${ m MAT~5798-Medida~e~Integração}$ ${ m IME-2020}$

http://www.ime.usp.br/~glaucio/mat5798 Notas da Aula 12 (29/4)

I) Medida Produto (continuação)

DEFINIÇÃO 1 (classe monótona). Sejam X conjunto, $\mathcal{C} \subset \mathbb{P}(X)$. \mathcal{C} diz-se uma classe monótona se $\mathcal{C} \neq \emptyset$ e:

- (i) $(E_n)_{n\in\mathbb{N}}\subset\mathcal{C}$ crescente $\Rightarrow \cup_{n\in\mathbb{N}}E_n\in\mathcal{C}$
- (ii) $(E_n)_{n\in\mathbb{N}} \prec \mathcal{C}$ decrescente $\Rightarrow \cap_{n\in\mathbb{N}} E_n \in \mathcal{C}$
 - \bullet Exemplo: Toda σ -álgebra é uma classe monótona.

PROPOSIÇÃO 1. A intersecção de uma família $(\mathcal{C}_{\alpha})_{\alpha \in A}$ de classes monótonas em X é uma classe monótona se for não-vazia.

DEFINIÇÃO 2. Dado $E \subset 2^X$, a classe monótona gerada por E é a interseção da família de todas as classes monótonas $\mathcal{C} \subset \mathbb{P}(X)$ tais que $E \subset \mathcal{C}$. Notação: $\mathcal{C}(E)$.

TEOREMA 1 (Lema da Classe Monótona). Sejam X um conjunto e \mathcal{A} uma álgebra em $\mathbb{P}(X)$. Então $\sigma(\mathcal{A}) = \mathcal{C}(\mathcal{A})$.

- Prova: É claro que $\mathcal{C}(\mathcal{A}) \subset \sigma(\mathcal{A})$. Para verificar a outra inclusão, basta mostrar que $\mathcal{C}(\mathcal{A})$ é uma σ -álgebra. Com efeito, para cada $E \in \mathcal{C} \doteq \mathcal{C}(\mathcal{A})$, defina $C(E) = \{F \in \mathcal{C} | E \setminus F \in \mathcal{C}, F \setminus E \in \mathcal{C} \text{ e } F \cap E \in \mathcal{C}\}$. Note que, dados $E, F \in \mathcal{C}, F \in \mathcal{C}(E) \Leftrightarrow E \in \mathcal{C}(F)$ (por simetria na definição de C(E)).
 - Afirmação: $\forall E \in \mathcal{C}$, $C(E) = \mathcal{C}$. Nesse caso, $\forall E, F \in \mathcal{C}$, $E \setminus F \in \mathcal{C}$ e $E \cap F \in \mathcal{C}$. Daí, como $X \in A \subset \mathcal{C}$, $\overline{\mathcal{C}}$ é fechada por complementação e intersecção finita. Ou seja, \mathcal{C} é uma álgebra e é fechada por união enumerável crescente ∴ \mathcal{C} é σ -álgebra.
 - Prova da afirmação:
 - 1. $\forall E \in \mathcal{C}, C(E)$ é uma classe monótona. Com efeito:
 - (i) $C(E) \neq \emptyset$ (pois $E \in C(E)$)
 - (ii) Se $(F_n)_n \prec C(E)$ crescente, tem-se:
 - (ii.1)

$$\left(\bigcup_{n} F_{n}\right) \backslash E = \bigcup_{n} \underbrace{\left(F_{n} \backslash E\right)}_{\in \mathcal{C}} \in \mathcal{C}$$

(ii.2)

$$E \setminus \left(\bigcup_{n} F_{n}\right) = \bigcap_{n \in \mathbb{N}} \underbrace{\left(E \setminus F_{n}\right)}_{\in \mathcal{C}} \in \mathcal{C}$$

(ii.3)

$$E \cap \left(\bigcup_{n} F_{n}\right) = \bigcup_{n \in \mathbb{N}} \underbrace{\left(E \cap F_{n}\right)}_{\in \mathcal{C}} \in \mathcal{C}$$

(iii) Se $(F_n)_{n\in\mathbb{N}} \prec C(E)$ decrescente, tem-se:

(iii.1)

$$\left(\bigcap_{n} F_{n}\right) \backslash E = \bigcap_{n} \underbrace{\left(F_{n} \backslash E\right)}_{\in \mathcal{C}} \in \mathcal{C}$$

(iii.2)

$$E \setminus \left(\bigcap_{n} F_{n}\right) = \bigcup_{n \in \mathbb{N}} \underbrace{\left(E \setminus F_{n}\right)}_{\in \mathcal{C}} \in \mathcal{C}$$

$$E \cap \left(\bigcap_{n} F_{n}\right) = \bigcap_{n \in \mathbb{N}} \underbrace{\left(E \cap F_{n}\right)}_{\in \mathcal{C}} \in \mathcal{C}$$

 $\therefore C(E)$ é uma classe monótona, como afirmamos.

- 2. Dado $E \in \mathcal{A}$, tem-se:
 - (i) $A \subset C(E)$, i.e. $\forall F \in A$, $F \in C(E)$. Então $C = C(A) \subset C(E)$ (pois C(E) é classe monótona, por 1.). Daí, C = C(E).
- 3. Dado $F \in \mathcal{C}$, afirmo que $\mathcal{A} \subset C(F)$. Com efeito, $\forall E \in \mathcal{A}$, por 2. $F \in C(E) \Leftrightarrow E \in C(F)$, i.e. $\mathcal{A} \subset C(F)$. Daí, $\mathcal{C} = \mathcal{C}(\mathcal{A}) \subset C(F)$. $\mathcal{C} = C(F)$.

Proposição 2. Sejam (X, \mathcal{M}, μ) e (Y, \mathcal{N}, ν) espaços de medida σ -finitos. Dado $E \in \mathcal{M} \otimes \mathcal{N}$:

- 1. as aplicações $X \to [0, \infty]$ e $Y \to [0, \infty]$ definidas, respectivamente, por $x \mapsto \nu(E_x)$ e $x \mapsto \mu(E^y)$, são ambas mensurávais
- 2. $\int \nu(E_x)d\mu(x) = \mu \times \nu(E) = \int \mu(E^y)d\nu(y)$.
- Prova da proposição:
 - (i) Suponha μ e ν finitos. Seja $\mathcal{C} = \{E \in \mathcal{M} \otimes \mathcal{N} | 1.$ e 2. valem para $E\}$. $\vdash \mathcal{C} = \mathcal{M} \otimes \mathcal{N}$. Basta mostrar:
 - 1. $\mathcal{A} = \mathcal{A}(\mathcal{R}) \subset \mathcal{C}$.
 - 2. C é uma classe monótona.

Daí: $\mathcal{C} \supset \mathcal{C}(\mathcal{A})$ Lema da classe monótona $\sigma(\mathcal{A}) = \mathcal{M} \otimes \mathcal{N}$ e então $\mathcal{C} = \mathcal{M} \otimes \mathcal{N}$.

Tem-se:

(a) Se $E = A \times B \in \mathcal{R}$ (i.e. $A \in \mathcal{M} \in B \in \mathcal{N}$),

$$\forall x \in X, E_x = \left\{ \begin{array}{ll} B & \text{se } x \in A \\ \emptyset & \text{c.c.} \end{array} \right.$$

 $\therefore \nu(E_x) = \chi_A(x)\nu(B) \therefore x \mapsto \nu(E_x)$ é mensurável. Analogamente, $y \mapsto \mu(E^y)$ é mensurável. Além disso,

$$\int \nu(E_x) d\mu(x) = \int \chi_A(x) \nu(B) d\mu(x) = \nu(B) \underbrace{\int \chi_A d\mu}_{=\mu(A)} = \mu(A) \nu(B) = (\mu \times \nu)(A \times B) = (\mu \times \nu)(E)$$

Analogamente,

$$\int \mu(E^y)d\nu(y) = (\mu \times \nu)(E)$$

(b) Se $E = \dot{\cup}_{i=1}^n E_i$ com $E_i \in \mathcal{R}$ para $1 \leq i \leq n$: $(\forall x \in X)$ $E_x = \dot{\cup}_{i=1}^n (E_i)_x :: \nu(E_x) = \sum_{i=1}^n \nu((E_i)_x)$:: 1. vale para $x \mapsto \nu(E_x)$. Além disso:

$$\int \nu(E_x)d\mu(x) = \sum_{i=1}^n \underbrace{\int \nu((E_i)_x)d\mu(x)}_{\text{por (a)}} = \mu \times \nu(E)$$

- \therefore 2. vale para $\int \nu(E_x) d\mu$. Para as seções "y" o argumento é análogo. Então $\mathcal{A} \subset \mathcal{C}$.
- (c) Afirmo que \mathcal{C} é classe monótona. É claro que $\mathcal{C} \neq \emptyset$, pois $\mathcal{A} \subset \mathcal{C}$.
 - (c.1) Seja $(E_n)_{n\in\mathbb{N}} \prec \mathcal{C}$ crescente. $\vdash E \doteq \cup_n E_n \in \mathcal{C}$. Com efeito:
 - $\forall x \in X$: $(\cup_n E_n)_x = \cup_n (E_n)_x$ e, pela continuidade para cima de ν , segue $\nu(E_x) = \lim \nu((E_n)_x)$ é \mathcal{M} -mensurável.
 - Como $x \mapsto \nu((E_n)_x)$ cresce pontualmente para $x \mapsto \nu(E_x)$, pelo TCM

$$\underbrace{\int \nu((E_n)_x)d\mu(x)}_{= \mu \times \nu(E_n) \xrightarrow{(*)} \mu \times \nu(E)} \xrightarrow{\text{TCM}} \int \nu(E_x)d\mu(x)$$

onde (*) vale pela continuidade para cima para $\mu \times \nu$. Portanto, pela unicidade do limite, segue:

$$\int \nu(E_x)d\mu(x) = \mu \times \nu(E)$$

O mesmo argumento se aplica para as seções "y" e conclui-se que $E = \bigcup_{n \in \mathcal{N}} E_n \in \mathcal{C}$.

- (c.2) Seja $(E_n)_{n\in\mathbb{N}} \prec \mathcal{C}$ decrescente. $\vdash E \doteq \cap_{n\in\mathbb{N}} E_n \in \mathcal{C}$. Com efeito:
 - $\forall x \in X$: $(\cap_{n \in \mathbb{N}} E_n)_x = \cap_{n \in \mathbb{N}} (E_n)_x$ e, como ν é finita, segue, pela continuidade para baixo de ν , que $\nu(E_x) = \lim \nu((E_n)_x)$ daí $x \mapsto \nu(E_x)$ é \mathcal{M} -mensurável. Note que, $\forall x \in X$, $\forall n \in \mathbb{N}, \nu((E_n)_x) \leq \nu(Y) < \infty, \therefore \nu(Y) \chi_X$ é uma função integrável que domina a sequência $x \mapsto \nu((E_n)_x)$ e, pelo TCD:

$$\underbrace{\int \nu((E_n)_x)d\mu(x)}_{\text{(***)}} \xrightarrow{\text{TCD}} \int \nu(E_x)d\mu(x)$$

$$= \mu \times \nu(E_n) \xrightarrow{\text{(***)}} \mu \times \nu(E)$$

onde (**) vale pela continuidade para baixo de $\mu \times \nu$. Logo, pela unicidade do limite, segue:

$$\int \nu(E_x)d\mu(x) = \mu \times \nu(E)$$

O mesmo vale para as seções "y", \therefore E satisfaz 1. e 2., i.e. $E \in \mathcal{C}$. Daí \mathcal{C} é classe monótona, como afirmado. Então $\mathcal{M} \otimes \mathcal{N} = \mathcal{C}$, o que prova a tese no caso μ e ν finitas.

(ii) Caso geral, i.e. μ e ν σ -finitas. Posso tomar $(A_n \times B_n)_{n \in \mathbb{N}} \prec \mathcal{R}$ crescente tal que $(\forall n)$ $\mu \times \nu(A_n \times B_n) = \mu(A_n)\nu(B_n) < \infty$ e $\cup_{n \in \mathbb{N}} A_n \times B_n = X \times Y$. Para cada $n \in \mathbb{N}$, o caso (i) se aplica para a medida finita $(\mu \times \nu) \sqcup (A_n \times B_n)$, a qual coincide com a medida produto das medidas finitas $\mu \sqcup A_n$ e $\nu \sqcup B_n$, conforme o último item do exercício abaixo:

Exercício:

Recorde a questão 10 da lista 2 (seção 1.3): dados (X, \mathcal{M}, μ) espaço de medida e $E \in \mathcal{M}, \mu \rfloor E : \mathcal{M} \to [0, \infty]$ dada por $A \mapsto \mu(A \cap E)$ é uma medida. Além disso:

- a) Se $f \in L^+$ ou $f \in L^1(\mu)$, $\int f d(\mu \cup E) = \int_E f d\mu$.
- b) $\mu = \mu \bot E + \mu \bot E^c$. Portanto, conforme visto na questão 1 da lista 8, $\mathsf{L}^1(\mu) = \mathsf{L}^1(\mu \bot E) \cap \mathsf{L}^1(\mu \bot E^c)$.
- c) Se (Y, \mathcal{N}, ν) for outro espaço de medida, $A \in \mathcal{M}$ e $B \in \mathcal{N}$ σ -finitos, então $(\mu \bot A) \times (\nu \bot B) = (\mu \times \nu) \bot (A \times B)$.

Portanto, pela parte (i), $(\forall E \in \mathcal{M} \otimes \mathcal{N}, \forall n \in \mathbb{N})x \in X \mapsto \nu \lrcorner B_n(E_x)$ é mensurável e:

Como $(B_n)_n \prec \mathcal{N}$ é crescente e sua união é Y, segue-se que, $(\forall x \in X)\nu \, \exists B_n(E_x) = \nu(E_x \cap B_n) \nearrow \nu(E_x)$, usando a continuidade para cima da medida ν . Daí $x \mapsto \nu(E_x)$ é mensurável (pois é o limite pontual de uma sequência de funções mensuráveis). E, como

$$(\forall x \in X) \chi_A (x) \nu \lrcorner B_n(E_x) \stackrel{n \to \infty}{\nearrow} \nu(E_x)$$

conclui-se pelo TCM que $\int \nu \, d\mu(E_x) \, d(\mu \, d\mu(x)) = \int \chi_{A_n}(x) \nu \, d\mu(E_x) \, d\mu(x) \to \int \nu(E_x) \, d\mu(x)$. Portanto, por (1), este deve ser o limite de $\mu \times \nu(E \cap A_n \times B_n)$, o qual, usando a continuidade para cima da medida $\mu \times \nu$, também deve ser igual a $\mu \times \nu(E)$. Por unicidade do limite, conclui-se, finalmente, $\int \nu(E_x) \, d\mu(x) = \mu \times \nu(E)$.

O mesmo vale para as seções "y", daí a tese.