MAT234 - Medida e Integração - IME - 2016

Prof. Gláucio Terra

Lista 5 - 20/09/2016

Questão 1-) (prop. 2.16, cor. 2.17 e prop. 2.20) Seja (X, \mathcal{M}, μ) espaço de medida.

- (i) Se $f \in L^+$, então $\int f = 0$ see f = 0 a.e.
- (ii) Se $(f_n)_{n\in\mathbb{N}} \prec L^+$ e $f_n \nearrow f$ a.e., então $\int f_n \to \int f$.
- (iii) Se $f \in L^+$ e $\int f < \infty$, então $\{x \in X : f(x) = \infty\}$ é um conjunto nulo e $\{x \in X : f(x) > 0\}$ é σ -finito.

Questão 2-) Sejam $(X, \mathcal{M} = 2^X, \mu)$, onde μ é a medida de contagem, e $f: X \to [0, \infty]$. Então $f \in L^+$ e $\int f = \sum_X f$. Portanto, f é integrável com respeito à medida de contagem see f for somável (i.e. se a soma não ordenada for finita).

1 Seção 2.2

- 13-) Seja $(f_n) \prec L^+$, $f_n \to f$ pontualmente e $\int f = \lim \int f_n < \infty$. Então $(\forall E \in \mathcal{M}) \int_E f = \lim \int_E f_n$. Isto não ocorre, em geral, se $\int f = \lim \int f_n = \infty$.
- 14-) Sejam (X, \mathcal{M}, μ) espaço de medida, $f \in L^+$, e $(\forall E \in \mathcal{M})\lambda(E) \doteq \int_E f \,d\mu$. Então λ é uma medida em \mathcal{M} e, para toda $g \in L^+$, $\int g \,d\lambda = \int g f \,d\mu$.
- 15-) Seja $(f_n) \prec L^+$ tal que $f_n \searrow f$ pontualmente e $\int f_1 < \infty$. Então $\int f = \lim \int f_n$.
- 16-) Se $f \in L^+$ e $\int f < \infty$, para todo $\epsilon > 0$ existe $E \in \mathcal{M}$ tal que $\mu(E) < \infty$ e $\int_E f > (\int f) \epsilon$.
- 17-) Assuma o lema de Fatou e demonstre a partir do mesmo o teorema da convergência monótona.