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Abstract
In this work we present new weak conditions that ensure the valid-

ity of necessary second order optimality conditions (SOC) for nonlinear
optimization. We are able to prove that weak and strong SOCs hold for
all Lagrange multipliers using Abadie-type assumptions. We also prove
weak and strong SOCs for at least one Lagrange multiplier imposing the
Mangasarian-Fromovitz constraint qualification and a weak constant rank
assumption.
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1 Introduction
Optimality conditions play a central role in the study and solution of nonlin-

ear optimization problems. Among them, the KKT conditions are arguably the
most celebrated, ensuring first order stationarity [9, 10, 12, 16, 17, 20]. Their
main objective is to assert that there is not any descent direction for the ob-
jective that remains feasible up to first order. Second order conditions try to
complete this picture, guaranteeing that the directions that are not of ascent
nature are not directions of negative curvature either. This paper studies con-
ditions that ensure the validity of second order conditions at local minima, i.e.
we are interested in situations where the second order conditions are necessary.
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Given a local minimum x∗, the definition of the second order conditions
starts with the identification of a cone of critical directions for which the first
order information is not enough to assert optimality. This cone is called the
(strong) critical cone and denoted T(x∗). In fact, d 6∈ T(x∗) if, and only if, it
either is a direction of ascent for the objective or it is a direction that leads
directly to infeasible points. See details in Definition 2.1 below. The (strong)
second order condition (SOC) then states that these (critical) directions are not,
up to the second order, descent directions of the Lagrangian L(·, λ, µ) starting
from x∗. In other words, the second order condition states that x∗ looks like a
local minimum, up to the second order, of the Lagrangian with fixed multipliers
in all directions of the critical cone. There is also a weak version of the second
order necessary condition that appears naturally in the context of analysis of
algorithms [15, 3, 13]. See again Definition 2.1.

These SOCs are stated using multipliers (λ, µ), that form together with x∗
a KKT triple. Hence, they depend on the validity of KKT at x∗. This in
turn can be guaranteed by a (first order) constraint qualification. The first,
and still most used, constraint qualification is regularity, which states that the
gradients of the active constraints are linearly independent at x∗. Even though
it is quite restrictive, regularity is still widely used due to its simplicity and
special properties, like the uniqueness of the multiplier.

There are many more first order constraint qualifications in the literature,
two of which play an important role in this work. Mangasarian-Fromovitz con-
straint qualification (MFCQ) is an extension of regularity that is better suited
for inequality constraints [18]. It asks that the gradients of the active con-
straints must be positively linearly independent, with positive multipliers asso-
ciated with the inequalities [21]. Another important and very general constraint
qualification was introduced by Abadie [1]. It states that the cone associated to
the linearized constraints coincides with the (geometrical) tangent cone to the
feasible set.

In the context of second order conditions, the usual constraint qualifica-
tion is regularity. One of its advantages is that it ensures the existence of a
unique multiplier, which simplifies the definition of SOCs. In fact, most nonlin-
ear optimization books only define second order conditions under this assump-
tion [9, 10, 12, 16, 17, 20]. A natural question that arises is what conditions
the constraints must satisfy to ensure the validity of a second order necessary
condition. The main objective would be to find conditions that are less stringent
than regularity.

A counter-example by Arutyunov, later rediscovered by Anitescu, shows that
the natural extension of regularity, Mangasarian-Fromovitz constraint qualifi-
cation, does not imply either the strong or the weak second order optimality
condition [6, 5]. The research on SOCs has since been performed under two
main lines of reasoning: imposing constant rank assumptions and proving that
strong SOC holds for every Lagrange multiplier [2, 4, 19], or imposing MFCQ
and some additional condition to show that there exists at least one Lagrange
multiplier for which strong SOC holds [7, 8].

In this work we develop on both of these approaches. We prove first that
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if Abadie CQ holds for a subsystem of the constraints viewed as equalities, a
condition weaker than the usual constant rank assumptions, then strong SOC
holds for all Lagrange multipliers. As a consequence, we recover the result that
if all constraints are equality constraints, then Abadie CQ is sufficient to ensure
strong SOC for all multipliers. As for constraints that conform to MFCQ, we
show that if a generalized complementarity condition plus a new constant rank
condition holds, then strong SOC can be asserted for at least one multiplier.
Finally, we also show that the weak SOC is valid for all multipliers whenever
Abadie CQ holds for the full set of active constraints, considered as a system of
equalities.

The rest of this paper is organized as follows: Section 2 presents the formal
definition of the second order conditions. Section 3 presents definitions and
results concerning second order under Abadie-type assumptions. In Section 4 we
present the results under MFCQ. Section 5 presents some concluding remarks.

2 Basic definitions
Let us introduce the second order optimality conditions below. We start by

formally defining the problem of interest.

min f0(x),
s.t. fi(x) = 0, i = 1, . . . ,m, (1)

fj(x) ≤ 0, j = m+ 1, . . . ,m+ p,

where f` : Rn → R, ` = 0, . . . ,m+ p are twice continuously differentiable. If x
is feasible, we denote as A(x) the index set of active inequalities at x and as I
the index set of equality constraints. All the equality constraints are, naturally,
also said to be active at x. We also use the convention g` = ∇f`(x∗) and
H` = ∇2f`(x∗), for ` = 0, . . . ,m + p, where x∗ is a particular feasible point of
interest. Finally, given a pair (λ, µ) ∈ Rm×Rp+, the function L(·, λ, µ) given by

L(x, λ, µ) = f0(x) +
m∑
i=1

λifi(x) +
m+p∑
j=m+1

µjfj(x)

is called the Lagrangian associated to (1).
Now we can state formally the second order conditions analysed in this paper:

Definition 2.1. Assume that (x∗, λ, µ) ∈ Rn ×Rm ×Rp+ is a KKT triple. The
cone

T(x∗) :=
{
d ∈ Rn | g′0d ≤ 0; g′id = 0, i ∈ I; g′jd ≤ 0, j ∈ A(x∗)

}
is called the (strong) critical cone at x∗ while the smaller cone

τ(x∗) :=
{
d ∈ Rn | g′0d = 0; g′id = 0, i ∈ I; g′jd = 0, j ∈ A(x∗)

}
,

is called the weak critical cone at x∗.
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The (strong) second order optimality condition (SSOC) holds at x∗ with
multiplier (λ, µ) if

∀d ∈ T(x∗), d′
H0 +

∑
i∈I

λiHi +
∑

j∈A(x∗)

µjHj

 d ≥ 0.

Similarly, the weak second order optimality condition (WSOC) holds at x∗ with
multiplier (λ, µ) if

∀d ∈ τ(x∗), d′
H0 +

∑
i∈I

λiHi +
∑

j∈A(x∗)

µjHj

 d ≥ 0.

Observe that the matrix that appears in both conditions above is exactly
the Hessian, with respect to x, of the Lagrangian at x∗. Moreover, it is well
known that if strict complementarity holds, i.e., if there exists a multiplier that
is strictly positive for all active inequality constraints, then the strong and weak
cones are the same and hence both the strong and weak second order condition
are equivalent [3].

3 Abadie-type Conditions
Recently, assumptions based on constant rank that have been used to ensure

the validity of second order conditions for every Lagrange multiplier [2, 4, 19].
In this section we show that such conditions can be naturally replaced by a
much weaker condition based on Abadie’s CQ. The results are rather simple
once we identify which is the correct set of the constraints that must be taken
into account.

Let us start this by showing that constant rank implies a weaker constraint
qualification for system of equalities and that in turn implies Abadie’s condition.

Definition 3.1. Let Ω = {x | hi(x) = 0, i = 1, . . . ,m′} ⊂ Rn be a system
of continuously differentiable equalities such that x∗ ∈ Ω. The Kuhn-Tucker
constraint qualification (KTCQ) holds for Ω at x∗ if, for each d ∈ Rn where
∇hi(x∗)′d = 0, i = 1, . . . ,m′, there exists T > 0 and a differentiable curve
α : (−T, T )→ Rn such that

1. α(0) = x∗, α̇(0) = d.

2. hi(α(t)) = 0,∀t ∈ (−T, T ) and i = 1, . . . ,m′.

If this curve is also twice continuously differentiable at 0 we say that C2-KTCQ
holds.

Now we can present the relation with constant rank conditions.

Lemma 3.1. Consider Ω and x∗ as in Definition 3.1. If the gradients {∇hi(x), i =
1, . . . ,m′} have constant rank around x∗, then C2-KTCQ holds at x∗. In par-
ticular Abadie’s CQ with respect to Ω holds at x∗.
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Proof. It suffices to follow the proof of Bazaraa [9, Theorem 4.3.3]. In particular,
let us define the differential equation

α̇(t) = P (α)d, α(0) = x∗,

where P (x) is the matrix that projects onto the subspace orthogonal to {∇hi(x), i =
1, . . . ,m′}. Peano’s Theorem says that this system must have a solution, since
all data is continuous. It is easy then to check that this solution has the prop-
erties 1 and 2 from Definition 3.1. Moreover, the solution is twice continuously
differentiable because the matrix function P (x) is differentiable under the con-
stant rank assumption [14].

We move on to the second order results. In order to do so let us introduce
a technical lemma that will be the key in the proofs.

Lemma 3.2. Let (λ, µ) ∈ Rm × Rp+ be a multiplier pair associated to a local
minimum x∗ and a non-zero d ∈ Rn. If there is a feasible sequence xk such that

xk − x∗

‖xk − x∗‖
→ d

‖d‖

and such that for ` = 1, . . . ,m+p, either f`(xk) = o(‖xk−x∗‖2) or the respective
multiplier is zero, then

d′

H0 +
∑
i∈I

λiHi +
∑

j∈A(x∗)

µjHj

 d ≥ 0.

Proof. First, observe that the complementarity assumption between f`(xk) and
the respective multiplier implies that

L(xk, λ, µ) = f0(xk) + o(‖xk − x∗‖2).

Therefore, we can use the minimality of x∗ to see that for large k

0 ≤ f0(xk)− f0(x∗)
= L(xk, λ, µ)− L(x∗, λ, µ) + o(‖xk − x∗‖2)

= ∇xL(x∗, λ, µ)′(xk − x∗) + 1
2(xk − x∗)′∇2

xxL(x̄k, λ, µ)(xk − x∗) + o(‖xk − x∗‖2)

= 1
2(xk − x∗)′∇2

xxL(x̄k, λ, µ)(xk − x∗) + o(‖xk − x∗‖2),

where x̄k belongs to the segment joining x∗ and xk and the last equality follows
from the fact that ∇xL(x∗, λ, µ) = 0.

Dividing the inequality above by ‖xk−x∗‖2 and taking limits in k, it follows
that

d′∇2
xxL(x∗, λ, µ)d ≥ 0.



Second order optimality conditions 6

We can now present the first second order result: a simple condition that
ensures that the weak second order condition holds at x∗.

Theorem 3.1. Let x∗ be a local minimum of (1) associated to Lagrange mul-
tipliers (λ, µ) ∈ Rm × Rp+. If the system

f`(x) = 0, ` ∈ I ∪ A(x∗)

conforms to Abadie’s constraint qualification at x∗, then the weak second order
optimality condition holds with multiplier (λ, µ).

Proof. First observe that τ(x∗) is just the cone of linearised feasible directions
associated to the system of equalities above. Hence, Abadie’s condition states
that for any non zero d ∈ τ(x∗) there is xk → x∗ that conforms to all equalities
and such that

xk − x∗

‖xk − x∗‖
→ d

‖d‖
.

The result follows now directly from Lemma 3.2.

This result is a clear generalization of [2, Theorem 3.2], since Lemma 3.1
shows that the weak constant rank condition implies Abadie’s CQ, for the rel-
evant system of equalities.

An immediate corollary, which in turn is a generalization of [3, Theorem
3.3], is:

Corollary 3.1. Consider the case where the minimization problem (1) only has
equality constraints. Let x∗ be a local minimum of this problem where Abadie’s
constraint qualification holds. Then, x∗ conforms to the KKT conditions and the
(strong) second order optimality condition holds for every Lagrange multiplier.

Proof. Since there are no inequalities, A0(x∗) = ∅ and the Abadie assumption of
the previous result applies to the original feasible set. Moreover, in the absence
of inequalities, the strong and weak critical cone are clearly the same.

Note the result from the corollary was already known, see the discussion in
the end of Chapter 5 of [9]. We will revisit this discussion below.

For now, let us turn our attention to the (strong) second order optimality
condition in the presence of inequalities. Once again, the main assumption will
be related to Abadie’s CQ for a special subset of the constraints when viewed as
equalities. To identify such constraints we introduce some notation and prove
a few auxiliary results.

Definition 3.2. The index set of positive inequality multipliers at x∗, denoted
A+(x∗), is the set of indexes j ∈ A(x∗) for which there exists (λ, µ) ∈ Rm×Rp+
such that (x∗, λ, µ) is a KKT triple and µj > 0. We will denote A0(x∗) =
A(x∗) \ A+(x∗).
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We already know that for d ∈ T(x∗) and j ∈ A+(x∗) the inequality appearing
in the definition of the critical cone holds as an equality [2]. Hence, this cone
can be rewritten as

T(x∗) =
{
d ∈ Rn | g′`d = 0, ` ∈ I ∪ A+(x∗), g′jd ≤ 0, j ∈ A0(x∗)

}
(2)

where the objective function gradient can be omitted because we already as-
sumed that x∗ is a KKT point.

Using this fact we can present an interesting characterization of the index
set A0(x∗).

Lemma 3.3.

A0(x∗) = {j ∈ A(x∗) | ∃d ∈ T(x∗) s.t. g′jd < 0}.

Proof. From (2) we already know that

A0(x∗) ⊃ {j ∈ A(x∗) | ∃d ∈ T(x∗) s.t. g′jd < 0}.

On the other hand, we know that j ∈ A0(x∗) if and only if the linear problem

max
λ,µ

µj ,

s.t.
∑
i∈I

λigi +
∑

k∈A(x∗)

µkgk = −g0,

µk ≥ 0, k ∈ A(x∗)

has optimal value 0. Hence 0 is also the optimal value of the dual problem

min
d

g′0d,

s.t. g′id = 0, i ∈ I,
g′kd ≤ 0, k ∈ A(x∗) \ {j},
g′jd ≤ −1.

In particular, the system

g′0d ≤ 0,
g′id = 0, i ∈ I,
g′kd ≤ 0, k ∈ A(x∗) \ {j}
g′jd ≤ −1.

has a solution, that is, j ∈ {j ∈ A(x∗) | ∃d ∈ T(x∗) s.t. g′jd < 0}.
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Corollary 3.2. There is h ∈ T(x∗) s.t.

g′ih = 0, i ∈ I ∪ A+(x∗),
g′jh < 0, j ∈ A0(x∗).

Proof. As T(x∗) is a convex cone, it is closed by addition. Hence, it is sufficient
to add the vectors given by Lemma 3.3 for each j ∈ A0(x∗).

Finally we can present the new condition for the validity of the (strong)
second order condition. It is a direct generalization of [2, Theorem 3.1] and [19,
Theorem 6], where we clearly identify the set of gradients that need to be well
behaved instead of looking at all the subsets that involve active inequalities.

Theorem 3.2. Let x∗ be a local minimum of (1) associated to Lagrange mul-
tipliers (λ, µ) ∈ Rm × Rp+. If the Tangent cone of

F+ := {f`(x) = 0, ` ∈ I ∪ A+(x∗)}

at x∗ contains the critical cone T(x∗), then the (strong) second order optimality
condition holds at x∗ with multiplier (λ, µ).

Proof. Let d be any non-zero direction in T(x∗), and consider without loss of
generality that ‖d‖ = 1. Let h be as in Corollary 3.2. For any k = 1, 2, . . .,
define

dk := d+ (1/k)h
‖d+ (1/k)h‖ .

It follows that g′`dk = 0, ` ∈ I ∪A+(x∗), g′jdk < 0, for all j ∈ A0(x∗), ‖dk‖ = 1,
and dk → d. In particulr dk ∈ T(x∗).

The assumption of the theorem implies then that dk belongs to the tangent
cone of the system of equalities at x∗. That is, there must be xl → x∗, with
f`(xl) = 0, ` ∈ I ∪ A(x∗), such that

xl − x∗

‖xl − x∗‖
→l d

k.

We show now that xl is feasible in (1) for l large enough. In fact, for
` ∈ I ∪ A+(x∗) the constraints hold as equalities. For j ∈ A0(x∗) we get

fj(xl) = fj(x∗) +∇fj(x̄l)′(xl − x∗) = ∇fj(x̄l)′(xl − x∗),

for some x̄l in the line segment joining x∗ and xl. Then, ∇fj(x̄l) →l gj . Since
(xl − x∗)/‖xl − x∗‖ →l d

k and g′jd
k < 0, it follows that, for l large enough,

fj(xl) < 0. Finally, continuity of the constraints imply that all inactive con-
straints hold in xl for large l.

Since f`(xl) = 0, for all ` ∈ I ∪ A+(x∗), Lemma 3.2 shows then that

(dk)′∇2
xxL(x∗, λ, µ)dk ≥ 0.

The result follows taking limits in k.
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Theorem 3.2 above may be seen as a variation of the results described in the
discussion of Chapter 5 of [9]. There, the authors define the following second
order constraint qualification.

Theorem 3.3. (Bazaraa, Sherali, and Shetty [9]) Let x∗ be a local minimum
of (1) and (λ, µ) ∈ Rm×Rp+ an associated Lagrange multiplier pair. Let A+

µ :=
{j ∈ A(x∗) | µj > 0} and A0

µ := A(x∗) \A+
u . If the system

Fµ := {x | f`(x) = 0, ` ∈ I ∪ A+
µ ; fj(x) ≤ 0, j ∈ A0

µ} (3)

conforms to Abadie’s constraint qualification at x∗, then the (strong) second
order optimality condition holds at x∗ with multiplier (λ, µ).

Observe that this theorem has a different assumption for each multiplier.
Hence it can only ensure a SOC for all multiplier if all the associated systems
conform to Abadie’s condition.

In order to better understand this result and see the relationship between
Theorems 3.3 and 3.2, let us proof two auxiliary lemmas.

Lemma 3.4. The linearized cones associated to the systems appearing in (3)
are all the same and coincide with the strong critical cone T(x∗).

Proof. This is a simple consequence of direct algebraic manipulations of the
definitions of the cones and the KKT conditions.

This result allows us to interpret the condition from Bazaraa et al. as a
family of inclusions indexed by the multiplier pairs. It asserts the validity of
SSOC for a specific multiplier pair (λ, µ) whenever

Tangent of Fµ ⊃ T(x∗). (4)

It follows immediately that if one of these inclusions holds for (λ, µ), it also holds
for all other multiplier pairs (λ̃, µ̃) where A+

µ̃ ⊂ A+
µ . This happens because in

this case clearly Fµ̃ ⊃ Fµ and this inclusion is inherited by the tangent cones. In
particular, if (λ, µ) is a multiplier pair where A+

µ = A+(x∗), which always exists
since convex combinations of multiplier pairs is a multiplier pair, the strong
second order condition will hold for every multiplier. This fact is summarized
in the next theorem.

Theorem 3.4. Let x∗ be a local minimum of (1) and (λ, µ) ∈ Rm × Rp+ an
associated multiplier pair such that A+

µ = A+(x∗). If the system

Fµ = {x | f`(x) = 0, ` ∈ I ∪ A+(x∗); fj(x) ≤ 0, j ∈ A0(x∗)}

conforms to Abadie’s constraint qualification at x∗, then the (strong) second
order optimality condition holds at x∗ for all multiplier pairs.
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Note that the hypothesis of this last result is equivalent to the inclusion
(4). Hence, at first sight, Theorem 3.2 may seem to be a generalization of
Theorem 3.4, where the critical feasible set Fµ is replaced by the potentially
larger set F+, making the inclusion easier to hold. However, both results are
actually equivalent.

Lemma 3.5. Using the assumptions and notation of Theorems 3.2 and 3.4,
then

Tangent of Fµ ⊃ T(x∗) ⇐⇒ Tangent of F+ ⊃ T(x∗).
Hence, Theorems 3.2 and 3.4 are equivalent.

Proof. It follows directly from the definitions of F+ and Fµ that F+ ⊃ Fµ, hence
the direct implication is obvious.

As for the reverse implication, we can follow the proof of Theorem 3.2 to see
that given a non-zero d ∈ T(x∗), we can find a sequence dk → d such that for
each k there is a sequence xl feasible for Fµ where

xl − x∗

‖xl − x∗‖
→ dk.

Hence dk must also belong to the tangent cone of Fµ. The result follows taking
limits in k as tangent cones are closed.

Actually, the same line of arguments allow us to give a similar variation
of Theorem 3.3 where the constraints with index in A0(x∗) are omitted. This
result encompasses as special cases Theorems 3.2-3.4.

Theorem 3.5. Let x∗ be a local minimum of (1) and (λ, µ) ∈ Rm × Rp+ an
associated Lagrange multiplier pair. Let A+

µ = {j ∈ A(x∗) | µj > 0}. If the
tangent cone of

{x | f`(x) = 0, ` ∈ I ∪ A+
µ , fj(x) ≤ 0, j ∈ A+(x∗) \ A+

µ } (5)

at x∗ contains the (strong) critical cone T(x∗), then the (strong) second order
optimality condition holds at x∗ for all multiplier pairs (λ̃, µ̃) such that A+

µ̃ ⊂
A+
µ .

We close this section by showing a simple example where the assumptions
of the Theorem above fail for the multipliers with the largest number of strictly
positive entries. In particular, Theorems 3.2 and 3.4 can not be applied. How-
ever, it is still possible to find a special multiplier for which its assumptions hold
and hence where SOC is fulfilled.

Consider the optimization problem

min x2,

s.t. − x2
1 − x2 ≤ 0,

− x2 ≤ 0, (6)
x1 ≤ 0.
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Figure 1: Feasible set of problem (6).

The point x∗ = (0, 0) is clearly a solution, which is associated to many
possible multipliers. In particular, the multipliers associated to the first two
constraints can be strictly positive, while the multiplier associated to the last
constraint is always 0. That is, A+(x∗) = {1, 2} and A0(x∗) = {3}. The
critical cone is only the negative portion of the first axis, T(x∗) = {d | d1 ≤
0, d2 = 0}. If we consider a multiplier where the first two coordinates are not
zero, for example µ = (1/2, 1/2, 0), it follows that the sets F+, that appears in
Theorem 3.2, and Fµ, that appears in Theorems 3.3 and 3.4, coincide and are
equal to {(0, 0)}. Clearly its tangent cone does not contain T(x∗). On the other
hand, if we consider µ̃ = (0, 1, 0), the set Fµ̃ = {x | x1 ≤ 0, x2 = 0}, appearing
in Theorem 3.3, is exactly T(x∗). Hence, SSOC holds. The set appearing in
Theorem 3.5 is even larger, consisting on the whole first axis.

4 MFCQ-type Conditions
Another approach on the (strong) second order condition was pioneered by

Baccari and Trad [8]. In this paper, the authors show that there is at least
one Lagrange multiplier pair such that the second order condition holds if there
is at most one inequality in A0(x∗), an assumption called generalized strict
complementarity slackness (GSCS), and if a modified version of Mangasarian-
Fromovitz constraint qualification hold.

Definition 4.1. We say that the Modified Mangasarian-Fromovitz (MMF) holds
at x∗ if MFCQ holds and the rank of the active gradients is deficient of at most
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one.

The proof technique is very interesting. They first show that there are two
multiplier pairs (λ1, µ1) and (λ2, µ2) for which

max
(
d′∇2

xxL(x∗, λ1, µ1)d, d′∇2
xxL(x∗, λ2, µ2)d

)
≥ 0.

Then, using the fact that the critical cone T(x∗) is a first order cone whenever
GSCS holds, it is possible to conclude, using Yuan’s Lemma [22, 11], that there
exists at least one multiplier pair for which SSOC holds.

Now, it is simple to see that the GSCS assumption is only used to allow
for the use of Yuan’s Lemma. However, if one is interested on the weak second
order condition, the cone τ(x∗) is always a subspace regardless ofA0(x∗). Hence,
Yuan’s result can be applied and we can see that:

Corollary 4.1. Let x∗ be a local minimum of (1). If x∗ conforms to MMF
then WSOC holds for at least one multiplier pair.

This results are not special cases of the previous second order results, based
only on Abadie’s condition for the right set of constraints viewed as equalities.
For example consider the problem

min x2

s.t. − x2 ≤ 0
x2

1 − x2 ≤ 0

at its global minimum (0, 0).
However, we can still use the ideas presented in the previous section to

extend the corollary above. In particular, we will show that the constraints
with indexes in A0(x∗) do not play an important role and hence their rank
should not be taken into account.

Theorem 4.1. Let x∗ be a local minimum of (1). Suppose that MFCQ holds
at x∗ and that all the systems with the form

f`(x) = 0, ` ∈ I ′,

where I ′ ⊂ I ∪ A+(x∗), #I ′ = #(I ∪ A+(x∗)) − 1, conform to C2-KTCQ .
Then, WSOC holds at x∗ for at least one multiplier pair.

We will prove this result in a series of lemmas below. This proof can also be
adapted to give also an alternative proof of Baccari and Trad’s result.

Lemma 4.1. Under MFCQ, if the gradients of constraints with index in I ∪
A+(x∗) are linearly dependent, then there are two active inequalities j1 and j2
such that

1. j1, j2 ∈ A+(x∗).
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2. There exists γj1 , γj2 > 0 and γ` ∈ R, ` ∈ I ∪A+(x∗), ` 6= j1, j2, such that

γj1gj1 = γj2gj2 +
∑

`∈I∪A+(x∗)
6̀=j1,j2

γ`g`. (7)

3. It is possible to find two multiplier pairs (µ1, λ1), (µ2, λ2) ∈ Rm×Rp+ such
that λ1

j1
= λ2

j2
= 0.

Proof. If the constraints with index in I ∪A+(x∗) are linearly dependent, there
must exist β`, ` ∈ I ∪ A+(x∗), not all zero, such that

0 =
∑

`∈I∪A+(x∗)

β`g`.

We extend these coefficients to Rm × Rp by defining βj = 0 for the remaining
indexes.

Now, given a multiplier pair (λ, µ) ∈ Rm × Rp+ such that µj > 0, ∀j ∈
A+(x∗), the line that passes through this multiplier with direction β, must in-
tercept the set of all possible multipliers in a non-trivial segment. The extremes
(λ1, µ1) and (λ2, µ2) of this segment are clearly associated to two indexes j1, j2
for which λ1

j1
= λ2

j2
= 0. This happens because βj1 and βj2 have opposite signs.

Now, define αj1 = |βj1 |, αj2 = |βj2 |, and α` = β`, ` ∈ I∪A+(x∗), ` 6= j1, j2.

We now state and prove an auxiliary lemma.

Lemma 4.2. Consider the assumptions of Theorem 4.1 and of Lemma 4.1 and
let j1, j2 be the special active inequalities given by this Lemma. If d ∈ T(x∗), then
there exists two twice continuously differentiable curves αk : (−Tk, Tk) → Rn,
Tk > 0, k = 1, 2, such that:

1. αk(0) = x∗, α̇k(0) = d.

2. f`(αk(t)) = 0,∀t ∈ (−Tk, Tk) and ` ∈ I ∪ A+(x), ` 6= jk.

Proof. For each k = 1, 2, simply apply Lemma 3.1 for the systems

f`(x) = 0, ` ∈ I ∪ A+(x), ` 6= jk.

This result is complemented by the lemma below, that gives hints on what
happens in constraint jk when one follows the curve αk(t), t ∈ (−T, T ).

Lemma 4.3. Consider the assumptions and notation of Lemma 4.2. Fix a
direction d ∈ T(x∗) and the respective curves αk, k = 1, 2. Define ϕk` (t) =
f`(αk(t)), ` ∈ I∪A+(x∗). These functions are twice continuously differentiable,
ϕkjk

(0) = ϕ̇kjk
(0) = 0, k = 1, 2, and

ϕ̈1
j1

(0) = −γj2

γj1

ϕ̈2
j2

(0).
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Proof. Using standard calculus rules, since jk ∈ A+(x∗), it is easy to see that

ϕkjk
(0) = fjk

(αk(0)) = f(x∗) = 0,
ϕ̇kjk

(0) = ∇fjk
(αk(0))′d = g′jk

d = 0.

Now let us compute the second derivative. For ` ∈ I ∪ A+(x∗), ` 6= jk, we
get that ϕ̈k` (0) = 0, because the function is constantly 0 in (−Tk, Tk). Hence,
standard calculus rules shows that

0 = ϕ̈k` (0) = d′H`d+ g′`α̈k(0), ` ∈ I ∪ A+(x∗), ` 6= jk. (8)

Finally, for ` = j1, we get

ϕ̈1
j1

(0) = d′Hj1d+ g′j1
α̈1(0)

= γj1

γj1

d′Hj1d+ γj2

γj1

g′j2
α̈1(0) +

∑
`∈I∪A+(x∗)
` 6=j1,j2

γ`
γj1

g′`α̈1(0) [Using (7)]

= γj1

γj1

d′Hj1d−
γj2

γj1

d′Hj2d−
∑

`∈I∪A+(x∗)
` 6=j1,j2

γ`
γj1

d′H`d [Using (8)]. (9)

Analogously, for ` = j2,

ϕ̈2
j2

(0) = d′Hj2d+ g′j2
α̈2(0)

= γj2

γj2

d′Hj2d+ γj1

γj2

g′j1
α̈2(0)−

∑
`∈I∪A+(x∗)
6̀=j1,j2

γ`
γj2

g′`α̈2(0) [Using (7)]

= γj2

γj2

d′Hj2d−
γj1

γj2

d′Hj1d+
∑

`∈I∪A+(x∗)
` 6=j1,j2

γ`
γj2

d′H`d [Using (8)]. (10)

Comparing (9) and (10), the result follows.

We are now able to prove Theorem 4.1

Proof. (Theorem 4.1) If the gradients of I ∪ A+(x∗) are linearly independent,
the result follows from Theorem 3.2. Otherwise, let d ∈ T(x∗) be a direction of
norm 1 such that g′jd < 0, j ∈ A0(x∗). We show first that

max
(
d′∇2

xxL(x∗, λ1, µ1)d, d′∇2
xxL(x∗, λ2, µ2)d

)
≥ 0.

We start by recalling that d′g` = 0, for all ` ∈ I ∪ A+(x∗) and g′jd < 0,
for all j ∈ A0(x∗). Let j1 and j2 be the special indexes appearing in the
lemmas above and consider the respective curves α1 and α2. As in Lemma 4.3,
define ϕk` (t) := f`(αk(t)), k = 1, 2, ` ∈ I ∪ A(x∗). We already know that, for
j ∈ A0(x∗),

ϕkj (0) = 0, ϕ̇kj (0) = g′jd < 0.
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Hence, the curves αk are feasible for these constraints and small t. Now, for ` ∈
I ∪ A+(x∗), ` 6= jk, ϕk` (t) = 0, for all t ∈ [0, Tk], k = 1, 2. So, these constraints
are also satisfied. The only constraints that may fail is fj1 along curve α1 and
fj2 along α2. Considering Lemma 4.3, there are only two possibilities:

1. ϕ̈1
j1

(0), ϕ̈2
j2

(0) 6= 0. Using again Lemma 4.3, we can see that exactly one of
the functions ϕ̈kjk

, k = 1, 2 has strictly negative second derivative at t = 0.
Hence, this function has to be negative for small t and the respective curve
must be feasible. Choosing the respective multiplier pair (λk, µk), we can
now use Lemma 3.2 to see that

d′∇2
xxL(x∗, µk, λk)d ≥ 0.

2. ϕ̈1
j1

(0) = ϕ̈2
j2

(0) = 0. In this case, along α1 all constraints but fj1 are
satisfied. If fj1 is also satisfied along α1, then this curve is feasible and
we proceed as above. If α1 does not satisfy fj1 , as ϕ1

j1
(0) = ϕ̇1

j1
(0) =

ϕ̈1
j1

(0) = 0, this infeasibility is of order two. In particular, there is a
sequence xk → x∗ such that

xk − x∗

‖xk − x∗‖
→ d, 0 < fj1(xk) = o(‖xk − x∗‖2). (11)

Now, as the full feasible set conforms to Mangasarian-Fromovitz condition,
it conforms to an error bound. Therefore, there is a feasible sequence {x̄k}
and a constant M > 0 such that ‖x̄k − xk‖ ≤Mfj1(xk) = o(‖xk − x∗‖2).
Let us study {x̄k}.
First observe that,

x̄k − x∗

‖x̄k − x∗‖
= x̄k − x∗

‖x̄k − x∗‖

= x̄k − xk

‖x̄k − x∗‖
+ xk − x∗

‖x̄k − x∗‖

= o(‖xk − x∗‖2)
‖x̄k − x∗‖+ o(‖xk − x∗‖2) + xk − xk

‖xk − x∗‖+ o(‖xk − x∗‖2)
→ d.

Moreover, for ` ∈ I ∪ A+(x∗), ` 6= j1

f`(x̄k) = f`(xk) +∇f`(xk)(x̄k − xk)
= 0 + o(‖xk − x∗‖2).

And for j1,

fj1(x̄k) = fj1(xk) +∇fj1(xk)(x̄k − xk)
= o(‖xk − x∗‖2) + o(‖xk − x∗‖2)
= o(‖xk − x∗‖2).
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Then, we can use again Lemma 3.2 to see that

d′∇2
xxL(x∗, µk, λk)d ≥ 0.

Finally, any direction d ∈ τ(x∗) can be approximated by directions like the
ones considered above, hence the continuity of the functions involved imply that

∀d ∈ τ(x∗), max
(
d′∇2

xxL(x∗, λ1, µ1)d, d′∇2
xxL(x∗, λ2, µ2)d

)
≥ 0.

As τ(x∗) is a subspace, Yuan’s Lemma shows that there is a multiplier (λ, µ)
which is a convex combination of (λ1, µ1) and (λ2, µ2) such that WSOC holds.

A very similar proof can also be used to demonstrate a direct generalization
of the main result in [8], which involves a strong second order condition. Here,
the generalized strict complementarity assumption can not be dropped as it
is essential to apply Yuan’s Lemma to the strong critical cone, which is not
necessarily a subspace. This results is also related to the conjecture in the end
of [3, Section 5] where instead of using an assumption of the kind “full rank
minus 1” we employ an assumption with weaker flavour, that is implied by
“constant rank of the full set of gradients minus 1”.

Theorem 4.2. Let x∗ be a local minimum of (1). Suppose that MFCQ and
GSCS hold at x∗, and that all the systems with the form

f`(x) = 0, ` ∈ I ′,

where I ′ ⊂ I ∪ A+(x∗), #I ′ = #(I ∪ A+(x∗)) − 1, conform to C2-KTCQ .
Then, SSOC holds at x∗ for at least one multiplier pair.

Proof. Just follow the proof of Theorem 4.1. At the last part we can still use
Yuan’s Lemma since GSCS condition implies that the critical cone is a first
order cone as shown in the proof of [8, Theorem 5.1].

We end this section with an interesting example that shows the usefulness
of the results above. Consider the following optimization problem:

min x2

s.t.
1
2x

2
1 − x2 ≤ 0

x2
1 − x2 ≤ 0 (12)

(x1 − x2)2 − x1 − x2 ≤ 0
(x1 + x2)2 + x− x2 ≤ 0.

Its feasible set is displayed in Fig. 2.
The minimum is, clearly, the origin, where the feasible set is very well be-

haved. It conforms to the Mangasarian-Fromovitz constraint qualification. The
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Figure 2: Feasible set of problem (12).

second order condition also holds. Actually, the critical cones are composed
only by the origin, so the second order conditions hold trivially.

In spite its simple nature, the result from Baccari and Trad can not be used
to ensure the validity of a second order condition. The reason for this is that
the assumptions of [8, Theorem 5.1 and 7.7] require the existence of 3, the total
number of active constraints minus one, linearly independent gradients. This
is impossible in R2. On the other hand, Theorems 4.2 and 4.1 both can be
applied, as the last two gradients are linearly independent and span the whole
plane.

5 Conclusions
In this paper we proved the validity of the classical weak and strong second-

order necessary optimality conditions under assumptions weaker than regularity.
Abadie-type assumptions yield SOCs that hold for every Lagrange multiplier
pair, while conditions based on MFCQ-type assumptions ensure SOCs for at
least one Lagrange multiplier pair. In our future research, we plan to study the
possibility of using such conditions, or other related ideas, to extend the con-
vergence theory of algorithms specially tailored to find second order stationary
points as the methods described in [3, 13].
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