MAT234 - Medida e Integração - IME - 2016 Prof. Gláucio Terra Lista 8 - 25/10/2016

Questão 1-) Sejam $B \doteq \{E \subset \mathbb{R}^n : E = \prod_1^n]a_i, b_i[, -\infty < a_i < b_i < \infty\}$ o conjunto dos intervalos abertos limitados n-dimensionais em \mathbb{R}^n e $\rho : B \cup \{\emptyset\} \to [0, \infty]$ dada por $\rho(\emptyset) = 0$ e $\rho(\prod_1^n]a_i, b_i[) = \prod_1^n (b_i - a_i)$. Então ρ é uma pré-medida exterior e, sendo m^* a medida exterior induzida por ρ , o conjunto dos m^* -mensuráveis coincide com a σ -álgebra de Lebesgue e a restrição de m^* a este conjunto coincide com a medida de Lebesgue em \mathbb{R}^n .

Questão 2-) Demonstre os teoremas 2.40 e 2.41.

Questão 3-) Seja $\phi:[0,\infty)\times[0,2\pi]\to\mathbb{R}^2$ dada por $\phi(r,\theta)\doteq(r\cos\theta,r\sin\theta)$. Mostre que, para toda $f:\mathbb{R}^2\to\mathbb{C}$ Lebesgue-mensurável, $f\circ\phi$ é Lebesgue-mensurável e, caso $f\geq0$ ou $f\in\mathsf{L}^1$, $\int f\,\mathrm{d} m=\int_{[0,2\pi]}\int_{[0,\infty)}f(r\cos\theta,r\sin\theta)r^2\,\mathrm{d} m(r)\,\mathrm{d} m(\theta)$.

Questão 4-) (apenas para quem já estudou EDO) Sejam $\Omega \subset \mathbb{R}^n$ aberto e X um campo de vetores de classe C^2 em Ω cujo divergente se anule identicamente. Mostre que o fluxo de X preserva a medida de Lebesgue, i.e. se $(\phi_t)_{\in \mathbb{R}}$ for o grupo local a 1 parâmetro induzido por X, então $(\phi_t)_*m = m$.

1 Seções 2.6 e 2.7

- 56-) Sejam f Lebesgue-integrável em (0,a) e $g:(0,a)\to\mathbb{R}$ dada por $g(x)\doteq\int_x^a t^{-1}f(t)\,\mathrm{d}t$. Então g é integrável em (0,a) e $\int_0^a g(x)\,\mathrm{d}x=\int_0^a f(x)\,\mathrm{d}x$.
- 57-) Mostre que $\int_0^\infty e^{-sx} x^{-1} \sin x \, dx = \arctan(s^{-1})$ para s > 0. (SUGESTÃO: Integre $e^{-sxy} \sin x$ com respeito a x e a y.)
- 59-) Seja $f(x) = x^{-1} \sin x$.
 - (a) Mostre que $\int_0^\infty |f(x)| dx = \infty$.
 - (b) Mostre que $\lim_{b\to\infty} \int_0^b f(x) dx = \pi/2$. SUGESTÃO: Integre $e^{-xy} \sin x$ com respeito a x e a y; em vista do item anterior, deve-se tomar algum cuidado ao tomar o limite para $b\to\infty$.
- 60-) $\Gamma(x)\Gamma(y)=\Gamma(x+y)\int_0^1t^{x-1}(1-t)^{y-1}\,\mathrm{d}t$ para x,y>0. Sugestão: Escreva $\Gamma(x)\Gamma(y)$ como integral dupla e use uma mudança de variáveis conveniente.
- 61-) Seja f contínua em $[0,\infty)$. Para $\alpha>0$ e $x\geq0$, defina a integral fracionária de ordem α de f:

$$I_{\alpha}f(x) \doteq \frac{1}{\Gamma(\alpha)} \int_0^x (x-t)^{\alpha-1} f(t) dt.$$

- a) $I_{\alpha+\beta}f = I_{\alpha}(I_{\beta}f)$, para $\alpha, \beta > 0$.
- b) Para todo $n \in \mathbb{N}$, $I_n f$ é uma antiderivada de ordem n de f.
- 62-) A medida σ em S^{n-1} é invariante por rotações.
- 63-) (Integrais de polinômios em S^{n-1}). A técnica usada para se calcular $\sigma(S^{n-1})$ pode ser aplicada para se calcular integrais de polinômios em S^{n-1} . Por exemplo, seja $f(x) = \prod_{1}^{n} x_{j}^{\alpha_{j}}$, $\alpha_{j} \in \mathbb{N} \cup \{0\}$. Então $\int f \, d\sigma = 0$ se algum dos α_{j} for ímpar; se todos os α_{j} forem pares, tem-se:

$$\int f d\sigma = \frac{2\Gamma(\beta_1)\cdots\Gamma(\beta_n)}{\Gamma(\beta_1+\cdots+\beta_n)}, \text{ onde } \beta_j \doteq \frac{\alpha_j+1}{2}.$$