#------------------------------------------------------------------------------------------# # Comandos: # fit.model = ajuste # attach(dados) # source("envel_gama.txt") # ligacao logaritmica #------------------------------------------------------------------------------------------# #par(mfrow=c(1,1)) X = model.matrix(fit.model) n = nrow(X) p = ncol(X) w = fit.model$weights W = diag(w) H = solve(t(X)%*%W%*%X) H = sqrt(W)%*%X%*%H%*%t(X)%*%sqrt(W) h = diag(H) ro = resid(fit.model,type="response") fi = (n-p)/sum((ro/(fitted(fit.model)))^ 2) td = resid(fit.model,type="deviance")*sqrt(fi/(1-h)) # e = matrix(0,n,100) # for(i in 1:100){ resp = rgamma(n,fi) resp = (fitted(fit.model)/fi)*resp fit = glm(resp ~ X, family=Gamma(link=log)) w = fit$weights W = diag(w) H = solve(t(X)%*%W%*%X) H = sqrt(W)%*%X%*%H%*%t(X)%*%sqrt(W) h = diag(H) ro = resid(fit,type="response") phi = (n-p)/sum((ro/(fitted(fit)))^ 2) e[,i] = sort(resid(fit,type="deviance")*sqrt(phi/(1-h)))} # e1 = numeric(n) e2 = numeric(n) # for(i in 1:n){ eo = sort(e[i,]) e1[i] = (eo[2]+eo[3])/2 e2[i] = (eo[97]+eo[98])/2} # med = apply(e,1,mean) faixa = range(td,e1,e2) par(pty="s") qqnorm(td, xlab="Quantil da N(0,1)", ylab="Componente do Desvio", ylim=faixa, pch=16, main="",cex=2, cex.axis=1.5, cex.lab=1.5) par(new=TRUE) # qqnorm(e1,axes=FALSE,xlab="",ylab="",type="l",ylim=faixa,lty=1, main="", lwd=2) par(new=TRUE) qqnorm(e2,axes=FALSE,xlab="",ylab="", type="l",ylim=faixa,lty=1, main="", lwd=2) par(new=TRUE) qqnorm(med,axes=FALSE,xlab="", ylab="", type="l",ylim=faixa,lty=2, main="", lwd=2) #-------------------------------------------------------------------------------------------#