
CoNCRA: A Convolutional Neural Networks Code Retrieval
Approach

Marcelo de Rezende Martins
rezende.martins@gmail.com

IPT - Institute for Technological Research
Sao Paulo, Sao Paulo, Brazil

Marco Aurélio Gerosa
marco.gerosa@nau.edu

Northern Arizona University (NAU)
Flagstaff, Arizona, United States

ABSTRACT
Software developers routinely search for code using general-purpose
search engines. However, these search engines cannot find code
semantically unless it has an accompanying description. We pro-
pose a technique for semantic code search: A Convolutional Neural
Network approach to code retrieval (CoNCRA). Our technique aims
to find the code snippet that most closely matches the developer’s
intent, expressed in natural language. We evaluated our approach’s
efficacy on a dataset composed of questions and code snippets col-
lected from Stack Overflow. Our preliminary results showed that
our technique, which prioritizes local interactions (words nearby),
improved the state-of-the-art (SOTA) by 5% on average, retrieving
the most relevant code snippets in the top 3 (three) positions by
almost 80% of the time. Therefore, our technique is promising and
can improve the efficacy of semantic code retrieval.

CCS CONCEPTS
• Computing methodologies→ Learning latent representations;
• Software and its engineering→ Reusability; General program-
ming languages.

KEYWORDS
code search, neural networks, joint embedding

ACM Reference Format:
Marcelo de Rezende Martins and Marco Aurélio Gerosa. 2020. CoNCRA: A
Convolutional Neural Networks Code Retrieval Approach. In 34th Brazilian
Symposium on Software Engineering (SBES ’20), October 21–23, 2020, Natal,
Brazil. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3422392.
3422462

1 INTRODUCTION
The advent of open-source software and question and answering
websites contributed for improving the way developers produce
code. Nowadays, code search permeates the development activities.
Developers can spend 15% of their time searching online for how a
piece of code works, how to fix a bug, and how to use an API [18].
According to Sadowski et al. [15], at Google, developers search for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SBES ’20, October 21–23, 2020, Natal, Brazil
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8753-8/20/09. . . $15.00
https://doi.org/10.1145/3422392.3422462

code 12 times a day, clicking on 2 to 3 results in average per search
session.

Most developers use general-purpose search engines (GPSE)
to look for code (e.g., Google Search), which uses page rank and
other indexes tactics that are not optimized for searching code.
Then, general-purpose search engines do not adequately find code
snippets unless they have accompanying descriptions. According
to Rahman et al. [13], developers spend more time, visit more pages,
and change queries more often when they are doing code-related
searches. In particular, newcomers to a project can greatly benefit
from semantic search since they face a variety of entrance barriers
[16].

GitHub, a popular source code hosting platform, has attempted
to build a semantic code search. They extracted millions of lines
of code from its repositories and matched each code snippet to a
docstring. The final results were not satisfactory as the tool could
find a relevant code snippet only if the user provided a query that
matched the docstring description [8]. According to Cambronero
et al. [3], users’ intents were better matched to questions collected
from question-answering sites related to programming, e.g., Stack
Overflow. Those sites allow users to ask a question and approve
the best answer for it. Other users vote for the most helpful answer
and mark the wrong or not helpful ones. Those collective actions
curate and organize information.

Initial code search studies were based on deductive-logic rules
and manually extracted features [1]. The recent success of artificial
neural networks has shifted recent works to a machine learning-
based approach. Cambronero et al. [3] coined a name, neural code
search, i.e., code search based on neural networks.

Recent works applied neural networks to summarize and retrieve
code snippets. Cambronero et al. [3] proposed a neural network
with attention mechanism and Gu et al. [7] presented a recurrent
neural network. Our novel approach is based on Convolutional Neu-
ral Networks (CNNs). For the best of our knowledge, CNNs have
not yet been used to search for code, but have achieved good re-
sults in selecting answers [5, 17]. CNNs prioritize local interactions
(words nearby) and its translation invariant, which are important
traits for our task.

In our study, we answer the following research questions:

• What is the efficacy of the CONCRA technique?
• How does it compare to the baseline and SOTA methods?

2 BACKGROUND
According to Cambronero et al. [3], the main goal of code retrieval
is to retrieve code snippets from a code corpus that most closely
match a developer’s intent, which is expressed in natural language.

526

https://doi.org/10.1145/3422392.3422462
https://doi.org/10.1145/3422392.3422462
https://doi.org/10.1145/3422392.3422462


SBES ’20, October 21–23, 2020, Natal, Brazil Marcelo de Rezende Martins and Marco Aurélio Gerosa

The first studies for code search were based on deductive-logic
rules and manually extracted features. The Deductive-logic ap-
proach, e.g., boolean model, finds a code that precisely matches
the keywords expressed in the query. According to Yan et al. [19],
these approaches are good at finding API calls and error messages,
but struggle to find reusable code and examples that do not have
an exact match between the code and query.

Since neural networks showed good results at translation, question-
answering, and classifications tasks in natural language process-
ing, recent works adopted the neural networks for code search.
These studies aim to discriminate relevant code snippets from non-
relevant ones based on the user’s intent. In pursuance of that, code
retrieval is reduced to a ranking problem, in which neural networks
aim to place code snippets that closely match the developer’s intent
in the top positions. The most common strategy is joint embedding.
Joint embedding maps heterogeneous data into a common vector
space, in which the distance between embedded input reflects the
similarity between the underlying items [11] (see Figure 1).

</>

incorrect code snippet

correct code snippet

question

[1. , 0.5, 1.]

[1. , 0., 0.5]

0.89

 question encoder

code snippet encoder Shared vector space

Figure 1: Illustration of the joint embedding technique for
code retrieval. Two neural networks map a question and a
code snippet into a common vector space. The distance be-
tween the vectors reflects the relevance of a code snippet to
a question. Adapted from [3].

To apply joint embedding, one needs to consider word, sentence,
and joint embedding. Embedding refers to a continuous vector in
a lower dimensional vector space. A function that maps an input
to a continuous vector is called encoder. Given an input set 𝑋 , an
encoder function 𝐹 can be defined as [3]:

𝐹 : 𝑋 → 𝐸 (1)
For code retrieval, 𝑋 can be a set of questions or code snippets

and𝐸 is a set of continuous vectors or embeddings, such that𝐸 ⊂ 𝑅𝑑 ,
where 𝑑 is the dimension. The main goal is to learn two encoders
𝐹 and 𝐺 that map a question and a code snippet, respectively, into
a common vector space, so that the distance between the vectors
reflects the relevance of a code snippet to a question.

3 METHODOLOGY
In this work, we propose the use of convolutional neural networks
to learn sentence embedding, i.e., convolutional neural networks
will encode the question and code snippet into a continuous vector
in a shared vector space. In the following, we explain how words
are embedded and what objective function we use, as the objective

function tells how neural networks should approximate questions
and code snippets.

3.1 Word embedding
The words and terms of a question and code snippet must be en-
coded into a numeric vector. The most common encoder for words
is word2vec, which embeds a word into a continuous vector based
on the distributional hypothesis. The distributional hypothesis says
that two words are similar if they appear together frequently in
different contexts [6]. Context can be a sentence, paragraph, or
document in NLP tasks. In our case, the context is questions and
code snippets.

Word2vec has two strategies: continuous-bag-of-words (CBoW)
and skip-gram. The main difference is that CBoW predicts a tar-
get word given context words, and skip-gram predicts the context
words given a single word. According to Mikolov et al. [12], CBoW
showed good results at syntactic tasks, e.g., finding a superlative of
a word or identifying an adverb. At the same time, skip-gram pre-
sented good performance for semantic tasks, e.g., finding a state’s
capital or grouping feminine and masculine words.

In our work, we opted for skip-gram as a semantic trait is prefer-
able. Semantic trait can help the neural networks to discriminate
conditional clauses (e.g., if, elsif ) and loop iteration (e.g., for, while),
for example. Figure 2 shows an application of word2vec in a Python
related corpus. We can see the similarities between file, write, and
open, and set, list, and dict based on the distance between them.

Figure 2: 2D picture of continuous vectors of the 66 most
frequent words from a Python corpus 𝑉 . The illustration
was generated by t-SNE, which allows 2D visualization from
high-dimensional data. We applied word2vec with skip-
gram and a parameter window 5.

3.2 Sentence embedding
We can combine the word embeddings to obtain a sentence embed-
ding. We combine word embeddings by using convolutional neural
networks. Convolutional neural networks showed good results at
answer selection tasks in NLP—given a question and a set of an-
swers, the model ranks the best answers. Convolutional networks
prioritize local interactions (e.g., words nearby) and cannot capture
long-range dependencies (e.g., distant words in a sentence). How-
ever, this issue is mitigated for code retrieval since most questions
and code snippets are short in length.

527



CoNCRA: A Convolutional Neural Networks Code Retrieval Approach SBES ’20, October 21–23, 2020, Natal, Brazil

Given an sentence 𝒙 = {𝒙 (0), 𝒙 (1), ..., 𝒙 (𝑛−1)}, such that 𝒙 (𝑖) ∈
R𝑑 is a continuous vector that represents the 𝑖𝑡ℎ word of the sen-
tence. Convolutional neural networks combine the elements of
vector 𝒙 by applying 2 basic operations: Convolution operation and
Maxpool.

A convolution operation uses a filter 𝑭 = [𝑭 (0), , 𝑭 (𝑚 − 1)],
such that 𝑭 ∈ R𝑚𝑋𝑑 . The operation applies the filter in𝑚 words
(window size) to produce a new vector. Suppose 𝒙 (𝑖, 𝑖 + 𝑗) refers to
a concatenation of the vectors 𝒙 (𝑖), 𝒙 (𝑖 + 1), ..., 𝒙 (𝑖 + 𝑗). If we apply
𝑭 to 𝒙 (𝑖, 𝑖 +𝑚 − 1), then we can calculate a new vector 𝒄 (𝑖) by:

𝒄 (𝑖) = 𝑡𝑎𝑛ℎ

©«
𝑚−1∑
𝑗=0

𝒙 (𝑖 + 𝑗)𝑇 𝑭 ( 𝑗)ª®¬ + 𝑏
 (2)

In the equation 2, 𝑭 and 𝑏 are learnable weights and bias, re-
spectively. The convolution operation slides the filter 𝑭 across the
height of input 𝒙 and computes the dot product between the entries
of the filter and the input [10]. The operation returns a feature map
𝒄 .

𝒄 = {𝒄 (0), 𝒄 (1), ..., 𝒄 (𝑛 −𝑚)} (3)
The feature map (or activation map) contains the latent and most

important features of a sentence. A convolutional neural network
may contain thousands of filters, each one extracting specific m-
gram features (e.g., a filter of 𝑚 size 2 extracts bigram features).
The quantity of feature maps is |𝐹 |, i.e., the number of filters. After
the convolution operation, a pooling layer operates independently
on every feature map resizing it spatially, using a max operation
[10]. The max operation is applied along the 𝑎𝑥𝑖𝑠 = 0 to produce
the final vector 𝒐:

𝒐 =𝑚𝑎𝑥

( [
𝒄1, 𝒄2, ..., 𝒄 |𝐹 |

]
, 𝑎𝑥𝑖𝑠 = 0

)
(4)

The max-pooling helps the convolutional neural networks to be
translation invariant. Regardless of the word’s position shift, the
max-pooling selects the most relevant features and inserts it into
the final vector. Figure 3 shows the results of each operation. We
use the vector 𝒐 as our sentence embedding, then 𝒐 represents a
question or a code snippet, in our case.

3.3 Joint embedding
We treat code retrieval as a ranking problem, in which a model
should rank relevant code in the top positions based on the de-
veloper’s intent. To do so, we adopted an objective function that
prioritizes the relative preference of the code snippets. In our case,
the objective function helps the neural networks to separate the
correct answers from incorrect ones during the training phase.

Given a question and code snippet set, Q and C, our training
input comprises a triple < 𝒒, 𝒄+, 𝒄− >, where 𝒄+ ∈ C indicates a
correct code snippet for a question 𝒒 ∈ Q and 𝒄− ∈ C an incorrect
one sampled from the training data. We used the hinge loss as our
objective function. Formally, for a triple < 𝒒, 𝒄+, 𝒄− >, the definition
of hinge loss is:

𝐽 =𝑚𝑎𝑥 (0,𝑚 − ℎ𝜃 (𝒒, 𝒄+) + ℎ𝜃 (𝒒, 𝒄−)) (5)
𝑚 is a margin and ℎ𝜃 is a similarity function (e.g., cosine). During

the training phase, the goal is to minimize the cost function 𝐽 .

with

open
“�lename”

“mode”
as

f

d = 5

m = 2

d = 5

n = 6

relu

+ b

x F c

max (

, axis = 0)

[  c   ,   c   ,

        , . . ., c    
     ]

1 2

|F|

|F| = 4

Figure 3: Schematic drawing of our Convolutional Neural
Networks (CNN) operations. Our example shows 4 filters
𝑭 ∈ R𝑚𝑋𝑑𝑋 𝑓 with window size 𝑚 = 2. We slide each filter
across the height of the input 𝒙 ∈ R𝑛𝑋𝑑 , where 𝑛 = 6 and
𝑑 = 5, and computes the dot product between the entries of
the filter and the input [10]. It returns a feature map 𝒄 . In
the end, a max pooling layer resizes every feature map spa-
tially, obtaining the final vector 𝒐. We use the vector 𝒐 as our
question and code snippet embedding. Adapted from [21].

To obtain that, the model aims to satisfy the following condition:
ℎ𝜃 (𝒒, 𝒄+) − ℎ𝜃 (𝒒, 𝒄−) ≥ 𝑚. Then, the hinge loss function induces
our model to score 𝑐+ higher than 𝑐− for a given margin𝑚. For the
similarity function ℎ𝜃 , we used cosine.

4 EXPERIMENTS
To verify the efficacy of our approach and how it compares to
other approaches, we trained and evaluated all models in the same
environment, following Yao et al. [20] and Iyer et al. [9] experiment
protocol. We compared the following approaches:

• CoNCRA: our proposed approach, described in Section 3.
We tried two variations of our approach, the Convolutional
Neural Networks (CNN) and Shared CNN. Their difference is
that Shared CNN shares the weights by learning the question
and code snippet embeddings, while CNN learns different
weights for each one.

• Embedding: it is our baselinemodel. It is a simple architecture
that applies a max-pooling layer to the word embeddings.

• Unif : it is the solution proposed by Cambronero et al. [3].
They used two distinct layers for the question and code
snippet embedding. They applied an average pooling layer to
word embedding in order to learn the question embeddings.
For the code snippet, they used an attention mechanism,
which applies a weighted average to each word embedding,
”giving attention” to the most relevant word of the code.

We evaluated the models on the StaQC dataset, a systemati-
cally mined question-code dataset from Stack Overflow [20]. The
main difference of StaQC to other datasets is that it is composed
of ”how-to-do-it” questions, as most of the answers to those types
of questions are straightforward. StaQC contains SQL and Python
questions, but, in our experiments, we used Python questions only.

528



SBES ’20, October 21–23, 2020, Natal, Brazil Marcelo de Rezende Martins and Marco Aurélio Gerosa

Question
Code snippet Python SQL
𝑁1: Single code snippet in the answer
description

85.294 75.637

𝑁2: Automatically annotated code snip-
pets

60.083 41.826

𝑁3: Manually annotated code snippets 2.169 2.056
Total 147.546 119.519

Table 1: Summary of StaQC dataset [20]. Questions from
𝑁2 sample ("Automatically annotated code snippets") may
contain more than one code snippet per answer description.
Some code snippets may not be a solution to the question.
So, the authors proposed a framework to annotate the code
snippets automatically and it could achieve an F1 score of
0, 916 and an accuracy of 0, 911.

Sample Quantity of pairs < 𝑞𝑖 , 𝑐
+
𝑖
>

𝑁2 = Training 60.083
𝑁3 ⊃ DEV 1.085
𝑁3 ⊃ EVAL 1.084
Total 62.252

Table 2: Summary of our training and evaluation samples.
The samples are composed of a pair < 𝑞𝑖 , 𝑐

+
𝑖

>, where 𝑞𝑖 is
a question and 𝑐+

𝑖
is a code snippet annotated as solution.

We split themanually annotated dataset into two parts: DEV
and EVAL, according to [9] procedure.

All models were trained on sample 𝑁 2 (see Table 1 and Table 2),
because 27% of the questions contain more than one annotated an-
swer, leading to more variance in our training dataset. The training
and evaluation follow Iyer et al. [9]’s procedure, in which the model
is evaluated on a manually annotated dataset each epoch according
to a Mean Reciprocal rank (MRR). The MRR tells if a model ranked
the annotated answer in higher positions, i.e., higher values for
MRR indicate that the accepted answers were ranked in the top
positions.

For the training phase, we split 70% of𝑁 2 sample for training and
30% for validation. We run the models for 500 epochs and stop early
if the training loss (𝐽 ) is less than 0.0001 or the validation loss does
not improve after 25 consecutive epochs. For the final evaluation,
we choose the best model of the training phase according to MRR
and run it for 20 iterations in the 𝑁 3 sample (see Table 2). The final
result is the average of the MRR for each pair < 𝑞𝑖 , 𝑐

+
𝑖

> of 𝑁3
and other 49 distractors 𝑐 𝑗 , which were selected randomly from the
training sample, such that 𝑐+

𝑖
≠ 𝑐 𝑗 .

We provide the source code for our preliminary experiments
in the following repository: https://github.com/mrezende/concra.
The repository contains our proposed model, the baseline ones,
training, and evaluation source code. We also provide the original
and pre-processed dataset. The source code is written in Python,
version 3.6.9, and we used the libraries Keras (version 2.2.4-tf) and
TensorFlow (1.15.2). The tests were all conducted in the Colab

platform1. In Figure 4, we provide examples of the output of our
tool.

Q1: �nding the max of a column
 in an array

import numpy as np

aa= np.random.random([4,3]) 
print aa
print
print np.max(aa,axis=0)
print
print np.max(aa,axis=1)

chapters = ['one', 'two', 'three',]

for x in chapters:
    print x
    if x != chapters[-1]:
        print 'next'

import numpy as np
a = np.ones((1,2,2,2))
print(a.shape) # (1, 2, 2, 2)

A 1.1

A 1.2

A 1.3

Q2: Check if all elements of one array is in 
another array

def is_slice_in_list(s,l):
    len_s = len(s) 
    return any(s == l[i:len_s+i] 
  for i in xrange(len(l) 
   - len_s+1))

sum(all(a == b for a, b in 
  izip_longest(target, 
 my_list[(i * n):((i + 1) * n)])) 
   
  for i in range(len(my_list)
    // n))

A 2.1

A 2.3

np.argwhere((B[:,None,[0,1]] == A[:,[1,2]]).all(-1))

A 2.2

Figure 4: Example of questions and that our model (CoN-
CRA) gave. Our model answered the first question (Q1) cor-
rectly, selecting an answer (A 1.1) based on the Numpy li-
brary, which adds support for multi-dimensional and large
arrays in Python. The second answer (A 1.2) for the first
question returns the last element of an array, which is incor-
rect, but seems interesting. The third one (A 1.3) shows the
array’s dimension using the Numpy library, so our model
found a correlation between Numpy and array operations.
In the other example (Q2), the first answer is incorrect, as
it checks the presence of elements in a matrix, not an array.
Again, our model showed a Numpy answer. The second one
(A 2.2) is the correct answer, and the third one (A 2.3) checks
how many times a sequence repeats in a data frame.

4.1 Results
Table 3 compiles the final results after 20 runs on the 𝑁3 sample.
Shared CNN with 4000 filters got the best results (row D3 and F3).
Our proposed architecture achieved an MRR score 5% higher on
average than the best result obtained by Unif (row B1), which can
be considered a state-of-the-art approach. Our MRR result is 11%
higher than the baseline model (row A1).

As presented in Table 3, an increase in the number of filters
resulted in a better performance for CNN, as the model capacity
and the number of extracted features grow (row D3 and F3). We
tried different margin loss (see Section 3.3). CNN got the best results
with 0.05, while Unif and Embedding got better results with 0.2 and
0.1, respectively.

We verified that shared weights models (row D and F) got better
results than independently weights ones (row C and E). One reason
is that the optimizer of independent weights architecture has to
learn the double of parameters, increasing the learning difficulty [5].
We also tried a batch normalization technique to avoid overfitting

1https://colab.research.google.com/

529

https://github.com/mrezende/concra
https://colab.research.google.com/


CoNCRA: A Convolutional Neural Networks Code Retrieval Approach SBES ’20, October 21–23, 2020, Natal, Brazil

Results
Models MRR TOP-1

A1 Embedding (m = 0.1) 0.637 0.493 ± 0.009
B1 Unif (m = 0.2) 0.675 ± 0.006 0.539 ± 0.009
C1 CNN / F = 1000 0.669 ± 0.006 0.527 ± 0.012
C2 CNN / F = 2000 0.673 ± 0.007 0.531 ± 0.012
C3 CNN / F = 4000 0.687 ± 0.006 0.553 ± 0.011
D1 Shared CNN / F = 1000 0.678 ± 0.007 0.548 ± 0.012
D2 Shared CNN / F = 2000 0.694 ± 0.008 0.565 ± 0.012
D3 Shared CNN / F = 4000 0.700 ± 0.004 0.569 ± 0.009
E1 CNN with BN / F = 1000 0.682 ± 0.007 0.543 ± 0.012
E2 CNN with BN / F = 2000 0.689 ± 0.006 0.553 ± 0.011
E3 CNN with BN / F = 4000 0.688 ± 0.006 0.553 ± 0.011
F1 Shared CNN with BN / F = 1000 0.690 ± 0.008 0.553 ± 0.015
F2 Shared CNN with BN / F = 2000 0.700 ± 0.007 0.573 ± 0.012
F3 Shared CNN with BN / F = 4000 0.701 ± 0.008 0.577 ± 0.015

Table 3: The experimental results of EVAL sample for Embedding, Unif, and our two CNN variations: CNN and Shared CNN.
m refers to the margin loss of the hinge loss function (lines A1 and B1). F indicates the number of filters. BN is an acronym of
Batch Normalization. Our CNN architecture used a margin loss𝑚 = 0.05 and a window size of 2.

and help our models learn quickly and a more stable way, but only
CNN and Shared CNN got better results. For Unif and Embedding,
it did not improve the performance at all.

Figure 5 illustrates the MRR (Mean Reciprocal Rank), showing
the first position of the annotated code snippet during the final
evaluation.

0 10 20 30 40 50
0.0

0.1

0.2

0.3

0.4

0.5

0.6 shared-cnn-with-bn
unif
embedding

Figure 5: Histogram of the first positions observed for the
annotated code snippet during the final evaluation. The la-
bels shared-cnn-with-bn, unif, and embedding refer to lines
F3, A1, and B1, respectively, in Table 3.

Both CNN and Unif ranked the code snippets among the first
three positions in 75% of cases. We got a TOP-1 accuracy of 60%, i.e.,
we ranked the relevant code snippet in the first place in 60% of cases.
Unif and Embedding got a TOP-1 accuracy of almost 50%. However,
it is worth noticing that MRR considers only the annotated code
snippet position. If the model shows up another code snippet, which

correctly answers the question, our metric does not consider it and
the model is penalized.

4.2 Threats to validity
We trained the models on the StaQC dataset, a systematically mined
Stack Overflow dataset. The authors used neural networks to an-
notate the code snippets trained on a manual dataset. In our case,
we trained the models on the automatically annotated corpus and
evaluated on the manual ones. To mitigate bias, we adopted Iyer
et al. [9]’s procedure for training and evaluation.

5 RELATEDWORK
We summarize the difference between our work and related work
in Table 4. Most works differ on how they combine the word embed-
dings to obtain a sentence embedding. Recent works (row E and F)
used Skip-gram (see Section 3.1) and adopted simpler architectures
for sentence embedding than previous work (row C and D).

Previous work (rows D to F) that used GitHub data extracted
the methods from the source code and matched them to docstring
descriptions. Works that used Stack Overflow data (rows A to C)
paired question titles to the accepted answers’ code snippet. For
the search corpus, some works (rows D to F) adopted a GitHub
corpus with millions of pieces of code, while others (rows A to C)
retrieved code snippets from a small sample of 50 randomly selected
code snippets. These studies (rows A to G) are commonly evaluated
using questions collected from Stack Overflow.

Although our architecture is more complex, since it requires
more parameters and time to train, than Cambronero et al. [3]’s
(row F) architecture (SOTA), we can train our model offline. We
matched question title to code snippets collected from Stack Over-
flow following Allamanis et al. [2] and Iyer et al. [9] (rows A and
B) work.

530



SBES ’20, October 21–23, 2020, Natal, Brazil Marcelo de Rezende Martins and Marco Aurélio Gerosa

Work Feature Word Em-
bedding

Sentence
Embed-
ding

A Allamanis et al.
[2]

Token /
Parse Tree

Probabilistic
Model

Average
/ Context
matrix

B Iyer et al. [9] Token One-hot en-
coding

LSTM with
attention
mechanism

C Chen and Zhou
[4]

Token Bi-VAE Bi-VAE,
Average
and MLP

D Gu et al. [7] Token /
Method
name, API
invocation
and Token

bi-LSTM Max-
pooling
/ Max-
pooling and
MLP

E Sachdev et al.
[14]

Token Skip-gram Average /
TF-IDF

F Cambronero
et al. [3]

Token Skip-gram Average /
Attention

G Our work Token Skip-gram CNN
Table 4: Summary of related joint embedding work. The col-
umn Feature refers to question and code representation. Dif-
ferent approaches for a question and code snippet are sepa-
rated by slash (”/”), showing the question method first fol-
lowed by the code snippet technique. Adapted from [19].

6 CONCLUSION
Our model, CoNCRA, achieved an MRR score 5% higher on average
than Unif, a state-of-the-art technique. We could rank the most
relevant code snippet among the first 3 (three) positions in 78% of
cases. Our technique achieved a TOP-1 accuracy of 60%, while the
other techniques achieved 50%.

The results seem promising, and we plan further investigation
to check if our model is invariant to other datasets. We will also
investigate transfer learning, e.g., checking if a model trained on
a Stack Overflow dataset (curated corpus) can find relevant code
snippets in a GitHub corpus (non-curated one). Our approach is
based on an NLP technique proposed by Feng et al. [5], and future
work may use transformers and autoencoders, as those techniques
showed good results in many NLP tasks.

7 ACKNOWLEDGEMENT
This work was partially supported by the National Science Founda-
tion (grant 1815503).

REFERENCES
[1] Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu, and Charles Sutton. 2018.

A Survey of Machine Learning for Big Code and Naturalness. ACM Comput.
Surv., Article 81 (July 2018), 37 pages.

[2] Miltiadis Allamanis, Daniel Tarlow, AndrewD. Gordon, and YiWei. 2015. Bimodal
Modelling of Source Code and Natural Language. In Proceedings of the 32Nd
International Conference on International Conference onMachine Learning - Volume
37. JMLR.org, 2123–2132.

[3] Jose Cambronero, Hongyu Li, Seohyun Kim, Koushik Sen, and Satish Chandra.
2019. When Deep Learning Met Code Search. In Proceedings of the 2019 27th

ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 964–974.

[4] Qingying Chen and Minghui Zhou. 2018. A Neural Framework for Retrieval and
Summarization of Source Code. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering. 826–831.

[5] M. Feng, B. Xiang, M. R. Glass, L. Wang, and B. Zhou. 2015. Applying deep
learning to answer selection: A study and an open task. In 2015 IEEE Workshop
on Automatic Speech Recognition and Understanding (ASRU). 813–820.

[6] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

[7] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep Code Search. In
Proceedings of the 40th International Conference on Software Engineering. 933–944.

[8] Hamel Husain and Ho-HsiangWu. 2018. How To Create Natural Language Seman-
tic Search For Arbitrary Objects With Deep Learning. https://towardsdatascience.
com/semantic-code-search-3cd6d244a39c

[9] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016.
Summarizing Source Code using a Neural Attention Model. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). 2073–2083.

[10] Fei-Fei Li, Andrej Karpathy, and Justin Johnson. 2016. CS231n: Convolutional
Neural Networks for Visual Recognition 2016. http://cs231n.stanford.edu/

[11] Yangyan Li, Hao Su, Charles Ruizhongtai Qi, Noa Fish, Daniel Cohen-Or, and
Leonidas J. Guibas. 2015. Joint Embeddings of Shapes and Images via CNN Image
Purification. ACM Trans. Graph. 34, 6, Article 234 (Oct. 2015), 12 pages.

[12] Tomas Mikolov, Kai Chen, Greg S. Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. http://arxiv.org/abs/1301.
3781

[13] Md Masudur Rahman, Jed Barson, Sydney Paul, Joshua Kayani, Federico Andrés
Lois, Sebastián Fernandez Quezada, Christopher Parnin, Kathryn T. Stolee, and
Baishakhi Ray. 2018. Evaluating How Developers Use General-Purpose Web-
Search for Code Retrieval. In Proceedings of the 15th International Conference on
Mining Software Repositories. 465–475.

[14] Saksham Sachdev, Hongyu Li, Sifei Luan, Seohyun Kim, Koushik Sen, and Satish
Chandra. 2018. Retrieval on Source Code: A Neural Code Search. In Proceed-
ings of the 2Nd ACM SIGPLAN International Workshop on Machine Learning and
Programming Languages. 31–41.

[15] Caitlin Sadowski, Kathryn T. Stolee, and Sebastian Elbaum. 2015. HowDevelopers
Search for Code: A Case Study. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering. 191–201.

[16] Igor Steinmacher, Tayana Conte, Marco Aurélio Gerosa, and David Redmiles.
2015. Social barriers faced by newcomers placing their first contribution in open
source software projects. In Proceedings of the 18th ACM conference on Computer
supported cooperative work & social computing. 1379–1392.

[17] Jiahui Wen, Hongkui Tu, Xiaohui Cheng, Renquan Xie, and Wei Yin. 2019. Joint
modeling of users, questions and answers for answer selection in CQA. Expert
Systems with Applications 118 (2019), 563 – 572.

[18] Xin Xia, Lingfeng Bao, David Lo, Pavneet Singh Kochhar, Ahmed E. Hassan, and
Zhenchang Xing. 2017. What Do Developers Search for on the Web? Empirical
Softw. Engg. 22, 6 (Dec. 2017), 3149–3185.

[19] S. Yan, H. Yu, Y. Chen, B. Shen, and L. Jiang. 2020. Are the Code Snippets What
We Are Searching for? A Benchmark and an Empirical Study on Code Search
with Natural-Language Queries. In 2020 IEEE 27th International Conference on
Software Analysis, Evolution and Reengineering (SANER). 344–354.

[20] Ziyu Yao, Daniel S. Weld, Wei-Peng Chen, and Huan Sun. 2018. StaQC: A
Systematically Mined Question-Code Dataset from Stack Overflow. In Proceedings
of the 2018 World Wide Web Conference. 1693–1703.

[21] Ye Zhang and Byron C.Wallace. 2015. A Sensitivity Analysis of (and Practitioners’
Guide to) Convolutional Neural Networks for Sentence Classification. CoRR
abs/1510.03820 (2015). http://arxiv.org/abs/1510.03820

531

http://www.deeplearningbook.org
https://towardsdatascience.com/semantic-code-search-3cd6d244a39c
https://towardsdatascience.com/semantic-code-search-3cd6d244a39c
http://cs231n.stanford.edu/
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1510.03820

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	3.1 Word embedding
	3.2 Sentence embedding
	3.3 Joint embedding

	4 Experiments
	4.1 Results
	4.2 Threats to validity

	5 Related Work
	6 Conclusion
	7 Acknowledgement
	References

