
V. Herskovic et al. (Eds.): CRIWG 2012, LNCS 7493, pp. 97–112, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Characterizing Key Developers:
A Case Study with Apache Ant

Gustavo A. Oliva1, Francisco W. Santana2, Kleverton C.M. de Oliveira2,
Cleidson R.B. de Souza2,3, Marco A. Gerosa1

1 Department of Computer Science, University of São Paulo (USP), Brazil
{goliva,gerosa}@ime.usp.br

2 Computing Department, Federal University of Pará (UFPA), Brazil
3 Vale Technological Institute – Sustainable Development (ITV – DS), Brazil

{wertherjr,kleverton.macedo}@gmail.com,
cleidson.desouza@acm.org

Abstract. The software architecture of a software system and the coordination
efforts necessary to create such system are intrinsically related. Making changes
to components that a large number of other components rely on, the technical
core, is usually difficult due to the complexity of the coordination of all in-
volved developers. However, a distinct group of developers effectively help
evolving the technical core of software projects. This group of developers is
called key developers. In this paper we describe a case study involving the
Apache Ant project aimed to identify and characterize key developers in terms
of their volume of contribution and social participation. Our results indicated
that only 25% of the developers may be considered as key developers. Results
also showed that key developers are often active in the developers’ mailing list
and often fulfilled the coordination requirements that emerged from their devel-
opment tasks. Finally, we observed that the set of key developers was indistin-
guishable from the set of top contributors. We expect that this characterization
enables further exploration over contribution patterns and the establishment of
profiles of FLOSS key developers.

Keywords: software architecture, collaboration, socio-technical analysis, min-
ing software repositories, case study.

1 Introduction

In the 60s’, Conway [6] suggested that the relationship between the architecture of a
software system and the structure of the organization developing this software is ho-
momorphic – the Conway’s Law. Similarly, Parnas [17] suggested an approach, the
information hiding principle, to structure the software architecture in such a way to
reduce coordination needs among developers. Recently, these theoretical proposals
have been corroborated by several qualitative [25, 10, 24] and quantitative [5, 4]
studies.

98 G.A. Oliva et al.

These results basically suggest that the structure of a software system influences
and is influenced by the communication and coordination efforts of the developers
developing such system. Furthermore, the coordination necessary to evolve highly
interconnected software components is usually greater than the effort required to
evolve independent components. This seems to be the case even when well-defined
APIs are used [24]. In fact, despite the rhetoric about openness, access to the technical
core of a software project (the set of the most important software components on
which other components rely on) is limited [22]. Apart from that, we cannot say much
more about the group of developers that help evolve the technical core. Are these key
developers the ones that communicate more to other developers in the mailing-list?
Are they the ones in the core of the coordination requirements network? Are they the
ones that have higher socio-technical congruence [5] when considering the mailing-
list network (social activities that actually occurred) and the coordination require-
ments network (social activities that should have taken place)? Are they also the top
committers? In a long term perspective, a better characterization of key developers
should help researchers understand the process a developer undergoes in order to
become a key developer.

In this paper, we describe a case study conducted with the open source project
Apache Ant1 in order to investigate the characteristics of its key developers, i.e., the
set of developers that work on the technical core of this project. Firstly, we designed
and applied an appropriate method to evaluate how limited the number of key devel-
opers is. Afterwards, we investigated whether these developers (i) were central in the
mailing-list network, (ii) were central in the coordination requirements network, (iii)
had a higher congruence when considering these two social networks [5], or (iv) were
just the top committers. Our results indicated that only 25% of the developers were
classified as key developers. Results also showed that key developers were active in
the developers’ mailing list and often fulfilled the coordination requirements that
emerged from their development tasks (high socio-technical congruence). Finally, we
observed that the set of key developers was indistinguishable from the set of top con-
tributors.

The rest of this paper is organized as follows. In Section 2, we present our research
questions. In Section 3, we present related work. Section 4 then describes the research
method, including the supporting tools we used. Our results are presented in Section
5. After that, Section 6 presents a discussion of our results and describes the threats to
the validity of this study. Finally, in Section 7, we state our conclusions and plans for
future work.

2 Characterizing Key Developers

The relationship between the architecture of a software system and the coordination
required to evolve such a system is long recognized by researchers and practitioners.
For instance, the performance of software developers is related to how well they align

1 http://ant.apache.org

 Characterizing Key Developers: A Case Study with Apache Ant 99

their coordination efforts with the existing technical dependencies in the software
architecture, both at the team level [25] and at the individual level [4]. Indeed, misa-
lignment between these aspects is seen as a possible explanation for breakdowns in
software development projects [2]. In other words, the relationship between software
architecture and coordination suggests that the coordination effort necessary to devel-
op highly interconnected software components is usually higher than to develop inde-
pendent components. This is true even when well-defined interfaces are used among
software components [24].

In any software system, there are components that are regarded as more important
than others. Such components constitute the technical core of a project, i.e. the set of
the most important software components on which lots of other components rely on.
In this paper, we call key developers the set of developers who help evolve the tech-
nical core of a software system. Given the existing relationship between software
architecture and coordination, we expect the access to the technical core of a software
project to be limited. This aspect has already been observed in previous studies of
open source projects [22]. In other words, we expected a limited number of key
developers. The reason is twofold: (i) the technical core is naturally important (if
someone “breaks” a core component, then several other components are likely to be
affected) and (ii) the complexity of the coordination necessary to make changes to the
core is high. This leads to our first research question:

RQ 1: How limited is the number of key developers in a software project?

Social interaction within software development is acknowledged as an important as-
pect in software projects and thus has been the subject of a series of studies [6, 17, 10,
23]. Different social processes (e.g., development of a shared understanding of the
system architecture, conflict resolution, and leadership establishment) are necessary
for successful projects. These social processes often involve key developers different-
ly from the rest [8], we believe that a better characterization of such developers would
be beneficial to researchers interested in collaborative software development. The
investigation of key developers seems especially suitable in the context of free/libre
open source software development (FLOSS development) and global software devel-
opment (GSD), where social interaction data is usually available in software reposito-
ries and in the project’s website. This leads us to our second research question.

RQ 2: How distinct is the participation of key developers in terms of communica-
tion and coordination?

While conducting two case studies involving the Apache Server and the Mozilla web
browser respectively, Mockus et al. [13] proposed the following hypothesis: “open
source developments will have a core of developers who control the code base, and
will create approximately 80% or more of the new functionality. If this core group
uses only informal, ad hoc means of coordinating their work, it will be no larger than
10-15 people.” As our goal in this study involves characterizing key developers, we
also intend to verify whether a relaxed version of such hypothesis also holds for the
Apache Ant project. More specifically, instead of looking for added functionality, we
will just analyze the number of modifications made by each developer. We operatio-
nalize that by identifying the group of top contributors, i.e. the set of developers who

100 G.A. Oliva et al.

performed the highest number of modifications (commits) to the project. We thus
state our last research question as follows.

RQ 3: What is the contribution volume of key developers?

3 Related Work

A number of previous studies have investigated the participation of open source
developers regarding their “status” position within the community. For instance,
Crowston et al. [8] examined how the group of core developers can be empirically
distinguished. The authors investigated three specific approaches, namely (i) the
named list of developers, (ii) the most frequent contributors, and (iii) a social network
analysis of the developers’ interaction pattern. By applying these three approaches to
the interactions around bug fixing for 116 SourceForge projects, the authors
concluded that each approach identify different individuals as core developers.
However, as in our paper, the results suggest that the group of core developers in
FLOSS projects corresponds to only a small fraction of the total number of
contributors. In another example, Terceiro et al. [26] investigated the relationship
between code structural complexity and the participation level of developers
(dichotomized as core and peripheral). By relying on previous studies of Robles et al.
[18, 19], the authors split the entire studied period in 20 periods of equal duration, and
for each period, they considered the 20% top committers to be the core team. They
found out that core developers make changes to the source code without introducing
as much structural complexity as the peripheral developers. Moreover, core
developers also remove more structural complexity than peripheral developers.

Other studies have focused on investigating the characteristics and behavior of
software developers from a social network analysis (SNA) perspective. De Souza et
al. [22] investigated the ways in which development processes are somehow inscribed
into software artifacts. The authors hypothesized that when developers shift from the
periphery to the core of the code authorship social network, a distinct phenomenon
occurs. Developers initially contribute code that performs some functionality by
calling others’ code and, as these developers become more important, their code start
to be called by other developers. De Souza and colleagues showed a periphery to core
shift within the MegaMek project, and a core to periphery shift (opposite effect)
within the Apache Ant project. In another study, Oezbek et al. [16] investigated the
patterns of interaction among the core and peripheral sets of developers in order to
check the validity of the “onion model” [14]. After building social networks based on
mailing lists data from 11 FLOSS projects of different domains, the authors observed
that the core holds a disproportionally large share of communication with the
periphery. They also state that members of the core not only show a particular intense
participation, but also appears to have a qualitatively different role as well. However,
such hypothesis remains to be investigated. The authors also conclude that the
transition of individual mailing-list participants towards ever higher participation is
qualitatively discontinuous.

 Characterizing Key Developers: A Case Study with Apache Ant 101

4 Research Method

In order to answer the research questions defined previously, we decided to adopt a
case study as our research method. A case study is a well-established empirical me-
thod aimed at investigating contemporary phenomena in their natural context [28].
More specifically, we conducted a descriptive case study with retrospective data col-
lection [20]. In this case study we sought to portray the characteristics of key devel-
opers by leveraging the project’s available stored data. In contrast to embedded case
studies, where multiple units of analysis are studied within a case, our case study is
essentially holistic, i.e. the case is studied “as a whole.” In a nutshell, we focused on a
particular open source project and gathered different types of information from it.

In the next subsections, we present the case study design and planning. We present
the rationale for choosing the case, the supporting tools we used, and the main steps
we followed.

4.1 The Case

For the case study, we needed a software project that satisfied the following require-
ments: (i) a software project hosted on a Subversion (SVN) repository with anonym-
ous read access; (ii) availability of information about the development activities
(change logs and communication records) during a release interval, and (iii) a number
of active developers greater than 15. The first requirement exists due to constraints on
the tools at our disposal. The second requirement was raised because we need devel-
opment information to generate the social networks and compute volume contribu-
tion. Furthermore, we will focus our analysis on a specific release interval so as to
minimize influencing factors. Finally, the third requirement came up because we need
sufficient social data to answer our research questions. Hence, we decided to focus on
non-small development teams: Levine and Moreland [11] defined small teams as
groups of 5 to 15 individuals.

After inspecting a series of open source projects, we decided to analyze Apache
Ant: it is hosted on Subversion, information about development activities is available,
and 16 developers contributed to it during the studied release interval. More precisely,
we investigated Apache Ant Core, which is the main Ant module. We considered a
development period that ranges from release 1.6 (December 19th, 2003) until release
1.7 (December 13th, 2006). In such period, a total of 2053 commits were made by a
group of 16 active developers. Apache Ant is hosted by the Apache Software Founda-
tion and is one of the most popular open source tools for automating software build
processes.

4.2 Supporting Tools

Empirical studies that mine software repositories usually require extensive tool sup-
port due to the large amount and complexity of the data to be collected, processed,

102 G.A. Oliva et al.

and analyzed [22]. Given the different data sources required in this study, we em-
ployed a variety of tools: XFlow [21], JDX, Jung2, and OSSNetwork [1].

XFlow. XFlow is an extensible open source tool we developed whose main goal is to
support empirical software evolution analyses by considering both social and technic-
al aspects. By bringing together these two views, the tool aims to support exploratory
and descriptive case studies that call for a deeper understanding of software evolution
aspects. In this study, we employed XFlow to calculate the coordination requirements
network [5].

JDX. Java Dependency eXtractor is a Java library we developed to extract dependen-
cies and compute the call-graph from Java code. The library relies on the robust Java
Development Tools Core (JDT Core)3 library, which is the Eclipse IDE incremental
compiler. As a desirable consequence, JDX is able to handle Java source code in its
plain form. This facilitates studies that involve processing large amounts of code
mined from version control systems.

OSSNetwork. OSSNetwork is a tool we developed that (i) retrieves data from soft-
ware repositories (forums, mailing lists, issue tracking systems, and chats) by parsing
HTML information and (ii) generates different social networks, thus supporting the
analysis of social aspects of software development. We used OSSNetwork to compute
the communication network from the developers’ mailing list.

Jung. Java Universal Network/Graph Framework is a Java library that provides a
common and extendible language for modeling, analyzing, and visualizing data that
can be represented as a graph or network. We used Jung to compute network proper-
ties, such as the eigenvector centrality of nodes (as will be detailed in the following
subsection).

4.3 Main Steps

In order to answer our research questions we mined Apache Ant’s development repo-
sitories, namely the version control system (Subversion) and the developers’ mailing
list. This whole process was divided into three main steps:

I) Identifying Key Developers. The varying complexity of software system modules
requires an equally varied amount of knowledge from developers in order to complete
their tasks. As we are interested in characterizing key developers, our first step was to
discover which developers actually worked on the core files of the Apache Ant
project. In other words, this investigation requires finding both the core of the tech-
nical network and the particular developers that worked on such core. Hence, for each
Subversion revision embedded in the studied development period, we did the follow-
ing sub-steps:

2 http://jung.sourceforge.net/
3 http://www.eclipse.org/jdt/core/

 Characterizing Key Developers: A Case Study with Apache Ant 103

a) Generate the project’s technical network. We calculated the project’s static
call-graph using JDX. According to Wikipedia, a static call-graph is a directed graph
that represents calling relationships between subroutines in a computer program. In
our context, each node represents a method and each edge (f, g) indicates that a me-
thod f calls a method g (including constructor invocations). After obtaining the call-
graph, we clustered the method nodes belonging to the same compilation unit. We
thus obtained a new graph in which the nodes represent the compilation units and the
edges represent their calling relationship. We considered such graph to be a suitable
representation of the project’s technical network.

b) Finding the core of the technical network. We used the eigenvector centrality
measure to find the core of the network produced in the prior step. Such measure
embodies the notion that a node’s importance in a network is increased by having
connections to other vertices that are themselves important [15]. Indeed, we believe
that a compilation unit becomes important by having connections to other compilation
units that are themselves important. We calculated the centrality of each node of the
network and then we performed a quartile analysis to identify the network’s core. The
nodes that had a centrality score equal to or larger than the third quartile (Q3) were
deemed as core.

c) Computing commit coreness. In order to differentiate developers’ contribu-
tions, we conceived a measure for computing the commit coreness. This measure is
calculated based on the number of modified core artifacts, thus enabling us check
whether a developer actually contributed to the technical core or just made peripheral
changes:

ሻݐ݅݉݉݋ሺܿݏݏ݁݊݁ݎ݋ܥ ൌ ே௨௠௕௘௥�௢௙�௖௢௥௘�௙௜௟௘௦�௜௡�௧௛௘�௖௢௠௠௜௧
்௢௧௔௟�௡௨௠௕௘௥�௢௙�௙௜௟௘௦�௜௡�௧௛௘�௖௢௠௠௜௧

When commit coreness was greater than or equal to 0.5, we considered it to be a core
commit. In fact, when a core commit was detected, we considered that its author made
a modification to the technical core of the system.

II) Social Network Analysis. Given the list of key developers obtained from the
previous step, we investigated whether they (i) belonged to the core of the communi-
cation network (mailing list activity), (ii) belonged to the core of the coordination
requirements network, (iii) had a high congruence when considering these two net-
works, or (iv) were top committers. In the following, we briefly describe how we
evaluated these four scenarios respectively.

a) Developers in the core of the project’s communication network. We col-
lected data from the developers’ mailing list using the OSSNetwork tool and built a
communication network in the form of an undirected graph. Links were established
by detecting developers that contributed to a same mail thread (including the original
email sender). For instance, if developer a sends an email, and developers b and c
reply to it, then links among all these developers are added to the communication
network. Analogously to what was done for the technical network (step I.b), we

104 G.A. Oliva et al.

identified the developers that were in the core of this network by employing the ei-
genvector centrality measure and doing a quartile analysis.

b) Developers in the core of the coordination requirements network. We gen-
erated the project’s coordination requirements network using the method proposed by
Cataldo et al. [5], which relies on the concept of evolutionary dependencies [9]. Such
dependencies consist of implicit relationships that are established between software
artifacts as they are frequently changed together. This network depicts the set of indi-
viduals a developer should coordinate his/her work with (or at least be aware of),
since their work tasks share a certain level of interdependency [5, 7]. With the coordi-
nation requirements network in hands, we again used eigenvector centrality and a
quartile analysis to identify the core of the social network, just as in the previous sce-
nario.

c) Congruence between these two networks. Inspired by the measure of congru-
ence defined Cataldo et al. [5], we computed the proportion of social activity that
actually occurred (given by the communication network extracted from the mailing
list) relative to the social activity that should have taken place (given by the coordina-
tion requirements network extracted from the evolutionary dependencies) for each
developer. Congruence values thus range between 0 and 1. Such approach for measur-
ing congruence builds on the idea of “fit” from the organizational theory literature [3].
We performed a quartile analysis and the congruence values that were equal to or
larger than the third quartile (Q3) were deemed as high.

d) Top contributors. We intend to check whether a small number of developers
are responsible for most part of the modifications made to the software system. By
using XFlow we computed the top contributors of the Apache Ant project during the
studied timeframe, i.e. those developers that made most part of the commits. More
precisely, we determined the top committers by analyzing the distribution of commits
per developer.

III) Comparative Analyses. The final step involved comparing the set of key devel-
opers obtained in step I.c with the developers that we identified in the steps II.a, II.b,
II.c, and II.d. The results are described in the following section.

5 Results

After collecting the project data by following the aforementioned methods, we di-
vided the results into three groups: the identification of key developers, the analysis of
the project’s social networks, and the identification of top contributors. In the next
subsections we will thoroughly discuss each group of results.

5.1 Identification of Key Developers

As mentioned before, we used JDX to compute the technical network of the codebase
corresponding to each Subversion revision of Apache Ant. We then calculated the

 Characterizing Key Developers: A Case Study with Apache Ant 105

core of such network and decided whether each revision actually involved a change to
the technical core. After that, we calculated the number of core modifications made
by each developer. In Table 1 we depict the results we obtained:

Table 1. Developers and Associated Number of Core Modifications to the System

Developer Number of
Core Commits Delta

ddevienne 0 0

scohen 0 0

umagesh 1 1

conor 1 0

alexeys 2 1

bruce 3 1

jhm 3 0

sbailliez 4 1

kevj 14 10

antoine 25 11

jglick 27 2

jkf 40 13

stevel 77 37

bodewig 118 41

mbenson 172 54

peterreilly 178 6

We sorted the developers according to number of core commits they performed.

The thrid column of the table (delta) shows the difference between the number of
commits of a developer and his predecessor. The data in this column indicates a first
major shift from jkf to stevel (37). In fact, we notice that approximately 82% of the
core commits are performed by a specific group of four developers: stevel, bodewig,
mbenson, and peterreilly. Therefore, we considered those to be the key developers of
Apache Ant during the studied release period.

5.2 The Different Social Networks

In this section, we present the two different social networks we obtained, as well as
the measure of congruence for each developer in the Apache Ant project during the
studied period.

106 G.A. Oliva et al.

The Core of the Communication Network. We used OSSNetwork to compute
the communication network of the project. Fig. 1 depicts the result we obtained in the
form of a graph, in which vertices represents project’s developers and edges maps the
existence of mail exchanged between two linked vertices.

Fig. 1. Communication Network of Apache
Ant

Fig. 2. Coordination Requirements Network
of Apache Ant

After that, we employed the Eigenvector centrality measure and the quartile
analysis to obtain the set of developers in the core of this network. The results indi-
cated that four individuals are in the core: bodewig, mbenson, stevel, and jkf.

The Core of the Coordination Requirements Network. We used XFlow to apply
the method proposed by Cataldo et al. [5] to calculate the coordination requirements
network. Fig. 2 depicts XFlow’s graph view of the coordination requirements, where
each vertex represents a developer and each edge maps two developers that are likely
to coordinate their efforts because the artifacts they are changing are interdependent.
After that, analogously to the previous case, we calculated the eigenvector centrality
and performed a quartile analysis to obtain the set of developers belonging to the core
of this network. The results indicate that a large number of individuals are in the core:
peterreilly, bodewig, mbenson, stevel, jkf, jglick, antoine, alexeys, jhm, sbailliez, con-
or, bruce, kevj, and ddevienne. Only two developers are not in this list, namely uma-
gesh and scohen.

Congruence of the Networks. We computed the socio-technical congruence of these
two networks for each developer. Fig. 3 depicts the results we obtained. The data
shows that the interval of congruence values is large (ranging from 90% to 0%). In a
similar fashion to the previous cases, we performed a quartile analysis in order to
identify developers with higher congruence. The results we obtained pointed out to
four individuals: ddevienne, bodewig, kevj, and stevel.

 Characterizing Key Developers: A Case Study with Apache Ant 107

Fig. 3. Socio-technical congruence of the developers

5.3 Top Contributors

We used XFlow and calculated the top contributors of the Apache Ant project during
the analyzed period. Fig. 4 depicts the cumulative percentage of the number of com-
mits. According to the data, 4 developers (25% of them) were responsible for 81% of
the commits.

Fig. 4. Cumulative percentage of the number of commits

Therefore, we conclude that the relaxed version of Mockus’ hypothesis we defined
indeed holds for the Ant project, as most part of the modifications (commits) are
made by a small group of developers.

6 Discussion

We start the discussion by illustrating the intersection between the set of key develop-
ers and those that (i) are in core of the communication network, (ii) are in the core of
the coordination requirements network, (iii) have high socio-technical congruence,
and (iv) are top contributors. These results are presented in Table 2.

108 G.A. Oliva et al.

Table 2. Characterizing key developers

Developer
Key

Developer

Core of
Communication

Network

Core of
Coordination
Requirements

Network

High
Congruence

Top
Contributors

peterreilly 9 9 9
bodewig 9 9 9 9 9
mbenson 9 9 9 9

stevel 9 9 9 9 9
jkf 9 9

jglick 9
antoine 9
alexeys 9

jhm 9
sbailliez 9

conor 9 9
bruce 9
kevj 9 9

ddevienne 9 9 9
umagesh
scohen

Only four key developers were identified, namely: peterreilly, bodewig, mbenson,

and stevel. Three of these key developers also belonged to the core of the communica-
tion network (although such core includes three other developers). This provides evi-
dence that most key developers were also very active in the developers’ mailing list
during the analyzed period. In relation to the core of the coordination requirements
network, all key developers belonged to it. This was somehow expected, since the
core of the coordination requirements included 14 of the 16 developers. We think that
such core was large due to the inclusive nature of the algorithm used for computing
this network: no filters were applied to the evolutionary dependencies, which means
that even dependencies between components that occurred only once in the analyzed
period are taken into account. We also computed the socio-technical congruence of
these two networks for each developer and we noticed that two of the key developers
had high congruence. On the other hand, the results also suggest that although kevj
and ddeviene were very communicative (in the sense that they communicated with
almost everyone they were required to), they did not work on the technical core very
often. Interestingly, the sets of key developers and top contributors are identical (per-
fect correlation). In fact, by taking a closer look at the volume contribution data, we
can see that the set of key developers also heavily contributed to the peripheral areas
of the technical network. Finally, only two developers did not show up in any of the
considered cases, namely: umagesh and scohen.

We now answer our research questions in light of the results we obtained. The first
question concerned how limited the number of key developers is. As we presented,

 Characterizing Key Developers: A Case Study with Apache Ant 109

only four developers (25%) were responsible for approximately 82% of the core mod-
ifications. This corroborates our initial expectation that only a few developers would
be responsible for making changes to the core. The second question concerned how
key developers coordinated their efforts and communicated. After analyzing the de-
velopers’ mailing list, the coordination requirements network, and the congruence
between these two networks (the socio-technical congruence), we noticed that two of
the key developers (bodewig and stevel) were in the core of both networks and also
presented a high congruence. The developer mbenson was solely in the core of both
networks. The developer peterreilly, in turn, only appeared in the core of the coordi-
nation requirements network. In general, this provides evidence that key developers
were often very active in the mailing list (except for peterreilly, who was not very
active within the project’s mailing list). Given the strong connection between
software architecture and coordination, we believe that such social interaction help
developers coordinate their tasks and keep themselves aware of changes made to the
software system. Our third and last research question concerned the contribution vo-
lume of key developers. The results showed that key developers were also the ones
that contributed the most to the project.

6.1 Threats to Validity

There are some factors that may have influenced the validity of our study.

Construct Validity. Firstly, a common practice in FLOSS development concerns the
submission of patches by non-developers interested in helping a particular software
project. As these users do not have permission to commit their fixes on the projects’
version control system, their contributions are often committed by one of the regular
project developers. As a result, this may have introduced some noise in the data used
to calculate key developers. Secondly, the webcrawler algorithm employed by OSS-
Netwok to parse mailing list data (from HTML pages) makes use of semi-structured
webpages as source of information, which is clearly subject to problems due to the
lack of rigid rules for participation and participants’ identification in the mailing lists.
Thirdly, the adoption of eigenvector centrality metric to define core sets on networks
might affect our findings. We believe that this measure captures a behavior that seems
adequate to our analysis, but other approaches (e.g. k-core or islands) could provide
different results. Finally, other thresholds could have been used to determine whether
a modification (commit) is core or not.

Internal Validity. Our empirical evidences cover only a single release of the Apache
Ant, and it is thus possible that we missed empirical evidence that could be found in
other releases of the same project. A more extensive study should be conducted in
order to further investigate key developers’ characteristics in terms of their social
interaction and contributions.

External Validity. Since we studied a single project, we cannot state that these re-
sults would remain valid for other projects. In fact, threats to the generalizability of
this study are given by the very nature of the employed research design. McGrath [12]
states that research methods can be evaluated on three dimensions (generalizability,

110 G.A. Oliva et al.

realism, and precision) and he argues that no method is able to satisfy all dimensions
at the same time. In particular, case studies naturally maximize realism, but seldom
satisfy generalizability (since they involve a small number of non-randomly selected
situations) or precision (because there is a low level of control over influencing fac-
tors). Hence, we leverage the realism of our results and conclusions.

7 Conclusion and Future Work

In this paper, we presented a descriptive case study involving Apache Ant. Our goal
was to characterize key developers, i.e. those developers that effectively evolve the
technical core of the project. The reason for studying them is that the access to the
technical core of a software project is often restricted to a few developers. In particu-
lar, we were interested in answering three research questions that involved investigat-
ing (i) how limited the number of key developers is, (ii) how distinct the participation
of key developers is (in terms of communication and coordination), and (iii) the con-
tribution volume of key developers. Our results indicated that only 25% of the devel-
opers were classified as key developers. We also showed that key developers were
often active in the developers’ mailing list and often fulfilled the coordination re-
quirements that emerged from their development tasks. Finally, we noticed that the
set of key developers was identical to the set of top contributors.

Our expectations with our findings are that in a long term perspective better cha-
racterizing key developers should help researchers understand the process a developer
undergoes in order to become a key developer. As these key developers play a crucial
role in the project, properly characterizing and identifying them is important in order
to better understand the various social processes that often occur within software de-
velopment. Furthermore, although prior research has tried to understand the process
of core-periphery migration on FLOSS projects, the identification of the set of core
developers has always been a difficult task that is mostly performed using purely
visual methods, which end up posing threats to the validity of these studies and em-
phasizing the need for more accurate methods.

As future work, we believe that applying our research method to different FLOSS
and commercial projects will help verify whether key developers characteristics are
similar to those we reported.

Acknowledgements. We thank Steve Abrams for his insightful contribution to the
design of the research method, more specifically the usage of eigenvector centrality.
Gustavo Oliva receives individual grant from the CHOReOS EC FP7 project. Marco
Gerosa receives individual grant from CNPq. Cleidson de Souza was supported by
FAPESPA through “Edital Universal N° 003/2008”.

References

[1] Balieiro, M., de Júnior, S., de Souza, C.: Facilitating Social Network Studies of Floss Us-
ing the Ossnetwork Environment. In: Russo, B., Damiani, E., Hissam, S., Lundell, B.,
Succi, G. (eds.) Open Source Development, Communities and Quality. IFIP, vol. 275, pp.
343–350. Springer, Boston (2008), http://dx.doi.org/10.1007/
978-0-387-09684-1_31,10.1007/978-0-387-09684-1_31

 Characterizing Key Developers: A Case Study with Apache Ant 111

[2] Bass, M., Mikulovic, V., Bass, L., Herbsleb, J., Cataldo, M.: Architectural misalignment:
An experience report. In: Proceedings of the Sixth Working IEEE/IFIP Conference on
Software Architecture, WICSA 2007, p. 17. IEEE Computer Society, Washington, DC
(2007), http://dx.doi.org/10.1109/WICSA.2007.12

[3] Burton, R.M., Obel, B.: Strategic Organizational Diagnosis and Design: The Dynamics of
Fit, 3rd edn. Information and Organization Design Series. Springer (2003)

[4] Cataldo, M.: Dependencies in geographically distributed software development: over-
coming the limits of modularity. Ph.D. thesis, Pittsburgh, PA, USA (2007), aAI3292617

[5] Cataldo, M., Wagstrom, P., Herbsleb, J.D., Carley, K.M.: Identification of coordina-tion
requirements: implications for the design of collaboration and awareness tools. In: Hinds,
P.J., Martin, D. (eds.) CSCW, pp. 353–362. ACM (2006),
http://doi.acm.org/10.1145/1180875.1180929

[6] Conway, M.: How do committees invent. Datamation 14(4), 28–31 (1968)
[7] Costa, J.M., Cataldo, M., de Souza, C.R.: The scale and evolution of coordination needs

in large-scale distributed projects: implications for the future generation of collabo-rative
tools. In: Proc. of the 2011 Annual Conference on Human Factors in Computing Systems,
CHI 2011, pp. 3151–3160. ACM (2011),
http://doi.acm.org/10.1145/1978942.1979409

[8] Crowston, K., Wei, K., Li, Q., Howison, J.: Core and periphery in free/libre and open
source software team communications. In: Proceedings of the 39th Annual Hawaii Inter-
national Conference on System Sciences, HICSS 2006, p. 118. IEEE Computer Society,
Washington, DC (2006), http://dx.doi.org/10.1109/HICSS.2006.101

[9] Gall, H., Hajek, K., Jazayeri, M.: Detection of logical coupling based on product re-lease
history. In: Proceedings of the International Conference on Software Maintenance, ICSM
1998, p. 190. IEEE Computer Society, Washington, DC (1998),
http://dl.acm.org/citation.cfm?id=850947.853338

[10] Grinter, R.E.: Systems architecture: product designing and social engineering. SIGSOFT
Softw. Eng. Notes 24(2), 11–18 (1999),
http://doi.acm.org/10.1145/295666.295668

[11] Levine, J.M., Moreland, R.L.: Progress in small group research. Annual Review of Psy-
chology 41(1), 585–634 (1990),
http://arjournals.annualreviews.org/doi/abs/10.1146/
annurev.ps.41.020190.003101

[12] McGrath, J.E.: Dilemmatics: The study of research choices and dilemmas. American Be-
havioral Scientist 25(2), 179–210 (1981),
http://abs.sagepub.com/cgi/doi/10.1177/000276428102500205

[13] Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two case studies of open source software de-
velopment: Apache and mozilla. ACM Trans. Softw. Eng. Methodol. 11, 309–346
(2002), http://doi.acm.org/10.1145/567793.567795

[14] Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K., Ye, Y.: Evolution patterns of
open-source software systems and communities. In: Proceedings of the International
Workshop on Principles of Software Evolution, IWPSE 2002, pp. 76–85. ACM, New
York (2002), http://doi.acm.org/10.1145/512035.512055

[15] Newman, M.: Networks: An Introduction, 1st edn. Oxford University Press (2010)
[16] Oezbek, C., Prechelt, L., Thiel, F.: The onion has cancer: some social network analysis

visualizations of open source project communication. In: Proceedings of the 3rd Interna-
tional Workshop on Emerging Trends in Free/Libre/Open Source Software Research and
Development, FLOSS 2010, pp. 5–10. ACM, New York (2010),
http://doi.acm.org/10.1145/1833272.1833274

112 G.A. Oliva et al.

[17] Parnas, D.L.: On the criteria to be used in decomposing systems into modules. Commun.
ACM 15, 1053–1058 (1972), http://doi.acm.org/10.1145/361598.361623

[18] Robles, G., Gonzalez-Barahona, J.: Contributor Turnover in Libre Software Projects. In:
Damiani, E., Fitzgerald, B., Scacchi, W., Scotto, M., Succi, G. (eds.) Open Source Sys-
tems. IFIP, vol. 203, pp. 273–286. Springer, Boston (2006),
http://dx.doi.org/10.1007/0-387-34226-5_28,10.1007/
0-387-34226-5_28

[19] Robles, G., Gonzalez-Barahona, J.M., Herraiz, I.: Evolution of the core team of develop-
ers in libre software projects. In: Proceedings of the 2009 6th IEEE International Working
Conference on Mining Software Repositories, MSR 2009, pp. 167–170. IEEE Computer
Society, Washington, DC (2009),
http://dx.doi.org/10.1109/MSR.2009.5069497

[20] Robson, C.: Real World Research, 2nd edn. John Wiley & Sons (2002)
[21] Santana, F., Oliva, G., de Souza, C.R.B., Gerosa, M.A.: Xflow: An extensible tool for

empirical analysis of software systems evolution. In: Proceedings of the VIII Experimen-
tal Software Engineering Latin American Workshop, ESELAW 2011 (2011)

[22] de Souza, C., Froehlich, J., Dourish, P.: Seeking the source: software source code as a so-
cial and technical artifact. In: Proc. of the 2005 International ACM SIGGROUP Confe-
rence on Supporting Group Work, GROUP 2005, pp. 197–206. ACM (2005),
http://doi.acm.org/10.1145/1099203.1099239

[23] de Souza, C.R., Quirk, S., Trainer, E., Redmiles, D.F.: Supporting collaborative software
development through the visualization of socio-technical dependencies. In: Proc. of
the 2007 International ACM Conference on Supporting Group Work, GROUP 2007, pp.
147–156. ACM (2007), http://doi.acm.org/10.1145/1316624.1316646

[24] Souza, C.R., Redmiles, D.F.: On the roles of apis in the coordination of collaborative
software development. Comput. Supported Coop. Work 18(5-6), 445–475 (2009),
http://dx.doi.org/10.1007/s10606-009-9101-3

[25] Staudenmayer, N.A.: Managing multiple interdependencies in large scale software devel-
opment projects. Ph.D. thesis, Massachusetts Institute of Technology (1997)

[26] Terceiro, A., Rios, L.R., Chavez, C.: An empirical study on the structural complexity in-
troduced by core and peripheral developers in free software projects. In: Proceedings of
the 2010 Brazilian Symposium on Software Engineering, SBES 2010. IEEE Computer
Society, Washington, DC (2010), http://dx.doi.org/10.1109SBES.2010.26

[27] Valetto, G., Helander, M., Ehrlich, K., Chulani, S., Wegman, M., Williams, C.: Using
software repositories to investigate socio-technical congruence in development projects.
In: Proceedings of the Fourth International Workshop on Mining Software Repositories,
MSR 2007, p. 25. IEEE Computer Society, Washington, DC (2007),
http://dx.doi.org/10.1109/MSR.2007.33

[28] Yin, R.K.: Case study research: Design and methods, 3rd edn. Sage Publications (2003)

	Title

	Preface
	Table of Contents
	Design Aspects in CSCL

	Computer-Supported Collaborative Drawing in Primary School Education – Technical Realization and Empirical Findings
	Introduction
	Study Design
	Technical Realization
	Requirements
	Specification and Implementation

	Empirical Findings
	Knowledge Test
	Dialogue Quality

	Conclusion and Outlook
	References

	Training Conflict Management in a Collaborative Virtual Environment
	Introduction
	Related Work
	Serious Games Related to Role-Paying
	Serious Games Related to Conflict
	Serious Games Related to Collaboration

	Approach
	Gameplay
	Conversation Phase es
	Conversational Rules

	Implementation
	Dialogue Modeling
	Client Implementation
	Multi-agent Architecture

	Usability Test
	Conclusion
	References

	Reusability of Data Flow Designs in Complex CSCL Scripts: Evaluation Results from a Case Study
	Introduction
	A Case Study: Reusing a Complex CSCL Script
	Reusability Evaluation
	Results and Discussion of Case Study
	Conclusions and Future Work
	References

	Conceptual and Design Models for CSCW

	Towards an Overarching Classification Model of CSCW and Groupware: A Socio-technical Perspective
	Introduction
	Methodology
	Research Questions
	Search Process and Selection Criteria
	Data Analysis

	Diggin’ the Literature to Find a Context: Taxonomic Anthology
	Meta-analysis Results
	Socio-technical Requirements to Support Collaboration
	Conclusions and Future Work
	References

	Normal Users Cooperating on Process Models: Is It Possible at All?
	Introduction: Can Models Be Used to Support Cooperation?
	Process Models and Cooperative Work
	What Makes Process Models Special?
	Cooperative Modeling of Processes
	Cooperative Usage of Process Models
	Models in Cooperation – Dilemmas and Hopes from Practice

	Study: Exploring Cooperative Usage of Process Models
	Experimental Setting and Task
	Methodology

	Observations fro om the Study
	Process Models as Guides in Cooperative Work
	Process Models as Part of the Articulation during Cooperation
	Process Modeling as a Part of Cooperative Model Usage
	Limitations of Interaction with Models

	Analysis: A New Perspective on Models in Cooperative Work
	Looking : Ahead: Prototypes for Lay User Modeling
	Conclusion and Outlook
	References

	Designing the Software Support for Partially Virtual Communities
	Introduction
	Partially Virtual Communities
	Related Work
	Requirements for PVC Supporting Systems
	Guidelines to Design PVC Supporting Systems

	Requirements to Support PVC Activities
	Software Architecture for PVC Supporting Systems
	Using the Proposed Architecture
	Survey
	Users Perception versus Designers Perception
	Focus Group with Software Designers

	Analysis of Already Implemented PVC Supporting Systems
	Facebook
	U-Cursos

	Conclusions and Future Work
	References

	Supporting Social Tasks of Individuals: A Matter of Access to Cooperation Systems
	Access to Cooperation Systems
	Related Work
	Access to Small Scale Cooperation Systems: Four Cases
	Case 1: Cooperatio on and Awareness in a Knowledge Management Syste em
	Case 2: Service Coo ordination for Elderly People
	Case 3: Support r for Collaborative Reflection at the Workplace
	Case 4: Cooperativ ve Modeling for Non-modelers

	Individual, Grou up and Situation Adequacy of Access
	Design Constraints for Access to Cooperation Systems
	Conclusion and Outlook
	References

	Social Networks and Community Analytics
	Characterizing Key Developers: A Case Study with Apache Ant
	Introduction
	Characterizing Key Developers
	Related Work
	Research Method
	The Case
	Supporting Tools
	Main Steps

	Results
	Identification of Key Developers
	Number of Developer Delta Core Commits
	The Different Social Networks
	The Core of the Communication Network.
	The Core of the Coordination Requirements Network.
	Congruence of the Networks.
	Top Contributors

	Discussion
	Threats to Validity

	Conclusion and Future Work
	References

	An Exploratory Study on Collaboration Understanding in Software Development Social Networks
	Introduction
	Social Networks
	Collaboration Characteristics in Social Networks
	Features for Social Network Tools

	EvolTrack-SocialNetwork
	Exploratory Study
	Conclusion
	References

	Keeping Up with Friends’ Updates on Facebook
	Introduction
	Related Work
	Proposed Visualization
	Future Work and Conclusion
	References

	Formal Models and Technical Approaches
	Formal Modeling of Multi-user Interfaces in Cooperative Work
	Introduction
	Related Work
	Formal Modeling of Single-User Interfaces
	Multi-user Interface Modeling
	Modeling CSCW Systems Based on MUIs
	Conclusions and Future Work
	References

	Using Collective Trust for Group Formation
	Introduction
	Group Formation
	Proposed
Method
	Collective Trust
	Group Formation
	Collective Trust for Group Formation

	Future Work
	Conclusion
	References

	Time Series Analysis of Collaborative Activities
	Introduction
	Collaborative Activities as Described by Time Series
	Methodology of Analysis
	Dynamic Time Warping
	Quality of Collaboration
	Memory-Based Classification Model

	Results
	Conclusions d and Future Work
	References

	SoCCR – Optimistic Concurrency Control
for the Web-Based Collaborative FrameworkMetafora
	Introduction - Web-Based Collaboration in Metafora
	Concurrency Control in the Shared Planning Space
	Formal Analysis of Concurrent Actions
	Implementation of Concurrency and SoCCR Conflict Resolution

	Conclusion and Further Work
	References

	Mobile CSCL Scenarios
	Enabling and Evaluating Mobile Learning Scenarios with Multiple Input Channels
	Introduction
	Related Work
	Design and Implementation
	Message Abstraction
	Storage Engine and Backend Implementation
	Implementation of Different Input Channels
	Visualization Frontend

	Experiences and First Evaluation
	One-Minute Paper – Experiences with Exemplary Scenarios
	Long Term Usage – “Take Home” Task.
	Results

	Discussion and Outlook
	References

	Software Requirements to Support QoS
in Collaborative M-Learning Activities
	Introduction
	Motivation
	Software Requirements and Challenges
	Possible Mitigation Strategies and Related Efforts
	Conclusions
	References

	Systems Integration Challenges for Supporting Cross Context Collaborative Pedagogical Scenarios
	Introduction
	Fostering Systems Integration Design
	Providing Location Attributes with MoCoLeS
	Expanding CeLS for Face to Face Classroom Activities with SMS-HIT

	Identifying Key Elements for Supporting Systems Integration
	Multiple Layer of Interdependencies for Supporting Systems Integration
	Systems Integration Stakeholders
	Identifying and Defining Integration Goals
	Data Format for System Integration
	Designing Collaborative Scenarios

	Summary and Future Efforts
	References

	Emergency Scenarios
	Tangible and Wearable User Interfaces for Supporting Collaboration among Emergency Workers
	Introduction
	User Studies and Scenario
	Design and User r Interaction
	Architecture and Implementation
	Tabletop Unit
	Wearable Device

	Formative Evaluation
	Conclusions
	References

	Contextual Analysis of the Victims’ Social Network for People Recommendation on the Emergency Scenario
	Introduction
	The Emergency Management Issue
	Proposal: Contextual Analysis
	Social Relevance
	The Overall Process
	Privacy Issues
	Implementation
	Preliminary Evaluation
	Related Work

	Conclusions and Future Work
	References

	CSCL Scripts and Games

	Matchballs – A Multi-Agent-System for Ontology-Based Collaborative Learning Games
	Introduction
	Serious Game
	Casual Game
	Collaborative Game
	Game with a Purpose
	Overall Approach

	Case Study
	Gameplay and Incentives
	Architecture
	The Game Space
	The Intermediate Space
	The Ontology Space

	Evaluation
	Discussion
	References

	Towards a Monitoring-Aware Design Process for CSCL Scripts
	Introduction
	General Approach
	Identifying the Elements That Guide Monitoring: An Exploratory Study
	Context and Methodologies of the Study
	The Co-design Process
	Enactment of the Learning Situation
	Discussion

	Conclusions and Future Work
	References

	Author Index

