#------------------------------------------------------------------------------------------# # Comandos: # fit.model = ajuste # attach(dados) # source("envel_norm.txt") #------------------------------------------------------------------------------------------# #par(mfrow=c(1,1)) X = model.matrix(fit.model) n = nrow(X) p = ncol(X) H = X%*%solve(t(X)%*%X)%*%t(X) h = diag(H) si = lm.influence(fit.model)$sigma r = resid(fit.model) tsi = r/(si*sqrt(1-h)) # ident = diag(n) epsilon = matrix(0,n,100) e = matrix(0,n,100) e1 = numeric(n) e2 = numeric(n) # for(i in 1:100){ epsilon[,i] = rnorm(n,0,1) e[,i] = (ident - H)%*%epsilon[,i] u = diag(ident - H) e[,i] = e[,i]/sqrt(u) e[,i] = sort(e[,i]) } # for(i in 1:n){ eo = sort(e[i,]) e1[i] = (eo[2]+eo[3])/2 e2[i] = (eo[97]+eo[98])/2 } # med = apply(e,1,mean) faixa = range(tsi,e1,e2) # par(pty="s") qqnorm(tsi,xlab="Quantil da N(0,1)", ylab="Resíduo Studentizado", ylim=faixa, pch=16, main="", cex=2, cex.axis=1.5, cex.lab=1.5) par(new=TRUE) qqnorm(e1,axes=FALSE,xlab="",ylab="",type="l",ylim=faixa,lty=1, main="",lwd=2) par(new=TRUE) qqnorm(e2,axes=FALSE,xlab="",ylab="", type="l",ylim=faixa,lty=1, main="",lwd=2) par(new=TRUE) qqnorm(med,axes=FALSE,xlab="",ylab="",type="l",ylim=faixa,lty=2, main="",lwd=2) #------------------------------------------------------------------------------------------#