#------------------------------------------------------------------------------------------# # Comandos: # fit.model = ajuste # attach(dados) # source("envel_nbin.txt") # ligacao logaritmica #------------------------------------------------------------------------------------------# par(mfrow=c(1,1)) X = model.matrix(fit.model) n = nrow(X) p = ncol(X) fi = fit.model$theta w = fi*fitted(fit.model)/(fi + fitted(fit.model)) W = diag(w) H = solve(t(X)%*%W%*%X) H = sqrt(W)%*%X%*%H%*%t(X)%*%sqrt(W) h = diag(H) td = resid(fit.model,type="deviance")/sqrt(1-h) fi = fit.model$theta e = matrix(0,n,100) # for(i in 1:100){ resp = rnegbin(n, fitted(fit.model),fi) fit = glm.nb(resp ~ X) w = fit$weights W = diag(w) H = solve(t(X)%*%W%*%X) H = sqrt(W)%*%X%*%H%*%t(X)%*%sqrt(W) h = diag(H) e[,i] = sort(resid(fit,type="deviance")/sqrt(1-h))} # e1 = numeric(n) e2 = numeric(n) # for(i in 1:n){ eo = sort(e[i,]) e1[i] = (eo[2]+eo[3])/2 e2[i] = (eo[97]+eo[98])/2} # med = apply(e,1,mean) faixa = range(td,e1,e2) par(pty="s") qqnorm(td,xlab="Quantil da N(0,1)", ylab="Componente do Desvio", ylim=faixa, pch=16, main="",cex=2, cex.axis=1.5, cex.lab=1.5) par(new=TRUE) # qqnorm(e1,axes=F,xlab="",ylab="",type="l",ylim=faixa,lty=1, main="",lwd=2) par(new=TRUE) qqnorm(e2,axes=F,xlab="",ylab="", type="l",ylim=faixa,lty=1, main="",lwd=2) par(new=TRUE) qqnorm(med,axes=F,xlab="", ylab="", type="l",ylim=faixa,lty=2, main="",lwd=2) #------------------------------------------------------------------------------------------#