frac{1}{2} (T_f - f)$ chamam-se, respectivamente, variação positiva e negativa de f.