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Abstract. Conway’s Law describes that software systems are structured
according to the communication structures of their developers. These de-
velopers when working on a feature or correcting a bug commit together
a set of source code artifacts. The analysis of these co-changes makes it
possible to identify change dependencies between artifacts. Influenced by
Conway’s Law, we hypothesize that Structural Hole Metrics (SHM) are
able to identify strong and weak change coupling. We used SHM com-
puted from communication networks to predict co-changes among files.
Comparing SHM against process metrics using six well-known classifica-
tion algorithms applied to Rails and Node.js projects, we achieved recall
and precision values near 80% in the best cases. Mathews Correlation
metric was used to verify if SHM was able to identify strong and weak
co-changes. We also extracted rules to provide insights about the metrics
using classification tree. To the best of our knowledge, this is the first
study that investigated social aspects to predict change dependencies
and the results obtained are very promising.

Keywords: structural holes metrics, social network analysis, change de-
pendencies, communication network, Conway’s law.

1 Introduction

A good understanding of the impact of communication and cooperation on soft-
ware evolution can help researchers and practitioners to gain more insights to
improve software quality [25,21]. According to some researchers [22,9,18], soft-
ware modularity and quality can be associated with the interactions among
developers. This phenomena was described by Conway, who states that "organi-
zations which design systems are constrained to produce designs which are copies
of the communication structures of these organizations" [11]. In this way, Con-
way’s Law assumes a strong association between the software architecture and
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the communication structure [2]. During software evolution, developers commu-
nicate asynchronously in discussions related to change requests and cooperate
around this requests changing files to fix bugs or add new features. The result-
ing changes may increase the source code complexity and disorganization [8]
and are a social product [28]. For example Node.js (Table 2) used the constrain-
tAVG (average of the lack of holes among neighbors) and hierarchySUM (sum of
the concentration of constraints to a single node) six times. Considering Rails,
neither of these metrics were frequently selected. For Rails (Table 3),effective-
SizeAVG (average of the portion of non-redundant neighbors of a node) and
efficiencyAVG (average of the normalization of the effective size by the number
of neighbors) – the others two SHM – were selected more often. Ball et al. [1]
introduced the concept of co-changes (a.k.a. logical coupling and change depen-
dencies) that involves the notion that some artifacts frequently change together
during software development. Previous works have suggested that change de-
pendencies in files influence the quality of software and indicated that entities
that changed together in the past are likely to change together in the future [12].
Hence, finding insights of how these co-changes happen in software projects and
how their social structures were organized can help developers planning, decid-
ing, accommodating certain types of changes, and tracing through the effects of
co-changes in software quality and architecture [20,9].

To understand the impacts of the communication structures, previous studies
have been using graph-based analysis [27,4]. In fact, graph-based analysis have
shown good results in several different works, for example, to predict defects,
to estimate bug severity, to prioritize refactoring efforts, to predict defect-prone
releases, and to understand socio-technical aspects [3,6,20,9,25].

Different types of metrics in Social Network Analysis (SNA) have been used to
explore the graphs generated from software engineering data [27,3,6,20]. Among
them, Structural Holes Metric (SHM) can reflect gaps between nodes in a social
network indicating that a developer on either side of the hole have access to
different flows of information [7,27]. However, to the best of our knowledge,
SHM were studied only as part of social network metrics. Thus, as these metrics
were merged with others in previous studies, like centrality and ego measures,
their importance remains unclear.

Once that Conway’s Law can explain the direct influence of the communica-
tion on the quality of software architecture, we expect that it also can explain
the indirect relation between communication and co-changes. So, influenced by
Conway’s Law, we hypothesize that SHM has an important role to identify co-
changes and can be explored to provide insights about the organization and the
way that source code is modified. We claimed that SHM can describe the so-
cial organization during software changes. We used them to build classification
models to predict strong and weak change coupling among files, whereas we find
a lack of understanding about their prediction importance in previous works.
Thus, two main questions were investigated: RQ1. Does the SHM from commu-
nication can predict change dependencies? RQ2. Which is the role of SHM from
communication to predict co-changes?
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We used four SHM (effective size, efficiency, constraint, and hierarchy) and
three process metrics: sum of number of commits of each file coupled (we called
"commits"), the number of updates that the co-change was committed (we called
"updates"), and the number of distinct developers that committed each co-
change (we called "developers"). To conduct this study we gathered data from
two open source projects (Rails and Node.js) hosted on GitHub and built the
communication networks using the issues of each project to calculate SHM. We
used six well-known classification algorithms comparing SHM against process
metrics and against all metrics together.

In summary, the main contributions of this study are:

– We found evidences that SHM computed from communication networks can
be used to identify strong and weak co-changes;

– We shown that SHM was better than process metrics in some timeframes of
analysis considering the two projects analyzed;

– We extracted a set of rules using classification tree that can provide insights
of how communication can be related to co-changes.

The rest of the paper is organized as follows. In Section 2, we present re-
lated work about logical coupling and SNA. Section 3 shows the study design.
We describe the process to collect the data, build the networks, compute the
co-changes, and explain the metrics used in the classification approach. In Sec-
tion 4, we answered RQ1 comparing the results of classification among each
set of metrics using communication network, and RQ2 presenting the classifica-
tion tree rules to compare the importance of each predictor. Section 5 discusses
the threats to validity. Finally, conclusions and future work are presented in
Section 6.

2 Related Works

Some related studies are presented in this section. First, we present the works
related to logical coupling. Then, we discuss about previous works focused on
SNA to build prediction models. We highlight that we only fond studies that
predict co-changes without using SNA from communication networks and other
set of papers that used SNA to predict only faults instead of co-changes.

2.1 Logical Coupling Studies

Some studies on logical coupling focuses on defects in open source projects
[13,17]. D’Ambros et al. [13] performed a study on three large software sys-
tems (ArgoUML, Eclipse JDT, and Mylyn) and found that there was higher
correlation between change coupling and defects than the one observed only
with complexity metrics and defects. In turn, Kouroshfar [17] investigated the
impact of specific characteristics of co-change dispersion on software quality. He
used statistical regression models to show that co-changes that included files
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from different subsystems resulted in more bugs than co-changes that include
files only from the same subsystem.

Zimmermann et al. [30] developed a tool to try to avoid defects insertion dur-
ing file changes. They built an Eclipse plug-in that collects information about
source code changes from repositories and warns the developers about prob-
able missing co-changes. They used association rules to suggest change cou-
pling among files in method and file level. The authors reported precision values
around 30% and recommended that for projects with continuous evolution of file
changes the analysis should be made in file-level instead of method-level.

Zhou et al. [29] present a study similar to Zimmermann et al., since they
proposed a model do predict co-changes. However, the model is more elaborate
because it uses different predictors in Bayesian networks to predict the change
coupling between source code entities. They extracted features like static source
code dependency, past co-change frequency, age of change, author information,
change request, and change candidate. They conducted experiments on two open
source projects (Azureus and ArgoUML) and reported precision values around
60% and recall values of 40%. These last two papers are more related to our
work. They predicted co-changes, but they did not use social metrics. We also
tested more classification algorithm than Zhou et. al.

2.2 Social Network Analysis

Some studies on SNA used different types of networks to build prediction models.
Wolf et al. [27] reported results indicating that developer communication plays
an important role in software quality. They predicted build failure on IBM’s
Jazz project yielding recall values between 55% and 75%, and precision values
between 50% to 76%. Bicer et al. [5] created models to predict defects on IBM’s
Jazz project and Drupal. Their results revealed that compared to other met-
rics such as churn metrics, social network metrics considerably decreased high
false alarm rates. We considered that these works are more related to this study,
whereas they are the only work that used SHM metrics from communication net-
works to build prediction models. However, these studies did not report the SHM
individual performance and were used to predict fault instead of co-changes.

Other works, like Meneely et al. [19] examined the development network de-
rived from code churn information. They conducted a case study and found
a significant correlation between file-based development network metrics and
failures. Bird et al. [6] evidenced the influence of combined sociotechnical soft-
ware networks on the fault-proneness of individual software components. They
reported results with precision and recall around 85%.

3 Study Design

In this section, we present how we collected the data, calculated the co-changes
and the SHM, and built the classification models and evaluated the results.
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3.1 Data Collection

We collected data from two open source projects: Rails and Node.js. We chose
these projects because of their influential nature on GitHub1 ecosystem [16]. We
considered the number of "stars" and "forks" on GitHub indicating interesting
projects. While Rails have more than 21.000 stars and 7.700 forks, Node.js have
more than 28.800 stars and 6.100 forks. Table 1 presents some characteristics
of each project collected from the Ohloh.net2. We present for each project the
number of strong and weak co-changes and the percentage of imbalance in our
dataset.

We noticed that the timeframes 2012.1 for Node.js and 2012.2 for Rails have
the greater imbalance of our dataset. Class imbalance problem may lead to
misclassification of the minority class. The classification algorithms normally
are more focused on predicting the majority class [26]. For both projects, weak
co-changes were the majority class for all timeframes. We observed that Node.js
has more co-changes than Rails. The exception was observed on 2012.1, in which
Rails and Node.js have similar number of co-changes considering both classes.
Node.js presented a very high number of co-changes in 2011.2 compared to all
other timeframes for both projects.

Table 1. Projects characteristics on different timeframes

2011.1 2011.2 2012.1 2012.2

Strong Weak Strong Weak Strong Weak Strong Weak

Node.js # Co-changes 221 302 4208 5303 56 157 311 485
% Imbalance 42 58 44 56 26 74 39 61

Rails # Co-changes 12 19 47 56 65 138 66 193
% Imbalance 39 61 46 54 32 68 25 75

We used the GitHubAPI3 to gather data from the history of the source code
and pull requests from the project. We grouped all pull requests and commit
metadata considering six months as a timeframe, following the approach of Bird
et al. [6]. Besides, we excluded pull requests without commits as we needed
commits with at least two files.

To count the number of co-changes, we combined all files of the same pull
request in pairs. Going through all pull requests, for each timeframe, we accu-
mulated the number of times that a given pair of files occurred in the history of
the project. We removed all pairs with less than five couplings in a timeframe.
Five couplings were used as support count to remove a co-change from our anal-
ysis, the same approach adopted by Zimmermann et al. [30]. The support count
determines the number of occurrences of pair of files in distinct pull requests.

1 https://github.com
2 http://www.ohloh.net/ accessed on 10/04/2014.
3 GitHubAPI can be access on: http://developer.github.com/

https://github.com
http://www.ohloh.net/
http://developer.github.com/
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Since we are interested in using classification algorithms to predict how SHM
describe the co-changes of files, we categorized the change dependencies into
two classes. The first class represents strong change dependencies based on the
amount of co-changes. The second class represents pair of files with weak change
dependencies. To split the classes, we used the mean of total co-changes identified
in each timeframe. Similar approach was used by Bird et al. [6] to study software
defects.

3.2 Communication Networks and Structural Holes

A network is commonly represented as a graph G with a set of edges E and a
set of nodes N. This structure is used to represent relationships observed from
software development process and evolution [3]. In our network, each developer
represents a node. Edges represent the exchange of messages between developers.
We weighted the edges counting how many times each developer interacted with
the others over the sequence of comments made in all pull requests where the
co-changes were identified.

Suppose that developer 1 (d1) submitted a pull request and developer 2 (d2)
made a comment. We create nodes d1 and d2 and connect d2 to d1 using a
directed edge. Suppose that developer d3 write another message. We create the
d3 node and connect it to d1 and d2. Before creating a node, we check if the
node already existed. When creating an edge, we check if there is already an
edge between two developers. If it is the case, we increment the weight value of
this edge.

Burt [7] noticed that SHM concerns the notion of redundancy in networks and
the degree to which there are missing links between nodes. SHM denote gaps
between nodes in a social network or represents that people on either side of
the hole have access to different flows of information, indicating that there is a
diversity of information flow in the network. In the following, we describe four
metrics proposed by Burt.

– Effective Size is the portion of non-redundant neighbors of a node. High
values represent that many nodes among the neighbors are not redundant.
Low values indicate that there is few non-redundant neighbors.

– Efficiency normalizes the effective size by the number of neighbors. High
values show that many neighbors are non-redundant. Low values indicate a
high redundancy among the neighbors.

– Constraint measure the lack of holes among neighbors. This measure is
based on the degree of exclusive connection. Low values indicate that there
is few alternative to access a single neighbor. High values indicate many
alternatives to access the neighbors.

– Hierarchy measures the concentration of constraint to a single node. High
values indicate that the constraint is concentrated in a single neighbor. Low
values indicate that the constraint measure is the same for all neighbors.

Since we are interested in predicting co-changes using SHM obtained from
communication networks, we needed to convert the SHM measures computed
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from each developer for each co-change. To convert the SHM measures, we used
the maximum, average, and sum to aggregate them. This approach was adapted
from Meneely et al. [19].

3.3 Classification Approach

Classification algorithms learn from training sets composed of a set of features.
In this study, the features represent properties of both files and interactions of
developers and files. Our algorithms predict the change dependencies of a file,
classifying them as "strong" or "weak." The algorithms read the training set and
learn which features are most useful to differentiate the classes. We used SHM as
features to different machine learning algorithms. We also computed the number
of commits, number of updates, and number of developers that committed the
file as predictors. Number of commits was computed as the sum of all times that
each file was committed. Number of updates means the number of times that
the pair was committed together. The number of developers was computed as
the number of distinct developers that committed the co-change.

Typically, classification studies assess the predictive power of their model us-
ing recall, precision, and F-measure. This is a common way to evaluate the
performance of prediction approaches and is widely used in related literature
[24]. We calculated recall, precision, F-measure, and MCC for each timeframe
and compare the results. We used the Confusion Matrix to compute these met-
rics. The values returned by the Confusion Matrix are True Positive (TP), True
Negative (TN), False Negative (FN), and False Positive (FP) [23]. We calculated
recall to identify the proportion of instances of a category that the model could
successfully identify. We calculated precision to measure the percentage of cor-
rect identification in a class [23]. A good model yields both high precision and
high recall. However, increasing one often reduces the other. F-measure returns a
balanced score of recall and precision, calculated as the harmonic mean of these
two metrics [23].

We also used the Matthews correlation coefficient (MCC) to show the quality
of our predictions. MCC is a correlation coefficient between the observed and
predicted classifications. This measure takes into account TP, FP, TN, and FN
values and is generally regarded as a balanced measure, which can be used even
if the classes are unbalanced. This measure returns a value between -1 and +1.
A coefficient of +1 represents a perfect prediction, 0 means a random prediction
and -1 indicates total disagreement between prediction and observations. We
calculated the MCC by using the expression [23]:

MCC =

√
(((Recall(ClassStrong) + Recall(ClassWeak))− 1) ∗
(((Precision(ClassStrong) + Precision(ClassWeak))− 1)

We employed a 10-fold cross validation to evaluate the predictive power of the
models. The cross-validation approach split the data, in our case a semester, into
10 sets, each containing 10% of the data. One set is used for testing data, and
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the remaining nine sets are used as training data. Once we have class imbalanced
dataset we used cross validation to generate 10 random folds to train and test our
hypothesis. We report the average of the 10-fold cross validation. By building the
models and predicting change dependencies, we aimed to investigate the influence
of SHM in the prediction. We used the Orange tool [15] to create the learning
models and evaluate them. The workflow and raw data can be downloaded from
https://github.com/igorwiese/criwg2014.

4 Results

The main aim of this work was to verify if SHM computed from communication
networks can be used to predict change dependencies. In the following sections,
we discuss the results for each research question.

4.1 RQ1. Can SHM from Communication Networks Predict
Change Dependencies?

To study change dependencies, we split them into two classes: strong and weak,
following the procedures described in Section 3.1. We used the Orange Toolbox
[15] and Minitab Statistical Software to analyze the data.

Following Rahman and Devanbu [24] recommendation, we used more than one
classification algorithm to reduce the risk of depending on a particular learning
technique. We applied 7 well-known classification approaches, namely: Classifi-
cation Tree (CT); k-Nearest Neighbors (KNN); Neural Networks (NN); Support
Vector Machine (SVM); Regression Logistic (RL); Naïve Bayes (NB); and an
Ensemble Bagging (EB) combined with the best algorithm found in each time-
frame.

Two experiments were conducted in order to respond RQ1. First, we used all
metrics together in a single vector of features. Second, we compared each set
of metric splitting the SHM and process metrics to evaluate the performance
individually.

Table 2 presents the results for each timeframe for Node.js using SHM and
process metrics together. We only reported F-measure, recall, precision, and
MCC values for class "strong," because these dependencies are more important
since they happen more often during each timeframe of analysis. We highlighted
the best values of each evaluation metric in bold. This experiment was performed
to check how the whole set of metrics could predict change dependencies.

The results show that we achieved high results of F-measure, precision, and
recall at least in three of four periods. Considering 2011.1 using RL, we got
0.75, 0.78, and 0.73 respectively. For 2011.2, we achieved the best results with
Neural network. The worst results comparing each semester was in 2012.1. Using
NB, we got 0.50, 0.40, and 0.67. Using Bagging+NB, we got better values for
precision, but we lost performance to precision. The same happened in 2012.2
using Bagging+KNN. For the last timeframe using KNN, we achieved 0.67, 0.67,
and 0.65.
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Table 2. Node.js Classification Results

Cross Validation - 10 Fold

2011.1 2011.2 2012.1 2012.2

F1 Prec Rec MCC F1 Prec Rec MCC F1 Prec Rec MCC F1 Prec Rec MCC

CT 0.73 0.73 0.74 0.54 0.61 0.65 0.58 0.34 0.30 0.34 0.26 0.09 0.64 0.67 0.62 0.43
KNN 0.75 0.75 0.76 0.57 0.60 0.63 0.58 0.31 0.47 0.45 0.50 0.28 0.67 0.67 0.65 0.48
NN 0.74 0.76 0.72 0.56 0.65 0.70 0.61 0.41 0.29 0.39 0.23 0.12 0.62 0.75 0.53 0.45
SVM 0.69 0.68 0.70 0.46 0.57 0.69 0.49 0.34 0.00 0.00 0.00 0.00 0.56 0.57 0.55 0.29
RL 0.75 0.78 0.73 0.59 0.61 0.69 0.54 0.37 0.33 0.45 0.26 0.18 0.60 0.69 0.52 0.40
NB 0.64 0.58 0.71 0.34 0.56 0.68 0.45 0.32 0.50 0.40 0.67 0.28 0.57 0.53 0.62 0.27
EB 0.75 0.78 0.71 0.58 0.61 0.69 0.55 0.37 0.35 0.48 0.28 0.21 0.62 0.77 0.52 0.47

We also reported the MCC values. As mentioned in Section 3.3, MCC metric
means the correlation of the algorithms and features to predict both classes. For
all timeframes, we achieved results ranging from 0.28 to 0.59. We can observe
that for 2011.1, 2011.2, and 2012.2 we got good results showing moderate positive
correlation to predict both classes. The worst result can be related to the high
number of instances and the class imbalance problem noticed and reported in
Table 1.

We observed that in each timeframe, we got better results using different
classification algorithms. Trying to find the better algorithm for Node.js, we fol-
lowed D’ambros et al. [14] recommendations to pairwise comparing classification
algorithms. We used Mann-Whitney U test (at 95% confidence level) to con-
duct the comparisons. This test is non-parametric [10] and compare two group
of means. The null hypothesis of this test indicates that the mean of the two
groups are equal. This way, we grouped the results of F-measure and MCC for
each algorithm for all timeframes. After this analysis, we could not reject the null
hypothesis at 95% of significance. Thus, there is not a best algorithm because
all of them had similar results.

We analyzed the variability of each algorithm using boxplot for both eval-
uation metrics. Figure 1 shows that NB and CT had the smaller variability
among all algorithms. We observed that SVM algorithm presented the highest
variability.

We performed the same analysis on Rails and we noticed similar results to
the ones found in the Node.js project. Table 3 presents the results for Rails. We
obtained the best results of F-measure, precision, recall, and MCC for 2011.1
using NB (0.69, 0.64, 0.75, and 0.47). For the second period, KNN got the best
results (0.72, 0.70, 0.71, and 0.47). For 2012.1 and 2012.2, we got the best results
using CT. However, we highlight that NB always achieved better values of recall
considering all timeframes. The worst results were obtained for 2012.1.

We tried again to find the best algorithm by means of the Mann-Whitney U
test (at 95% confidence level) comparing the mean of F-measure and MCC of
each algorithm. Once again, we did not reject the null hypothesis.

Figure 2 presents the variability of each evaluation metric of the classification
algorithms. Similar to Node.js, we found that CT and NB presented the smaller
variability for both evaluation metrics. SVM obtained the highest variability of
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Fig. 1. Boxplot of F-measure and MCC for Node.js

Table 3. Rails Classification Results

Cross Validation - 10 Fold

2011.1 2011.2 2012.1 2012.2

F1 Prec Rec MCC F1 Prec Rec MCC F1 Prec Rec MCC F1 Prec Rec MCC

CT 0.52 0.54 0.50 0.24 0.70 0.69 0.72 0.45 0.53 0.52 0.55 0.31 0.56 0.61 0.53 0.43
KNN 0.50 0.50 0.50 0.18 0.71 0.70 0.72 0.47 0.47 0.47 0.47 0.23 0.55 0.62 0.50 0.42
NN 0.58 0.58 0.58 0.32 0.68 0.68 0.68 0.42 0.29 0.46 0.21 0.13 0.50 0.70 0.39 0.41
SVM 0.31 0.42 0.25 0.04 0.66 0.67 0.65 0.39 0.0 0.0 0.0 0.0 0.34 0.57 0.24 0.25
RL 0.50 0.62 0.41 0.28 0.60 0.59 0.61 0.25 0.32 0.41 0.26 0.10 0.51 0.69 0.40 0.42
NB 0.69 0.64 0.75 0.47 0.70 0.63 0.78 0.41 0.52 0.45 0.61 0.25 0.51 0.41 0.68 0.31
EB 0.64 0.61 0.66 0.39 0.67 0.71 0.63 0.42 0.52 0.58 0.47 0.33 0.51 0.63 0.43 0.40

F-measure and MCC for Rails. Once we achieved good results for both projects
using all metrics together, we performed a more fine-grained analysis to answer
RQ1 comparing each set of metrics independently. To perform this analysis, we
split SHM and process into two groups of metrics. We also randomly selected
only three classification algorithms, since we did not find statistical difference
among them.

Comparing the results of F-measure and MCC of each set of metrics, we
found that SHM had better results on the last semester (2012.2), and process
metrics got better results on the first semester. Considering the second and third
timeframes, the results were similar. Due to space constraints, we will not show
the complete summarization of these results, but we provide an addendum with
the results on our GitHub repository (https://github.com/igorwiese/criwg2014).

To statistically compare the set of metrics, we used Mann-Whitney U test
(at 95% confidence level). Once again, we could not rejected the null hypothesis,
showing that both set of metrics had similar performance to predict change
dependencies. Figure 3 presents the results of each evaluation metric for both
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Fig. 2. Boxplot of F-measure and MCC for Rails

Fig. 3. Comparison among set of metrics and algorithms for Node.js

SHM and process metrics for Node.js. We observed that NB and KNN had the
smaller variability using SHM metrics. However, the best result was achieved
using KNN+process metrics.

Performing the same analysis for Rails, we achieved good results using SHM
on 2011.1. For the other three semesters, we observed a small difference among
the set of metrics. We did not find statistical difference between SHM and process
metrics. We also present the boxplot to provide insights of how each set of metric
works. Figure 4 presents the results for Rails. We can observe that the variability
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Fig. 4. Comparison among the set of metrics and algorithms for Rails

among the algorithms and set of metrics are very similar. The best results were
obtained using CT and NB with SHM metrics.

As we reported in this section, for both projects, SHM and process metrics can
be used to predict change dependencies. Together they can improve the results.
However, they also can be used as individual predictors without losing predictive
power in terms of recall, precision, F-measure, and MCC.

4.2 RQ2. Which Is the Role of SHM from Communication to
Predict Co-changes?

To provide insights about how each metric help to predict change dependencies,
we used the Orange tool [15] to mine rules from classification tree. We started
the analysis building the classification tree for both projects using only SHM,
because we did not find statistical difference among the set of metrics and we
were interested in investigating the prediction performance of SHM. Then, we
analyzed the results combining both set of metrics together.

Figure 5 presents the CT for Node.js for 2011.1 timeframe. The root metric
represents the most relevant metric. In this case, constraintAvg was the most
relevant metric. Using constraintAvg higher than 0.503 and smaller or equal
than 0.503, we split the tree in two parts. The much closer from the root of the
tree, the most important the metric is. Red squares means that we found a rule to
describe "strong" class. The blue square means that "weak" class was described.
For example, we found the rule "IF constraintAVG > 0.503 and hierarchySUM >
2.594 THEN class="strong" to the red square on the third level on the left side.
We can observe that using this rule, 27 instances can be predicted as "strong"
coupling. Considering the right side, we showed two examples of rules using
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Fig. 5. Classification Tree for Node.js 2011.1

hierarchyAVG on the second and third level consecutively: (i) constraintAVG
<= 0.503 and hierarchyAVG <=0.317 THEN "strong," (ii) constraintAVG >
0.503 and hierarchySUM <= 2.594 and hierarchyAVG > 0.282 THEN "strong."

To rank the metrics we counted the amount of times that each metric ap-
peared on the first four levels of each tree for both projects. For Node.js, we
ranked the metrics following this order: constraintAVG (6), hierarchySUM (6),
hierarchyAVG (3), efficiencySUM (3), constraintMAX (2), constraintSUM (20),
effectiveSizeSUM (2), effectiveSizeAVG (1), and efficiencyAVG (1). Considering
Rails, we ranked the metrics following this order: effectiveSizeAVG (3), effi-
ciencyAVG (3), effectiveSizeSUM (2), effectiveSizeMAX (1), efficiencySUM (1),
constraintSUM (1), constraintAVG (1), and hierarchyAVG (1).

Conducting these analyses, we found that all SHM were used, however "ef-
fective size" were most frequently selected. Comparing Rails with Node.js, we
noticed that Rails needed the less amount of SHM to predict change dependen-
cies than Node.js. We also investigated the classification tree using all metrics
together. We ranked all metrics following this order to Node.js project: commits
(19), updates (14), effectiveSizeSUM (6), efficiencySUM (2), constraintMAX (3),
hierarchyMAX (2), efficiencyAVG (2), constraintAVG (2), hierarchyAVG (1),
and hierarchySUM (1). For Rails project, we can ranked the metrics following
this order: commits (8), updates (3), efficiencyAVG (3), effectiveSizeSUM (3),
effectiveSizeAVG (2), constraintSUM (2), efficiencySUM (2), efficiencyMAX (1),
hierarchySUM (1), hierarchyAVG (1), and constraintAVG (1).

The root position on the classification tree is the most important metric.
We found two process metrics at this position (commits and updates) and one
SHM (constraintMAX - 2 times) considering Node.js. For Rails, we observed
similar results, finding two process metrics (commits and updates) and two SHM
(effectiveSizeAVG and efficiencySUM).
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Only to present some examples, we choose three rules mined from classi-
fication tree used on Node.js project to predict change dependency. This three
rules were mined from communication network for 2011.1 timeframe: (i) IF com-
mits <= 86.0 AND updates <=7.5 AND effectiveSizeSUM <=115.64 THEN
class="weak", (ii) IF efficiencySUM > 1.31 AND hierarchyAVG <=0.32 AND
updates in (12.5,28.5] THEN class="strong", and (iii) IF efficiencySUM > 1.31
AND hierarchyAVG > 0.32 AND updates in (12.5,28.5] THEN class="strong".

5 Threats to Validity

Co-changes identification: We used five pull requests as support count to remove
co-changes of our study. Although this threshold is used in the literature, we
still need to evaluate the impact of other values.

Timeframe selection: We used six months to identify the co-change among
files. Furthermore, we used "five pull requests" as support to remove pair of files
that were committed four or less times among this six months of timeframe.
Other approaches like association rules was used to find co-change using a snap-
shot from source code history. We plan to study the impact of this technique on
the GitHub repository to better identify logical coupling and determine what is
the best timeframe to group co-changes and build the communication networks.
We also planned to run the experiments considering each Release instead of a
fix six months timeframe.

Generalizability: This study aimed to explore the use of SHM to predict
change dependencies. We used two popular projects from GitHub, but addi-
tional studies are necessary to generalize the results to other projects. This is
our first effort to predict change dependencies and we plan to add new social
network metrics and more projects to investigate the impact of others social
metrics over change dependencies.

6 Conclusion and Future Works

During software evolution, developers communicate and cooperate changing files
and discussing about change requests. A good understanding of the impact of
communication and cooperation can provide insights to improve software quality.
Supported by Conway’s law that states about the impact of communication over
the software design, we used SHM computed from communication networks to
study change dependencies. We computed four different SHM, to predict strong
and weak change dependencies among files changed in pull request submissions.

We answered RQ1 investigating if all of SHM and process metrics were
useful to build classification models, since we did not found previous works
that explored social aspects to predict change dependencies. Using seven well-
known classification algorithms, we achieved similar results of recall, precision,
f-measure, and MCC metrics compared to previous works that used social net-
work metrics to predict bugs and works that predict co-changes using non-social
metrics. We did not find statistical difference among algorithms for our two set
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of metrics (SHM vs process metrics). However, we found that structural metrics
for Rails project had a small advantage since it presented smaller variability
than process metrics. For Node.js, the results among the two sets were similar.
We shown this results presenting boxplots for each project.

Since we found that SHM could be used to predict change dependencies, we
explored which of the four metrics were more relevant. We inspected the rules
used to build the classification tree and predict strong and weak couplings. We
found that Node.js needed more different types of metrics than Rails. These two
projects presented very different rules, for example Node.js (Table 2) used the
constraintAVG (average of the lack of holes among neighbors) and hierarchySUM
(sum of the concentration of constraints to a single node) six times. Considering
Rails, neither of these metrics were frequently selected. For Rails (Table 3),
effectiveSizeAVG (average of the portion of non-redundant neighbors of a node)
and efficiencyAVG (average of the normalization of the effective size by the
number of neighbors) – the others two SHM – were selected more often. We
observed that different metrics were selected in specific timeframes.

As main contribution, we shown that SHM obtained from communication
networks can support the Conway’s law and predict change dependencies. Since
this first effort to use social metrics presented promising results, we will explore
more broadly this social dimension of development process. We want to inves-
tigate in future works additional projects and social metrics, and go deeper in
providing insights for managers and developers about how their collaboration
patterns can influence code quality. Besides, as we are looking into relations of
social interaction (communication) and technical work (cooperation), one can
investigate the application of these metrics in other collaboration domains.
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