MAT5711 - Cálculo Avançado - IME - 2010 Prof. Gláucio Terra P1 - 06/04/2010

Nome:	Nota:
Assinatura:	
155111404114	

ESCOLHA AS QUESTÕES DA PROVA DE MODO A SOMAR 10 PONTOS. BOA PROVA!!

- 1-) (1 pto.) Seja $f: \mathbb{R}^n \to \mathbb{R}^m$ positivamente homogênea de grau $k \in \mathbb{N}$ (i.e. tal que para todo $x \in \mathbb{R}^n$ e para todo t > 0, $f(tx) = t^k f(x)$). Mostre que, se f for k vezes derivável na origem, então f é um polinômio homogêneo de grau k em n variáveis.
- 2-) (2 ptos.) Sejam $\mathcal{U} \subset \mathbb{R}^n$ aberto estrelado com respeito à origem (i.e. tal que, para todo $p \in \mathcal{U}$, $[0, p] \subset \mathcal{U}$), $f: \mathcal{U} \to \mathbb{R}$ de classe C^{∞} e $k \in \mathbb{N}$. Suponha que as derivadas parciais de ordem menor que k de f se anulem na origem. Mostre que existem, para cada n-upla de inteiros não-negativos $\alpha = (\alpha_1, \dots, \alpha_n)$ com $|\alpha| \doteq \sum_{j=1}^n \alpha_j = k$, funções de classe $\mathsf{C}^{\infty} g_{\alpha} : \mathcal{U} \to \mathbb{R}$ tais que, para todo $x \in \mathcal{U}$, $f(x) = \sum_{|\alpha| = k} g_{\alpha}(x) x^{\alpha}$, onde $x^{\alpha} \doteq x_1^{\alpha_1} \cdot \dots \cdot x_n^{\alpha_n}$ se $x = (x_1, \dots, x_n)$.
- **3-)** (2 ptos.) Sejam $\mathcal{U} \subset \mathbb{R}^n$ aberto e $f: \mathcal{U} \to \mathbb{R}^m$ contínua. Dado $p \in \mathcal{U}$, suponha que f seja derivável em $\mathcal{U} \setminus \{p\}$ e que exista $\lim_{x \to p} f'(x) = A \in \mathsf{L}(\mathbb{R}^n, \mathbb{R}^m)$. Mostre que f é derivável em p e que f'(p) = A.
- **4-)** (2 ptos.) Seja $f: \mathbb{R}^n \to \mathbb{R}$ derivável até segunda ordem. Mostre que os pontos críticos não-degenerados (i.e. nos quais a hessiana é não-singular) de f são isolados.
- 5-) (3 ptos.) Seja $L(\mathbb{R}^n, \mathbb{R}^n)$ o espaço das transformações lineares $\mathbb{R}^n \to \mathbb{R}^n$. Mostre que $GL(\mathbb{R}^n) \doteq \{A \in L(\mathbb{R}^n, \mathbb{R}^n) \mid A \text{ inversível } \}$ é aberto em $L(\mathbb{R}^n, \mathbb{R}^n)$, e que a aplicação $GL(\mathbb{R}^n) \to L(\mathbb{R}^n, \mathbb{R}^n)$ dada por $X \mapsto X^{-1}$ é de classe C^{∞} . Explicite a derivada desta aplicação.
- 6-) (3 ptos.) Sejam E e F espaços de Banach, $\mathcal{U} \subset \mathsf{E}$ um aberto convexo e $(f_n)_{n \in \mathbb{N}}$ uma sequência de aplicações diferenciáveis $\mathcal{U} \to \mathsf{F}$ e $g: \mathcal{U} \to \mathsf{L}(\mathsf{E},\mathsf{F})$. Suponha que:
 - (i) existe $a \in \mathcal{U}$ tal que a sequência $\{f_n(a)\}_n$ converge em F ;
 - (ii) $(Df_n)_n$ converge uniformemente em \mathcal{U} para g.

Então existe $f: \mathcal{U} \to \mathsf{F}$ tal que, para cada $x \in \mathcal{U}$, a sequência $\{f_n(x)\}_n$ converge para f(x). Em cada parte limitada $X \subset \mathcal{U}$, a sequência $(f_n)_n$ converge uniformemente para f em X. Finalmente, f é derivável e $\mathrm{D} f = g$.

- 7-) (3 pontos) Sejam $\mathcal{U} \subset \mathbb{R}^n$ aberto, $[a,b] \subset \mathbb{R}$ e $f: \mathcal{U} \times [a,b] \to \mathbb{R}^m$. Suponha que, para cada $x \in \mathcal{U}$, $f_x \doteq f(x,\cdot): [a,b] \to \mathbb{R}^m$ seja Riemann-integrável e defina $\varphi: \mathcal{U} \to \mathbb{R}^m$ por $\varphi(x) \doteq \int_a^b f_x$.
 - 1. Mostre que, se f for contínua, então φ é contínua.
 - 2. Seja $i \in \{1, ..., n\}$. Suponha que, para todo $(x, t) \in \mathcal{U} \times [a, b]$ exista a i-ésima derivada parcial $D_i f_t(x)$, onde $(\forall t \in [a, b]) f_t \doteq f(\cdot, t) : \mathcal{U} \to \mathbb{R}^m$, e que $D_i f : \mathcal{U} \times [a, b] \to \mathbb{R}^m$ dada por $(x, t) \mapsto D_i f_t(x)$ seja contínua. Mostre que $(\forall x \in \mathcal{U}) \exists D_i \varphi(x)$, a qual é dada por $D_i \varphi(x) = \int_a^b D_i f(x, t) dt$, e que $D_i \varphi : \mathcal{U} \to \mathbb{R}^m$ é contínua.