
CHAPTER

11CHANGE COUPLING BETWEEN
SOFTWARE ARTIFACTS:
LEARNING FROM PAST
CHANGES

Gustavo Ansaldi Oliva∗, Marco Aurélio Gerosa∗
Software Engineering & Collaborative Systems Research Group (LAPESSC),

University of São Paulo (USP), São Paulo, Brazil∗

CHAPTER OUTLINE

11.1 Introduction.. 286
11.2 Change Coupling.. 287

11.2.1 Why Do Artifacts Co-Change? ...287
11.2.2 Benefits of Using Change Coupling ..288

11.3 Change Coupling Identification Approaches ... 289
11.3.1 Raw Counting ..290
11.3.2 Association Rules ...298
11.3.3 Time-Series Analysis ..303

11.3.3.1 Dynamic Time Warping .. 303
11.3.3.2 Granger Causality Test.. 305

11.4 Challenges in Change Coupling Identification ... 306
11.4.1 Impact of Commit Practices...306
11.4.2 Practical Advice for Change Coupling Detection ...307
11.4.3 Alternative Approaches...310

11.5 Change Coupling Applications.. 312
11.5.1 Change Prediction and Change Impact Analysis ...312

11.5.1.1 Other Research Results .. 313
11.5.2 Discovery of Design Flaws and Opportunities for Refactoring313

11.5.2.1 Other Research Results .. 315
11.5.3 Architecture Evaluation ..317
11.5.4 Coordination Requirements and Socio-Technical Congruence318

11.6 Conclusion ... 319
References... 319

285

286 CHAPTER 11 CHANGE COUPLING BETWEEN SOFTWARE ARTIFACTS

11.1 INTRODUCTION
Version control systems store and manage the history and current state of source code and documenta-
tion. As early as 1997, Ball and colleagues wrote a paper entitled “If your version control system could
talk. . . ” [1], in which they observed that these repositories store a great deal of contextual information
about software changes. Over the years, researchers have leveraged such information to understand
how software systems evolve over time, enabling predictions about their properties.

While mining these repositories, researchers observed an interesting pattern: certain artifacts are
frequently committed together. These artifacts are connected to each other from an evolutionary point
of view, in the sense that their histories intertwine. We call this connection change coupling. We also say
that an artifact A is change coupled to B if A often co-changes with B. Other names employed in the
literature include logical dependencies/coupling, evolutionary dependencies/coupling, and historical
dependencies.

Change coupling can be calculated at different abstraction levels. In this chapter, we will focus
on file-level change coupling. Analyzing change couplings at this level has two key benefits [2]:
first and foremost, it can reveal hidden relationships that are not present in the code itself or in the
documentation. For instance, a certain class A might be change coupled to another class B without
structurally depending on it. Second, it relies on historical file co-change information only, which can
be easily extracted from commit logs. Therefore, it does not require parsing code, making it more
lightweight than structural analysis. It is also programming language agnostic, making it flexible
and a good candidate to be used in studies that involve many subject systems written in different
languages.

Most importantly, recent research has shown that detecting and analyzing change couplings supports
a series of software development tasks. Suppose you are a software developer and just made a change
to a certain part of a system. What else do you have to change? Based on the idea that artifacts
that changed together in the past are bound to change together in the future, researchers leveraged
change couplings to help answer this question [3]. Another traditional application regards discovering
design flaws [2]. For instance, detecting and visualizing change couplings might reveal artifacts or
modules that are being frequently affected by changes made to other parts of the system (encapsulation
problem).

This chapter intends to provide researchers and practitioners with an overview of change coupling
and its main applications. In Section 11.2, we introduce the concept of change coupling and highlight
its key benefits. This will help you familiarize yourself with the topic and understand why it has been
adopted so frequently in software engineering empirical studies. In Section 11.3, we present the main
change coupling identification approaches, along with their key characteristics. We also link to tools
and present code snippets that show how you can extract these couplings from the systems you develop,
maintain, or analyze. In Section 11.4, we discuss the current key challenges of accurately identifying
change coupling from version control systems. Besides highlighting fertile research areas that call
for further exploration, we also provide some practical advice to help you identify change couplings
more accurately. We conclude this section by discussing the trade-offs of identifying change coupling
from monitored IDEs. In Section 11.5, we present the main applications researchers have discovered
by detecting and analyzing change couplings from version control systems. This will provide you
with a big picture of how researchers have leveraged these couplings to understand software systems,
their evolution, and the developers around it. Finally, in Section 11.6, we draw our conclusions on
the topic.

11.2 CHANGE COUPLING 287

11.2 CHANGE COUPLING
According to Lanza et al. [8], “change coupling is the implicit and evolutionary dependency of
two software artifacts that have been observed to frequently change together during the evolution
of a software system.” This term was introduced in late 2005 by Fluri et al. [4] and Fluri and
Gall [5]. It gained more popularity with a book edited by Mens and Demeyer in 2008 called Software
Evolution [6, 7]. Other studies then started employing it [8, 9]. As mentioned in the introduction,
alternative terms found in the literature include logical dependency/coupling [10, 11], evolutionary
dependencies/coupling [3, 12], and historical dependencies [13].

In the following, we go deeper into the concept of change coupling. In Section 11.2.1, we discuss the
rationale behind change coupling by introducing one of the main forces that makes artifacts co-change.
In Section 11.2.2, we highlight some key practical benefits of using change coupling.

11.2.1 WHY DO ARTIFACTS CO-CHANGE?
The ideas underlying the concept of co-changes and change coupling date back to the beginning of
the 1990s when Page-Jones introduced the concept of “connascence” [14]. The term connascence is
derived from Latin and means “having been born together.” The Free Dictionary defines connascence
as: (a) the common birth of two or more at the same time, (b) that which is born or produced with
another, and (c) the act of growing together. Page-Jones borrowed the term and adapted it to the software
engineering context: “connascence exists when two software elements must be changed together in
some circumstance in order to preserve software correctness” [15].

Connascence assumes several forms and can be either explicit or implicit. To illustrate this point,
consider the following code excerpt1 written in Java and assume that its first line represents a software
element A and that its second line represents a software element B:

String s; //Element A (single source code line)
s = ‘‘some string’’; //Element B (single source code line)

There are (at least) two examples of connascence involving elements A and B. If A is changed
to int s; then B will have to be changed too. This is called type connascence. Instead, if A is
changed to String str; then B will need to be changed to str = “some string”. This is called
name connascence. These two forms of connascence are called explicit. A popular manifestation of
explicit connascence comes in the form of structural dependencies (e.g., methods calls). In turn, as we
mentioned before, connascence can also be implicit, such as when a certain class needs to provide some
functionality described in a design document.

1This example is adapted from Page-Jones’ book [15].

288 CHAPTER 11 CHANGE COUPLING BETWEEN SOFTWARE ARTIFACTS

In general, connascence involving two elements A and B occurs because of two distinct situations:

(a) A depends on B, B depends on A, or both: a classic scenario is when A changes because A
structurally depends on B and B is changed, i.e., the change propagates from B to A via a
structural dependency (e.g., a method from A calls a method from B). However, this dependency
relationship can be less obvious, as in the case where A changes because it structurally depends
on B and B structurally depends on C (transitive dependencies). Another less obvious scenario is
when A changes because it semantically depends on B.

(b) Both A and B depend on something else: this occurs when A and B have pieces of code with
similar functionality (e.g., use the same algorithm) and changing B requires changing A to
preserve software correctness. As in the previous case, this can be less obvious. For instance, it
can be that A belongs to the presentation layer, B belongs to the infrastructure layer, and both
have to change to accommodate a new change (e.g., new requirement) and preserve correctness.
In this case, A and B depend on the requirement.

Therefore, artifacts often co-change because of connascence relationships. This is what makes
artifacts “logically” connected. Most importantly, the theoretical foundation provided by connascence
is a key element that justifies the relevance and usefulness of change couplings.

11.2.2 BENEFITS OF USING CHANGE COUPLING
The use of change coupling in software engineering empirical studies is becoming more frequent every
day. There are many reasons that justify this choice. In the following, we highlight some practical key
benefits of detecting and analyzing change coupling.

Reveals historical relationships
Change couplings reveal hidden relationships undetectable by structural analysis. This means you
may discover a change coupling involving two classes that are not structurally connected. Moreover,
you may find change couplings involving artifacts of different kinds. For instance, you may find
change couplings from domain classes to configuration files (e.g., XML files or Java .properties files),
presentation files (e.g., HTML or JSP files), or build files (e.g., Maven’s pom.xml file or Ant’s build.xml
file). These couplings are just undetectable by static analysis. Just to give a practical example, McIntosh
and colleagues used change coupling to evaluate how tight the coupling is between build artifacts and
production or test files [16]. Their goal was to study build maintenance effort and answer questions like
“are production code changes often accompanied by a build change?”

Lightweight and language-agnostic
Change coupling detection from version control systems (file-level change coupling) is often
lightweight, as it relies on co-change information inferred from change-sets. It is also programming-
language-agnostic, as it does not involve parsing source code. This makes it a good choice for empirical
studies involving several systems written in different languages. Approaches for detecting change
couplings are presented in Section 11.3. We note, however, that accurately identifying change couplings
is still a challenging task due to noisy data and certain commit practices. These problems are discussed
in Section 11.4.

11.3 CHANGE COUPLING IDENTIFICATION APPROACHES 289

Might be more suitable than structural coupling
Certain empirical studies admit the use of both structural coupling and change coupling. Researchers
have shown that using change coupling leads to better results for some specific applications. For
instance, Hassan and Holt [17, 18] showed that change couplings were far more effective than structural
couplings for predicting change propagation (more details in Section 11.5.1.1). In addition, Cataldo
and Herbsleb [19] showed that change couplings were more effective than structural couplings for
recovering coordination requirements among developers (more details in Section 11.5.4). An important
aspect, however, is that change coupling requires historical data. If you are just starting a project and no
historical data is available, then using structural analysis might be the only way out. In fact, a promising
research area concerns conceiving hybrid approaches that combine structural analysis with historical
data to cope with the dynamics of software development [20].

Relationship with software quality
Researchers have found evidence that change couplings detected from version control systems provide
clues about software quality. D’Ambros et al. [8] mined historical data from three open source projects
and showed that change couplings correlate with defects extracted from a bug repository. Cataldo et al.
[21] reported that the effect of change coupling on fault proneness was complementary and significantly
more relevant than the impact of structural coupling in two software projects from different companies.
In another study, Cataldo and Nambiar [22] investigated the impact of geographic distribution and
technical coupling on the quality of 189 global software development projects. By technical coupling,
they mean overall measures of the extent to which artifacts of the system are connected. Their
results indicated that the number of change couplings among architectural components were the most
significant factor explaining the number of reported defects. Other factors they took into consideration
include the number of structural coupling, process maturity, and the number of geographical sites. In
Sections 11.5.2 and 11.5.3, we describe visualization techniques and metrics to help manage change
couplings and uncover design flaws.

Broad applicability
Besides its relation with software quality, analyzing change couplings is useful for a series of key
applications, which include change prediction and change impact analysis (Section 11.5.1), discovery
of design flaws and opportunities for refactoring (Section 11.5.2), evaluation of software architecture
(Section 11.5.3), and detection of coordination requirements among developers (Section 11.5.4).

11.3 CHANGE COUPLING IDENTIFICATION APPROACHES
Identifying and quantifying change couplings inherently depends on how the artifacts’ change history is
recovered. Due to practical constraints, change couplings are often detected by parsing and analyzing
the logs of version control systems (e.g., CVS, SVN, Git, and Mercurial). In this case, the change
history of an artifact (file) is determined based on the commits in which such artifact appears. In most
cases, researchers assume that if two artifacts are included in the same commit, then these artifacts
co-changed. The more two artifacts are committed together, the more change coupled they become. In
older version control systems that do not support atomic commits, such as CVS, some preprocessing is
often needed to reconstruct change transactions [23].

290 CHAPTER 11 CHANGE COUPLING BETWEEN SOFTWARE ARTIFACTS

In this section, we show how change couplings can be both discovered and quantified from the
logs of version control systems. In the following, we present three approaches: raw counting (Section
11.3.1), association rules (Section 11.3.2), and time-series analysis (Section 11.3.3). Given the broad
adoption of the first two, we provide code snippets and instructions to help you run them in your
projects. All code is available on GitHub at https://github.com/golivax/asd2014.

11.3.1 RAW COUNTING
Several studies identify change couplings using a raw counting approach. In this approach, change-
sets are mined from the logs of the version control system and co-change information is stored in
a suitable data structure or in a database. A commonly used data structure is an artifact × artifact
symmetric matrix in which each cell [i, j], with i �= j, stores the number of times that artifact i and
artifact j changed together (i.e., appeared in the same commit) over the analyzed period. In turn,
cell [i, i] stores the number of times artifact i changed in this same period. We call this a co-change
matrix (Figure 11.1).

Once the co-change matrix is built, change couplings can be inferred using the following two
strategies:

(a) Non-directed relationship. Every non-zero cell [i, j] out of the main diagonal implies the
existence of a change coupling involving artifacts i and j. In this approach, change coupling is
regarded as a non-directed relationship, i.e., it is not possible to know if artifact i is coupled to
artifact j, if artifact j is coupled to artifact i, or both. In the example from Figure 11.1, the cell
[2, 1] = 3 implies the existence of a change coupling involving A and B whose strength is 3. That
is, coupling strength simply corresponds to the number of times the involved artifacts changed

Number of times
that A changed

Number of times that
C and B changed together

(co-changed)
 Main diagonal

4

3 9 1

0 1 7

3 0 ...

...

...

............

Artifact A

Artifact A

Artifact B

Artifact B

Artifact C

Artifact C

...

...

FIGURE 11.1

Hypothetical co-change matrix.

https://github.com/golivax/asd2014

11.3 CHANGE COUPLING IDENTIFICATION APPROACHES 291

Commit

Co-change

Time

Analysis period

Artifact A

Artifact B

FIGURE 11.2

Scenario for change coupling analysis.

together. The rationale is that pairs of artifacts that co-change more often have a stronger
evolutionary connection than those pairs that co-change less often. In the data mining field, this
measure is known as support.

(b) Directed relationship. This approach is analogous to the previous one with regards to the
identification of change couplings. However, this approach assumes that the strength of these
couplings can be different. The strength of a change coupling from A to B is determined by the
ratio of co-changes (support) and the number of times the artifact B changed. In the example from
Figure 11.1, the strength of the change coupling from A to B would be
cell[1, 2]/cell[2, 2] = 3/9 = 0.33. In turn, the strength of the change coupling from B to A would
be cell[1, 2]/cell[1, 1] = 3/4 = 0.75. Therefore, this approach assumes that the last coupling is
much stronger than the first one, since commits that include A often include B as well (Figure
11.2). In the data mining field, this measure is known as confidence.

Some of the studies that have employed this identification method include those of Gall et al. [24],
Zimmermann et al. [25], and Oliva and Gerosa [26].

Determining relevant couplings
When identifying change couplings via raw counting with non-directed relationship, relevant couplings
are often filtered by choosing a support threshold that is suitable for the study at hands. One approach
is to iteratively test different values and qualitatively analyze the output. An alternative approach is to
perform a statistical analysis of the distribution of support, such as a quartile analysis (Figure 11.3).

In the scope of a quartile analysis, one approach is to consider that sufficiently relevant couplings
have a support value above the third quartile. The third quartile (Q3) is the middle value between
the median and the highest value of the data, splitting off the highest 25% of data from the lowest
75%. Another approach consists of taking the upper whisker (a.k.a. upper fence) as the threshold. The
upper whisker is determined using the following formula: Q3 + [1, 5∗ (IQR)] = Q3 + [1, 5∗ (Q3 −
Q1)]. In a quartile analysis, values above the upper whisker are frequently considered as outliers.
Therefore, this latter approach is more restrictive than the former, in the sense that only unusually
highly evident couplings are selected. An even more restrictive approach would only take extreme
outliers, which are those above the threshold given by the following formula: Q3 + 3∗ (IQR).

292 CHAPTER 11 CHANGE COUPLING BETWEEN SOFTWARE ARTIFACTS

Inter-quartile range (IQR)

Lower whisker

Q1 – 1.5 ¥ IQR

Q1 Q3

Median

Upper whisker

Q3 + 1.5 ¥ IQR

FIGURE 11.3

Schematics of a boxplot.2

FIGURE 11.4

Power law distribution.3

Although the quartile analysis is simple and straightforward, we note that it might not be suitable
for some studies, since the support distribution tends to follow a power law (Figure 11.4). This
distribution is very right-skewed (long tail to the right) and traditional statistics based on variance
and standard deviation often provide biased results. A more cautious approach would be thus to
skip the green (left-hand side) part of Figure 11.4, which corresponds to 80% of the data, and
stick to the yellow (right-hand side) part, which represents the frequently co-changed artifacts. In
any case, researchers should always validate and analyze the output produced by each filtering
strategy.

When identifying couplings via raw counting with non-symmetric strength, relevant couplings
are determined based on paired values of support and confidence. In this mindset, support has been
interpreted as a measure of how evident a certain change coupling is, in the sense that couplings

2Adapted from http://commons.wikimedia.org/wiki/File:Boxplot_vs_PDF.svg (CC Attribution-Share Alike 2.5 Generic).
3http://commons.wikimedia.org/wiki/File:Long_tail.svg Picture by Hay Kranen/PD.

http://commons.wikimedia.org/wiki/File:Boxplot{_}vs{_}PDF.svg
http://commons.wikimedia.org/wiki/File:Long{_}tail.svg

11.3 CHANGE COUPLING IDENTIFICATION APPROACHES 293

supported by many co-changes are more evident than couplings supported by few co-changes [25].
In turn, confidence has been interpreted as a measure of the strength of the coupling. According to
Zimmermann and colleagues, confidence actually answers the following question: of all changes to
an artifact, how often (as a percentage) was some other specific artifact affected? Therefore, relevant
couplings have sufficiently high values of support and confidence, i.e., they are simultaneously evident
and strong.

A threshold for support is often the first parameter to be determined. As shown before, this can
be calculated using different approaches. After having determined the couplings that are sufficiently
evident, a confidence threshold is applied to filter those that are also sufficiently strong. The most
conservative approach is to iteratively try different values of confidence, analyze the output, and pick
the threshold that provides the best results for the study at hand [25]. To that end Zimmermann and
colleagues implemented visualization techniques (pixelmaps and 3D bar charts) to help spot coupling
with high values of support and confidence (although high ends up being a little bit subjective in this
case).

An alternative approach consists of performing a statistical analysis of the confidence distribution
(such as a quartile analysis). Another idea is to establish three adjacent intervals for the confidence
values [26] as follows:

• Confidence [0.00, 0.33]: low coupling
• Confidence [0.33, 0.66]: regular coupling
• Confidence [0.66, 1.00]: strong coupling

Tools
In this section, we show how to extract change couplings using the raw counting approach. In fact, we
focus on how to parse a list of change-sets from either SVN or Git, since this is the most difficult part
of the process. In the sections that follow, we show UML diagrams and Java code snippets. A complete
implementation is available in GitHub.4 We emphasize that such an implementation is just a starting
point from you can develop more sophisticated or tailored solutions.

(1) Change-Set class

We use a very simple ChangeSet class to store the change-set of each commit (Figure 11.5). This
class has an attribute called commitID, which stores the id of the commit. The other attribute is a
set called changedArtifacts, which we will use to store the name of the artifacts changed in the
associated commit. The class has two constructors: one to handle numeric commit ids (SVN) and
another to handle alphanumeric commit ids (Git).

(2) Extracting change-sets from SVN

In order to extract change-sets from the SVN repository, we rely on the SVNKit5 framework.
SVNKit is a Java implementation of SVN, offering an API to work with both local and remote
repositories. We use this framework to parse SVN commit logs and extract the change-sets. The class

4https://github.com/golivax/asd2014.
5http://svnkit.com/.

https://github.com/golivax/asd2014
http://svnkit.com/

294 CHAPTER 11 CHANGE COUPLING BETWEEN SOFTWARE ARTIFACTS

- commitID : String

ChangeSet

- changedArtifacts : Set<String>

+ ChangeSet(commitID : long, changedArtifacts : Collection<String>)
+ ChangeSet(commitID : String, changedArtifacts : Collection<String>)
+ getCommitID() : String
+ getChangedArtifacts() : Set<String>
+ toString() : String

FIGURE 11.5

ChangeSet class (/src/main/java/br/usp/ime/lapessc/entity/ChangeSet.java).

/src/main/java/br/usp/ime/lapessc/svnkit/SVNKitExample.java in our GitHub is a complete example
that shows how to extract change-sets from SVN.

In the code excerpt that follows, we show how to initialize the repository. It requires the URL
of the repository and credentials access (username and password). Most repositories from open source
software systems enable read permission with the username “anonymous” with password “anonymous.”

DAVRepositoryFactory.setup();
try {

SVNRepository repository = SVNRepositoryFactory.create(
SVNURL.parseURIEncoded(url));

ISVNAuthenticationManager authManager =
SVNWCUtil.createDefaultAuthenticationManager(username, password);

repository.setAuthenticationManager(authManager);
}catch(SVNException e){

// Deal with the exception
}

After initializing the repository, we are ready to interact with it. The method log (targetPaths,
entries, startRev,endRev,changedPath,strictNode) from the SVNRepository class per-
forms a SVN log operation from startRev to endRev. The specific meaning of each parameter in this
method call is summarized as follows. We refer readers to the SVNKit’s documentation6 for further
details about this method.

• targetPaths—paths that mean only those revisions at which they were changed

6http://svnkit.com/javadoc/index.html.

http://svnkit.com/javadoc/index.html

11.3 CHANGE COUPLING IDENTIFICATION APPROACHES 295

• entries—if not null then this collection will receive log entries
• startRevision—a revision to start from
• endRevision—a revision to end at
• changedPath—if true then revision information will also include all changed paths

per revision
• strictNode—if true then copy history (if any) is not to be traversed

This log method outputs a collection of SVNLogEntry,which are the objects that represent commit
logs. In the following, we show an example of how to extract the commit id (revision number) and the
change-set from each SVNLogEntry instance.

Set<ChangeSet> changeSets = new LinkedHashSet<ChangeSet>();
for(SVNLogEntry logEntry : logEntries){

Map<String,SVNLogEntryPath> changedPathsMap = logEntry.
getChangedPaths();
if (!changedPathsMap.isEmpty()) {

long revision = logEntry.getRevision();
Set<String> changedPaths = logEntry.getChangedPaths().keySet();
ChangeSet changeSet = new ChangeSet(revision, changedPaths);
changeSets.add(changeSet);

}
}

The main() method shown below triggers the mining with five important parameters: repository
URL (url), user name (name), password (password), start revision number (startRev), and end
revision number (endRev). In this example, we extract the change-sets from an open-source project
called Moenia,7 which is hosted by SourceForge and contains only 123 revisions.

public static void main(String[] args) {
String url = "https://github.com/golivax/JDX.git";
String cloneDir = "c:/tmp/jdx";
String startCommit = "ca44b718d43623554e6b890f2895cc80a2a0988f";
String endCommit = "9379963ac0ded26db6c859f1cc001f4a2f26bed1";

7http://sourceforge.net/projects/moenia/.

http://sourceforge.net/projects/moenia/

296 CHAPTER 11 CHANGE COUPLING BETWEEN SOFTWARE ARTIFACTS

JGitExample jGitExample = new JGitExample();
Set<ChangeSet> changeSets =

jGitExample.mineChangeSets(url,cloneDir,startCommit,
endCommit);

for(ChangeSet changeSet : changeSets){
System.out.println(changeSet);

}
}

(3) Extracting change-sets from Git

In order to extract change-sets from Git repositories, we suggest using the JGit8 framework. JGit is a
Java implementation of Git, offering a fluent API to manipulate Git repositories. We use this framework
to parse Git commit logs and extract the change-sets. Given the distributed nature of Git, as well as
its particular notion of branching, extracting change-sets is a little bit more complicated. A complete
example showing how to mine change-sets from Git repositories is available on GitHub.9

The first thing we need to do is to clone the Git repository (or open an already cloned repository).
The code excerpt below shows how to accomplish this programmatically using the JGit API. In this
example, the repository in the URL is cloned to cloneDir.

//Cloning the repo
Git git = Git.cloneRepository().setURI(url).

setDirectory(new File(cloneDir)).call();
//To open an existing repo
//this.git = Git.open(new File(cloneDir));

After that, we need to decide from which branch we will extract the commits in the range
[startCommitID, endCommitID]. A popular strategy to extract the “main branch” is follow the first
parent of every commit. Hence, what we do is start at the endCommitID and keep on following the first
parent of every commit until the first parent of the startCommitID is reached. This is equivalent to
the following git command: git log startCommitID∧∧ ..endCommitID –first-parent. The meaning
of the –first-parent parameter is as follows (extracted from the Git manual):

–first-parent: Follow only the first-parent commit upon seeing a merge commit. This option
can give a better overview when viewing the evolution of a particular topic branch, because

8http://eclipse.org/jgit.
9https://github.com/golivax/asd2014/src/main/java/br/usp/ime/lapessc/jgit.

http://eclipse.org/jgit
https://github.com/golivax/asd2014/src/main/java/br/usp/ime/lapessc/jgit

11.3 CHANGE COUPLING IDENTIFICATION APPROACHES 297

merges into a topic branch tend to be only about adjusting to updated upstream from time to time,
and this option allows you to ignore the individual commits brought in to your history by such
a merge.

The method List<RevCommit> getCommitsInRange(String startCommitID, String
endCommitID) in the JGitExample class implements this mining strategy, recovering the following
commits:

endCommit,firstParent(endCommit),..., startCommit, firstParent(startCommit)

Git always determines change-sets by comparing two commits. However, if the chosen start commit
happens to be the first commit in the repository, then it has no parent. We treat this special case by
determining the artifacts that were added in the first commit. The following code excerpt shows how
we implemented this algorithm using JGit. Note, however, that we omitted the details of recovering the
actual change-sets, as the code is a bit lengthy.

private Set<ChangeSet> extractChangeSets(List<RevCommit> commits) throws
MissingObjectException, IncorrectObjectTypeException,
CorruptObjectException, IOException {

Set<ChangeSet> changeSets = new LinkedHashSet<ChangeSet>();

for(int i = 0; i < commits.size() - 1; i++){
RevCommit commit = commits.get(i);
RevCommit parentCommit = commits.get(i+1);
ChangeSet changeSet = getChangeSet(commit, parentCommit);
changeSets.add(changeSet);

}

//If startCommit is the first commit in repo, then we
//need to do something different to get the changeset
RevCommit startCommit = commits.get(commits.size()-1);
if(startCommit.getParentCount() == 0){

ChangeSet changeSet = getChangeSetForFirstCommit(startCommit);
changeSets.add(changeSet);

}

298 CHAPTER 11 CHANGE COUPLING BETWEEN SOFTWARE ARTIFACTS

return changeSets;
}

The main() method shown below triggers the mineChangeSets() method with four important
parameters: remote repository URL (url), path to local repository (cloneDir), start commit id
(startCommit), and end commit id (endCommit). In this example, we extract the change-set from
an open-source project called JDX,10 hosted on GitHub.

public static void main(String[] args) {
String url = "https://github.com/golivax/JDX.git";
String cloneDir = "c:/tmp/jdx";
String startCommit = "ca44b718d43623554e6b890f2895cc80a2a0988f";
String endCommit = "9379963ac0ded26db6c859f1cc001f4a2f26bed1";

JGitExample jGitExample = new JGitExample();
Set<ChangeSet> changeSets =

jGitExample.mineChangeSets(url,cloneDir,startCommit, endCommit);
for(ChangeSet changeSet : changeSets){

System.out.println(changeSet);
}

}

11.3.2 ASSOCIATION RULES
In this section, we present the concepts of frequent itemsets and association rules, which were
introduced in the domain of data mining. To this end, we heavily rely on the reference book from
Rajaraman, Leskovec, and Ullman entitled Mining of Massive Datasets [27] to introduce some
fundamental definitions. Interested readers may want to refer to Chapter 4 of that book for more detailed
information. As supplementary material, we also recommend the second chapter of the book from Liu
entitled Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data [28].

In the field of data mining, a model often referred to as market-basket is used to describe a common
form of many-to-many relationship between two kinds of objects: items and baskets (or transactions).
Each basket comprises a set of items, also known as an itemset. The number of items in a basket is
usually assumed to be small, much smaller than the total number of different items available. In turn,
the number of baskets is usually assumed to be very large, meaning that it would be not possible to
store them all in main memory. A set of items (itemset) that appears in many baskets is said to be

10https://github.com/golivax/JDX/.

https://github.com/golivax/JDX/

11.3 CHANGE COUPLING IDENTIFICATION APPROACHES 299

frequent. If I is an itemset, then the support for I, written as support(I), indicates the number of baskets
for which I is a subset.

Itemsets are often used to build useful if-then rules called association rules. An association rule is
an implication of the form I ⇒ J, which states that when I occurs, J is likely to occur. In this context,
I and J are two disjoint sets of items (itemsets). I is called the antecedent (left-hand-side or LHS)
and J is called the consequent (right-hand-side or RHS). For instance, the rule {x, y} ⇒ {z} found in
the sales data of a supermarket would indicate that if a customer buys products x and y together, this
same customer is also likely to buy z. If one is looking for association rules I ⇒ J that apply to a
reasonable fraction of the baskets, then the support for I ∪ J must be reasonably high. This value is
called the support of the rule and is written as support(I ⇒ J) = support(I ∪ J). It simply corresponds
to the number of baskets that contain both I and J. The strength of the rule, in turn, is given by a measure
called confidence. It defines the fraction of baskets containing I where J also appears. Formally:

confidence(I ⇒ J) = support(I ⇒ J)

support(I)
= support(I ∪ J)

support(I)

As we showed in Section 11.3.1, support and confidence can be calculated for pairs of items using
an exhaustive approach, which consists of determining (i) the number of times each item has changed,
as well as (ii) the number of times two artifacts have changed together. The main difference here
lies in the application of an algorithm to discover frequent itemsets (from which useful rules are then
generated). Most frequent itemset mining algorithms, such as the often used Apriori [29], require an
itemset support threshold as input. Hence, non-frequent (irrelevant) items are preemptively removed.
Furthermore, Apriori is more flexible, in the sense that it can discover association rules involving an
arbitrary number of items in both the LHS and the RHS.

Researchers have often formalized change couplings as association rules: the version control system
(database) stores all commit logs, and each commit log (basket) contains a set of modified files
(itemset). A change coupling from a versioned artifact x2 (client) to another versioned artifact x1
(supplier) can be written as an association rule X1 ⇒ X2, whose antecedent and consequent are both
singletons that contain x1 and x2, respectively.

Some of the studies that have employed the association rules identification method include those of
Bavota et al. [30], Zimmermann et al. [3, 31], Wang et al. [32], and Ying et al. [33]. The first applies the
Apriori algorithm. The second and third studies perform adaptations to the original Apriori algorithm
to speed up the calculation of rules, which often involve constraining antecedents and/or consequents
based on some study-specific criteria. The last study uses a different (and more efficient) algorithm
called FP-Growth [34], which avoids the step of generating candidate itemsets and testing them against
the entire database.

Determining relevant couplings
When formalizing change couplings as association rules, researchers often determine their relevance
based on thresholds for support and confidence (input to rule mining algorithms). However, as we
showed in Section 11.3.1, determining thresholds from which rules become sufficiently relevant is

300 CHAPTER 11 CHANGE COUPLING BETWEEN SOFTWARE ARTIFACTS

complicated and depends on the characteristics of the project at hand. For instance, Zimmermann
et al. [25] considered relevant those change couplings with support greater than 1 and confidence
greater than 0.5. In turn, Bavota et al. [30] considered relevant those couplings that included
elements that co-changed in at least 2% of the commits (support/number of commits) and whose
confidence scored at least 0.8. According to Zimmermann et al. [3], in practice support against a
combination of the average transaction size or the average number of changes per item should be
normalized. However, as they pointed out themselves, choosing the right normalization is still research
on its own.

Although support and confidence are the most common thresholds to capture relevant change
couplings, other approaches do exist. One alternative is to use the conviction measure [35]. Given two
elements A and B, conviction is P(A)P(∼B)/P(A and ∼B). The implication A → B is tautologically
equivalent to (∼A or B), which is in turn equivalent to ∼(A and ∼B). The idea is then to measure how
far (A and ∼B) deviates from independence and invert the ratio to take care of the outside negation.
According to Brin et al. [35], “conviction is truly a measure of implication, because it is directional, it
is maximal for perfect implications, and it properly takes into account both P(A) and P(B)” (as opposed
to confidence, which ignores P(B)).

Tools
Implementations of the Apriori, as well as other frequent pattern mining algorithms, are available in
Weka,11 SPMF,12 and R13 (arules package14). These are all open-source projects licensed under GPL
(GNU General Public License). In the following, we show how to extract change couplings using R
and the arules package. As in Section 11.3.1, the subject system for this example will be Moenia.

(1) Load the library

The first step is to install and load the arules package into your R session. To load the package, run
the following command:

library(arules)

(2) Read transactions from CSV file

The second step is to read change transactions (change-sets) from a CSV file:

trans = read.transactions("moenia.csv", format = "basket", sep = ",")

The read.transactions() function has three basic parameters. The first points to the CSV file,
which is read from the working directory by default. You can execute the getwd() function in R to
discover the current working directory. The second parameter indicates the format of this CSV. In the

11http://www.cs.waikato.ac.nz/ml/weka/.
12http://www.philippe-fournier-viger.com/spmf/.
13http://www.r-project.org/.
14http://cran.r-project.org/web/packages/arules/index.html.

http://www.cs.waikato.ac.nz/ml/weka/
http://www.philippe-fournier-viger.com/spmf/
http://www.r-project.org/
http://cran.r-project.org/web/packages/arules/index.html

11.3 CHANGE COUPLING IDENTIFICATION APPROACHES 301

basket format, each line in the transaction data file represents a transaction where the items (item labels)
are separated by the characters specified bysep (third parameter). More information about this function
can be found in the arules package manual.15

A CSV in basket format can be built out of a collection of ChangeSet instances very easily. In the
following code snippet, we show one possible solution that captures files with the .java extension:

public String toCSV(Set<ChangeSet> changeSets){
String csv = new String();
for(ChangeSet changeSet : changeSets){

String cs = new String();
for(String artifact : changeSet.getChangedArtifacts()){

if(artifact.endsWith(".java")){
cs+=artifact + ",";

}
}
//StringUtils is a class from the Apache Commons Lang library
cs = StringUtils.removeEnd(cs, ",");
if(!cs.isEmpty()){

csv+=cs + "\n";
}

}
return csv;

}

(3) Compute rules using Apriori

In the third step, we run the Apriori algorithm to compute the association rules. This is done via the
apriori() function. The function parameters we will use are as follows:

• transactions: the set of input transactions
• support: a numeric value for the minimal support of an item set (default: 0.1)
• confidence: a numeric value for the minimal confidence of rules (default: 0.8)
• minlen: an integer value for the minimal number of items per item set (default: 1)
• maxlen: an integer value for the maximal number of items per item set (default: 10)

The transactions will be the ones obtained in the following step. The support parameter is defined
in relative terms. That is, if we want to find rules whose elements have changed together at least four

15http://cran.r-project.org/web/packages/arules/arules.pdf.

http://cran.r-project.org/web/packages/arules/arules.pdf

302 CHAPTER 11 CHANGE COUPLING BETWEEN SOFTWARE ARTIFACTS

times, then the parameter should be 4/number of change-sets (i.e., number of lines in the CSV file).
Confidence is defined just like we did in this section. Supposing we want to calculate rules with a
single antecedent and a single consequent, then minlen and maxlen should be both 2.

If the data set is not too large, we can first obtain all possible rules and then start tweaking the
parameters to obtain better rules. To obtain all rules, we use the following trick: set support equal to
.Machine$double.eps. This reserved keyword outputs the smallest positive floating-point number
the machine can produce. If we had set support equal to zero, then the apriori() function would
generate artificial rules (rules with support equal to zero). The complete command is shown below.

rules <- apriori(trans, parameter = list(
support = .Machine$double.eps,
confidence = 0, minlen = 2, maxlen = 2))

(4) Inspect rules, analyze output, and fine-tune parameters

In this last step, we inspect rules, analyze the output, and fine-tune the parameters to obtain both
evident and strong change couplings. The following command helps to investigate the rules produced
in the prior step:

> summary(rules)
set of 10874 rules

rule length distribution (lhs + rhs):sizes
2

10874

Min. 1st Qu. Median Mean 3rd Qu. Max.
2 2 2 2 2 2

summary of quality measures:
support confidence lift

Min. :0.01111 Min. :0.02941 Min. : 0.8823
1st Qu.:0.01111 1st Qu.:0.25000 1st Qu.: 5.0000
Median :0.01111 Median :0.33333 Median : 7.5000
Mean :0.01834 Mean :0.45962 Mean :12.0304
3rd Qu.:0.02222 3rd Qu.:0.61538 3rd Qu.:15.0000
Max. :0.14444 Max. :1.00000 Max. :90.0000

11.3 CHANGE COUPLING IDENTIFICATION APPROACHES 303

Given the distribution of support, we use the extreme outliers approach shown in Section 11.3.1 to
restrict the set of produced rules: Q3 + 3∗ IQR = 0.02222 + 1.5∗(0.02222 − 0.01111) = 0.038885.
We also take a confidence value of 0.66. Now, we recalculate the rules as follows:

rules <- apriori(trans, parameter = list(
support = 0.038885, confidence = 0.66, minlen = 2, maxlen = 2))

Analyzing the produced rules via the summary() command shows that we now have 304 rules.
Of course, we could tweak the parameters again to obtain a smaller set of rules. To inspect all rules, we
just type the following command:

inspect(rules)

Here, we should not forget that a certain rule A1 ⇒ A2 indicates that A2 is impacted by changes to
A1, i.e., A2 is the client and A1 is the supplier. Finally, to export those rules to a CSV file, we can use
the following command:

write(rules, file = "data.csv", sep = ",", col.names = NA)

11.3.3 TIME-SERIES ANALYSIS
Time-series representation has been successfully employed in different domains (e.g., image/speech
processing and stock-market forecasting) to detect commonly occurring similar phenomena that evolve
over time [36]. In fact, since the early days of mining software repositories, time-series analysis and
associated metrics have been identified as a key research area in the understanding of how software
structures change over time [1]. Time series analysis has emerged as a promising approach to cope
with some of the problems found in earlier detection algorithms. According to Canfora et al. [37],
“although association rules worked well in many cases, they fail to capture logical coupling relations
between artifacts modified in subsequent change-sets.”

11.3.3.1 Dynamic time warping
Dynamic time warping (DTW) is a technique introduced by Kruskal and Liberman [38] to find
an optimal alignment between two given (time-dependent) sequences under certain restrictions
(Figure 11.6). The algorithm warps sequences in a non-linear fashion so that they meet each other.
In other words, DTW can distort (warp) the time axis, compressing it in some intervals and expanding
it in others [39]. Originally, DTW was used to compare different speech patterns in automatic speech
recognition systems [40, 41]. A traditional application consists of determining whether two wave forms
represent the same spoken phrase under different pronunciation speed, accent, and pitch [39]. DTW was

304 CHAPTER 11 CHANGE COUPLING BETWEEN SOFTWARE ARTIFACTS

Sequence X

Sequence Y

Time

FIGURE 11.6

Time alignment of two time-dependent sequences. Arrows indicate aligned points.16

then successfully applied to a number of different domains, including medicine [42], robotics [43], and
handwriting recognition [44]. More information about the DTW algorithm can be found in Chapter 4
of the book by Müller [45] entitled “Information Retrieval for Music and Motion.”

In the case of change couplings, the set of time instants in which a versioned artifact changes
is modeled as a time-series sequence. These sequences are then compared in a pair-wise fashion to
determine how well they align. If such sequences align sufficiently well, then it is possible to state
that there is a change coupling between the associated artifacts. Some of the studies that employed this
identification method include those of Antoniol et al. [39] and Bouktif et al. [46].

Determining relevant couplings
Antoniol et al. [39] compute the DTW distance for every pair of time series in order to detect co-
changing files in CSV. Instead of comparing the whole time series, they do it incrementally using
windows that include a certain amount of data points (changes). They also do it backwards, i.e., time
series starting from the most recent change. File histories with a distance below a certain threshold are
considered indistinguishable and belonging to the same history group. In their paper, they experimented
from 60 s up to 1200 s in the Mozilla project and showed that threshold values indeed change the
number and size of groups (of co-changed files). This threshold can be used to fine-tune sensitivity,
since its optimal value is project-dependent. In their paper, they report the results they obtained
with threshold values of 270, 600, and 1200 s (4.5, 10, and 20 min, respectively). In a follow-up
paper, Bouktif et al. [46] analyzed the change history of a small project called PADL stored in CVS.
The authors showed that threshold values between 43,200 s (12 h) and 86,400 s (24 h) were a good
compromise between precision and recall. They ended up using the threshold of 86,400 s in their case
study, resulting in a minimum average (weighted) precision of 84.8% and recall of 71.8%. To calculate
precision and recall, they performed a k-fold cross-validation, by dividing change histories in training
and test sets. More details can be obtained in their papers.

Tools
The R statistical tool features a package called dtw17 that implements the DTW algorithm. Using
this package and running the algorithm with the default settings is straightforward, as shown in

16Extracted as is from Müller [45]—p. 70. Content licensed by Springer. Copyright cleared.
17http://dtw.r-forge.r-project.org/.

http://dtw.r-forge.r-project.org/

11.3 CHANGE COUPLING IDENTIFICATION APPROACHES 305

the package’s guide.18 The FastDTW19 is a library written in Java that implements a variation of
the original DTW algorithm called FastDTW [47]. This variation provides optimal or near-optimal
alignments with an O(N) time and memory complexity, in contrast to the O(N2) requirement of the
standard DTW algorithm.

11.3.3.2 Granger causality test
Granger causality is a statistical hypothesis test for determining whether a time-series sequence is useful
in forecasting another [48]. In other words, the algorithm tests for predictive causality. Formally, a time
series X is said to Granger-cause Y if it can be shown, usually through a series of t-tests and F-tests on
lagged values of X (and with lagged values of Y also included), that those X values provide statistically
significant information about future values of Y. The basic idea is that the cause cannot come after the
effect. Hence, if a variable x affects a variable y, then the former should help improving the predictions
of the latter [37].

Ceccarelli et al. [49] used the bivariate Granger causality test to address the issue of detecting change
couplings between artifacts that are modified in subsequent change-sets. They model the time series of
a versioned artifact fk as follows. Let fk(t), t = 1, . . ., t be the change time series of the versioned
artifact fk defined as:

fk(t) =
{

1, fk ∈ �t,

0, fk �∈ �t,

i.e., fk(t) is one if the file fk was changed in snapshot �t, zero otherwise. The authors found that the
number of relevant recommendations provided by the Granger causality test is complementary to those
inferred by association rules. In a follow-up study by the same authors [37], they used a slightly more
sophisticated model, in which they replaced the binary variable fk(t) with a continuous variable that
accounted for the number of changes that each file underwent during the test period. Their evaluation
of four open source systems showed that while association rules provided more precise results, the
Granger causality test achieved better results for recall and F-measure. Again, they highlighted that the
set of true couplings provided by the two techniques is mostly disjoint.

Determining relevant couplings
The null hypothesis (H0: file f1 does not Granger-cause f2) is rejected based on the calculation of a
score S that takes into account the sum of squared residuals. If such score is higher than the 5% critical
value for an F(p,T-2p-1) distribution, then the hypothesis is rejected [37]. The set of relevant couplings
comprise the top N in the list of versioned artifacts pairs ranked by S in decreasing order. The optimal
value for N seems to be project-dependent.

18http://cran.r-project.org/web/packages/dtw/vignettes/dtw.pdf.
19http://code.google.com/p/fastdtw/.

http://cran.r-project.org/web/packages/dtw/vignettes/dtw.pdf
http://code.google.com/p/fastdtw/

306 CHAPTER 11 CHANGE COUPLING BETWEEN SOFTWARE ARTIFACTS

Tools
The Granger causality test is available in R via the package MSBVAR.20 The granger.test section of
the reference manual21 shows how to execute the statistical test. It also describes the input parameters,
as well as the kind of output given by the function.

11.4 CHALLENGES IN CHANGE COUPLING IDENTIFICATION
Despite the importance of change couplings, accurately detecting them is far from trivial. In Section
11.4.1, we discuss how certain commit practices impair change coupling identification. In Section
11.4.2, we give some guidelines to help avoid noise and improve the accuracy of change coupling
detection. Finally, in Section 11.4.3, we discuss the trade-offs of an alternative approach that involves
detecting change couplings from monitored IDEs.

11.4.1 IMPACT OF COMMIT PRACTICES
Despite the flexibility and relevance of change couplings, accurately identifying them from the logs
of version control system is far from trivial. When operationalizing change couplings this way, their
detection become subject to different developers’ commit practices. For instance, while a certain
developer might commit very frequently, another developer might work for a long period in the code
and commit all changes at once. This latter scenario favors the appearance of overloaded commits,
i.e., commits with tangled changes [25, 50]. In turn, overloaded commits generate artificial change
couplings, which link artifacts that belong to different changes. An example would be a commit in
which a certain developer implements a new feature in a set of files, as well as fixes an unrelated bug
in other files. In such case, change couplings will link artifacts related to the new feature with artifacts
related to the bug fix. Another problematic situation refers to developers who produce incomplete
commits. By incomplete commits, we mean those in which a developer forgets to perform a certain
action or deliberately splits a single well-defined change into several consecutive commits. For instance,
it might be that a developer changes certain domain classes but forgets to update an associated XML
configuration file. This scenario leads to missing change couplings, because the developer will perform
the forgotten actions in a separate commit. Finally, some commits might be the result of merging two
branches from the repository. Such commits often involve a large number of artifacts and therefore
originate several artificial change couplings. Detecting and coping with these problems is research on
its own.

Researchers have recently tried to characterize developers’ commit behavior. Ma et al. [51]
conducted an empirical investigation on commit intervals in four open source projects from the
Apache Software Foundation. In particular, they tried to fit lifecycle- and release-level commit intervals
into well-known statistical distributions. They found that their datasets often presented a power-law
distribution, i.e., most of the intervals between two consecutive commits in the repository were very
short and only a few were distinctively high. Lin et al. [52] discovered that the number of commits per

20http://cran.r-project.org/web/packages/MSBVAR.
21http://cran.r-project.org/web/packages/MSBVAR/MSBVAR.pdf.

http://cran.r-project.org/web/packages/MSBVAR
http://cran.r-project.org/web/packages/MSBVAR/MSBVAR.pdf

11.4 CHALLENGES IN CHANGE COUPLING IDENTIFICATION 307

class (from creation of the class until its deletion) and the number of commits per time unit (e.g., one
day, one week, one month) roughly follow a power-law distribution as well. These two studies provide
empirical evidence that commits vary in size and frequency.

To make things even more complicated, commit practices are in turn influenced by a series of
factors, including the project’s development process, the way tasks are defined in Issue Tracking
Systems or backlogs, and the specific version control system being used. For instance, recent studies
have shown that the interaction protocol of version control systems influences commit frequency and
the number of files in the change-sets. Brindescu et al. [53] conducted a large-scale empirical study
(358k commits, 132 repositories, 5890 developers) and showed that commits made in distributed
repositories were 32% smaller (fewer files) than in centralized repositories, and that developers split
commits more often in distributed repositories.

All these studies leave us with several challenges. Should all commits be treated the same? What if
the software development process does not enforce commit policies and developers end up having very
different commit behaviors? How do we detect periods where commits have similar properties (size
and frequency), so that the choice of thresholds for spotting relevant change coupling are meaningful
and appropriate? What do we do when a project moves from a centralized version control system (e.g.,
SVN) to a distributed one (e.g., Git)? These are all challenges that call for further investigation. In the
next section, we offer some hints to help detect change couplings in practice.

11.4.2 PRACTICAL ADVICE FOR CHANGE COUPLING DETECTION
In the following, we offer practical advice on how to collect and preprocess the input (commits) in
order to extract file-based change couplings more accurately. We highlight that such recommendations
are independent of the specific identification method chosen (Section 11.3), as they deal with the
input only. These recommendations derive both from the aforementioned studies and from our own
experience in the topic (lessons learned).

(1) Selecting subject projects

(a) Choose projects that use the same version control system. As we saw at the end of Section
11.4.1, the repository technology (e.g., centralized vs. distributed) influences commit frequency,
as well as the average number of artifacts per change set. In order to reduce bias in empirical
studies, we recommend selecting subject projects that use the same version control system
product (e.g., SVN or Git). As a desirable consequence, this will also make the study’s
technological infrastructure lighter.

(b) Choose projects that link commits to tasks. Several open source projects, like Apache Lucene
and Apache Hadoop, link commits to the tasks in the issue tracker (e.g., by explicitly mentioning
the task id in the commit’s comments). This adds contextual information to the commit and is
beneficial for a series of purposes. For instance, having the task link enables you to calculate
change couplings for specific types of software changes, such as bug fixes or new features. Most
importantly, knowing the type of task also helps to conceive preprocessing mechanisms that
improve the accuracy of change couplings (see advice item 4).

(c) Avoid projects that often move and migrate data. Most change coupling mining tools track
files based on their paths. Although the tools are often able to track files that get renamed over
time, they might face difficulties when tracking files that are moved to different paths. Cases in

308 CHAPTER 11 CHANGE COUPLING BETWEEN SOFTWARE ARTIFACTS

which files are deleted and then readded to a different path are especially complicated to deal
with. Therefore, prefer projects where the “trunk” folder (or the folder you are mining) does not
move over time. In addition, prefer projects that do not migrate data from other repositories. For
example, an SVN repository that synchronizes with a CVS repository. The reason is that these
migrations might alter the way developers originally made the commits, possibly leading to new
commits that either group unrelated tasks or split cohesive changes.

(d) Open source projects are at your disposal. Thanks to the open source movement, several
version control systems are freely available (in the sense that anyone can “read” them). Several
research studies include projects from the Apache Software Foundation, a non-profit organization
that has developed nearly a hundred distinguishing software projects that cover a wide range of
technologies and domains. Examples of Apache projects include Apache HTTP Server, Apache
Geronimo, Cassandra, Lucene, Maven, Ant, Struts, and JMeter. All Apache projects are hosted
under a single SVN repository at https://svn.apache.org, which currently stores more than 1.6
million commits. A Git mirror with all projects is also available at http://git.apache.org/. Other
hubs such as SourceForge and GitHub also contain a plethora of open source projects.

(2) Manipulating the repositories

(a) Work locally. To avoid dealing with network instability and other problems, we recommend
mirroring (replicating) the repository locally when possible. The following sample script shows
how to mirror the SVN repository of the Apache JMeter project to a local path in the filesystem:

1) Use the svnadmin utility to create a new (empty) repository
in the local file system.

$ svnadmin create /mirrors/jmeter
After running the command, a non-empty directory called ‘‘jmeter’’
is created. The results should look similar to the following:
total 54K
drwxrwxr-x+ 1 user None 0 Dec 02 17:01 .
drwxrwxrwt+ 1 user None 0 Dec 02 17:01 ..
drwxrwxr-x+ 1 user None 0 Dec 02 17:01 conf
drwxrwxr-x+ 1 user None 0 Dec 02 17:01 db
-r--r--r-- 1 user None 2 Dec 02 17:01 format
drwxrwxr-x+ 1 user None 0 Dec 02 17:01 hooks
drwxrwxr-x+ 1 user None 0 Dec 02 17:01 locks
-rw-rw-r-- 1 user None 246 Dec 02 17:01 README.txt

2) Create an empty file "jmeter/hooks/pre-revprop-change" with the
‘‘execute permission’’ set. If in Windows, add a .bat extension to the
file. For more details, please read the template file
"/jmeter/hooks/pre-revprop-change.tmpl"

$ touch /mirrors/jmeter/hooks/pre-revprop-change

https://svn.apache.org
http://git.apache.org/

11.4 CHALLENGES IN CHANGE COUPLING IDENTIFICATION 309

$ chmod 777 /mirrors/jmeter/hooks/pre-revprop-change

3) Initialize the mirror repository using the "svnsync init" command.
This ties your local repository to the remote one

$ svnsync init --username anonymous
file:///mirrors/jmeter https://svn.apache.org/jmeter

4) Use the "svnsync sync" command to populate the mirror repository:
$ svnsync sync file:///mirrors/jmeter

The sample script above should work for most scenarios, but you can tailor it for your own
requirements. Detailed instructions for mirroring a SVN repository are included in the free book
“Version Control with Subversion.”22 Since mirroring and interacting with the repository might induce
a lot of I/O, we also suggest using a solid-state drive (SSD) when possible.

(3) Determining the analysis scope
If the project has a stable release cycle, then identifying change couplings from each release can
be a good approach. If not, then it is often better to analyze commit chunks (sequence of
contiguous commits). The number of commits per chunk depends on the particular study and on
the total number of commits the project has.

(4) Preprocessing commits to avoid noise and improve accuracy
Zimmermann and Weißgerber [23] emphasized that cleaning data is an important part of
improving change coupling detection. In their work, they tackle two issues: large commits (i.e.,
commits with many files) and merge commits. They consider large commits as noise because the
files they comprise often refer to infrastructure changes. In other words, these commits are not the
consequence of relevant connascence relations (check Section 11.2.1). The authors advise
filtering out commits of a size greater than a certain N, where N is a threshold defined on a per
project basis.

The authors also regard merge commits (Figure 11.7) as noise. There are two main reasons.
First, merge commits often contain unrelated changes. For instance, let us assume that commit 20
addresses a certain issue and commit 22 addresses a different one. In this case, commit 24 would
contain unrelated changes, since A and C originally changed for different reasons. Second, merge
commits rank changes on branches higher. For instance, A and B appear in both commit 20 and
commit 24 (same thing happens to C).

Zimmermann and Weißgerber [23] note that depending on the purpose of the analysis, these
merge commits should be ignored or at least receive some special treatment. Fluri and Gall [5]
argue that commits including code styling and minor adjustments are also not significantly
relevant in the context of change coupling identification.

22http://svnbook.red-bean.com/en/1.7/svn.reposadmin.maint.html#svn.reposadmin.maint.replication.

http://svnbook.red-bean.com/en/1.7/svn.reposadmin.maint.html{#}svn.reposadmin.maint.replication

310 CHAPTER 11 CHANGE COUPLING BETWEEN SOFTWARE ARTIFACTS

Branch

creation

A.java

B.java

Commit 20 Commit 22

Commit 21 Commit 23 Commit 24

C.java

B.java

Branch can
continue ...

Branch

Merge

More merges

are possible ...

Main

development
D.java

config.xml

A.java

B.java

C.java

FIGURE 11.7

Influence of merges in change coupling identification.

In fact, the solution to these problems boils down to being able to classify or understand the
kinds of changes implemented in each commit. Simply ignoring large commits might make you
miss large refactorings or relevant changes. Our experience has shown that choosing projects that
link commits to tasks in the issue track is often a better solution, since it helps to discover the
purpose of each commit a lit bit better (see advice item 1b). Other strategies based on keyword
matching against the commits’ comments might also work reasonably well for certain
applications (e.g., searching for “bug fix” or “refactoring”). This information can also be used to
detect and bypass commits that link to two different tasks, thus mitigating the problem of
overloaded commits. You may also leverage it to group commits that tackle the same tasks, thus
mitigating the problem of incomplete commits. We note that Herzig and Zeller [50] performed a
detailed manual classification of tasks found in the issue tracker of five open source systems:
HTTPClient, Jackrabbit, Lucene, Rhino, and Tomcat 5. These data can be used to conceive
preprocessing mechanisms that filter out unwanted commits, such as the ones that involve
infrastructure changes, branch merging, and code styling.

11.4.3 ALTERNATIVE APPROACHES
The identification of change couplings from version control systems has one intrinsic shortcoming-
development information loss. This problem was put in the spotlight by Robbes and colleagues [54, 55].
According to the author, versioned artifacts might undergo several changes in the period delimited by
code checkout and commit. By analyzing such development session, one might conclude that although
artifacts A, B, C, and D were modified, change couplings exist only between A and B, as well as
between C and D. Moreover, it might be the case that A and B have a stronger change coupling when
compared to the coupling level of C and D. However, the logs of version control systems will only store
the set of modified files, the associated change operation (add, remove, replace, etc.), and the lines that
changed. According to Robbes and colleagues [54, 55], this implies that “a large amount of data is
needed before the measure can be accurate.” They conclude that change coupling identification from
periods of very active development (as opposed to projects in maintenance mode) may suffer even more
from this issue.

11.4 CHALLENGES IN CHANGE COUPLING IDENTIFICATION 311

Other researchers have an even stronger position. Negara et al. [56] consider that, although
convenient, research based on version control systems is often incomplete and imprecise. They also note
that many interesting research questions that involve code changes and other development activities
(e.g., automated refactorings) require evolution data that is not captured by version control systems
at all.

All these problems can be reduced to the fact that version control systems only store coarse-
grained information. The alternative solution proposed by both Negara et al. and Robbes et al. relies on
instrumenting developers’ IDE. Quoting [56]:

Code evolution research studies how the code is changed. So, it is natural to make changes be
first-class citizens and leverage the capabilities of an Integrated Development Environment (IDE) to
capture code changes online rather than trying to infer them post-mortem from the snapshots stored
in VCSs (version control systems).

Negara et al. [56] developed an Eclipse plug-in called CodingTracker that unobtrusively collects
fine-grained data about the code evolution of Java programs. This tool records every code edit
performed by a developer, as well as other development actions, such as invocations of automated
refactorings, tests and application runs, interaction with the version control system, etc. According to
Negara and colleagues, the collected data is so precise that it enables them to reproduce the state of
the underlying code at any point in time. To represent the raw code edits collected by CodingTracker
uniformly and consistently, they implemented an algorithm that infers changes as Abstract Syntax Tree
(AST) node operations. The solution from Robbes et al. [54, 55] is similar. They developed a tool
called SpyWare that is notified by the Smalltalk compiler in the Squeak IDE whenever the AST of the
underlying program changes. The solution from Negara and colleagues seems to be more complete
and flexible, in the sense that their tool captures additional information (i.e., evolution data that does
represent changes to code) and does not expect the underlying code to be compilable or even fully
parsable.

What we see here is actually a trade-off. These studies show strong evidence that fine-grained
information obtained from IDE monitoring is more accurate. However, they also have disadvantages.
First, both approaches are targeted to specific IDEs: SpyWare interacts with Squeak IDE and
CodingTracker is an Eclipse plug-in. Consequently, it can be that their software needs to be adjusted
when new IDE versions are released (as often occurs with Eclipse plug-ins, for instance). Second,
both approaches are targeted to specific programming languages: SpyWare records only Smalltalk
code changes and CodingTracker records only Java code changes. What if the subject project is
written in C#? What if the subject project is written mainly in Java, but also has a lot of XML
files and other resources (which is common)? Third, although their tools seem unintrusive, they
can only capture information from instrumented IDEs. In other words, all software development
that occurred before the release of their tool is inevitably left behind. In particular, such period
encompasses the core development of a huge amount of free/libre open source software (FLOSS)
projects. In addition, given the highly collaborative and distributed nature of FLOSS development,
instrumenting the IDEs of all developers becomes much more complicated (maybe even unfeasible
in most cases). Therefore, while monitoring the IDE provides much more accurate data, it is also
much more restrictive. In turn, research that mines version control systems only requires the existence
of the log files (change-sets). Depending on the objective of the study, relying solely on these

312 CHAPTER 11 CHANGE COUPLING BETWEEN SOFTWARE ARTIFACTS

logs is perfectly adequate, as acknowledged by both Negara et al. [56] and Robbes et al. [54, 55]
themselves.

11.5 CHANGE COUPLING APPLICATIONS
Now that we have presented different change coupling identification approaches and some pieces
of practical advice, we will switch the focus to what we can do with the mined couplings. In the
following sections, we present some key applications for change coupling, which include change
prediction and change impact analysis (Section 11.5.1), discovery of design flaws and opportunities for
refactoring (Section 11.5.2), architecture evaluation (Section 11.5.3), and identification of coordination
requirements (Section 11.5.4).

11.5.1 CHANGE PREDICTION AND CHANGE IMPACT ANALYSIS
Change impact analysis (or simply impact analysis) concerns “identifying the potential consequences
of a change, or estimating what needs to be modified to accomplish a change” [57]. Preventing side
effects and estimating ripple effects have been two commons uses of impact analysis [58]. In a more
general sense, developers use change impact analysis information for planning changes, deciding
changes, accommodating certain types of changes, and tracing the effects of changes [57]. For more
information, the interested reader might refer to the seminal book Software Change Impact Analysis by
Arnold [57].

Change impact analysis probably constitutes the main application of change couplings. The
rationale behind it is that entities that have changed together in the past are likely to change together in
the future [10]. Zimmermann et al. [3, 31] developed an Eclipse plug-in that captures change couplings
from the CVS version control system. Inspired by the way large e-commerce websites (e.g., Amazon23

and eBay24) suggest related products to their visitors, their tool informs about related software changes:
“programmers that changed these functions also changed. . .” More specifically, right after a certain
developer changes a piece of code, the tool suggests locations where, in similar transactions in the past,
other changes were made. These recommended locations can be very specific, like a class attribute
or a class method. The tool captures change couplings using association rules, which are mined
“on-demand” using a modified version of the Apriori algorithm [29]. After obtaining the rules and
calculating their respective values of support and confidence, the tool displays them to the end-user
(sorted by confidence).

The main benefits of the tool are: (a) suggesting and predicting likely changes, (b) showing coupling
between items that would not be detectable via static analysis, and (c) preventing errors resulting from
incomplete changes [3, 31]. These benefits are especially helpful for newcomers joining a software
project, since they are less acquainted with the software architecture and with the semantics of certain
classes. The results from the evaluation conducted by Zimmermann and colleagues showed that their
tool was helpful in suggesting further changes and in warning about missing changes. However, they

23http://www.amazon.com.
24http://www.ebay.com.

http://www.amazon.com
http://www.ebay.com

11.5 CHANGE COUPLING APPLICATIONS 313

highlight that the more there is to learn from history, the more and better suggestions that can be made.
More details about this work can be found in their papers [3, 31] and at: http://thomas-zimmermann.
com/publications/details/zimmermann-tse-2005/.

11.5.1.1 Other research results
Almost in parallel with Zimmermann and colleagues, a different group of researchers investigated the
very same problem [33]. However, instead of generating association rules with the Apriori algorithm,
they employed the more efficient FP-Growth algorithm [34] to find frequent itemsets, which avoids the
step of generating candidate itemsets and testing them against the entire database. Ying and colleagues
recommended the set of files to be changed by taking the union of frequent itemsets (change patterns)
that includes the file being currently modified by the developer.

Hassan and Holt [17] conceived four different change propagation heuristics. The first heuristic
(DEV) returns all program-level entities previously changed by the same developer who is performing
the current change. The second one (HIS) returns all entities previously changed together with the
entity being modified. The third heuristic (CUD) returns all entities structurally related to the entity
being modified. The last heuristic (FIL) returns all entities defined in the same file as the entity being
modified. The authors evaluated the performance of these heuristics in five open source systems:
NetBSD, FreeBSD, OpenBSD, Postgres, and GCC. The heuristic based on change couplings (HIS) had
the best recall (0.87) and the second best precision (0.06). Their results cast doubts on the effectiveness
of using structural dependencies alone for predicting change propagation. Four years later, Malik and
Hassan [20] worked on an adaptive change propagation recommender that relies on both structural and
historical information to provide better suggestions.

Kagdi et al. [59] presented an approach for change impact analysis based on the combination of
conceptual coupling analysis and change couplings analysis. Information retrieval techniques are used
to derive conceptual couplings from the source code of a specific version of the subject system (e.g., a
release). As usual, the authors identify change couplings by mining association rules from the logs of
version control systems. The authors conducted an empirical study with historical data from four open
source projects, Apache httpd, ArgoUML, iBatis, and KOffice. The results showed that the combination
of the two techniques provide statistically significant improvement in accuracy when compared to the
use of either technique individually. More specifically, the authors obtained improvements of up to 20%
over the use of conceptual coupling technique alone in KOffice and up to 45% over the technique of
change couplings in iBatis.

11.5.2 DISCOVERY OF DESIGN FLAWS AND OPPORTUNITIES FOR REFACTORING
Change couplings reveal how the evolution of versioned artifacts intertwine. In particular, artifacts
that are highly change coupled to many other artifacts are intrinsically problematic, since this implies
that these artifacts are frequently affected by changes made to other parts of the system. High change
coupling among modules generally points to design flaws or even to architectural decay.

In order to help developers understand how change coupled artifacts are, D’Ambros and colleagues
introduced a change coupling visualization tool called Evolution Radar [2, 10, 60, 61, 77]. The
Evolution Radar is interactive and integrates information about change coupling at the file level and
at the module level (group of files) in a scalable way. Furthermore, it enables developers to study and
inspect change couplings in an interactive way by guiding them to the files responsible for strong change

http://thomas-zimmermann.com/publications/details/zimmermann-tse-2005/
http://thomas-zimmermann.com/publications/details/zimmermann-tse-2005/

314 CHAPTER 11 CHANGE COUPLING BETWEEN SOFTWARE ARTIFACTS

couplings (outliers). More specifically, the Evolution Radar helps to answer the following questions:
(a) What are the components (e.g., modules) with the strongest (change) coupling? (b) Which low level
entities (e.g., files) are responsible for these couplings?

Figure 11.8 shows the schematics of the Evolution Radar. The module chosen by the developer is
visualized as a highlighted circle placed in the center of the radar. All other modules of the system
are represented as sectors. The sector’s size is proportional to the number of files it contains. Sectors
are ordered according to their sizes, with the smallest one at 0 radian and the remaining ones arranged
clockwise. Within each sector, files are represented as colored circles. Arbitrary metrics can be mapped
to the color and size of file circles. Each circle is positioned according to polar coordinates, where the
radius d and the angle θ are computed according to the following rules:

• Radius d (distance to the center): it is inversely proportional to the level of change coupling
between the file (f) and the module (M). The more coupled they are, the closer they are to each
other. In their study, Lanza and colleagues measured change coupling according to the following
formula:

LC(M, f) = max
fi∈M

LC(fi, f), where

LC(fi, fj) = number of that fi and fj changed together

Module 1Files

Focused
module

d
q

FIGURE 11.8

Schematics of Evolution Radar.

11.5 CHANGE COUPLING APPLICATIONS 315

• Angle θ : the files in each module are ordered alphabetically considering their paths and uniformly
distributed along the sector.

The main features of Evolution Radar are as follows [2]:

(a) Moving through time: When creating the radar, the end-user can divide the lifetime of the system
into time intervals. For each of them a different radar is created (and change coupling is computed
with respect to the given time interval). The radius coordinate has the same scale in all the radars,
so that end-users can compare radars and analyze the evolution of coupling over time.

(b) Tracking: When a file is selected for tracking in a visualization related to a particular time
interval, it is highlighted in all the radars (with respect to all the other time intervals) in which the
file exists. This feature allows the end-user to keep track of files over time.

(c) Spawning: This feature enables end-users to discover how intensively files inside the module in
focus are change coupled to other files of the system, thus providing a more detailed view of
coupling.

In the following, we present an evaluation of the ArgoUML project done by D’Ambros and
colleagues using the Evolution Radar [10]. Figure 11.9 depicts some of the radars they built for this
evaluation. These radars focus on showing the change couplings between the Explorer module (the
focused module in the center) and all other artifacts (all other circles) of the system for three consecutive
analysis periods. A color temperature mapping is used: plain blue represents the lowest coupling and
plain red represents the highest coupling.25 The size of file circles is proportional to the total number
of lines modified in all commits during the considered time interval.

The first radar (a) highlights a class named ModelFacade that underwent several modifications
during the analysis period and that was highly coupled to the Explorer module. The authors further
investigated the ModelFacade and discovered that it was a God class [62] with thousands of lines of
code and around 450 methods (all static). The second radar (b) does not include the ModelFacade, i.e.,
a certain developer deleted it in the associated analysis period.

Using the tracking feature, the authors discovered that the NSUMLModelFacade class was the
most coupled class in the second and third radars. In fact, its coupling with the Explorer module
increased over time (its circle was getting closer to the central circle). A closer look revealed that the
NSUMLModelFacade was also a God class with 317 public methods. The authors also discovered that
more than 75% of its code was duplicated from the deleted ModelFacade class. Therefore, it appears
the developers just relocated the problem instead of doing a proper refactoring. This example highlights
how change couplings help detect design flaws and shows how artifacts (co)evolve over time. A more
detailed evaluation of the ArgoUML project can be found in their journal article [10].

11.5.2.1 Other research results
Vanya et al. [63, 64] investigated whether interactive visualizations of co-changed software artifacts
could be used beyond the mere identification of unwanted change couplings. More specifically, they
investigated whether these techniques could help architects reason about and resolve these couplings.
To evaluate their proposal, the authors conducted a case study in which they invited the architect and
developers of a large medical system at Philips Healthcare to use iVIS to investigate unwanted change
couplings in the system. The authors (i) selected the unwanted couplings the architect and developers

25Check the original paper for colored pictures [10].

316 CHAPTER 11 CHANGE COUPLING BETWEEN SOFTWARE ARTIFACTS

ModuleLoader

CodeGeneration

Internationalization

GeneratorJava.java
ModelFacade.java

Diagram

NSUMLModelFacade.java

Diagram

Model

Application

Internationalization

CodeGeneration

ModuleLoader

FigAssociationEnd.java
FigAssociation.java

FigActionState.java

NSUMLModelFacade.java

Diagram
FigActionState.java

NSUMLModeIFacade.java

Application

Model Model

Application

GeneratorJava.java

FigAssociationEnd.java
FigAssociation.java

NSUMLModelFacade

(a) (b)

(c)

ModelFacade

NSUMLModelFacade

NSUMLModelFacade

Internationalization

CodeGeneration

ModuleLoader

FIGURE 11.9

Evolution Radars for the ArgoUML.26 (a) From June to December 2004; (b) From January to June 2005; (c)
From June to December 2005.

decided to analyze, (ii) defined and implemented the interactions to be tested, and (iii) organized
working sessions with the architect and developers to analyze the unwanted couplings. Solutions to
unwanted couplings could be found in 7 out of the 10 working sessions conducted.

Beyer and Hassan [65, 66] introduced a visualization technique called evolution storyboards, which
builds on a previous study by Beyer et al. [67] that clusters artifacts based on their change couplings.
Just as directors and cinematographers use storyboards to study movie scenes and uncover potential
problems before they occur, evolution storyboards were conceived to replay and study the history of
software systems based on change coupling graphs. This is essentially an alternative to the Evolution
Radar.

Ratzinger et al. [68] used change couplings to detect bad smells, which are somewhat subjective
perceptions of design shortcomings. They developed a visualization tool called Evolens [68] that
produces change coupling graphs, where large ellipses denote packages, smaller ellipses denote classes,

26Adapted from D’Ambros and Lanza [10, p. 6-7]. Content licensed by IEEE. Copyright cleared.

11.5 CHANGE COUPLING APPLICATIONS 317

Module A

Class A
Class B

Class D

Class F

Class G

Class H
Class E

Class C

Module B

FIGURE 11.10

Schematic of the Evolens visualization.

and edges denote change couplings (Figure 11.10). The thickness of the edges is directly proportional
to the number of co-changes involving the associated classes. The authors hypothesize that their tool
assists developers in finding and fixing design flaws via refactoring. The authors introduced two change
smells, i.e., man-in-the-middle and data container. Man-in-the-middle refers to a central class that is
change coupled to many others scattered over several modules of the system. In turn, the data container
smell involves two classes: one that holds the data and another that interacts with other classes of the
system that require the data from the first class. The authors analyzed the history of a large industrial
system for 15 months and found occurrences on both smells.

11.5.3 ARCHITECTURE EVALUATION
Zimmermann et al. [25] investigated the extent to which change history can be used to improve the
assessment of software architectures. To this end, they detected change couplings between program-
level entities (i.e., attributes and methods) and assessed the modularity of several open source projects,
including GCC, DDD, Python, Apache, and OpenSSL. Such an assessment was driven by an analysis
of the values produced by two metrics. One metric was the Evolutionary Density Index (EDI), which
relates the number of actual change couplings to that of possible change couplings. The lower the EDI,
the better the modularity. The other metric was the Evolutionary Coupling Index (ECI), which relates
the actual number of external change couplings (i.e., couplings between entities defined in different
files) to the actual number of internal change couplings. As in the previous case, the lower the ECI,
the better the modularity. From their results, they concluded that a change history can either justify the
organization and principles of the system architecture or show where reality diverges from policy (e.g.,
architectural rules).

Recently, Silva et al. [69] used change couplings to assess the modularity of software systems. The
rationale comes from the principle that modules should confine implementation decisions that are likely
to change together [70]. This is also known as the Common Closure Principle [71]. Silva and colleagues
created co-change graphs, with edges representing the number of common changes between artifacts.
They applied a clustering algorithm to extract co-change clusters from the graph and then compared

318 CHAPTER 11 CHANGE COUPLING BETWEEN SOFTWARE ARTIFACTS

such clusters against the hierarchical (package) structure of the system. Their evaluation included three
open source systems: Geronimo, Lucene, and JDT Core. The authors performed this comparison using
distribution maps [72], which is a visualization technique they leveraged to depict how clustered classes
are distributed over the system packages. During the evaluation of the systems, they were able to see
several of the distribution patterns introduced by Ducasse et al. [72]. For instance, some co-change
clusters fit the Octopus pattern, since they were well encapsulated in one package (the “body”) but also
spread across others (the “tentacles”).

11.5.4 COORDINATION REQUIREMENTS AND SOCIO-TECHNICAL CONGRUENCE
Organizations often cope with complex tasks by first dividing them into smaller interdependent work
units and then assigning these units to teams. In this context, coordination among teams arises as a
response to such interdependent work units [73]. Cataldo and colleagues conceived an approach to
elicit coordination requirements [19, 74, 75]. More specifically, their approach tackles the following
problem: given a particular set of dependencies among tasks, identify which set of individuals should
coordinate their activities.

The approach from Cataldo et al. relies on two sets of relationships (Figure 11.11). The first set
is called Task Assignments (TA) and defines which individuals are working on which tasks. This set
is represented by a matrix where each cell [i, j] indicates that the developer i was assigned to the
task j. In the context of software development, this set might be built upon the set of files modified
by each developer on a modification request or throughout the development of a software release. The
second set of relationships is called Task Dependencies (TD) and defines the interdependencies between
tasks. This set is also represented by a matrix where each cell [i, j] (or [j, i]) indicates whether tasks
i and j are interdependent. In the context of software development, this set might be built according to
either structural coupling or change couplings. Cataldo and colleagues tested the two alternatives and
concluded that change couplings provided better results [74]. In the particular case of change coupling,
off-diagonal cells of TD indicate the number of times the two files were changed together. In turn, the
main diagonal indicates the total number of times the source code files were changed.

Once TA and TD matrices are built, coordination requirements are ready to be determined.
Multiplying TA by TD results in a “people by task” matrix that represents the extent to which a particular

0
0
1
1

1

Task assignments

(TA) (TD) (TA)T (CR)

Task dependencies as

co-changes

Task assignments

transposed

Coordination

requirements

0
1
1

0
1
0
0

1
0
0
1

1
0
1
1

0
25 5 0 1 2 8 0

1
0
1
1
0

0
0
1
0
0
0

1
1
0
0
1
0

1
1
0 =
1
1
0

4
4

4
3

3_
_

_
_

4
58

58
86

86

90
90

5 32 3 5 0 7
0 3 9 1 0 0
1 5 1 20 3 5
2 0 0 3 10 1
8 7 0 5 1 27

0 X X
0
0

FIGURE 11.11

Illustrative example of coordination requirements calculation.

REFERENCES 319

worker should be aware of tasks that are interdependent to those that he or she is responsible for
[74]. Multiplying the TA × TD product by the transpose of TA results in a people by people matrix
where a cell [i, j] represents the extent to which person i works on tasks that share dependencies with
the tasks worked on by person j [74]. In other words, this last matrix represents the Coordination
Requirements (CR), or the extent to which each pair of people needs to coordinate their work (values in
the main diagonal should be ignored). When calculating TD using co-changes, the resulting CR matrix
is symmetric (Figure 11.11).

11.6 CONCLUSION
In this chapter, we provided an overview of change coupling to researchers and practitioners. Our goals
were to explain the concept (Section 11.2), present the main identification approaches (Section 11.3),
discuss current challenges in coupling identification and offer some practical advice (Section 11.4), and
present the main application areas (Section 11.5). To us, there is no doubt that detecting and analyzing
change couplings is becoming an increasingly useful tool in software engineering empirical studies.
Several studies have been published at top conferences, such as those on mining software repositories
[12, 23], software engineering [2, 76], software evolution [25], and reverse engineering [10]. The work
of Zimmermann et al. [31] on change prediction (Section 11.5.1) won the most influential paper award
at the 26th International Conference on Software Engineering (ICSE 2014), the world’s most important
conference in software engineering. Having said that, we sincerely hope this chapter has given you the
fundamentals to detect and analyze change couplings in practice. The authors of this chapter will be
glad to answer questions and discuss researches revolving around the topic.

REFERENCES
[1] Ball T, Adam JMK, Harvey AP, Siy P. If your version control system could talk... In: ICSE workshop on

process modeling and empirical studies of software engineering; 1997.
[2] D’Ambros M, Lanza M, Lungu M. Visualizing co-change information with the evolution radar. IEEE Trans

Softw Eng 2009;35(5):720–35. doi:10.1109/TSE.2009.17.
[3] Zimmermann T, Weissgerber P, Diehl S, Zeller A. Mining version histories to guide software changes. IEEE

Trans Softw Eng 2005;31(6):429–45. doi:10.1109/TSE.2005.72.
[4] Fluri B, Gall HC, Pinzger M. Fine-grained analysis of change couplings. In: Proceedings of the

fifth IEEE international workshop on source code analysis and manipulation; 2005. p. 66–74.
doi:10.1109/SCAM.2005.14.

[5] Fluri B, Gall HC. Classifying change types for qualifying change couplings. In: Proceedings of the
14th IEEE international conference on program comprehension, ICPC 2006; 2006. p. 35–45. doi:
10.1109/ICPC.2006.16.

[6] D’Ambros M, Gall H, Lanza M, Pinzger M. Analysing software repositories to understand software
evolution. In: Mens T, Demeyer S, editors. Software evolution. Berlin: Springer; 2008. p. 37–67. Retrieved
from doi:10.1007/978-3-540-76440-3.

[7] Mens T, Demeyer S. Software evolution. 1st ed. Berlin: Springer Publishing Company, Inc.; 2008.
[8] D’Ambros M, Lanza M, Robbes R. On the relationship between change coupling and software defects. Los

Alamitos, CA, USA: IEEE Computer Society; 2009. p. 135–44. doi:10.1109/WCRE.2009.19.

http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0010
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0015
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0020
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0025
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0030
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0035
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0040
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0045

320 CHAPTER 11 CHANGE COUPLING BETWEEN SOFTWARE ARTIFACTS

[9] Zhou Y, Wursch M, Giger E, Gall H, Lu J. A Bayesian network based approach for change coupling
prediction. In: Proceedings of the 15th working conference on reverse engineering, WCRE’08; 2008.
p. 27–36. doi:10.1109/WCRE.2008.39.

[10] D’Ambros M, Lanza M. Reverse engineering with logical coupling. In: 13th working conference on reverse
engineering, WCRE ’06; 2006. p. 189–198. doi:10.1109/WCRE.2006.51.

[11] Gall H, Hajek K, Jazayeri M. Detection of logical coupling based on product release history. In: Proceedings
of the international conference on software maintenance, ICSM ’98. Washington, DC, USA: IEEE Computer
Society; 1998. p. 190. Retrieved from http://dl.acm.org/citation.cfm?id=850947.853338.

[12] Alali A, Bartman B, Newman CD, Maletic JI. A preliminary investigation of using age and distance measures
in the detection of evolutionary couplings. In: Proceedings of the 10th working conference on mining
software repositories, MSR ’13. San Francisco, CA, USA: IEEE Press; 2013. p. 169–72. Retrieved from
http://dl.acm.org/citation.cfm?id=2487085.2487120.

[13] Hassan AE. The road ahead for mining software repositories. Front Softw Maint 2008; 2008:48–57. doi:
10.1109/FOSM.2008.4659248.

[14] Page-Jones M. Comparing techniques by means of encapsulation and connascence. Commun ACM
1992;35(9):147–51. doi:10.1145/130994.131004.

[15] Page-Jones M. Fundamentals of object-oriented design in UML. 1st ed. Reading, MA: Addison-Wesley;
1999.

[16] McIntosh S, Adams B, Nguyen THD, Kamei Y, Hassan AE. An empirical study of build maintenance effort.
In: Proceedings of the 33rd international conference on software engineering, ICSE ’11. Waikiki, Honolulu,
HI, USA: ACM; 2011. p. 141–50. doi:10.1145/1985793.1985813.

[17] Hassan AE, Holt RC. Predicting change propagation in software systems. In: Proceedings of the 20th
IEEE international conference on software maintenance, ICSM ’04. Washington, DC, USA: IEEE Computer
Society; 2004. p. 284–93. Retrieved from http://dl.acm.org/citation.cfm?id=1018431.1021436.

[18] Hassan AE, Holt RC. Replaying development history to assess the effectiveness of change propagation tools.
Empir Softw Eng 2006;11(3):335–67. doi:10.1007/s10664-006-9006-4.

[19] Cataldo M, Herbsleb JD. Coordination breakdowns and their impact on development productivity and
software failures. IEEE Trans Softw Eng 2013;39(3):343–60. doi:10.1109/TSE.2012.32.

[20] Malik H, Hassan AE. Supporting software evolution using adaptive change propagation heuristics. In:
Proceedings of the IEEE international conference on software maintenance, ICSM, 2008; 2008. p. 177–86.
doi:10.1109/ICSM.2008.4658066.

[21] Cataldo M, Mockus A, Roberts JA, Herbsleb JD. Software dependencies, work dependencies, and their
impact on failures. IEEE Trans Softw Eng 2009;35(6):864–78. doi:10.1109/TSE.2009.42.

[22] Cataldo M, Nambiar S. The impact of geographic distribution and the nature of technical coupling on the
quality of global software development projects. J Softw Maint Evol Res Pract 2010. doi:10.1002/smr.477.

[23] Zimmermann T, Weißgerber P. Preprocessing CVS data for fine-grained analysis. In: Proceedings 1st
international workshop on mining software repositories (MSR 2004). Los Alamitos, CA: IEEE Computer
Society Press; 2004. p. 2–6.

[24] Gall H, Jazayeri M, Krajewski J. CVS release history data for detecting logical couplings. In: Proceedings of
the 6th international workshop on principles of software evolution. Washington, DC, USA: IEEE Computer
Society; 2003. p. 13. Retrieved from http://dl.acm.org/citation.cfm?id=942803.943741.

[25] Zimmermann T, Diehl S, Zeller A. How history justifies system architecture (or not). In: Proceed-
ings of the sixth international workshop on principles of software evolution; 2003. p. 73–83. doi:
10.1109/IWPSE.2003.1231213.

[26] Oliva GA, Gerosa MA. On the interplay between structural and logical dependencies in open-source software.
In: Proceedings of the 25th Brazilian symposium on software engineering, SBES’11. Washington, DC, USA:
IEEE Computer Society; 2011. p. 144–53. doi:10.1109/SBES.2011.39.

http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0050
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0055
http://dl.acm.org/citation.cfm?id=850947.853338
http://dl.acm.org/citation.cfm?id=2487085.2487120
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0070
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0075
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0080
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0085
http://dl.acm.org/citation.cfm?id=1018431.1021436
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0095
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0100
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0105
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0110
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0115
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0120
http://dl.acm.org/citation.cfm?id=942803.943741
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0130
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0135

REFERENCES 321

[27] Rajaraman A, Ullman JD, Leskovec J. Mining of massive datasets. 2nd ed. 2013.
[28] Liu B. Web data mining: exploring hyperlinks, contents and usage data. 2nd ed. Berlin: Springer Publishing

Company, Inc.; 2011.
[29] Agrawal R, Srikant R. Fast algorithms for mining association rules in large databases. In: Proceedings

of the 20th international conference on very large data bases, VLDB ’94. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.; 1994. p. 487–99. Retrieved from http://dl.acm.org/citation.cfm?id=
645920.672836.

[30] Bavota G, Dit B, Oliveto R, Di Penta M, Poshyvanyk D, De Lucia A. An empirical study on the
developers’ perception of software coupling. In: Proceedings of the 2013 international conference on software
engineering, ICSE ’13. San Francisco, CA, USA: IEEE Press; 2013. p. 692–701. Retrieved from http://dl.
acm.org/citation.cfm?id=2486788.2486879.

[31] Zimmermann T, Weissgerber P, Diehl S, Zeller A. Mining version histories to guide software changes. In:
Proceedings of the 26th international conference on software engineering, ICSE’04. Washington, DC, USA:
IEEE Computer Society; 2004. p. 563–72. Retrieved from http://dl.acm.org/citation.cfm?id=998675.999460.

[32] Wang X, Wang H, Liu C. Predicting co-changed software entities in the context of software evolution. In:
Proceedings of the international conference on information engineering and computer science, ICIECS; 2009.
p. 1–5. doi:10.1109/ICIECS.2009.5364521.

[33] Ying ATT, Murphy GC, Ng R, Chu-Carroll MC. Predicting source code changes by mining change history.
IEEE Trans Softw Eng 2004;30(9):574–86. doi:10.1109/TSE.2004.52.

[34] Han J, Pei J, Yin Y. Mining frequent patterns without candidate generation. In: Proceedings of the 2000
ACM SIGMOD international conference on management of data, SIGMOD’00. Dallas, TX, USA: ACM;
2000. p. 1–12. doi:10.1145/342009.335372.

[35] Brin S, Motwani R, Ullman JD, Tsur S. Dynamic itemset counting and implication rules for market
basket data. In: Proceedings of the 1997 ACM SIGMOD international conference on management of data,
SIGMOD ’97. Tucson, AZ, USA: ACM; 1997. p. 255–64. doi:10.1145/253260.253325.

[36] Kagdi H, Collard ML, Maletic JI. A survey and taxonomy of approaches for mining software repositories in
the context of software evolution. J Softw Maint Evol 2007;19(2):77–131. doi:10.1002/smr.344.

[37] Canfora G, Ceccarelli M, Cerulo L, Di Penta M. Using multivariate time series and association rules to detect
logical change coupling: an empirical study. In: Proceedings of the IEEE international conference on software
maintenance (ICSM); 2010. p. 1–10. doi:10.1109/ICSM.2010.5609732.

[38] Kruskal JB, Liberman M. The symmetric time-warping problem: from continuous to discrete. In: Sankoff D,
Kruskal JB, editors. Time warps, string edits, and macromolecules—the theory and practice of sequence
comparison. Palo Alto, CA: CSLI Publications; 1999.

[39] Antoniol G, Rollo VF, Venturi G. Detecting groups of co-changing files in CVS repositories. In: Pro-
ceedings of the eighth international workshop on principles of software evolution; 2005. p. 23–32. doi:
10.1109/IWPSE.2005.11.

[40] Rabiner L, Rosenberg AE, Levinson SE. Considerations in dynamic time warping algorithms
for discrete word recognition. IEEE Trans Acoust Speech Signal Process 1978;26(6):575–82. doi:
10.1109/TASSP.1978.1163164.

[41] Rabiner L, Juang BH. Fundamentals of speech recognition. Upper Saddle River, NJ, USA: Prentice-Hall,
Inc.; 1993.

[42] Caiani EG, Porta A, Baselli G, Turiel M, Muzzupappa S, Pieruzzi F, et al. Warped-average template technique
to track on a cycle-by-cycle basis the cardiac filling phases on left ventricular volume. Comput Cardiol
1998;1998:73–6. doi:10.1109/CIC.1998.731723.

[43] Oates T, Schmill MD, Cohen PR. A method for clustering the experiences of a mobile robot that accords
with human judgments. In: Proceedings of the seventeenth national conference on artificial intelligence

http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0140
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0145
http://dl.acm.org/citation.cfm?id=645920.672836
http://dl.acm.org/citation.cfm?id=645920.672836
http://dl.acm.org/citation.cfm?id=2486788.2486879
http://dl.acm.org/citation.cfm?id=2486788.2486879
http://dl.acm.org/citation.cfm?id=998675.999460
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0165
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0170
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0175
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0180
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0185
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0190
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0195
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0200
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0205
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0210
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0215

322 CHAPTER 11 CHANGE COUPLING BETWEEN SOFTWARE ARTIFACTS

and twelfth conference on innovative applications of artificial intelligence. Austin, TX: AAAI Press; 2000.
p. 846–51. URL: http://dl.acm.org/citation.cfm?id=647288.721117.

[44] Rath TM, Manmatha R. Word image matching using dynamic time warping. In: Proceedings of the IEEE
computer society conference on computer vision and pattern recognition, vol. 2; 2003. p. II-521–II-527.
doi:10.1109/CVPR.2003.1211511.

[45] Müller M. Dynamic time warping. In: Information retrieval for music and motion. Berlin/Heidelberg:
Springer; 2007. p. 69–84. doi:10.1007/978-3-540-74048-3{_}4.

[46] Bouktif S, Gueheneuc YG, Antoniol G. Extracting change-patterns from CVS repositories. In: Proceedings
of the 13th working conference on reverse engineering, WCRE ’06. Washington, DC, USA: IEEE Computer
Society; 2006. p. 221–30. doi:10.1109/WCRE.2006.27.

[47] Salvador S, Chan P. Toward accurate dynamic time warping in linear time and space. Intell Data Anal
2007;11(5):561–80. URL: http://dl.acm.org/citation.cfm?id=1367985.1367993.

[48] Granger CWJ. Investigating causal relations by econometric models and cross-spectral methods. Economet-
rica 1969;37(3):424–38. doi:10.2307/1912791.

[49] Ceccarelli M, Cerulo L, Canfora G, Di Penta M. An eclectic approach for change impact analysis. In:
Proceedings of the 32Nd ACM/IEEE international conference on software engineering, ICSE ’10, vol. 2.
Cape Town, South Africa: ACM; 2010. p. 163–6. doi:10.1145/1810295.1810320.

[50] Herzig K, Zeller A. The impact of tangled code changes. In: Proceedings of the 10th working conference on
mining software repositories, MSR ’13. San Francisco, CA, USA: IEEE Press; 2013. p. 121–30. Retrieved
from http://dl.acm.org/citation.cfm?id=2487085.2487113.

[51] Ma Y, Wu Y, Xu Y. Dynamics of open-source software developer’s commit behavior: an empirical
investigation of subversion; 2013. CoRR, abs/1309.0897.

[52] Lin S, Ma Y, Chen J. Empirical evidence on developer’s commit activity for open-source software projects.
In: Proceedings of the 25th international conference on software engineering and knowledge engineering,
SEKE’13, Boston, USA; 2013. p. 455–60. Retrieved from http://dl.acm.org/citation.cfm?id=257734.257788.

[53] Brindescu C, Codoban M, Shmarkatiuk S, Dig D. How do centralized and distributed version control systems
impact software changes? (No. 1957/44927). EECS School at Oregon State University; 2014.

[54] Robbes R, Pollet D, Lanza M. Logical coupling based on fine-grained change information. In: Proceedings
of the 15th working conference on reverse engineering, WCRE’08. Washington, DC, USA: IEEE Computer
Society; 2008. p. 42–6. doi:10.1109/WCRE.2008.47.

[55] Robbes R. Of change and software. University of Lugano; 2008.
[56] Negara S, Vakilian M, Chen N, Johnson RE, Dig D. Is it dangerous to use version control histories to study

source code evolution? In: Proceedings of the 26th European conference on object-oriented programming,
ECOOP’12. Beijing, China: Springer-Verlag; 2012. p. 79–103. doi:10.1007/978-3-642-31057-7{_}5.

[57] Arnold RS. Software change impact analysis. Los Alamitos, CA, USA: IEEE Computer Society Press;
1996.

[58] Kagdi H, Maletic JI. Software-change prediction: estimated+actual. In: Proceedings of the
second international IEEE workshop on software evolvability, SE’06; 2006. p. 38–43. doi:
10.1109/SOFTWARE-EVOLVABILITY.2006.14.

[59] Kagdi H, Gethers M, Poshyvanyk D, Collard ML. Blending conceptual and evolutionary couplings to support
change impact analysis in source code. In: Proceedings of the 17th working conference on reverse engineering
(WCRE); 2010. p. 119–28. doi:10.1109/WCRE.2010.21.

[60] D’Ambros M, Lanza M, Lungu M. The evolution radar: visualizing integrated logical coupling information.
In: Proceedings of the 2006 international workshop on mining software repositories, MSR ’06. Shanghai,
China: ACM; 2006. p. 26–32. doi:10.1145/1137983.1137992.

[61] D’Ambros M, Lanza M. Distributed and collaborative software evolution analysis with churrasco. Sci
Comput Program 2010;75(4):276–87. doi:10.1016/j.scico.2009.07.005.

http://dl.acm.org/citation.cfm?id=647288.721117
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0225
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0230
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0235
http://dl.acm.org/citation.cfm?id=1367985.1367993
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0245
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0250
http://dl.acm.org/citation.cfm?id=2487085.2487113
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0260
http://dl.acm.org/citation.cfm?id=257734.257788
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0270
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0275
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0280
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0285
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0290
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0295
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0300
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0305
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0310

REFERENCES 323

[62] Fowler M. Refactoring: improving the design of existing code. Boston, MA: Addison-Wesley; 1999. Object
Technology Series.

[63] Vanya A, Premraj R, Vliet H. Interactive exploration of co-evolving software entities. In: Proceedings of the
14th European conference on software maintenance and reengineering, CSMR’10. Washington, DC, USA:
IEEE Computer Society; 2010. p. 260–3. doi:10.1109/CSMR.2010.50.

[64] Vanya A, Premraj R, Vliet H. Resolving unwanted couplings through interactive exploration of
co-evolving software entities—an experience report. Inf Softw Technol 2012; 54(4):347–59. doi:
10.1016/j.infsof.2011.11.003.

[65] Beyer D, Hassan AE. Animated visualization of software history using evolution storyboards. In: Proceedings
of the 13th working conference on reverse engineering, WCRE ’06. Washington, DC, USA: IEEE Computer
Society; 2006; pp. 199–210. doi:10.1109/WCRE.2006.14.

[66] Beyer D, Hassan AE. Evolution storyboards: visualization of software structure dynamics. In: Proceedings
of the 14th IEEE international conference on program comprehension, ICPC ’06. Washington, DC, USA:
IEEE Computer Society; 2006; pp. 248–51. doi:10.1109/ICPC.2006.21.

[67] Beyer D, Noack A. Clustering software artifacts based on frequent common changes. In: Proceedings of the
13th international workshop on program comprehension. Washington, DC, USA: IEEE Computer Society;
2005. p. 259–68. doi:10.1109/WPC.2005.12.

[68] Ratzinger J, Fischer M, Gall H. Improving evolvability through refactoring. In: Proceedings of the 2005
international workshop on mining software repositories, MSR’05. St. Louis, MO: ACM; 2005. p. 1–5. doi:
10.1145/1082983.1083155.

[69] Silva L, Valente MT, Maia M. Assessing modularity using co-change clusters. In: Proceedings of the 13th
international conference on modularity; 2014. p. 1–12.

[70] Parnas DL. On the criteria to be used in decomposing systems into modules. Commun ACM 1972;
15(12):1053–8. doi:10.1145/361598.361623.

[71] Martin RC, Martin M. Agile principles, patterns, and practices in C#. 1st ed. Upper Saddle River, NJ: Prentice
Hall; 2006.

[72] Ducasse S, Girba T, Kuhn A. Distribution map. In: Proceedings of the 22nd IEEE international conference
on software maintenance, ICSM ’06. Washington, DC, USA: IEEE Computer Society; 2006. p. 203–12.
doi:10.1109/ICSM.2006.22.

[73] March JG, Simon HA. Organizations. 2nd ed. New York: Wiley-Blackwell; 1993.
[74] Cataldo M, Herbsleb JD, Carley KM. Socio-technical congruence: a framework for assessing the impact

of technical and work dependencies on software development productivity. In: Proceedings of the second
ACM-IEEE international symposium on empirical software engineering and measurement, ESEM ’08.
Kaiserslautern, Germany: ACM; 2008. p. 2–11. doi:10.1145/1414004.1414008.

[75] Cataldo M, Wagstrom P, Herbsleb JD, Carley KM. Identification of coordination requirements: implications
for the design of collaboration and awareness tools. In: Hinds PJ, Martin D, editors, Proceedings of the 2006
ACM conference on computer supported cooperative work, CSCW 2006, Banff, Alberta, Canada, November
4-8. New York, NY, USA: ACM; 2006. p. 353–62. doi:10.1145/1180875.1180929.

[76] Kouroshfar E. Studying the effect of co-change dispersion on software quality. In: Proceedings of the 2013
international conference on software engineering, ICSE’13. San Francisco, CA, USA: IEEE Press; 2013.
p. 1450–2. Retrieved from. http://dl.acm.org/citation.cfm?id=2486788.2487034.

[77] D’Ambros M, Lanza M. A flexible framework to support collaborative software evolution analysis. In:
Proceedings of the 12th European conference on software maintenance and reengineering, CSMR ’08.
Washington, DC, USA: IEEE Computer Society; 2008. p. 3–12. doi:10.1109/CSMR.2008.4493295.

http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0315
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0320
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0325
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0330
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0335
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0340
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0345
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0350
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0355
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0360
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0365
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0370
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0375
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0380
http://dl.acm.org/citation.cfm?id=2486788.2487034
http://refhub.elsevier.com/B978-0-12-411519-4.00011-2/rf0390

	Change Coupling Between Software Artifacts: Learning from Past Changes
	Introduction
	Change Coupling
	Why Do Artifacts Co-Change?
	Benefits of Using Change Coupling

	Change Coupling Identification Approaches
	Raw Counting
	Association Rules
	Time-Series Analysis
	Dynamic time warping
	Granger causality test

	Challenges in Change Coupling Identification
	Impact of Commit Practices
	Practical Advice for Change Coupling Detection
	Alternative Approaches

	Change Coupling Applications
	Change Prediction and Change Impact Analysis
	Other research results

	Discovery of Design Flaws and Opportunities for Refactoring
	Other research results

	Architecture Evaluation
	Coordination Requirements and Socio-Technical Congruence

	Conclusion
	References

