MAT5798 - Medida e Integração - IME - 2012

Prof. Gláucio Terra

Lista 4 - 20/03/2012

1 Seção 2.1

- 2-) Sejam $f, g: X \to \overline{\mathbb{R}}$ mensuráveis.
 - (a) $fg \in \text{mensurável (onde } 0 \cdot (\pm \infty) \doteq 0).$
 - (b) Fixe $a \in \mathbb{R}$ e defina h(x) = a se $f(x) = -g(x) = \pm \infty$ e h(x) = f(x) + g(x) caso contrário. Então h é mensurável.
- 3-) Seja $(f_n)_{n\in\mathbb{N}}$ uma sequência de funções mensuráveis em X. Então $\{x\in X:\exists \lim f_n(x)\}$ é mensurável.
- 4-) Se $f: X \to \overline{\mathbb{R}}$ e $(\forall r \in \mathbb{Q}) f^{-1}((r, \infty]) \in \mathcal{M}$, então f é mensurável.
- 5-) Se $X = A \cup B$, com $A, B \in \mathcal{M}$, uma função f em X é mensurável see $f|_A$ e $f|_B$ forem mensuráveis.
- 6-) O supremo de uma família não enumerável de funções mensuráveis $X \to \overline{\mathbb{R}}$ pode não ser mensurável.
- 7-) Sejam (X, \mathcal{M}) espaço mensurável e $(E_{\alpha})_{\alpha \in \mathbb{R}} \prec \mathcal{M}$ tal que $E_{\alpha} \subset E_{\beta}$ sempre que $\alpha < \beta$ e $\cup_{\alpha \in \mathbb{R}} E_{\alpha} = X$ e $\cap_{\alpha \in \mathbb{R}} E_{\alpha} = \emptyset$. Então existe uma função mensurável $f: X \to \mathbb{R}$ tal que, $\forall \alpha \in \mathbb{R}, f(x) \leqslant \alpha$ em E_{α} e $f(x) \geqslant \alpha$ em E_{α}^{c} .
- 8-) Se $f: \mathbb{R} \to \mathbb{R}$ é monótona, então f é Borel-mensurável.
- 11-) Seja $f: \mathbb{R} \times \mathbb{R}^k \to \mathbb{R}$ tal que $(\forall x \in \mathbb{R}) f(x, \cdot)$ é Borel-mensurável e $(\forall y \in \mathbb{R}) f(\cdot, y)$ é contínua. Defina, para cada $n \in \mathbb{N}$, $f_n: \mathbb{R} \times \mathbb{R}^k \to \mathbb{R}$ como segue. Para todo $i \in \mathbb{Z}$, ponha $a_i \doteq i/n$ e, para $a_i \leq x \leq a_{i+1}$:

$$f_n(x,y) \doteq \frac{f(a_i,y) \cdot (x-a_i) + f(a_{i+1},y) \cdot (a_{i+1}-x)}{a_{i+1}-a_i}$$

Então $(\forall n \in \mathbb{N}) f_n$ é Borel-mensurável em $\mathbb{R} \times \mathbb{R}^k$ e $f_n \to f$ pontualmente. Portanto, f é Borel-mensurável. Conclua, por indução em k, que toda função $\mathbb{R}^n \to \mathbb{R}$ separadamente contínua em cada variável é Borel-mensurável.