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Abstract—Unit tests and production code are intrinsically
connected. A class that is easy to test usually presents desir-
able characteristics, such as low coupling and high cohesion.
Thus, finding hard-to-test classes may help developers identify
problematic code. Many different test feedbacks that warn
developers about problematic code were already catalogued.
In this paper, we argue that analyzing assert instructions in
unit tests also aid in identifying and reasoning about potentially
problematic pieces of code. We report an analysis conducted
with both open source and industry projects relating assert
instructions in a unit test with quality measures of the code
being tested. We observed that when a production method
has a unit test that uses the "assert" instruction in more
than one object instance, it often exhibits higher cyclomatic
complexity, number of lines of code, or higher number of
method invocations. It means that developers should monitor
the number of asserts in a unit test as it may indicate problems
in the production code.

Keywords-unit testing; unit test feedback; code quality; code
smells; mining software repositories.

I. INTRODUCTION

Designing good, flexible, and maintainable systems is

not easy. It is common that, after some time, the system

design loses quality and maintenance becomes hard and

expensive. In order to avoid the rot of the code, the software

development community has been investing in some set of

practices, such as pair programming, code review, and so

on.

Unit tests constitute a key element of modern software

engineering. Besides aiding in the reduction of bugs, it can

also support the identification of problematic pieces of code

[14]. Agile methodologies practitioners, for example, state

that unit tests are a way to validate and improve class design

[1]. The main argument is that code with low testability

is likely to contain design bad practices. That is why the

practice of Test-Driven Development (TDD) [4] is becoming

popular, as developers work on class design incrementally,

taking into account the feedback that the test (that is written

before the production code) can give.

We highlight the intrinsic connection that exists between

unit tests and the associated production code. According to

Feathers [12], there is a great synergy between a testable

class and a well-designed class. In fact, a testable class

presents a few desirable characteristics, such as the ease to

invoke its behaviors, simplicity in methods’ pre and post-

conditions, and the explicit declaration of all its dependen-

cies [14]. McGregor [26] states that the act of writing a

unit test can become very complex when the interactions

between software components grow out of control. Hence,

we argue that analyzing units tests and the feedback they

give can provide developers with useful information about

the associated production code.

In fact, our group has been studying the relationship

between unit tests and the quality of the code being tested.

We found out that the test can actually warn developers

about design problems related to coupling, cohesion, or

complexity. Many tests for a single production method or

class, huge effort to write the scenario for the test, and the

excessive use of mock objects are examples of how a test

warns developers about bad design decisions [2] [3].

In this paper, we aim to understand the relationship

between a specific part of the unit test and the quality of the

associated code being tested. We are focusing on a piece

of code that a unit test usually has: the output validation.

To achieve that, unit tests make use of assert instructions,

which match the expected result with the calculated one.

A test method that contains many different assert in-

structions is usually hard to understand [32] [29]. Based

on what was mentioned before, we can infer that complex

unit tests tend to be an effect of a complex production class.

Therefore, a test method with many different asserts can be

a consequence of a complex production class. Confirming

such hypothesis would give developers another cheap way

to validate their class design and, thus, refactor the system

and ultimately reduce maintenance cost.

To better understand the phenomenon, we present an

empirical study that makes use of mining software repository

techniques applied to 19 open-source projects from the

Apache Software Foundation [28] and 3 industry projects.

We found out that there is no relationship between the quan-

tity of the asserts in a unit test and the production method

being tested. However, when counting not the number of

asserts, but instead the number of objects that are being
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asserted in a single unit test, we noticed that production

methods that are tested by unit tests with this characteristic

present a higher cyclomatic complexity, more lines of code,

or do more method invocations than methods in which their

unit tests assert only a single instance of object.

II. UNIT TESTING AND ASSERTS

A unit test is a piece of code written by a developer

to exercise a very small, specific area of functionality of

the code being tested [18]. For Java, the most popular unit

testing framework is JUnit1.

The structure of a unit test is divided into 3 parts: first,

the developer sets up the specific scenario s/he wants to

test; then, the developer invokes the behavior under test;

finally, s/he validates the expected output. In Listing 1, we

show an example of a unit test that tests the behavior of the

calculateTaxes() method from a fictitious Invoice class.

JUnit offers a set of instructions that can be used to

validate the expected result. These instructions are called

asserts. The provided assert instructions enable developers

to make several kinds of verification. For example, assertE-
quals() checks whether the produced output is equal to the

expected value; assertFalse() checks whether the produced

output is false. Even exceptions throwed can be validated

through an "expected" parameter.

There are no limits for the number of asserts per test. A

test can have zero asserts (not common, but in this case, the

test would fail only if the tested code throws an exception),

one assert (checks only one produced output), or more than

one assert (checks many different resulting outputs). This is

exactly what we plan to evaluate: if the quantity of asserts in

a unit test is somehow related to the quality of the production

method that is being tested.

c l a s s I n v o i c e T e s t {
@Test
p u b l i c vo id s h o u l dC a l c u l a t e T a x e s ( ) {

/ / ( i ) s e t t i n g up t h e s c e n a r i o
I n v o i c e i nv = new I n v o i c e ( " Customer " , 5 000 . 0 ) ;
/ / ( i i ) i n v o k i n g t h e b e h a v i o r under t e s t
double t a x = inv . c a l c u l a t e T a x e s ( ) ;
/ / ( i i i ) v a l i d a t i n g t h e o u t p u t
a s s e r t E q u a l s (5000 ∗ 0 . 0 6 , t a x ) ;

}
}

Listing 1. An example of a unit test

III. RESEARCH DESIGN

In order to verify whether there is a relationship between

the quantity of asserts and production code quality, we

conducted a study on 22 projects, being 19 of them from

the Apache Software Foundation2 and 3 from a software

development company located in São Paulo, Brazil.

1http://www.junit.org. Last access on January, 30th, 2012.
2http://www.apache.org. Last access on 13th, January 2012.

For each project, we extracted information about the

assert instructions in all unit tests, such as the quantity

of assert instructions and object instances they validate.

Furthermore, we calculated code metrics in all production

code that is being tested by the test suite. Afterwards, we

ran statistical tests to check the hypotheses. Additionally,

we did a qualitative analysis to understand the reasons for

writing more than one assert per test.

The sub-sections below explain all the research design

decisions. All data, scripts, and code used during this study

are publicly available3.

A. Hypotheses

Driven by the idea that a unit test with many different

asserts can be the symptom of a complex production method,

we elaborated a set of hypotheses that relate the quantity

of asserts to code quality. To measure code quality, this

work relies on well-known code metrics, such as McCabe’s

cyclomatic complexity [25], Lines of Code [10], and number

of method invocations [31]. The specific null hypotheses we

intended to test were the following:

• H1: Code tested by only one assert does not present
lower cyclomatic complexity than code tested by more
than one assert.

• H2: Code tested by only one assert does not present
fewer lines of code than code tested by more than one
assert.

• H3: Code tested by only one assert does not present
lower quantity of method invocations than code tested
by more than one assert.

B. Data extraction

In order to calculate the differences between code that is

tested by only one assert and code that is tested by more

than one, we needed to extract some information from all

unit tests.

Given a simple unit test, such as the example in Listing

1, which tests the method calculateTaxes() from a fictitious

Invoice class, the following information is extracted:

1) The number of asserts: In the example, there is

just one assert instruction. Although not present in

Listing 1, we consider that the JUnit instruction

@Test(expected=...) also counts as 1 assert. Such

instruction is employed to when one wants to make

sure an exception was thrown.

2) The production method that is being tested: It refers
to the production method a unit test is validating. We

look for all method invocations inside the test and

capture their belonging class. If the name of such

class matches the prefix of the test class name, then

3http://www.ime.usp.br/~aniche/msr-asserts/. Last access on 30th, April
2012.
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we consider that the method invocation represents a

production method being tested. As an example, in

Listing 1, the test invokes the calculateTaxes() method

from an instance of the class Invoice. This class

name matches the prefix of the test class name, i.e.,

Invoice matches the prefix of InvoiceTest. Therefore,
we consider that the method calculateTaxes() is indeed
being tested by this particular unit test. Otherwise, it

is just a support method that is not the target of this

test. More than one production method can be tested

by a single unit test.

C. Supporting Tool

Current tools that calculate code metrics require the input

to be in byte code form. However, when trying to run

different metrics over different repositories, byte code is

not always available. Therefore, we developed a tool to

parse Java source code, recognize unit tests, and extract the

information needed. This tool currently supports tests written

in JUnit 3 and 4. The tool was written in Java, has been unit

tested, and it is publicly available4.

The tool is able to process unit tests that contain the

following common characteristics: (i) create their own sce-

narios by instantiating objects and setting their respective

attributes with pre-defined values, (ii) execute an action by

invoking the method being tested, and (iii) checks the output

using assert instructions. The unit test in Listing 1 is an

example of a test that is correctly parsed by our tool. There

are a few variations that are not currently supported by our

tool. They are described in threats to validity (Section VIII).

1) Code Metrics: Most of the implemented algorithms

are well-known in software engineering community. All

metrics were calculated in method-level.

• Cyclomatic Complexity (CC): The tool calculates

McCabe’s cyclomatic complexity [25]. A simple ex-

planation of the algorithm would be that, for each

method, a counter gets increased every time an if, for,
while, case, catch, &&, ||, or ? appears. In addition, all

methods have their counter initialized as 1.

• Number of Method Invocations: It counts the number

of method invocations that occur inside a method. It

recognizes method chaining and adds one for each

invocation. For example, the piece of code a().b().c()
counts as 3 method invocations. In particular, this

metric is similar to the one proposed by Li and Henry

[31], which counts the quantity of method invocations

in a class.

• Lines of Code (LoC): The tool counts the number of

lines per method. It basically counts the number of line

breaks found.

4http://www.github.com/mauricioaniche/msr-asserts. Last access on 15th,
January, 2012

D. Selected projects

We pre-selected all 213 open-source projects from the

Apache Git repository. In addition, 3 projects from a Brazil-

ian software development company were also pre-selected.

The 3 industrial applications are web-based and follow the

MVC pattern [9].

The reason we selected Apache projects is that they be-

long to different domain areas, and their perceived quality is

well-known by the development community. The 3 industrial

projects, besides the similarity with other industrial projects,

were selected purely by availability.

In order to reduce the bias from the data, we decided to

work only with software projects that fulfilled the following

criteria:

• Minimum test ratio: In order to select projects that

were really tested and contain a considerable number

of unit tests, the ratio of the total number of unit tests
per total number of production methods being tested
should be greater than or equal to 0.2.

• Minimum of success in production method detection
algorithm: The algorithm should be able to identify the

tested production method in more than 50% of all unit

tests that contain at least one assert.

The constant 0.2 was chosen through observation of the

test ratio distribution in all projects. It excludes around

80% of projects (only 58 projects presented a test ratio

greater than 0.2). There was no specific reason to choose

the threshold of 50% in the production method detection

algorithm. We just preferred to eliminate projects that were

not well recognized by the tool.

From all pre-selected projects, only 22 projects sat-

isfied these criteria: commons-codec, commons-compress,
commons-lang, commons-math, commons-validator, cxf-
dosgi, directory-shared, harmony, log4j, log4j-extras,
maven-2, maven-doxia-sitetools, maven-enforcer, maven-
plugins, maven-sandbox, maven-scm, rat, shindig, struts-
sandbox, and the three industrial projects, which we called

CW, CL, and WC.

With the exception of Harmony, which contains almost a

million lines of code, 7k classes, 60k methods, and 26k unit

tests, the other projects contain from 4k up to 145k lines

of code, 41 to 1574 classes, 250 to 7500 methods, and 65

to 1600 unit tests. Based on these numbers, we can state

that different projects from different sizes were included in

this study. In Table I, we show the precise numbers for each

project.

E. Data Analysis

After analyzing all unit tests, we obtained their number

of asserts and the respective production method they were

testing. For each project, we then separated production

methods into two different groups: the first group (group A)

contained all production methods that were invoked by at
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Table I
DESCRIPTIVE ANALYSIS OF SELECTED PROJECTS

Lines of
Project Code Classes Methods Tests
rat 4,582 107 459 117
maven-enforcer 5,273 62 432 92
maven-doxia-sitetools 5,797 41 254 65
Industry CP 5,820 135 763 208
commons-codec 9,885 77 427 383
commons-validator 10,512 131 744 270
Industry WC 10,745 951 1,211 552
log4j-extras 11,503 147 745 498
cxf-dosgi 11,920 185 708 168
commons-compress 16,425 127 937 299
log4j 27,499 354 2,387 621
maven-2 35,676 346 2,182 498
maven-scm 46,804 820 3,048 698
commons-lang 48,096 211 2,222 2,046
maven-sandbox 53,763 646 4,062 1,067
struts-sandbox 54,774 1,001 6,220 2,291
Industry CW 68,690 1,043 6,897 2,354
shindig 76,821 999 6,513 2,623
commons-math 96,793 877 5,478 2,281
maven-plugins 120,801 1,574 7,452 1,605
directory-shared 144,264 1,147 5,866 3,245
harmony 915,930 7,027 59,665 26,735
Minimum 4582.0 41.0 254.0 65.0
1st Quartile 10570.0 132.0 744.2 277.2
Median 31590.0 350.0 2202.0 586.5
Mean 81020.0 818.5 5440.0 2214.0
3rd Quartile 65210.0 987.0 6132.0 2222.0
Maximum 915900.0 7027.0 59660.0 26740.0

least one unit test that contained a single assert instruction,

while the other group (group B) contained all production

methods that were invoked by at least one unit test that

contained two or more asserts.

The same production method could appear in both groups,

since it can be tested by many different unit tests with

different number of asserts. Unit tests with zero asserts were

ignored. Also, we did not allow duplicates in each group.

For instance, if a production method foo is invoked by two

different unit tests that have only one assert each, then this

method will appear only once in group A. In Figure 1,

we present a diagram that depicts the production methods

separation into groups.

Figure 1. How we separated methods and their metrics in order to analyze
the data

Table II
DISTRIBUTION OF ASSERTS IN PROJECTS

Zero One More Than
Project Assert Assert One Assert
commons-codec 112 125 146
commons-compress 172 26 101
commons-lang 156 397 1,488
commons-math 416 719 1,132
commons-validator 69 29 170
cxf-dosgi 22 60 80
directory-shared 284 1,250 1,704
harmony 5,318 7,063 14,263
log4j 39 464 118
log4j-extras 33 398 67
maven-2 67 249 175
maven-doxia-sitetools 5 9 51
maven-enforcer 39 24 29
maven-plugins 470 377 583
maven-sandbox 96 645 311
maven-scm 242 180 276
Industry CW 327 1269 758
Industry CP 74 66 68
Industry WC 220 242 90
rat 29 27 61
shindig 362 1,098 1,163
struts-sandbox 2,049 157 81

A significant difference in the values of the code metrics

calculated for the two groups would indicate that the number

of asserts may influence code quality. We thus executed the

Shapiro-Wilk test to first check whether the data followed

a normal distribution. As the data did not follow a normal

distribution, the Wilcoxon signed-rank test was chosen. It

is a non-parametric statistical hypothesis test used when

comparing two samples to assess whether their population

mean ranks differ. We then ran such test to compare both

groups.

IV. ASSERTS AND CODE QUALITY: RESULTS

In this section, we provide the results we obtained by

investigating the relationship between the number of asserts

and code quality.

A. Descriptive Analysis
In Table II, we show the quantity of tests separated into

three groups: zero asserts, one assert, and more than one

assert. For each project, the group with the highest value

is gray-colored. Observing the distribution of asserts per

project, it is possible to see that projects contain a greater

number of tests that make use of more than one assert: 15

projects presented this characteristic. The number of tests

with one assert scored the highest value in only 7 projects.

The struts-sandbox project presented a distinguishing high

number of tests with zero asserts.

B. Statistical Test
In Table III, we present the results of the Wilcoxon test

(p-values) 5 we obtained for the difference in code quality

5The commons-validator project does not have enough data to run the
statistical test.
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Table III
RESULTING P-VALUES FROM APPLYING WILCOXON TEST TO THE

GROUP OF ONE ASSERT AND THE GROUP OF MORE THAN ONE ASSERT

Cyclomatic Method Lines of
Project Complexity Invocations Code
commons-codec 0.1457 0.0257* 0.2991
commons-compress 0.7899 0.5374 0.9122
commons-lang 0.6766 0.3470 0.8875
commons-math 0.9230 0.9386 0.9369
commons-validator 0.9477 - 0.9635
cxf-dosgi 0.8445 0.9567 0.9463
directory-shared 0.9518 0.1298 0.9972
harmony 0.0174* 0.2822 0.5676
log4j 0.9489 0.6789 0.9885
log4j-extras 0.4811 0.6339 0.5703
maven-2 0.2532 0.9490 0.4427
maven-doxia-sitetools 0.9561 0.9213 0.9595
maven-enforcer 0.9371 0.4064 0.9727
maven-plugins 0.9607 0.6946 0.9847
maven-sandbox 0.4277 0.6499 0.9133
maven-scm 0.9324 0.9846 0.9948
Industry CW 0.9999 0.2567 0.9999
Industry CP 0.2850 0.0003* 0.4425
Industry WC 0.5380 0.5381 0.0561
rat 0.3162 0.4153 0.3263
shindig 0.9968 0.0252* 0.9998
struts-sandbox 0.9758 0.2942 0.9649

when considering the quantity of asserts 6. All p-values

lesser than 0.05 indicate that there is a statistically significant

difference between the observed groups, and the cells were

gray-colored.

The numbers reveal that only one project in 22 had a

statistical significant difference in cyclomatic complexity

(H1). Three projects (13%) differ in the number of method

invocations executed by the production method (H2). None

differ in terms of lines of code (H3).

Therefore, the quantity of asserts in a unit test is
not related to the production code quality. It means that

developers that are trying to obtain feedback from their unit

tests about the production code quality should not rely on

the quantity of assert as an indicator.

We also tested some other metrics related to class design,

such as LCOM [17] and Fan-Out [24]. However, no statis-

tical significance was found. Furthermore, we checked for

a correlation between number of asserts and code quality

using the Spearman correlation formula, and no correlation

was found.

V. WHY MORE THAN ONE ASSERT?

As no relationship between the quantity of asserts and

production code quality was found, we then decided to

understand why a developer writes more than one assert per

test. Thus, a qualitative study was conducted. The goal was

6We decided not to use Bonferroni correction. It just does not make
sense to try to combine all code metrics in order to affirm that a code is
not well-written. Whether a piece of code presents many lines, or a high
cyclomatic complexity, or a high number of method invocations, it can be
considered as a piece of code that can be improved. Therefore, we analyzed
each variable independently.

to read the tests and categorize them according to the reason

it needed more than one assert.

In this study, 130 tests were randomly selected from a

population of around 128k tests. This sample size enables

us to generalize the results with a confidence level of 95%

and a margin of error of 8%. After analyzing each selected

unit test, we were able to separate them into the following

categories:

• More than one assert for the same object (40.4%):

When a method changes more than one internal at-

tribute in the object or return an entirely new one,

developers assert all attributes that should have changed

by that method, using as many assert instructions to the

same object (but to a different attribute) as needed.

• Different inputs to the same method (38.9%): Some

unit tests give different inputs to the same method and

check all generated outputs. In these cases, developers

usually instantiate the same class many times, and

invoke the same method with a different input. In

addition, sometimes the method being tested returns an

instance of a new object, which must be validated. In

both cases, developers write asserts to many different

instance of objects.

• List/Array (9.9%): When the method deals with a list

or array, the test usually checks not only the size of the

list, but also its internal content, validating the state of

element by element.

• Others (6.8%): Mock interactions, problems when try-

ing to understand the unit test, and any other different

reason found.

• One extra assert to check if object is not null (3.8%):
Some tests make an extra assert to check whether the

returned object is not null.

As we somehow expected, the most common behavior in

tests is to write more than one assert for the same object.

The second most popular is to have different inputs to the

same method. These two options combined represent almost

all the individual unit tests investigated in this study: 40.4%

and 38.9%, respectively. In Figure 2, we show the categories

and their distribution over the selected sample.

Figure 2. Why developers write more than one assert per test
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Inductively, one can notice that writing more than one

assert for the same object can be a common behavior. Unit

tests should assert the state of the entire object and, in order

to achieve that, more than one attribute should be checked.

Analogously, when testing a list, developers usually check

the size of the list and each element that is contained inside

of it.

However, trying different inputs to the same method in a

single test does not make sense. We hypothesize developers

thought it would just be too much work to test all those

inputs in different tests. Hence, they preferred to instantiate

the same object two, three, N times, and make asserts on all

of them.

Consequently, we turned our attention to production meth-

ods whose unit tests contain assert instructions for more than

one object instance. We decided to investigate whether there

is a relationship between the number of object instances that

are evaluated in assert instructions and code quality metrics.

This study is discussed in the next section.

VI. ASSERTED OBJECTS AND CODE QUALITY

As mentioned before, some unit tests make asserts to more

than one object instance. To better represent this case, we

crafted the term asserted object, which refers to objects

that are evaluated by assert instructions. In Listing 2, for

example, we present a unit test from the Ant project that

contains two asserted objects (reportFile and reportStream).

In this specific case, the developer needed to make use of

more than one object to completely test the behavior.

We suspect that they are related to the production code

quality: a unit test that asserts more than one object instance

may be a consequence of a bad production code.

p u b l i c vo id t e s tW i t hS t y l e F r omD i r ( ) throws
Excep t i on {
e x e c u t eT a r g e t ( " t e s tW i t hS t y l e F r omD i r " ) ;
F i l e r e p o r t F i l e = new F i l e ( System . g e t P r o p e r t y (

" r o o t " ) , " ( p a t h om i t t e d ) " ) ;
a s s e r t T r u e ( r e p o r t F i l e . e x i s t s ( ) ) ;
a s s e r t T r u e ( r e p o r t F i l e . canRead ( ) ) ;
a s s e r t T r u e ( r e p o r t F i l e . l e n g t h ( ) > 0 ) ;
URL r e p o r t U r l = new URL( F i l e U t i l s . g e t F i l e U t i l s

( ) . toURI ( r e p o r t F i l e . g e tAb s o l u t e P a t h ( ) ) ) ;
I n pu tS t r e am r e p o r t S t r e am = r e p o r t U r l .

openSt ream ( ) ;
a s s e r t T r u e ( r e p o r t S t r e am . a v a i l a b l e ( ) > 0 ) ;

}

Listing 2. An example of a unit test from Ant project with two asserted
objects

A. Study Design

We improved our tool in order to also capture the number

of asserted objects per unit test. The algorithm counts the

number of object instances or primitive types asserted by the

test. We do not distinguish between instances from different

classes and instances from the same class (they are all

subject to the counting).

Table IV
DISTRIBUTION OF ASSERTED OBJECTS IN PROJECTS

Zero One More Than
Project Assert Assert One Assert
commons-codec 117 212 54
commons-compress 172 91 36
commons-lang 284 1,308 449
commons-math 568 1,247 453
commons-validator 69 131 68
cxf-dosgi 22 109 31
directory-shared 337 1,875 1,027
harmony 5,337 14,699 6,606
log4j 39 538 43
log4j-extras 33 419 46
maven-2 67 348 77
maven-doxia-sitetools 5 46 14
maven-enforcer 39 46 7
maven-plugins 471 628 331
maven-sandbox 450 548 54
maven-scm 244 327 127
Industry CW 449 1,586 319
Industry CP 116 67 25
Industry WC 263 249 40
rat 29 57 31
shindig 506 1,625 492
struts-sandbox 2,049 202 36

We then collected data over the same projects, did the

same separation in groups A and B, and ran the same

statistical test presented before. The reformulated set of

hypotheses is presented below:

• H1: Code tested by only one asserted object does not
present lower cyclomatic complexity than code tested
by more than one assert.

• H2: Code tested by only one asserted object does not
present fewer lines of code than code tested by more
than one assert.

• H3: Code tested by only one asserted object does not
present lower quantity of method invocations than code
tested by more than one assert.

B. Descriptive Analysis

The numbers observed in Table IV are quite different from

the ones regarding the quantity of assert instructions: all

projects contain more tests with only one asserted object

than tests with more than one asserted object.

C. Statistical Test

In Table V, we can observe that six projects (27%) differ

in cyclomatic complexity, four projects (18%) in the number

of methods invocations, and five projects (22%) in terms of

lines of code.

The results from the statistical test when looking to

asserted objects were different too. In Table V, we observe

that six projects (27%) presented a difference in cyclomatic

complexity (as opposed to the single case in the previous

test). The same happens with both the methods invocation

(four projects, 18%) and the lines of code metrics (five
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Table V
RESULTING P-VALUES FROM APPLYING WILCOXON TEST TO THE

GROUP OF ONE ASSERTED OBJECT AND THE GROUP OF MORE THAN ONE

Cyclomatic Method Lines of
Project Complexity Invocations Code
commons-codec 0.0376* 0.1376 0.0429*
commons-compress 0.0385* 0.0445* 0.4429
commons-lang 0.9918 0.7207 0.9611
commons-math 0.0262* 0.1873 0.0325*
commons-validator 0.0329* 0.6256 0.0223*
cxf-dosgi 0.5351 0.9986 0.3919
directory-shared 0.9998 0.1408 1.0000
harmony 3.5300E-05* 0.0001* 0.0043*
log4j 0.2749 0.6789 0.3574
log4j-extras 0.0658 0.6339 0.0594
maven-2 0.2912 0.6228 0.1611
maven-doxia-sitetools 0.8012 1.0000 0.8986
maven-enforcer 0.2670 0.8219 0.1348
maven-plugins 0.1461 0.1972 0.0953
maven-sandbox 0.9821 0.1400 0.9815
maven-scm 0.9726 0.9193 0.9999
Industry CW 0.9999 0.0089* 0.9986
Industry CP 0.9103 0.7909 0.3055
Industry WC 0.1274 0.4718 0.0606
rat 0.2213 0.1533 0.1373
shindig 0.0006* 0.0238* 0.0002*
struts-sandbox 0.9994 0.6910 0.9995

projects, 22%). In summary, the number of significant results

increased significantly.

We also tested some other metrics related to class de-

sign, such as LCOM [17] and Fan-Out [24]. However, no

statistical significance was found for them. Furthermore, we

checked for a correlation between the number of asserted

objects and code quality using the Spearman correlation

formula. Similarly, no correlation was found.

Based on this numbers, we can state that production
methods whose unit tests contain more than one asserted
object may present worse code metrics than production
methods that do not have this characteristic.

D. Measuring the difference

Besides analyzing the p-values, we also observed how big

the difference is between these two groups. The Table VI

depicts a descriptive analysis of the values for each metric

calculated. The entries are given in the form A/B, represent-
ing the values for group A and group B respectively. We see

that the difference in the average of both groups is not big.

In cyclomatic complexity, for example, a few projects

presented a difference on average between both groups

of almost one. In terms of lines of code and number of

method invocations, only the shindig project presented a

difference larger than 1. In a nutshell, although we found out

a significant difference between both groups, such difference

is not actually high.

VII. DISCUSSION

In Table VII, we present a summary of our findings. As

one can notice, when investigating the quantity of asserts,

Table VII
SUMMARY OF THE RESULTS OF THE STATISTICAL TESTS: QUANTITY

OF PROJECTS THAT REFUTED EACH HYPOTHESES

Qty of Projects Qty of Projects
Hypotheses (Asserts) (Asserted Objects)
H1 (Cyclom. Complexity) 01 (05%) 06 (27%)
H2 (Lines of Code) 00 (00%) 05 (22%)
H3 (Method Invocations) 03 (13%) 04 (18%)

only a few projects presented a significant difference in

production code quality when considering cyclomatic com-

plexity, lines of code, and number of method invocations.

Based on what we observed in both studies, we can

state that purely counting the number of asserts will not

provide feedback about the production code quality. Instead,

if developers count the number of objects that are being

asserted in a unit test, that may provide useful information

about the production method the unit test is testing. This

feedback can help developers identify pieces of bad code.

Even though the observed difference is not big, it is still

important to keep managing complexity as it appears on

software code [23].

A possible explanation for this phenomenon would be

that a method that presents a higher cyclomatic complexity,

many lines of code, or make many method invocations,

contains many different possible paths of execution. Each

path usually makes a different change into one or even many

different objects. If a developer wants to test all the possible

paths, s/he would spend too much time writing different unit

tests. Because of that, s/he choose to try different inputs

inside the same unit test.

What we learn from here is that if developers do not

want to write many different unit tests to test different

execution paths, it may be because of the high complexity

of that method. Analogously, in Aniche’s catalogue of test

feedbacks [2], he showed that when developers write many

unit tests for the same production method, it may be because

of the complexity of such method.

Therefore, this pattern can be included in the test feedback

catalogue. We suggest the "More than One Asserted
Object per Test" pattern of feedback. When observing a

unit test, developers should pay attention to the number of

objects they are asserting.

VIII. THREATS TO VALIDITY

A. Construct Validity

The tool we developed has been unit tested, which gives

some confidence about its external quality. However, as the

number of different ways a programmer can write a unit

test is almost infinite, there are some variations that are

currently not supported by the tool. In particular, unit tests

that contain asserts in private methods, in helper classes, or

even in inherited methods, are currently not detected by the

tool. In those cases, we discarded the tests from the analysis.
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Table VI
DESCRIPTIVE ANALYSIS FROM THE NUMBERS USED IN THE STATISTICAL TESTS (THE ENTRIES ARE GIVEN A/B REPRESENTING THE VALUES FOR

GROUP A AND GROUP B)

Project Median Average 1st Qu. 2nd Qu. 3rd Qu. Min Max
Cyclomatic Complexity

commons-codec 2.0 / 3.0 3.5735 / 3.9000 1.0 / 2.0 2.0 / 3.0 4.0 / 4.0 1.0 / 1.0 41.0 / 16.0
commons-compress 1.0 / 2.5 2.8548 / 2.7222 1.0 / 1.0 1.0 / 2.5 1.0 / 3.0 1.0 / 1.0 20.0 / 10.0
commons-math 1.0 / 2.0 2.6081 / 2.9939 1.0 / 1.0 1.0 / 2.0 1.0 / 3.0 1.0 / 1.0 33.0 / 38.0
commons-validator 1.0 / 1.0 1.9300 / 2.6562 1.0 / 1.0 1.0 / 1.0 1.0 / 1.0 1.0 / 1.0 11.0 / 11.0
harmony 1.0 / 1.0 2.3182 / 2.4903 1.0 / 1.0 1.0 / 1.0 1.0 / 1.0 1.0 / 1.0 77.0 / 86.0
shindig 1.0 / 2.0 2.5286 / 3.4265 1.0 / 1.0 1.0 / 2.0 1.0 / 4.0 1.0 / 1.0 37.0 / 37.0

Lines of Code
commons-compress 6.0 / 6.5 10.6290 / 9.4444 2.0 / 2.0 6.0 / 6.5 11.0 / 11.0 2.0 / 2.0 60.0 / 60.0
harmony 3.0 / 3.0 7.34478 / 7.8988 2.0 / 2.0 3.0 / 3.0 7.0 / 7.0 0.0 / 0.0 231.0 / 223.0
Industry CW 4.0 / 2.0 6.9958 / 6.7671 2.0 / 2.0 4.0 / 2.0 8.0 / 2.0 1.0 / 2.0 60.0 / 60.0
shindig 3.0 / 6.0 9.6236 / 14.3080 2.0 / 2.0 3.0 / 6.0 9.0 / 15.0 0.0 / 2.0 184.0 / 184.0

Number of Method Invocations
commons-codec 1.0 / 1.5 1.5609 / 2.1000 1.0 / 1.0 1.0 / 1.5 1.0 / 3.0 1.0 / 1.0 4.0 / 4.0
commons-math 2.0 / 2.0 2.5284 / 3.0779 1.0 / 1.0 2.0 / 2.0 3.0 / 3.5 1.0 / 1.0 12.0 / 21.0
commons-validator 2.0 / 1.0 1.8214 / 2.3571 2.0 / 1.0 2.0 / 1.0 2.0 / 1.0 1.0 / 1.0 6.0 / 6.0
harmony 2.0 / 2.0 2.7309 / 3.1127 1.0 / 1.0 2.0 / 2.0 3.0 / 3.0 1.0 / 1.0 39.0 / 38.0
shindig 4.0 / 7.5 6.9325 / 10.5789 2.0 / 3.0 4.0 / 7.5 7.0 / 18.0 1.0 / 1.0 36.0 / 36.0

The production method detection algorithm does not de-

tect a few variations as well. The algorithm expects that the

test class name prefix is always the same as the production

class name. If that does not happen, then the algorithm is

not able to make the link between the unit test and the

production method. Furthermore, if the production method

is invoked on a private or inherited method in the test class,

inside the test setup method (a method that is executed

before every unit test in that class), or even on a helper

class, then the algorithm also does not detect it. On the other

hand, a very common case is to refer to the tested type as

an interface. This variation is detected by the algorithm: it

looks to the concrete type and, consequently, finds the class

that is actually being tested.

The mentioned limitations may exclude interesting

projects from the analysis. The project filtering process may

have also biased the sample, since the threshold for minimum
test ratio may have leaded to the exclusion of interesting

projects unnecessarily. A future work could be to calculate

code coverage of tests and use it as a filter.

As suggested by the qualitative analysis, developers some-

times use the same unit test to check different inputs to the

same production method. If a developer writes two variables

that point to the same instance, our algorithm counts it as

a test with two asserted objects. They may have polluted

the data, and a future step would be to try to automatically

remove these tests from the sample.

B. Internal Validity

To reduce noise in the collected data, this study tried to

filter all projects that could contain non-useful data. In this

case, we removed projects in which the algorithm could

not interpret more than 50% of its unit tests and did not

contain an acceptable number of tests per method. That may

be explained by the fact that Apache projects are usually

complicated and, in order to test it, an integration test is

more suitable than unit test. And that is why our algorithm

did not recognize them.

The most effective way to relate a test to its production

code would be to run the test case. However, when analyzing

a huge quantity of projects at once, it becomes complicated

to run all the tests automatically. However, the heuristic was

based on a famous convention among developers [4] [3]. The

number of tests that were recognized shows it. Therefore,

we do not think that the heuristic would be a problem in

practice.

The qualitative study involved only 130 tests, which

is a small sample compared to the entire population. A

more extensive qualitative study should be conducted in

order to increase the confidence measure, further refine

the conceived taxonomy, and more deeply understand the

reasons a developer writes more than one assert.

The chosen metrics may have also influenced the re-

sults. Cyclomatic complexity, number of lines of code, and

quantity of method invocations may not be sufficient to

characterize the code as problematic. Therefore, the use of

other code metrics could be useful to further explore the

relationship between asserts and production code quality.

C. External Validity

This study involved a few open source projects that belong

to very different domains, use different architectural styles

and design techniques, and have different sizes. However, we

only studied projects from the Apache group, which follow

some well and pre-defined code policies. Also, some of the

projects receive more attention from the community than

others. Therefore, this may have imposed limitations to the

generalization of our conclusions.

Also, the number of selected projects is small. In this

study, the number of projects was drastically reduced for

118

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on May 18,2022 at 00:14:04 UTC from IEEE Xplore.  Restrictions apply. 



mainly two reasons:

1) Many projects were eliminated because they presented

a small number of tests in comparison to their number

of methods.

2) Many unit tests inside the Apache repository are,

in fact, integration tests. These kind of tests usually

make use of helper methods that belong to a different

class. These methods are also responsible for asserting

the output – many times, these outputs are not even

classes; they are files, packets in a socket, and so on.

This variation is not captured by the implemented tool.

Therefore, we preferred to discard such projects. As

the filter does not random the data, the results can not

be generalized.

Finally, the number of industrial projects was too small,

and it might be necessary to run the study over different

industrial projects and check whether the results match those

we obtained in this study.

IX. RELATED WORK

A study from Bruntink and van Deursen [8] discussed the

reasons some classes are easier to be tested than others. In

their work they related object-oriented metrics to test suite

metrics. The OO metrics chosen was the Binder suite [7],

which is highly based on Chidamber and Kemerer object-

oriented metrics [10]. The test metrics were lines of code

for a class, number of test cases, and number of assert

instructions in a unit test. They were able to demonstrate

a significant correlation between the class metrics (mainly

in Fan Out, Size of the Class, and Response for a Class) and

the test metrics (Size of the Class, and Number of Asserts).

Interestingly, in our study, no correlation was found between

asserts and production code metrics.

The work from Elish and Alshayeb [11] investigates

the effects of refactoring in software testing effort. They

showed that “Encapsulate Field,” “Extract Method,” and

“Consolidate Conditional Expression” refactoring patterns

increased the testing effort, while “Extract Class” reduced

the testing effort. Additionally, “Hide Method” had no effect

on the testing effort at all.

Heitlager et al. [16] discussed a maintainability model

that relates high level maintainability characteristics to code

level measures. The authors found that the complexity of

source code had a negative correlation to the testability of

the system. In other words, it means that the testability of

the system tends to reduce as the complexity of source code

increases.

The two last studies investigated the “other side” of the

relationship: the effects of production code on the testing

code. This reinforces the idea that both kinds of code are

intrinsically connected and thus one influences the other.

Such point can also be supported by studies in the TDD

field that show an increase in code quality when developers

write the test first [21] [22] [19] [27].

A study from Janzen [19] separated academic students in

two different teams that employed opposite testing strate-

gies, namely the test-first team and the test-last team. The

study revealed that the code produced by the test-first

team exhibited a better use of object-oriented concepts, as

responsibilities were more adequately assigned to classes. In

fact, the test-last team produced a more procedural kind of

code. Furthermore, tested classes had 104% lower coupling

measures than untested classes, and tested methods were

43% on average less complex than the untested ones.

Qualitatively, Williams et al. [15] noticed that 92% of

participants in their study believed that TDD helped them

achieve a higher quality code, and 79% believed that TDD

promoted a simpler design.

X. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the relationship between the

quantity of asserts in a unit test and the quality of the

associated production method being tested. Interestingly,

related work also tried to observe a relation between specific

aspects of a unit test and the quality of production code. To

the best of our knowledge, our study is the first to relate not

only the quantity of asserts, but also the number of instances

that are asserted in unit tests to production code quality.

The main evidence we found is that when a production

method contains associated unit tests that make asserts to

more than one object instance, it tends to have more lines of

code, a higher cyclomatic complexity, or make more method

invocations than usual. This idea can benefit developers in

general: when they feel the urge of asserting more than one

object in a single test, it may be because the method being

tested is more complex than it should be. Therefore, our

answer to the question raised in the title of this paper is

the number of asserts does not tell us anything about
the production code quality; however, the number of
asserted objects does.

As with any code smell, it does not necessarily point

to a bad piece of code. Indeed, it is a cheap way to

possibly find them. Developers then should pay attention

to the suggested "More than One Asserted Object per Test"

code smell, which can point out to methods with a higher

cyclomatic complexity, number of lines of code, or even a

higher number of method invocations.

A next step in this study would be to reduce the number

of non-identified tests. In a future version, the tool should

recognize asserts made in inherited or private methods.

Also, separating the asserted objects by class type (to check

whether the unit test validates the same class or a different

one) may be interesting. Also, a qualitative study with the

developers would help us understand why they wrote more

than one assert per test.

It is important to highlight the fact that all industrial

projects were not eliminated by the filter. Thus, running the
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study in more industrial projects may add interesting data

and improve external validity.
Finally, there might be other test aspects that could warn

developers about code or design issues. Further evaluating

the relationship between tests and code quality seems nec-

essary.

ACKNOWLEDGMENTS

The authors would like to thank Miguel Ferreira, Sandro

Schulze, and Guilherme Travassos for their insightful ideas,

suggestions, and reviews to the design and execution of this

study. We also thank Caelum Learning and Innovation for

supporting this research and allowing us to use their projects.

Gustavo Oliva receives individual grant from the European

Commission for his participation in the CHOReOS research

project. Marco Gerosa receives individual grant from CNPq.

REFERENCES

[1] Kent Beck and Mike Beedle and Arie van Bennekum and,
Alistair Cockburn and Ward Cunningham and Martin Fowler
and James Grenning and Jim Highsmith and Andrew Hunt
and Ron Jeffries and Jon Kern and Brian Marick and Robert
C. Martin and Steve Mellor and Ken Schwaber and Jeff
Sutherland Dave Thomas. Manifesto for Agile Software De-
velopment. http://agilemanifesto.org/. Last Access on Septem-
ber, the 27th, 2012. 2001.

[2] Aniche, M. F., Gerosa, M. A. How the Practice of TDD
Influences Class Design in Object-Oriented Systems: Patterns
of Unit Tests Feedback. Brazilian Symposium on Software
Engineering, 2012.

[3] Aniche, M. F. Test-Driven Development: Teste e Design no
Mundo Real. Casa do Código, 2012.

[4] Beck, K. Test Driven Development: By Example. Addison-
Wesley Professional; 1st edition, 2002.

[5] Beck, K. Extreme Programming Explained: Embrace Change.
Addison-Wesley Professional, 1999.

[6] Beck, K. Aim, Fire. IEEE Software, Vol. 18, PP 87-89, 2011.
[7] Binder, R., Design for testability in object-oriented systems,

Communications of the ACM 37, pp 87–101, 1994.
[8] Bruntink, M.; van Deursen, A. An empirical study into class

testability. Journal of Systems and Software, vol. 79, pp.
1219-1232, 2006.

[9] Burbeck, S. Applications Programming in Smalltalk-80(TM):
How to use Model-View-Controller (MVC). http://st-www.cs.
illinois.edu/users/smarch/st-docs/mvc.html, 1987.

[10] Chidamber, S., Kemerer, C., A metrics suite for object ori-
ented design, IEEE TSE, Vol. 20 (6), pp 476–493, 1994.

[11] Elish, K.O.; Alshayeb, M. Investigating the Effect of Refac-
toring on Software Testing Effort. APSEC ’09, 2009.

[12] Feathers, M. The Deep Synergy Between Testability and
Good Design. http://michaelfeathers.typepad.com/michael_
feathers_blog/2007/09/the-deep-synerg.html, 2007. Last ac-
cess on Oct 27, 2012.

[13] Fowler, M. Beck, K., et al. Refactoring: Improving the Design
of Existing Code. Addison-Wesley Professional, 1st Edition,
1999.

[14] Freeman, S.; Pryce, N. Growing Object-Oriented Software,
Guided by Tests. Addison-Wesley Professional, 1st Ed., 2009.

[15] George, B.; Williams, L. An initial investigation of test driven
development in industry. Proceedings of the 2003 ACM
symposium on Applied computing. SAC ’03, ACM, New
York, NY, USA, 2003.

[16] Heitlager, I., Kuipers, T., Visser, J. A practical model for
measuring maintainability. In QUATIC, pages 30–39, 2007.

[17] Henderson-Sellers, B., Object-oriented metrics : measures of
complexity, Prentice-Hall, pp.142-147, 1996.

[18] Hunt, A.; Thomas, D. Pragmatic Unit Testing in Java with
JUnit. The Pragmatic Programmers, 1st Edition, 2003.

[19] Janzen, D., Saiedian, H., On the Influence of Test- Driven
Development on Software Design. Proceedings of the 19th
CSEET, 2006.

[20] Janzen, D.; Saiedian, H.; Test-driven development concepts,
taxonomy, and future direction. Computer, Volume 38, Issue
9, PP 43-50, 2005.

[21] Janzen, D., Software Architecture Improvement through Test-
Driven Development. Conference on Object Oriented Pro-
gramming Systems Languages and Applications, ACM, 2005.

[22] Langr, J., Evolution of Test and
Code Via Test-First Design, 02.12.2010,
http://www.objectmentor.com/resources/articles/tfd.pdf

[23] Lehman, M., Perry, Dewayne, et al. Metrics and Laws of
Software Evolution–The Nineties View., PP 20-32, 1997.
Proceedings IEEE International Software Metrics Symposium
(METRICS’97)

[24] Lorenz, M.; Kidd, J. Object-Oriented Software Metrics: A
Practical Guide. Prentice-Hall, 1994.

[25] McCabe, T. A complexity Measure. IEEE TSE, SE-2, Vol. 4,
pp 308-320, 1976.

[26] McGregor, John D.; Sykes, David A. A practical guide to
testing object-oriented software. Addison-Wesley, 2001.

[27] Steinberg, D. H. The Effect of Unit Tests on Entry Points,
Coupling and Cohesion in an Introductory Java Programming
Course. XP Universe, Raleigh, North Carolina, USA, 2001.

[28] The Apache Software Foundation. http://www.apache.org/.
Last access on 18th, January, 2012.

[29] van Deursen, Arie; Moonen, Leon; van den Bergh, Alex;
Kok, Gerard. Refactoring Test Code. http://sqa.fyicenter.com/
art/Refactoring-Test-Code.html. Last access on 9th, October,
2012.

[30] van Emden, E. Java quality assurance by detecting code
smells. Proceedings of Ninth Working Conference on Reverse
Engineering, 2002.

[31] W. Li and S. Henry, “Object-Oriented Metrics that Predict
Maintainability,” J. Systems and Software, vol.23,no.2,1993.

[32] xUnit Patterns. Assertion Roulette. http://xunitpatterns.com/
Assertion%20Roulette.html. Last access on Oct. 9th, 2012.

120

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on May 18,2022 at 00:14:04 UTC from IEEE Xplore.  Restrictions apply. 


