#------------------------------------------------------------------------------------------# # Comandos: # fit.model = ajuste # attach(dados) # source("envel_bino.txt") # ligacao logit #------------------------------------------------------------------------------------------# par(mfrow=c(1,1)) X = model.matrix(fit.model) n = nrow(X) p = ncol(X) w = fit.model$weights W = diag(w) H = solve(t(X)%*%W%*%X) H = sqrt(W)%*%X%*%H%*%t(X)%*%sqrt(W) h = diag(H) td = resid(fit.model,type="deviance")/sqrt(1-h) e = matrix(0,n,100) # for(i in 1:100){ dif = runif(n) - fitted(fit.model) dif[dif >= 0 ] = 0 dif[dif<0] = 1 nresp = dif fit = glm(nresp ~ X, family=binomial) w = fit$weights W = diag(w) H = solve(t(X)%*%W%*%X) H = sqrt(W)%*%X%*%H%*%t(X)%*%sqrt(W) h = diag(H) e[,i] = sort(resid(fit,type="deviance")/sqrt(1-h))} # e1 = numeric(n) e2 = numeric(n) # for(i in 1:n){ eo = sort(e[i,]) e1[i] = (eo[2]+eo[3])/2 e2[i] = (eo[97]+eo[98])/2} # med = apply(e,1,mean) faixa = range(td,e1,e2) par(pty="s") qqnorm(td,xlab="Quantil da N(0,1)", ylab="Componente do Desvio", ylim=faixa, pch=16, main="",cex=2, cex.axis=1.5, cex.lab=1.5) # par(new=TRUE) # qqnorm(e1,axes=FALSE,xlab="",ylab="",type="l",ylim=faixa,lty=1, main="",lwd=2) par(new=TRUE) qqnorm(e2,axes=FALSE,xlab="",ylab="", type="l",ylim=faixa,lty=1, main="", lwd=2) par(new=TRUE) qqnorm(med,axes=FALSE,xlab="", ylab="", type="l",ylim=faixa,lty=2, main="",lwd=2) #-------------------------------------------------------------------------------------------#