
DOI: 10.401�/IJWSR.2016040105

Copyright © 2016, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Web Services Research
Volume 13 • Issue 2 • April-June 2016

A Static Change Impact Analysis
Approach based on Metrics and
Visualizations to Support the Evolution
of Workflow Repositories
Gustavo Ansaldi Oliva, Department of Computer Science, University of São Paulo (USP), São Paulo, Brazil

Marco Aurélio Gerosa, Department of Computer Science, University of São Paulo (USP), São Paulo, Brazil

Fabio Kon, Department of Computer Science, University of São Paulo (USP), São Paulo, Brazil

Virginia Smith, HP Software, Hewlett-Packard, Roseville, CA, USA

Dejan Milojicic, Hewlett-Packard Labs, Hewlett-Packard, Palo Alto, CA, USA

ABSTRACT

In ever-changing business environments, organizations continuously refine their processes to benefit
from and meet the constraints of new technology, new business rules, and new market requirements.
Workflow management systems (WFMSs) support organizations in evolving their processes by
providing them with technological mechanisms to design, enact, and monitor workflows. However,
workflows repositories often grow and start to encompass a variety of interdependent workflows.
Without appropriate tool support, keeping track of such interdependencies and staying aware of the
impact of a change in a workflow schema becomes hard. Workflow designers are often blindsided
by changes that end up inducing side- and ripple-effects. This poses threats to the reliability of the
workflows and ultimately hampers the evolvability of the workflow repository as a whole. In this
paper, the authors introduce a change impact analysis approach based on metrics and visualizations to
support the evolution of workflow repositories. They implemented the approach and later integrated
it as a module in the HP Operations Orchestration (HP OO) WFMS. The authors conducted an
exploratory study in which they thoroughly analyzed the workflow repositories of 8 HP OO customers.
They characterized the customer repositories from a change impact perspective and compared them
against each other. The authors were able to spot the workflows with high change impact among
thousands of workflows in each repository. They also found that while the out-of-the-box repository
included in HP OO had 10 workflows with high change impact, customer repositories included 11
(+10%) to 35 (+250%) workflows with this same characteristic. This result indicates the extent to
which customers should put additional effort in evolving their repositories. The authors’ approach
contributes to the body of knowledge on static workflow evolution and complements existing dynamic
workflow evolution approaches. Their techniques also aim to help organizations build more flexible
and reliable workflow repositories.

KEyWoRdS
Change Impact Analysis, Dependency Management, Metrics, Visualizations, Workflow Evolution

74

International Journal of Web Services Research
Volume 13 • Issue 2 • April-June 2016

75

INTRodUCTIoN

Large-scale workflow repositories, which may encompass thousands of workflows in real world
settings, are intrinsically complex. Workflows in these repositories frequently link to each other,
forming a complex network of dependencies. As workflows evolve, their number of elements and
interconnections tend to increase. Furthermore, organizations often heavily rely on some of the out-
of-the-box (OOTB) workflows provided by vendors. This means that modifying or replacing these
core workflows can affect the large amount of other workflows that depend on them. Therefore,
evolving workflow repositories poses a challenging task.

In this context, two problems may occur. First, workflow designers may become reluctant to apply
changes to workflows. In this case, the repository becomes less flexible, since it neither leverages
opportunities nor deals with the constraints of new technology, new market requirements, and new
legislation (Casati, Ceri, Pernici, & Pozzi, 1998). Second, workflow designers may end up performing
changes to workflows without knowing the associated impact, because it is too difficult to be aware
of all interdependencies and evaluate how critical they are. In this case, the repository becomes less
reliable, since inappropriate changes may induce side- and/or ripple-effects (Arnold, 1996). A side-
effect is an error or other undesirable behavior that occurs as a result of a modification (Freedman
& Weinberg, 1982). In turn, a ripple-effect occurs when a small change to a system affects many
other parts of this same system (Stevens, Myers, & Constantine, 1974). In fact, previous research
already showed that making software changes without visibility into their effects can lead to poor
effort estimates, delays in release schedules, degraded software design, unreliable software products,
and premature retirement of software systems (Mens & Demeyer, 2008; Souza & Redmiles, 2008;
Swanson & Beath, 1989). In summary, by being less flexible and less reliable, the workflow repository
also becomes less evolvable.

This paper reports the results of joint efforts from researchers and engineers from the University
of São Paulo, HP Labs, and HP software in seeking innovative workflow evolution solutions to be
integrated into the HP Operations Orchestration (HP OO) product. HP OO is a professional industry
Workflow Management System (WFMS) that provides an OOTB workflow repository targeted to
help organizations automate common IT operations. Customers can also leverage this repository to
build their own custom workflows. Table 1 depicts HP OO common usage scenarios.

Driven by customers’ feedback, we decided to focus on enhancing HP OO’s change impact
analysis features. Software change impact analysis concerns “identifying the potential consequences

Table 1. Common HP operations orchestration usage scenarios1

International Journal of Web Services Research
Volume 13 • Issue 2 • April-June 2016

76

of a change, or estimating what needs to be modified to accomplish a change” (Arnold, 1996). The
analysis aims to make the existing relationships among artifacts more explicit to humans, so that they
can maintain and evolve software systems more easily. Change impact analysis information can then
support planning changes, approving changes, accommodating certain types of changes, and tracing
through the effects of changes (Arnold, 1996). Naturally, mitigating side- and ripple-effects have also
been two commons goals of change impact analysis (Kagdi & Maletic, 2006).

Despite its benefits, change impact analysis has long been one of the most tedious and difficult
parts of the software evolution process. According to Arnold (1996), tools frequently either provide
limited analyses scopes or are too complex so that only specialists are able to deal with it. Moreover,
manually inspecting artifacts to determine change impact is often labor intensive, ad-hoc, and definitely
does not scale for large systems. Building on our previous work on dependency management (Gustavo
Ansaldi Oliva & Gerosa, 2012), we conceived a static interdependency-based change impact analysis
approach to support workflow designers in evolving their workflow repositories. It is static because
the analyses rely on the workflow schema (structure), which is the definition of the sequence in
which activities are executed (Casati et al., 1998). In other words, we are tackling the problem at the
workflow type level (and not at the instance level) (Dadam & Rinderle, 2009). It is interdependency-
based because we determine change impact by detecting and analyzing the interdependencies (call
relationships) among the workflows of a repository. We decided to focus on inter-workflow analysis,
since most industrial tools already support intra-workflow change impact analysis. Therefore, our
approach is applicable to any kind of WFMS containing workflows that call each other. This also
means that the way workflow activities are actually implemented (e.g. Java applications, web services,
or human intervention) is irrelevant to our approach.

Our approach relies on two metrics (change scattering and impact) and two visualizations (call-
graphs and treemaps) to enable both low-level and high-level analyses. While the former focuses
on the relationships of a certain workflow, the latter enables analyzing the repository as a whole. In
particular, the visualizations we implemented make relationships among workflows explicit and more
easily understandable to humans, thus increasing their awareness about change impact levels. We also
tried to make the visualizations as intuitive as possible, so that workflow designers would not have
difficulties to interpret them. Driven by HP OO customers’ needs, the primary goals of the approach
we conceived were to (i) identify workflows possibly impacted when a certain workflow is changed,
(ii) determine the likelihood of impact for each of these workflows, and (iii) offer mechanisms to
enable the analysis of the change impact levels of the repository as a whole.

We implemented our approach and later integrated it into the HP Operations Orchestration (HP
OO) product. In this paper, we describe the approach and an exploratory study we conducted. In
such study, we characterized and analyzed 8 workflow repositories, each belonging to a different HP
OO customer. The metrics and visualizations triggered a series of insights about each repository. For
instance, we found that one customer developed most part of his workflows with high change impact.
We also found that while the out-of-the-box repository had 10 workflows with high change impact,
customer repositories included 11 (+10%) to 35 (+250%) workflows with this same characteristic.

This paper is structured as follows. In the next section, we introduce and discuss related studies
in the field of workflow evolution. After that, we describe our approach and its main features.
Afterwards, we present the setup of the exploratory study. Next, we show and discuss the results and
the limitations of such study. Finally, in the last section, we state our conclusions and plans for future
work. This paper extends our previous work published in the proceedings of the IEEE 20th International
Conference of Web Services (ICWS 2013) (Gustavo A. Oliva, Gerosa, Milojicic, & Smith, 2013).

RELATEd WoRK

Business processes, which are often called workflows when implemented and automated within a
WFMS, live in an environment that is typically highly dynamic (Dadam & Rinderle, 2009). As a

International Journal of Web Services Research
Volume 13 • Issue 2 • April-June 2016

77

consequence, workflows have to evolve in order to keep up with such an environment and remain
useful. The challenges to evolve workflows have been investigated from different perspectives and
several solutions have been proposed so far.

Casati et al. (1998) focused on the problem of running workflow instances when their respective
schema is modified, i.e. changing existing workflows while they are operational. They introduced
formal criteria to determine which running instances can be transparently migrated to the new
version. In fact, dealing with running instances when updating workflow schemas is a classic problem
of workflow evolution (Dadam & Rinderle, 2009). Our proposed approach has a different focus.
Instead of dealing with the runtime effects of changes, we take a step back and offer an approach to
support workflow designers in both planning and evaluating the impact of changes in a static fashion
during design time. In a certain sense, we want to increase the awareness of workflow designers
regarding the levels of change impact for the whole repository. Therefore, these approaches can be
seen as complimentary, as one supports the other. Indeed, the interplay between concurrently applied
workflow schema and instance changes (e.g., discovering the degree with which they overlap) is a
fruitful research topic (Dadam & Rinderle, 2009).

Wang and Capretz (2011) conceived a change impact analysis approach targeted to Service-
Oriented Systems. Similarly to our proposal, their approach is also based on dependency analysis.
However, they define the dependencies in terms of messages exchanged among services. Figure 1
depicts message exchanges (M1, M2, …, M7) among the services of a hypothetical order process.
Data relative to messages (D0, D1, …, D7), which they refer to as model elements, are also taken into
account. The goal of their work is to estimate the impact of changing the dependencies network (e.g.
by adding a new service that receives and sends new messages) and data elements correspondence
(e.g. by removing a certain data element from a message) on services and on the entire system. The
authors’ implied notion of service collaboration has been called by other researchers as a service
choreography (Barker, Walton, & Robertson, 2009; Ben Hamida et al., 2012; Issarny et al., 2011;
Leite et al., 2013).

The core of their approach is formed by metrics they conceived based on the concepts of
information entropy (Shannon & Weaver, 1963) and link analysis (e.g., HITS algorithm (Kleinberg,
1999)). These metrics include: (model) element entropy, dependency entropy, service entropy, and
system entropy. Based on such metrics, they defined change impact metrics, which include: service
impact, system impact, and symmetrical effect. While their approach seems very promising, their
evaluation was constrained to the calculation of such metrics to the example depicted in Figure 1
and fictitious change tasks. Here we leverage the degree of realism of our evaluation, which was
conducted with real customer repositories.

Figure 1. Service dependencies of a hypothetical Order Process (S. Wang & Capretz, 2011)

International Journal of Web Services Research
Volume 13 • Issue 2 • April-June 2016

78

In a previous study (S. Wang & Capretz, 2009), the same authors developed a change impact
analysis model for web services evolution that relies on the extraction and analysis of service
dependencies. Since they are dealing with lower level entities (web services), the way they capture
dependencies is fundamentally different from ours. In general terms, the authors link web services
according to the dependencies that exist among their respective elements (e.g., the output elements of
a web service x are the input elements of a web service y). Furthermore, the authors also capture the
existing relations among the inner elements of a web service (intra-dependency). Relying on these two
kinds of dependencies, the authors provide (i) a metric to identify services that are difficult to modify
and (ii) another metric to calculate the impact of changing a specific element of a web service. We
also highlight the methodology they developed for automating changes to web services. A supporting
tool was developed as part of Wang’s PhD thesis (S. Wang, 2010). In summary, our goals are quite
similar to theirs, although we tackle the problem at a higher level of abstraction. Since our analysis
relies only on call relationships among workflows, its implementation is simpler (especially with
relation to the extraction of dependencies). Besides providing metrics to calculate change impact, we
also leverage two visualizations that help workflow designers cope with the complexity of analyzing
their workflow repositories as whole.

Wang et al. (Y. Wang, Yang, Zhao, & Su, 2012) conceived a comprehensive change impact
analysis approach for service-based business process. While we treat the building blocks of workflows
as black boxes and do not distinguish between the various kinds of workflow schema changes, their
approach focuses on how service changes affect process and how process changes affect services. The
authors define two layers: the process layer, which contains the internal processes of an organization,
and the service layer, which consists of services that are each an external view of the internal process
from the viewpoint of a specific business partner. In other words, they consider a model in which
services expose observable behaviors (a.k.a. behavioral interfaces) in the form of a set of operations
and invocation relations between these operations. In fact, previous studies have already discussed
this modeling perspective (Zaha, Barros, Dumas, & Hofstede, 2006), and languages for describing it
have been conceived (e.g., WSCI2). Wang and colleagues also present a taxonomy for service changes
(Figure 2) and processes changes (Figure 3), as well as a derived set of change impact patterns (Figure
4). In addition, they report a prototype tool that implements their approach.

Lins et al. (2008) analyzed workflow provenance (a.k.a. audit trail, lineage, pedigree) in order to
extract information about workflow evolution. The authors conducted an initial case study and showed,
for instance, that analyzing how much time is spent in workflow design can help in the understanding
of how users interact with workflow systems. It also helps to discover the amount of effort spent
to accomplish tasks, such as creating new workflows or modifying existing ones. This study thus
exemplifies the potential of mining workflow evolution history. Other studies discuss the application of
workflow evolution to specific areas. For instance, Chinthaka et al. (2011) state that scientists working
on eScience environments frequently use workflows to carry out their experiments. Since workflows
evolve as the research itself evolves, the authors analyze workflow evolution to track the evolution
of the research itself. Regarding industry tools, we highlight that no other orchestration products
(Microsoft Opalis, BMC Atrium, Cisco Tidal, etc.) provide the level of analysis and visualization
offered by our approach. A summary of the related work is presented in Table 2.

Other studies discuss change impact analysis in broader terms. Arnold (1996) extensively
covered the foundations of change impact analysis in his classic book. He presents basic concepts,
terminology, difficulties in applying change impact analysis in practice, different natures of change,
etc. Lehnert (2011a) argues that although several impact analysis approaches have been developed
over the years, there is no solid framework for classifying and comparing them. The author thus
proposes a taxonomy for classifying change impact analysis approaches, taking into account aspects
such as scope of analysis, used techniques, style of analysis, granularity of target entities, existence
of tool support, supported languages, and asymptotical complexity of both time and space. The same
author also produced a technical report with an extensive review of change impact analysis techniques

International Journal of Web Services Research
Volume 13 • Issue 2 • April-June 2016

79

(Lehnert, 2011b). Finally, for more information on the definition, historical background, foundations,
and future directions of workflow evolution, we refer the reader to a book chapter written by Dadam
and Rinderle (2009).

THE WoRKFLoW CHANGE IMPACT ANALySIS APPRoACH

In this section, we introduce the change impact analysis approach we conceived to support the
maintenance and evolution of workflow evolution issues. We focused our efforts on the following
three main questions that arose from needs of HP OO customers:

RQ1: Which workflows are possibly impacted when a certain workflow is changed? By change to
workflows, we mean any kind of change applied to their schema (structure).

RQ2: Given the list of workflows obtained from RQ1, then how different is the likelihood of impact for
each of these workflows? Obtaining the list of possibly impacted workflows is necessary, but not
sufficient. Workflow designers should know where to focus their maintenance efforts. Therefore,
we also investigate the likelihood of impact for each of the possibly impacted workflows.

RQ3: How can one evaluate the repository as a whole? Since workflow repositories are usually
large and complex, analyzing the change impact caused by each individual workflow becomes
infeasible. Therefore, we also support repository-wide analyses by means of visualization
techniques.

By answering those questions, we intend to provide a way to identify the potential effects of a
change. We focus on inter-workflow change impact analysis, since intra-workflow change impact
analysis is simpler and already covered by a variety of tools. Therefore, typical use cases would include
using our approach to support workflow schema modification, workflow version upgrades, and the

Figure 2. Taxonomy for service changes (Y. Wang et al., 2012)

International Journal of Web Services Research
Volume 13 • Issue 2 • April-June 2016

80

identification of core workflows (i.e., those that potentially affect a large portion of the repository).
As key benefits, we highlight that our approach increases the awareness workflow maintainers, thus
fostering more confident and responsible changes (as opposed to ad-hoc changes). In the end, this
should mitigate side- and ripple-effects of changes. Furthermore, since our approach is capable of
quantifying the change impact of workflows, it helps organizations to estimate change effort. As a
desirable consequence, it should reduce the occurrence of statements like “it was more complicated
than I first thought,” which are often heard during software maintenance tasks. Moreover, our approach
helps organizations target their testing routines, which should ultimately lead to more reliable and less
buggy workflow repositories. Regarding the audience, our solutions is meant to be used primarily by
workflow designers in their own environment, so that they can analyze and report on their workflow
repositories. Finally, it should also help managers quickly track the overall change impact levels of
workflows and compare repositories against each other.

The remainder of this section is organized as follows. We first present the vocabulary we used and
the assumptions we made for this work. Then, we present the internal analytical model we rely on. Next,
we present the proposed metrics and visualizations. Finally, we provide some implementation details.

Figure 3. Taxonomy for process changes (Y. Wang et al., 2012)

International Journal of Web Services Research
Volume 13 • Issue 2 • April-June 2016

81

Vocabulary and Assumptions
We organized the vocabulary of our approach as a domain model (a.k.a. conceptual model) (Larman,
2004), which is depicted in Figure 5. Domain models describe the main entities of a domain, as well
as how these entities relate to each other. We employ the domain model to establish the assumptions
we make regarding the kinds of workflow constructs we support.

Figure 4. Change impact patterns (Y. Wang et al., 2012)

International Journal of Web Services Research
Volume 13 • Issue 2 • April-June 2016

82

We assume the existence of a Repository, which contains a series of sections. Sections are pretty
much like the folders of a file system, and workflow designers use them to organize workflows and
operations according to some criteria. Workflows (or simply, flows) contain interconnected steps, each
representing a certain activity. Subflow steps are those that invoke another workflow. Operation steps
are those that invoke a standalone operation (e.g., function, script, or even a packaged application).
Fork steps are those that split into two or more Lanes, which are executed in parallel. The Join step
merges all lanes upon their ending. Elementary steps include the start step and the final steps. In

Table 2. Summary of related work

Title Target Focus Contribution Evaluation Tool Ref.
Workflow
Evolution

Workflows Schema changes Dynamic
schema
evolution
approach

Example No (Casati
et al.,
1998)

Dependency
and Entropy
Based Impact
Analysis
for Service-
Oriented
System
Evolution

Service-
Oriented
Systems

Service dependencies
extracted from message
exchanges

Change impact
analysis metrics

Example No (S.
Wang &
Capretz,
2011)

A
Dependency
Impact
Analysis
Model for
Web Services
Evolution

Service-
Oriented
Systems
implemented
with Web
Services

Service dependencies
extracted from WSDL:
- Output elements of x are
the input elements of y
- Semantic mapping or
correspondence built
between elements of x and y
- Manually/automatically
designed relations for
elements of x and y

Change Impact
Analysis
Metrics and
Methodology

Example Yes (S.
Wang &
Capretz,
2009)

Change
impact
analysis in
service-based
business
processes

Workflows and
Implementing
Services

The way service changes
affect business processes
and vice-versa

- Taxonomies
for service and
process changes
- Change
impact patterns
- Change
impact analysis
algorithms

Example Yes (Y. Wang
et al.,
2012)

Examining
statistics of
workflow
evolution
provenance:
A first study

Workflow Workflow evolution
provenance (history)

Analysis of
workflow
evolution
provenance
generated by
30 subjects
who worked
on 6 distinct
exploratory
tasks (e.g.,
creating a
visualization,
mining a data
set) over 4
months

Preliminary
Case Study

Yes (Lins
et al.,
2008)

International Journal of Web Services Research
Volume 13 • Issue 2 • April-June 2016

83

particular, we assume that workflows have a single start and one or more final steps (just like State
Machines). The set of concepts in our domain model covers all workflow modeling constructs
available in the HP OO product. In particular, HP OO employs a proprietary process modeling
language inspired by BPMN2.3

Internal Analytical Model
Our solution heavily relies on static call-graphs. A static call-graph is a directed graph that represents
calling relationships between subroutines in a computer program. In our context, we build flow static
call-graphs to support change impact analysis. In our flow call-graph, each node represents a flow,
and each directed edge (Fi, Fj) indicates that the flow Fi calls flow Fj (i.e., Fi has a subflow step that
invokes Fj). We also say that Fi is a client of Fj, and that Fj is a subflow of Fi.

Since calculating a single call-graph for the whole workflow repository would likely result in a
large and complicated structure, we calculate one call-graph per flow. This results in a much simpler
and smaller structure to analyze. We start with the chosen flow and then discover its clients (i.e.,
all the other flows that can possibly call the chosen flow). We do it recursively until no more client
flows are found. An example is shown in Figure 6, which depicts the call-graph of a hypothetical
flow F12. In our implementation, we obtain this information by manipulating HP OO XML files that
describe the schema of each workflow in the repository. These XML files can be seen as a complete
serialization of the repository.

Elementary Metrics: Change Scattering and Impact
We assess change impact according to two main metrics: change scattering and impact. The former
addresses RQ1 and the later addresses RQ2. In the following, we define such metrics and introduce
the algorithms we use to compute them.

Figure 5. The domain model (represented as a UML class diagram)

International Journal of Web Services Research
Volume 13 • Issue 2 • April-June 2016

84

Change Scattering
We define Scattering(Fi) as the quantity of flows that are possibly impacted when Fi is changed. We
directly employ the analytical model to calculate this metric. Consider the example shown in Figure
6, which depicts the call-graph of a hypothetical flow. In such case, the change scattering of F12 is
equal to 8. We also say that these 8 flows are clients of F12. Finally, having identified the clients of
F12, it becomes straightforward to determine which and how many sections are also possibly impacted.

Impact
We define Impact(Fi,p) of a flow Fi as the quantity of flows that have a high chance of being impacted
when Fi is changed, where “high chance” means any probability higher than or equal to p. Therefore,
Impact(Fi,p) ≤ Scattering(Fi). The pseudo code for calculating impact is as follows.

To illustrate the rationale behind the metric, consider again the call-graph depicted in Figure 6.
If F12 is called in every possible execution path of F3, then the likelihood of F3 being impacted by a
change in F12 becomes high. However, if F12 is called in only one among many possible execution
paths inside F3, then the likelihood of F3 being impacted becomes much lower. The chances of F6
being impacted are then determined based on the results for F3 and so on. In summary, we analyze
the execution paths of all flows included in the call-graph of F12 to determine their likelihood of being
impacted by a change in F12. For the sake of simplicity, hereafter we refer to such flows as client flows.

The first step in algorithm 1 concerns creating an empty <Key,Value> map, where key is a flow
and value is the respective chances of it being impact by a change in Fi. We initialize the map inserting
the entry <Fi, 1.0>. Now we need to determine the order in which we will process each client flow
of Fi. For instance, in order to calculate the chances of F5 being impacted, we need to first calculate
the chances of F2 being impacted, because F5 calls F2. Therefore, the call-graph of Fi constraints the
order in which the chances of impact need to be calculated. We solve this problem with a calculation
of the topological order of the call-graph of Fi. One possible topological order for our example is:
F12, F3, F6, F2, F5, F8, F1, F4, F7 (Fi is always the first vertex in the topological order). In lines 04 and
05, we calculate the topological order and remove the first item (Fi) respectively. In lines 06-10, we
calculate the chances of every client flow being impacted by a change in Fi (in topological order).
We invoke Algorithm 2 in line 08, which is responsible for determining the chances of a client Fj
being impacted by a change in Fi. In line 12, we determine the number of map entries that have an
impact likelihood larger than or equal to the constant p. In our previous study (Gustavo A. Oliva et
al., 2013), we considered parallel lanes as anonymous inner workflows and included them in the map
as well. In this new version, the chances of parallel lanes being impacted are attributed to the hosting
workflow. In other words, only workflows from the call-graph of Fi are now included in the map. As
a consequence, the calculation of Impact(Fi,p) is more precise and realistic.

Figure 6. Call-graph of a hypothetical flow F12

International Journal of Web Services Research
Volume 13 • Issue 2 • April-June 2016

85

The first step in algorithm 2 concerns determining all possible execution paths of Fj. More
precisely, if Fj has n steps, then one valid execution path Q of Fj is an ordered list of steps where Q[0]
is a start step, Q[n-1] is an end step, and Q[i] is connected to Q[i+1] for 0 ≤ i < n-1. Obtaining all
execution paths can be quite complicated in the cases where the flow’s schema includes cycles and

Algorithm 1. From: Calculate Impact(Fi,p) To:calculateImpact(Fi,p)

Input: Flow Fi and a probability p
Output: The number of flows that have a high chance of being impacted by a change in Fi
// A <Key, Value> map, where key is a client flow of Fi and value is the respective chances of it being impacted by a
change in Fi
01. chancesOfImpact ←createEmptyMap()
02. chancesOfImpact.put(Fi,1)
03. callgraph ←Fi.getCallGraph()
04. topSort ←calcTopologicalSort(callGraph)
05. topSort.removeFirst()
06. for i from 0 to topSort.size do
07. Fj ←topSort[i]
08. chance ←calcChanceOfImpact(Fj, chancesOfImpact)
09. chancesOfImpact.put(Fj,chance)
10. end for
11. chancesOfImpact.remove(Fi)
12. impact ←number of entries from chancesOfImpact with value >= p
13. return impact;

Algorithm 2. calcChanceOfImpact(Fj, chancesOfImpact)

01. execPaths ←getExecutionPaths(Fj)
02. sumPathImpact ←0
03. for each execPath in execPaths do
04. pathImpact ←calcPathImpact(execPath,chancesOfImpact)
05. sumPathImpact ←sumPathImpact + pathImpact
06. end for
07. avgPathImpact ←sumPathImpact / execPaths.size()
08. chanceOfImpact ←avgPathImp
09. return chanceOfImpact

Algorithm 3. calcPathImpact(execPath, chancesOfImpact)

01. maxStepImpact ←0
02. n ←execPath.numberOfSteps()
03. for i from 0 to n-1 do
04. step ←execPath[i]
05. if (chancesOfImpact.containsKey(step.element)) then
06. positionCoef ←(n – 1 – i) / (n – 1)
07. chance ←chancesOfImpact.get(step.element)
08. stepImpact ←positionCoef * chance
09. if (stepImpact > maxStepImpact) then
10. maxStepImpact ←stepImpact
11. end if
12. end if
13. end for
14. pathImpact ←maxStepImpact
15. return pathImpact

International Journal of Web Services Research
Volume 13 • Issue 2 • April-June 2016

86

parallel lanes (forks/joins). To deal with cycles, we build execution paths such that a certain cycle is
not included twice in the same path. As for parallel lanes, we treat each as a separate workflow and
only consider the one that has the highest chance of being impacted. After that, we determine the
probability with which each execution path will result in a call (either directly or through other client
flows) to Fi (line 02). We call this measure path impact. We then take the average path impact as a
measure to represent the chances of Fj being impacted (line 08).

In algorithm 3, we show how we calculate path impact. We look at every step included in the path
and discover whether it refers to a flow call. If the flow being called is included in the chancesOfImpact
map (line 05), it means that such flow is either Fi or a client of Fi. In this case, the step impact measure
is calculated by multiplying the value from the map by a coefficient. This coefficient is determined
according to the position of the step in the execution path (line 06). Steps that occur early in the path
receive a higher coefficient, while steps that occur late in the path receive a lower coefficient. We took
this approach since we believe that the chances of a flow Fj being impacted by a flow Fi are greater
when Fj calls Fi right in the beginning of its execution. For instance, if Fi happens to have a bug and
return an incorrect value to Fj, then all subsequent steps of Fj will be susceptible to wrong behavior.
In the extreme case, the first step in Fj would be invoking Fi. In this case, the position coefficient
would be equal to 1. The algorithm then returns the maximum step impact found (line 14).

derived Metrics
To support the analysis of large repositories, we use color schemes to classify flows and sections.
The color scheme for flows is as follows. We say that a flow is red when both change scattering and
impact are high. We say that a flow is yellow when either value is high. Finally, we say that a flow is
green when both values are low. We define “high” in a relative manner by doing a quartile analysis
of the values and picking the extreme outliers. The extreme outliers in a quartile analysis are those
higher than [Q3 + 3 * IQR], where Q3 stands for the third quartile and IQR stands for the interquartile
range. Hence, the color of a flow can only be determined by analyzing the whole repository (i.e.,
both the change scattering and impact distributions are needed). If a certain value in a distribution is
not high, then we just consider it low.

In turn, we color sections according to the flows that they contain. If a section contains at least
one red flow, it is colored red. Otherwise, if a section contains at least one yellow flow, then it is
colored yellow. If a section has only green flows, then it is colored green. If a section has no flows
(i.e., it has only subsections), then we color it gray. We also employ color shading to enable visual
comparison of sections of the same color. For instance, a red section with 5 red flows will be darker
than one with 2 red flows. The same applies to yellow sections. Table 3 summarizes the color schemes
for flows and sections.

Dispersion
When most part of yellow and red flows are concentrated in a single repository section, it implies
that potentially problematic flows are collocated. This way, it becomes easier to spot which part of
the repository should receive more attention. For instance, when red and yellow are dispersed, one
needs to say that flow Fi from section Sa, flow Fj from section Sb, and flow Fk from section Sc need to
undergo rigorous testing. On the other hand, when red and yellow flows are collocated, one simply
can state that section Si needs more testing. Furthermore, different repository sections could be
maintained by different teams. In this case, identifying how dispersed red and yellow flows are may
reveal how many different teams should be involved in refactoring or testing activities.

We measured the dispersion of red flows by calculating the ratio number of red sections / number
red flows. If the number of red sections and red flows are the same, it means that each red flow lies
in a different section. Hence, we say that the dispersion is 100% in this case. The other extreme is
when all red flows lie in the same section. The dispersion of yellow flows is calculated analogously.

International Journal of Web Services Research
Volume 13 • Issue 2 • April-June 2016

87

Visualizations
Our approach relies on two specific visualization techniques, namely call-graphs (Figure 7) and
treemaps (Figure 8). While call-graphs help address research questions RQ1 and RQ2, treemaps help
address research question RQ3. In both visualizations, we apply the color scheme presented in the
previous section. In the following, we describe such visualization techniques.

Graph Visualization
In our approach, we use call-graphs to depict the change scattering of a specific flow. In other words,
this visualization shows all the flows in the repository that call a specific one, either directly or
indirectly (as exemplified in Figure 6). This way, before changing a specific flow, one can first check
its change scattering and impact metric values and then investigate which specific flows depend on it.

In our implementation, we made the visualization interactive, so that a user can move nodes
around the screen, zoom in, zoom out, etc.

TreeMap
Treemap is an efficient and compact visualization method that uses nested rectangles to display
information with hierarchical characteristics (Shneiderman, 1992). We use treemaps as a means
to visualize the color of each repository section. This enables workflow designers to quickly spot
repository sections that require more attention.

Given that workflow repositories can be quite large, we decided to use the squarified layout
algorithm introduced by Bruls et al. (2000). This layout subdivides rectangular areas in a way such
that the resulting subrectangles have a lower aspect ratio when compared to the results produced by
the original treemap layout algorithm. Consequently, the squarified layout uses space more efficiently
and produces rectangles that are easier both to point at in interactive environments and to estimate
with respect to size. Finally, in our implementation, we made the treemap visualization interactive,
so that one can discover which flows exist within a particular repository section.

Implementation
We implemented the approach as a Java 2 SE library and integrated it in HP OO, thus enhancing the
tool’s change impact mechanisms. Our library relies on two important frameworks:

• Jung: The Java Universal Network/Graph Framework (JUNG) is a library that provides a common
and extensible language for modeling, analyzing, and visualizing any kind of data that can be
represented as a graph or network. We rely on Jung classes and interfaces to implement the
graph data structure itself. Hence, the core domain entities of our implementation are built and
manipulated using Jung types and algorithms. Furthermore, we relied on Jung’s visualization
framework to implement the call-graph visualization. More information about Jung can be found
at its website.4

Table 3. Color scheme for flows and sections

Color Flow Section
Red High Scattering AND High Impact Contains at least one red flow
Yellow High Scattering XOR High Impact Contains at least one yellow flow

(and no red flows)
Green Low Scattering AND Low Impact Contains only green flows
Gray [Not applicable] Contains no flows

(empty section)

International Journal of Web Services Research
Volume 13 • Issue 2 • April-June 2016

88

• Prefuse: Prefuse is a Java-based toolkit for building interactive information visualization
applications. Prefuse relies on the Java 2D graphics library and supports a rich set of features for
data modeling, visualization, and interaction. We used Prefuse to build the interactive treemaps.
More information about Prefuse can be found at its website.5

Figure 7. Call-graph visualization of flow “[ApplicationService]”

Figure 8. Treemap visualization of OOTB repository

International Journal of Web Services Research
Volume 13 • Issue 2 • April-June 2016

89

EXPLoRAToRy STUdy

We conducted an exploratory study to assess our proposed dependency-centric change impact analysis
approach. In summary, we implemented the approach in Java and incorporated it in the HP Operations
Orchestration tool, which is an industry tool that supports the authoring, execution, and management
of workflows from the IT operations domain. Afterwards, driven by the research questions, we
thoroughly analyzed eight workflow repositories, each belonging to an HP OO customer. We also
highlighted insights and trends we identified while analyzing the results.

In the following subsections, we present the setup of this study. In particular, we describe the
HP Operations Orchestration tool, the way we implemented our approach, and the steps we followed
to conduct the analysis of the customer repositories.

HP operations orchestration
HP Operations Orchestration is a professional industry tool for authoring, executing, and managing
IT operations workflows. HP OO also provides a workflow repository out-of-the-box (OOTB) with
standard flows and operations to automate common IT processes. HP OO has a broad range of
international customers, including Turkcell6 and Evergreen7 companies. Figure 9 is a screenshot of
HP OO Studio, which is the module used to author workflows. All out-of-the-box workflows are
included below the “Accelerator Packs” folder in the left-hand side of the figure. Workflow categories
include: database, network, virtualization, etc. On the right-hand side, the “Power on Virtual Machine”
workflow is displayed. More information is available at the product’s website8.

The Study
We applied our approach to eight HP OO customer repositories, which were selected and provided
by HP Software. We first characterized each repository by calculating change scattering and impact
(p = 0.75) metrics for every flow and then by analyzing the distributions of these metrics using
descriptive statistics. Afterwards, we calculated the number and percentage of red, yellow, and green
flows of each repository. Analogously, we also calculated the number and percentage of red and yellow
sections. Based on the results and insights we obtained, we explored specific repository sections in
more detail to uncover which flows should deserve more attention because of their change impact.
In the following, we present the results we obtained.

Characterizing the Repositories
To provide an overview of the customer flow repositories, we obtained their number of flows and
calculated descriptive statistics for change scattering and impact metrics. We included the HP OO
out-of-the-box workflow repository (OOTB) in our analysis, since it serves as a baseline to compare
results with. We also highlight that every customer repository includes the out-of-the-box content in
its own repository. The results are shown in Table 4.

Repository size, in terms of number of flows, ranged from 1687 (OOTB) to 3769 (C8). Hence,
we notice that the C8 repository is more than twice as large as the OOTB repository. By looking at
the N(%) column of either the change scattering or the impact portions of the table, we observe that
C5 and C7 repositories have a distinct high percentage of flows that have at least one client. In other
words, flows in these repositories are more interconnected. In turn, the largest change scattering is
found in C8’s repository. Moreover, C8 also has the maximum impact value. In other words, C8 has
at least one flow that is likely to affect 130 other flows when it is changed.

Regarding change scattering, we notice that C5 repository has a distinct high mean value.
Furthermore, its mean impact value is also the highest among all repositories. In fact, it is the only
repository whose median value for impact is above zero. At the same time, standard deviation for
impact in C5 is also the highest. This indicates that some specific flows might be responsible for the
high average impact value. On the other hand, we see that the mean change scattering and impact

International Journal of Web Services Research
Volume 13 • Issue 2 • April-June 2016

90

values for C8 are lower when compared to others. This suggests that despite the high number of flows
it has, change impact levels are somewhat controlled in such repository. The lower standard deviation
values the metrics in this repository also support this conclusion. C7 repository is in an interesting
position. Although its mean change scattering is the lowest one, its mean impact is just a little lower
than most of others. The standard deviation for impact is also the lowest among all repositories. This
suggests that the impact statistical distribution is more uniform in this repository.

Finally, we computed skewness and kurtosis to better understand the shape of the distributions.
Qualitatively, a positive skew indicates that the tail on the right side is longer than the left side, the
bulk of the values (possibly including the median) lie to the left of the mean, and there are relatively
few high values. Change scattering and impact skewness are positive for every customer repository,
being particularly high for C7 and C8. Interestingly, impact skewness is much lower for C5, thus
providing some evidence that this repository has a larger amount of high values for impact when
compared to other repositories. Qualitatively, positive kurtosis indicates that the distribution has a
more acute peak around the mean and fatter tails. Change scattering and impact kurtosis are positive
for every customer repository, being particularly high for C7 and C8 again. In addition, impact kurtosis
is much lower for C5, thus providing more evidence that its impact distribution is different from the
others. In summary, by inspecting the values in Table 4, we notice that OOTB, C1, C2, C3, C4, and
C6 share similar distributions for both change scattering and impact. Analogously, C7 and C8 are
similar to each other. Finally, C5 has particular distributions for the metrics, showing symptoms that
workflow coupling is just starting to become out of control.

Workflows and their Colors
In order to further investigate the repositories, we calculated their percentage of yellow and red flows.
Differently from the previous characterization, the analysis of workflow colors puts the metrics
together and thus provides a more general view of the repository. The results are depicted in Figure 10.

Using p=0.75 for the impact metric calculation, we notice than no more than 4% of all flows
were classified as either yellow or red in each customer repository. As we suspected, C7 and C5
have the larger ratios of red and yellow flows. Hence, these two repositories are in a more worrying
situation when compared to the others.

Figure 9. HP Operation orchestration: power on virtual machine workflow

International Journal of Web Services Research
Volume 13 • Issue 2 • April-June 2016

91

Ta
bl

e 4
. C

us
to

m
er

 re
po

sit
or

y o
ve

rv
iew

: d
es

cr
ip

tiv
e s

ta
tis

tic
s f

or
 sc

at
te

rin
g

an
d

im
pa

ct

Ch
an

ge
 S

ca
tte

rin
g

Im
pa

ct
Cl

ien
t

To
ta

l
Fl

ow
s

N
N(

%)
M

in
.

M
ax

.
M

ea
n

St
d.

De

v.
M

ed
.

Sk
ew

.
Ku

rt
.

N
N

(%
)

M
in

.
M

ax
.

M
ea

n
St

d.

De
v.

M
ed

.
Sk

ew
Ku

rt
.

OO
TB

16
87

43

4
25

.7%
1

39
7

5.3
3

28
.35

2
12

.36
15

9.4
3

43
4

25
.7%

0
12

4
1.3

1
6.8

1
0

14
.88

25
1.6

6
C1

16
95

44
1

26
.0%

1
39

7
5.2

7
28

.13
2

12
.46

16
2.0

3
44

1
26

.0%
0

12
4

1.3
0

6.7
6

0
15

.00
25

5.6
7

C2
17

12
44

9
26

.2%
1

39
7

5.2
8

27
.88

2
12

.57
16

4.8
9

44
9

26
.2%

0
12

4
1.2

9
6.7

0
0

15
.12

26
0.1

2
C3

17
26

47
1

27
.3%

1
39

7
5.1

5
27

.22
2

12
.88

17
3.2

1
47

1
27

.3%
0

12
4

1.2
4

6.5
5

0
15

.47
27

2.4
4

C4
17

80
47

1
26

.5%
1

39
7

5.3
3

27
.30

2
12

.75
17

0.7
7

47
1

26
.5%

0
12

4
1.3

3
6.6

7
0

14
.71

25
2.4

9
C5

19
68

62
4

31
.7%

1

39
7

7.2
3

24
.92

2
12

.57
18

1.7
3

62
4

31
.7%

0

12
4

1.7
5

7.4
3

1
10

.97

14
7.3

1
C6

20
16

49
7

24
.7%

1
39

7
5.1

9
26

.68
2

13
.02

17
8.3

1
49

7
24

.7%
0

12
4

1.2
0

6.4
7

0
15

.45
27

3.6
3

C7
29

13
11

71
40

.2%

1
36

1
4.0

9
16

.85

2
17

.62

34
5.2

0
11

71
40

.2%

0
12

4
1.1

6
4.9

3
0

16
.91

36

5.8
0

C8
37

69

99
4

26
.4%

1
42

8
4.7

5
21

.67

2
15

.31

26
9.5

3
99

4
26

.4%
0

13
0

1.0
7

5.3
8

0
16

.85

35
6.3

8

International Journal of Web Services Research
Volume 13 • Issue 2 • April-June 2016

92

Figure 10. Percentage of red and yellow flows for each repository

Figure 11. Absolute number of red and yellow flows for each repository

International Journal of Web Services Research
Volume 13 • Issue 2 • April-June 2016

93

We also calculated the absolute number of red and yellow flows in each customer repository
(Figure 11). Such number indicates the amount of effort required to maintain and evolve the
repositories.

In absolute measures, C7 has the larger amount of red and yellow flows, followed by C8 and C5.
More precisely, C7 has 35 flows that have a high change impact (3.5x more than OOTB). Therefore,
the team responsible for evolving the C7 repository should devote special attention to a larger number
of flows. Interestingly, although C5 repository has almost half of the size of C8 repository, its numbers
of yellow and red flows are similar to those of C8. The remaining repositories have similar amounts
of yellow and red flows. In particular, the number of yellow and red flows in C2, C1, and C3 are
almost equal to that of OOTB. This shows that these particular customer repositories diverge very
little in terms of change impact when compared to the baseline represented by OOTB. This is also
due to their size, which is very similar to that of OOTB.

Sections and their Colors
In addition to analyzing the color of flows, we also quantitatively analyzed the color of sections. The
goal is to understand how dispersed yellow and red flows are. Analogously to the previous analysis,
we started by calculating the percentage of red and yellow sections for each customer repository.
The results are given in Figure 12.

C7 have distinct large ratios of yellow and red sections. C5, in turn, has a high ratio of yellow
sections. The other customer repositories have similar ratios of yellow and red sections. We also
calculated the absolute number of red and yellow sections for each customer repository. This analysis
indicates how many different sections in the repository deserve more attention in terms of change
impact (Figure 13).

Interestingly enough, C7 not only has the highest ratios of yellow and red sections, but also
has the largest absolute numbers of yellow and red sections. Following C7, we have C8 and C5. In
particular, while C8 has more red sections than C5, it has less yellow sections.

Figure 12. Percentage of red and yellow sections for each repository

International Journal of Web Services Research
Volume 13 • Issue 2 • April-June 2016

94

Analyzing the Dispersion of Flows among Sections
Given the results of the previous subsection, we decided to further analyze how dispersed yellow and
red flows are. The results for the flow dispersion metric are given in Table 5.

While C5 has a large ratio of red and yellow flows (Figure 10), the results indicate that the
dispersion is low for both yellow and red flows. This corroborates our findings from the analysis
of Table 4. At the same time, while C7 also has a large ratio of red and yellow flows (Figure 10),

Figure 13. Absolute number of red and yellow sections for each repository

Table 5. Flow dispersion in sections

Client #Red
sections

#Red flows Red flows
dispersion

#Yellows
sections

#Yellow flows Yellow flows
dispersion

C5 14 22 63.6% 24 52 46.2%
C8 19 26 73.1% 22 55 40.0%
C7 30 35 85.7% 48 79 60.8%
C6 10 11 90.9% 18 31 58.1%
C4 12 12 100.0% 14 30 46.7%
C2 10 10 100.0% 14 26 53.8%
C1 10 10 100.0% 13 24 54.2%
C3 10 10 100.0% 13 24 54.2%
OOTB 10 10 100.0% 13 24 54.2%

International Journal of Web Services Research
Volume 13 • Issue 2 • April-June 2016

95

the results indicate the dispersion is much higher than that of C5. Such findings become even more
evident when comparing the treemaps of C7 and C5 (Figure 14). Clearly, yellow and red flows are
less dispersed in the C5 customer repository. In the following subsection, we further investigate this
repository.

Analyzing the Workflow Repository of C5
According to our previous findings, C5 has a large number of red flows and they are quite concentrated
into few repository sections. Taking a closer look at the C5 treemap (Figure 14), we notice that most
part of the red and yellow sections are included in an upper section in the hierarchy called CSA.

Figure 14. C7 repository treemap (top) and C5 repository treemap (bottom)

International Journal of Web Services Research
Volume 13 • Issue 2 • April-June 2016

96

This implies that most part of yellow and red flows were actually developed by the customer itself.
In Figure 15, we depict the treemap for the CSA section only.

The CSA section treemap reveals a particularly dark red subsection, denoting that such subsection
hosts a large number of red flows. By means of the interactive mechanisms we implemented in the
treemap, we discovered that such subsection hosts 9 flows, 7 of which are red. We selected one of
these red flows and analyzed it using the call-graph visualization (Figure 16).

Figure 15. Focus on the ‘CSA’ section of the C5 repository treemap

Figure 16. Call-graph of visualization of the “[ServiceComposite]” workflow

International Journal of Web Services Research
Volume 13 • Issue 2 • April-June 2016

97

The panel in the left-hand side shows interesting information. We can see that the flow’s change
scattering and impact have the same value (36). This means that this particular flow is core to the
system, as it has a high chance of impacting every flow included in its call-graph. Furthermore, 36
is a very high value for the metrics of change scattering and impact, since the thresholds for being
red in this repository are 17 and 4 respectively.

Threats to Validity and Limitations
Some factors may have influenced the validity of our study. In the following, we present the threats
to the validity of this study, as well as general limitations:

• Assumption Regarding Workflow Schema: Although we believe our domain model should be
complete enough to represent and calculate change impact for most workflows, we acknowledge
the missing support for some constructs, including BPMN’s Inclusive Gateways, Complex
Gateways, and Events. However, we highlight that our approach does not depend on how
workflows activities are implemented (e.g. Web Services, Java standalone applications, etc.),
since it relies exclusively on the concepts depicted in the domain model we conceived.

• Analysis Scope: The simplicity, straightforwardness, and flexibility of our approach comes at a
cost. We do not take into account data dependencies that might exist in the contexts of intra- and
inter-workflow analysis. We neither consider the case in which workflows compete for shared
resources.

• Triangulation of Results: We did not conduct a qualitative study with customers to collect their
opinion and feedback about the results we obtained. This remains as a future work.

CoNCLUSIoN ANd FUTURE WoRK

Although workflow management systems have emerged as a technical solution that supports the
development and control of complex workflows, several challenges still exist. In this paper, we
discuss the problem of change impact in the context of workflow evolution. We introduced a static
dependency-centric change impact analysis approach that provides metrics and visualizations to
assist workflow developers. Furthermore, instead of creating something from scratch, we focused on
porting tried-and-true impact analysis techniques from the Software Engineering domain to the area
of workflow management. We conducted an exploratory study in which we applied our approach
to eight different industrial workflow repositories. We followed a top-down strategy, starting from
a repository-wide analysis to a client individual section. The mechanisms offered by our approach
triggered a series of insights about the change impact health of each repository and allowed us to
compare repositories with each other. We noticed that repositories substantially vary in size (from
1687 to 3769 workflows) and both in the number and percentage of flows with relevant change
impact levels (from 34 to 114 workflows and from 2.8% to 6.3% respectively). Repositories also
considerably vary in terms of the dispersion of red flows among repository sections (from 63.6% to
100%). We also discovered that most of the yellow and red workflows from the HP OO customer C5
repository were developed by the customer itself. Its repository also had distinguishing high means
for the metrics of change scattering (7.23) and impact (1.75), showing symptoms that workflow
coupling is starting to get high.

The results we obtained provided some evidence that our approach is both feasible and effective.
Indeed, we achieved a level of workflow repository analysis and visualization that is not available in
other industry products. At the same time, we acknowledge that a deeper validation of the approach
should be conducted by collecting and reasoning about the feedback of the workflow repository owners.
In summary, the approach itself and the results of the exploratory study should support researchers
seeking lightweight ways to effectively manage large and complex workflow repositories. In practical

International Journal of Web Services Research
Volume 13 • Issue 2 • April-June 2016

98

terms, we think the use of our approach fosters planned changes (as opposed to ad-hoc changes) and
ultimately improves the flexibility and reliability of workflow repositories. Finally, we believe our
approach contributes to the body of knowledge on static workflow evolution.

Other issues addressed by our implementation and that are not in the scope of this paper include
identifying flows that share common steps. By common steps, we mean those that invoke the same
flow or operation. Identifying these common patterns throughout the repository leverages opportunities
for refactoring and encapsulation, thus increasing the maintainability of the workflow repository. To
implement this feature, we relied on the SimPack package developed by Bernstein and Kiefer from the
University of Zurich (http://www.ifi.uzh.ch/ddis/simpack.html). As future work, it should be possible
to enhance our approach by discovering “zones” in the workflows that might be safe to change, even if
it is a red flow. Other improvements could be accomplished by uncovering data dependencies (Kopp,
Khalaf, & Leymann, 2008), as well as analyzing data produced during runtime. For instance, workflow
execution logs could be mined to discover the number of times each execution path is run for each
flow, which could then be used to calibrate the calculation of the impact metric. Finally, we think
that combining our approach with existing mechanisms that transparently apply workflow schema
changes during runtime would be a major step towards safer and more efficient workflow evolution.

ACKNoWLEdGMENT

The authors would like to thank HP OO development team for both inspiring and supporting this
research. Gustavo received funding from HP Labs and HP Brazil during the course of this research.
Gustavo currently receives individual grant from the European Commission for his participation in
the FP7 project CHOReOS: Large Scale Choreographies for the Future Internet. Marco and Fabio
receive individual grants from CNPq and FAPESP. Finally, we also thank IEEE ICWS 2013 reviewers
for the valuable feedback to a shorter version of this paper.

International Journal of Web Services Research
Volume 13 • Issue 2 • April-June 2016

99

REFERENCES

Arnold, R. S. (1996). Software Change Impact Analysis. Los Alamitos, CA, USA: IEEE Computer Society Press.

Barker, A., Walton, C. D., & Robertson, D. (2009). Choreographing Web Services. IEEE Trans. Serv. Comput.,
2(2), 152–166. doi:10.1109/TSC.2009.8

Ben Hamida, A., Kon, F., Ansaldi Oliva, G., Dos Santos, C. E. M., Lorré, J.-P., Autili, M., (2012). In F.
Álvarez, F. Cleary, P. Daras, J. Domingue, & A. Galis (Eds.), The Future Internet (pp. 81–92). Berlin, Heidelberg:
Springer-Verlag. Retrieved from http://dl.acm.org/citation.cfm?id=2340856.2340866 doi:10.1007/978-3-642-
30241-1_8

Bruls, M., Huizing, K., & van Wijk, J. J. (2000). Squarified Treemaps.Proceedings of the Joint Eurographics
and IEEE TCVG Symposium on Visualization (pp. 33–42). Vienna: IEEE Computer Society Press.

Casati, F., Ceri, S., Pernici, B., & Pozzi, G. (1998). Workflow evolution. Data & Knowledge Engineering, 24(3),
211–238. doi:10.1016/S0169-023X(97)00033-5

Chinthaka, E., Barga, R., Plale, B., & Araujo, N. (2011). Workflow Evolution: Tracing Workflows Through
Time. Microsoft Research.

Dadam, P., & Rinderle, S. (2009). Workflow Evolution. In Encyclopedia of Database Systems (pp. 3540–3544).

de Souza, C. R. B., & Redmiles, D. F. (2008). An empirical study of software developers’ management of
dependencies and changes. Proc. of the 30th International Conference on Software EngineeringICSE ’08 (pp.
241–250). Leipzig, Germany: ACM. doi:10.1145/1368088.1368122

Freedman, D. P., & Weinberg, G. M. (1982). In G. Parikh (Ed.), Techniques of Program and System Maintenance
(pp. 93–100). Winthrop Publishers.

Issarny, V., Georgantas, N., Hachem, S., Zarras, A., Vassiliadist, P., Autili, M., & Hamida, A. B. et al. (2011).
Service-oriented middleware for the Future Internet: State of the art and research directions. Journal of Internet
Services and Applications, 2(1), 23–45. doi:10.1007/s13174-011-0021-3

Kagdi, H., & Maletic, J. I. (2006). Software-Change Prediction: Estimated+Actual. Software Evolvability.
Proceedings of the Second International IEEE Workshop on SE ’06 (pp. 38–43). doi:10.1109/SOFTWARE-
EVOLVABILITY.2006.14

Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Journal of the ACM, 46(5), 604–632.
doi:10.1145/324133.324140

Kopp, O., Khalaf, R., & Leymann, F. (2008). Deriving Explicit Data Links in WS-BPEL Processes. Proceedings
of the 2008 IEEE International Conference on Services Computing SCC ’08 (Vol. 2, pp. 367–376). Washington,
DC, USA: IEEE Computer Society. doi:10.1109/SCC.2008.122

Larman, C. (2004). Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and
Iterative Development (3rd ed.). Prentice Hall.

Lehnert, S. (2011a). A taxonomy for software change impact analysis. Proceedings of the 12th International
Workshop on Principles of Software Evolution and the 7th annual ERCIM Workshop on Software EvolutionIWPSE-
EVOL ’11, Szeged, Hungary (pp. 41–50). ACM. doi:10.1145/2024445.2024454

Lehnert, S. (2011b). A review of software change impact analysis. Ilmenau University of Technology.

Leite, L. F., Ansaldi Oliva, G., Nogueira, G., Gerosa, M., Kon, F., & Milojicic, D. (2013). A systematic literature
review of service choreography adaptation. Service Oriented Computing and Applications, 7(3), 199–216.
doi:10.1007/s11761-012-0125-z

Lins, L., Koop, D., Anderson, E., Callahan, S., Santos, E., & Scheidegger, C. et al.. (2008). Examining Statistics of
Workflow Evolution Provenance: A First Study. In B. Ludascher & N. Mamoulis (Eds.), Scientific and Statistical
Database Management, LNCS (Vol. 5069, pp. 573–579). Springer Berlin Heidelberg; doi:10.1007/978-3-540-
69497-7_40

Mens, T., & Demeyer, S. (2008). Software Evolution (1st ed.). Springer Publishing Company, Incorporated.
doi:10.1007/978-3-540-76440-3

International Journal of Web Services Research
Volume 13 • Issue 2 • April-June 2016

100

Oliva, G. A., & Gerosa, M. A. (2012). IVAR: A Conceptual Framework for Dependency Management. Proceedings
of the IX Workshop on Modern Software Maintenance WMSWM ’12, Fortaleza, Brazil.

Oliva, G. A., Gerosa, M. A., Milojicic, D., & Smith, V. (2013). A Change Impact Analysis Approach for Workflow
Repository Management. Proceedings of the 2013 IEEE 20th International Conference on Web Services ICWS
’13 (pp. 308–315). Washington, DC, USA: IEEE Computer Society. doi:10.1109/ICWS.2013.49

Shannon, C. E., & Weaver, W. (1963). A Mathematical Theory of Communication. Champaign, IL, USA:
University of Illinois Press.

Shneiderman, B. (1992). Tree visualization with tree-maps: 2-d space-filling approach. ACM Transactions on
Graphics, 11(1), 92–99. doi:10.1145/102377.115768

Stevens, W. P., Myers, G. J., & Constantine, L. L. (1974). Structured design. IBM Systems Journal, 13(2),
115–139. doi:10.1147/sj.132.0115

Swanson, E. B., & Beath, C. M. (1989). Maintaining information systems in organizations. New York, NY,
USA: John Wiley & Sons, Inc.

Wang, S. (2010). A dependency based impact analysis framework for service-oriented system evolution. University
of Western Ontario, Ont., Canada, Canada.

Wang, S., & Capretz, M. A. M. (2009). A Dependency Impact Analysis Model for Web Services Evolution.
Proceedings of the 2009 IEEE International Conference on Web ServicesICWS ’09 (pp. 359–365). Washington,
DC, USA: IEEE Computer Society. doi:10.1109/ICWS.2009.62

Wang, S., & Capretz, M. A. M. (2011). Dependency and Entropy Based Impact Analysis for Service-Oriented
System Evolution. Proceedings of the 2011 IEEE/WIC/ACM International Conferences on Web Intelligence
and Intelligent Agent Technology WI-IAT ’11 (Vol. 1, pp. 412–417). Washington, DC, USA: IEEE Computer
Society. doi:10.1109/WI-IAT.2011.196

Wang, Y., Yang, J., Zhao, W., & Su, J. (2012). Change impact analysis in service-based business processes.
Service Oriented Computing and Applications, 6(2), 131–149. doi:10.1007/s11761-011-0093-8

Zaha, J., Barros, A., Dumas, M., & Hofstede, A. (2006). Let’s Dance: A Language for Service Behavior Modeling.
In R. Meersman & Z. Tari (Eds.), On the Move to Meaningful Internet Systems 2006: CoopIS, DOA, GADA, and
ODBASE, LNCS (Vol. 4275, pp. 145–162). Springer Berlin Heidelberg; doi:10.1007/11914853_10

ENdNoTES

1 Extracted from HP OO Data sheet at http://h20195.www2.hp.com/V2/GetPDF.aspx/4AA1-5782ENW.
pdf

2 http://www.w3.org/TR/wsci
3 http://www.omg.org/spec/BPMN/2.0
4 http://jung.sourceforge.net
5 http://prefuse.org
6 http://h20195.www2.hp.com/v2/GetPDF.aspx/4AA4-7594EEW.pdf
7 http://www.evergreensys.com/hp-operations-orchestration-case-study/
8 www8.hp.com/us/en/software-solutions/software.html?compURI=1170673

International Journal of Web Services Research
Volume 13 • Issue 2 • April-June 2016

101

Gustavo Ansaldi Oliva is a PhD Student of Computer Science at the University of São Paulo under the supervision
of Marco Aurélio Gerosa. He worked as a software developer at IBM Brazil for more than 3 years. He also worked
for HP Labs during 3 months to develop the approach described in this paper. He also received grants from HP
Brazil and the European Commission for having done research on change impact analysis techniques for service
choreographies. Gustavo’s expertise in on Software Engineering and related fields. He has published papers in the
topics of software evolution, service-oriented computing, and free/libre open source software. In his PhD, Gustavo
is researching better ways to identify logical dependencies from version control systems.

Marco Aurélio Gerosa is an Associate Professor in the Computer Science Department at the University of São
Paulo (USP), Brazil. His research focuses on Software Engineering and Social Computing, including empirical
software engineering, mining software repositories, service-oriented architecture, and social dimensions of software
development. He has received productivity grants from the Brazilian Council for Scientific and Technological
Development. In addition to his research, he has coordinated award-winning open source projects. For more
information about Marco Gerosa, visit http://www.ime.usp.br/~gerosa

Fabio Kon is a Full Professor of Computer Science at the University of São Paulo (USP). He began his career
working on Distributed File Systems and Reflective Middleware. Currently, his research interests include
Entrepreneurship in Software Startups, Open Source Software, Distributed Systems, Agile Methods, Cloud
Computing, and Computer Music. Fabio is the author of over 120 peer-reviewed scientific papers and the Editor-
in-Chief of the SpringerOpen Journal of Internet Services and Applications (JISA). For more information about
Fabio Kon, visit http://www.ime.usp.br/~kon

Virginia Smith is a software engineer who has worked on a broad range of software projects from debuggers
and artifact generators to workflow automation, most recently for Hewlett-Packard Software as Senior Functional
Architect in HP Operations Orchestration. Her expertise and interests include domain modeling, XML and web
technologies, and enterprise IT management and automation.

Dejan Milojicic is a senior researcher and manager at HP Labs, Palo Alto, CA [1998-]. He is the IEEE Computer
Society 2014 President. He is a founding Editor-in-Chief of IEEE ComputingNow. He has been on many conference
program committees and journal editorial boards. He worked in OSF Research Institute, Cambridge, MA [1994-
1998], and Institute “Mihajlo Pupin”, Belgrade, Serbia [1983-1991]. He received his PhD from University of
Kaiserslautern, Germany (1993); and MSc/BSc from Belgrade University, Serbia (1983/86). Dejan is an IEEE
Fellow, ACM Distinguished Engineer, and USENIX member. Dejan has published over 160 papers and 2 books;
he has 20 patents and 50 patent applications.

PL(AS(5(COMM(1' THIS PUBLICATIO1 TO YOU5 LIB5A5IA1
For a convenient easy-to-use library recommendation form, please visit:
http://www.igi-global.com/IJWSR

Volume 13 • Issue 2 • April-June 2016 • I661� 1���-�362 • eI661� 1��6-�00�
An official publication of the Information Resources Management Association

ALL I14UI5I(S 5(*A5'I1* I-WS5 SHOUL' B('I5(CT(' TO TH(ATT(1TIO1 OF:
Liang-Jie Zhang, Editor-in-Chief • IJWSR@igi-global.com

ALL MA1USC5IPT SUBMISSIO1S TO I-WS5 SHOUL' B(S(1T TH5OU*H TH(O1LI1(SUBMISSIO1 SYST(M:
http://www.igi-global.com/authorseditors/titlesubmission/newproject.aspx

Business grid • Business process integration and management using Web services • Case studies for Web
services • Communication applications using Web services • Composite Web service creation and enabling
infrastructures • Dynamic invocation mechanisms for Web services • E-commerce applications using Web
services • Frameworks for building Web service applications • Grid-based Web services applications (e.g. OGSA)
• Interactive TV applications using Web services • Mathematic foundations for service oriented computing •
Multimedia applications using Web services • Quality of service for Web services • Resource management for
Web services • Semantic services computing • SOAP enhancements • Solution management for Web services
• UDDI enhancements • Web services architecture • Web services discovery • Web services modeling • Web
services performance • Web services security

CoVERAGE ANd MAJoR ToPICS
The topics of interest in this journal include, but are not limited to:

Web Services are among the most important emerging technologies in the e-business, computer software and
communication industries. The Web Services technologies will redefine the way that companies do business
and exchange information in twenty-first century. They will enhance business efficiency by enabling dynamic
provisioning of resources from a pool of distributed resources. Due to the importance of the field, there is
a significant amount of ongoing research in the areas. In a parallel effort, standardization organizations are
actively developing standards for Web Services. The Web Services are creating what will become one of the
most significant industries of the new century. The International Journal of Web Services Research (IJWSR)
is designed to be a valuable resource providing leading technologies, development, ideas, and trends to an
international readership of researchers and engineers in the field of Web Services.

MISSIoN

IdeaS FoR SpecIal Theme ISSueS may be SubmITTed To The edIToR(S)-In-chIeF

International -ournal of Web Services 5esearch

Call for Articles

