

Recommending Mentors to Software Project Newcomers

Igor Steinmacher, Igor Scaliante Wiese

Computer Sciences Coordination

Federal University of Technology – Paraná (UTFPR)

Campo Mourão, Brazil

{igorfs, igor}@utfpr.edu.br

Marco Aurélio Gerosa

Computer Science Department

University of São Paulo(USP)

São Paulo, Brazil

gerosa@ime.usp.br

Abstract—Open Source Software projects success depends

on the continuous influx of newcomers and their contributions.

Newcomers play an important role as they are the potential

future developers, but they face difficulties and obstacles when

initiating their interaction with a project, resulting in a high

amount of withdrawals. This paper presents a

recommendation system aiming to support newcomers finding

the most appropriate project member to mentor them in a

technical task. The proposed system uses temporal and social

aspects of developer’s behavior, in addition to recent

contextual information to recommend the most suitable

mentor at the moment.

Keywords-recommendation system; open source software;

newcomers; mentor recommendation

I. INTRODUCTION

Many open source software (OSS) projects are self-
organized and dynamic with volunteers from all over the
world contributing and collaborating to a software product.
A continuous influx of newcomers and their active
engagement with development activities are crucial for the
success of Open Source Software (OSS) projects [1].

However, newcomers face difficulties and obstacles
when initiating their interaction within a project. Degenais et
al. [2] compare OSS newcomers to explorers who must
orient themselves in an unfamiliar landscape. On one hand,
they are expected to learn about technical and social aspects
of the project on their own, exploring the information
available in mail lists, wikis, source code repositories, and
issue tracking systems [3]. On the other hand, it is not easy to
access the information because of its sheer volume, the lack
of tools to effectively navigate the repositories, and the
difficulty of making connections between logically related
items in disparate repositories [4]. Additionally, there is no
guarantee that the information available are up-to-date or
complete enough to support a newcomer, what can result in
misunderstandings and possible rework.

To avoid this kind of situation, newcomers often start
their contribution by interacting with other members [1].
They use the mail lists or developers’ contact information
listed on the project website to help them choose a task,
finding the right resources, report interest, etc. [5]. However,
receiving an improper answer (or no answer) when sending
an email can result in newcomers withdrawal. Von Krogh et
al. [5] and Jensen et al. [6] analyzed the history of mail lists
of OSS projects and demonstrated that receiving a (timely)
reply is essential to make newcomers continue contributing.

In Section II, we present two real cases in which improper
communication, outdated information and lack of
information discouraged newcomers.

In traditional software development teams, existing
members are assigned as mentors to guide newcomers [7].
According to Degenais et al. [2], human guides make a key
difference to how easy it is for newcomers to find their way
and settle in. Newcomers can have their mentor as a safe
harbor, who can warn them about possible problems to be
faced and show them what is important to know when
executing a given task. Mentors can emphasize hard-to-find
information that is typically difficult for the newcomers to
acquire on their own [4].

In order to help addressing the issues and obstacles faced
by newcomers, in this paper, we propose a recommendation
system to help them finding the most appropriate project
member to mentor a specific technical task (e.g., a bug),
guiding their initial steps in an OSS project. To proceed with
the recommendation, we aim to use historical information
available on source code repositories, mail lists and issue
trackers, and users’ interaction with the IDE. To check the
most suitable person to mentor the newcomer, the system
will take into account specific user behavior regarding
temporal and social aspects.

The rest of the paper is organized as follows: in Section
II we present some cases that motivated our research; in
Section III we present the proposed recommendation system;
Section IV brings some related works; and Section V
presents some concluding remarks and future works.

II. (DE) MOTIVATION CASES

In this section, we will present two real cases that
occurred in an Open Source course attended by a group of
PhD candidates, including two authors of this paper. During
the course, the students were separated in groups and
requested to join and contribute to different OSS projects.
These cases illustrate some obstacles that newcomers face
when starting their contribution to an OSS project.

A. Case I

The first case occurred with a group joining an 8 years
old project with 30+ developers and more than 5000 weekly
downloads. They started lurking on documentation, mail lists
and to set up their local workspaces. They sent an email to
the developers that appear as project owners requesting some
guidance on which bugs could be good to start with or what
kind of technical work was needed at that moment. The
email was not replied after one week. They insisted sending

978-1-4673-1759-7/12/$31.00 c© 2012 IEEE RSSE 2012, Zurich, Switzerland63

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on May 18,2022 at 02:31:18 UTC from IEEE Xplore. Restrictions apply.

another email and the day after they received a reply, that
was not so helpful, apologizing for the delay.

The group started (by themselves) identifying some
opened bugs and features that were apparently ‘easy’ to be
addressed and analyzing the code to find out the classes and
artifacts that needed to be changed. They selected an
‘apparently small’ feature request and implemented. But,
when they started testing the feature, they found a shortcut
key with the desired feature already in place. Although
already addressed, the feature request information was
outdated, with the status open, without any comment posted.
After 2 months contributing, the group tried to address 12
features/bugs, however they found that 5 of them (42%)
were already addressed, but the issues were not updated.

Another issue occurred when the group decided to start
translating the software into their native language. They
announced the translation in the open discussion forum
(where translations to other languages were announced
before). After 20 days working one member noted that the
translation files had appeared on his workspace after pushing
the changes from the central repository. Another contributor
had already proceeded the translation. The forum thread
announcing the translation did not receive any reply or
comment. We contacted the committer and he said he does
not even look at that forum and that the other translator
contacted him in private and started translating.

We can see many demotivating facts that occurred in this
case: emails not answered after a week could make the group
withdraw; outdated information on the issue tracker made
the developers waste time on an already existent feature and
on checking each issue they pick to address; a message
posted in a forum to announce a new translation was not read
and resulted in concurrent work and wasted time.

B. Case II

The second case was reported by a group that started
contributing to a large, successful and well known OSS
project. They have also faced some issues when initiating
their work. When asking the owners and core developers
about what kind of technical work could be done by
newcomers they were directed to the project page and to a
specific page presenting a step by step on how to start
contributing. The guide, according to them, is very well
structured and present valuable information

The newcomers followed the guide and decided to start
fixing some bugs. At this point they found the same problem
as the aforementioned group faced in Case I: outdated
information when picking bugs to solve. They found many
bugs tagged as good for newcomers, however some were
already fixed, but still with ‘open’ status without any
information regarding how it was addressed. They also
wasted time on an already existent feature and on checking
each issue they pick to address before thinking about the
solution. Once again, newcomers became demotivated due to
outdated information.

III. RECOMMENDATION SYSTEM TO SUPPORT NEWCOMERS

Newcomers have difficulty on guiding themselves in the
middle of a huge amount of information, which they do not

know if is up-to-date or not, and with no clues on who can
provide them a timely answer when they face a problem. To
address this problem we propose a system that recommends
a project member who can act as a mentor for a newcomer in
a given technical task.

The proposed system focus on newcomers that want to
start contributing directly on the source code, implementing
a bug fix or addressing an issue. We are not interested in
recommending the most appropriated person to answer a
question sent to a forum or mail list, but in recommending
the most adequate person to provide support to a newcomer
in a given task. It is worth to notice that we also do not
intend to support or guide newcomers selecting an issue, but
recommending a mentor for the issue they select.

When newcomers want to start their technical
contribution to a project, they can do it choosing a bug or an
issue they find appropriate (some OSS projects – e.g.
Mozilla – already tag the issues as ‘easy’ during the triage).
According to the issue selected, a mentor is recommended to
the newcomer, enabling him to start an interaction with other
project member. The mentor is a person who can advise the
newcomer and provide some help for that specific bug or
issue. The support provided can include indicating the
artifacts to look at or to change, the documents that can offer
support, indicating the most appropriate forum to deliver a
question, and how to get the code into the repository.

To understand how the recommendation system works,
we present the proposed high level architecture in Fig. 1. The
recommendation process will be triggered every time a new
issue is reported. All recommendations will be recalculated
periodically for all the issues opened, to update the mentor
according to the most recent interactions and events. The
system will recommend the most appropriate mentor
according to developers’ technical, social and current interest
scores. The system inputs are information coming from
different sources. These inputs are analyzed to calculate the
scores for each developer and recommend the mentors. In
Section III.A we present details of the inputs and in Section
III.B we detail the modules that handle these inputs and
calculate the technical, social and current interest score.

A. Recommendation System Inputs

In order to recommend the most appropriate mentor to an
issue we will use as inputs the historical information and
workspace information. Our goal is to recommend the most
suitable mentor at that moment. By “most suitable”, we
mean that the system will recommend someone with skills
that match the selected issue. However, our approach will
also consider temporality of the interactions, and developers’
social skills. We will use this information to check the
recent activity of the developers to verify if they are still
active and to verify their recent interests.

The historical information will be extracted from source
code history, mail lists threads and issue tracker comments,
like in other works found in the literature [8] [9] [4] [10].
The workspace context will be extracted from the stored
developers’ interaction events with the IDE, like in [11] [12].

The historical inputs enable to infer how developers and
source code are related. From the source code repository it

64

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on May 18,2022 at 02:31:18 UTC from IEEE Xplore. Restrictions apply.

Mail threads

Issue Tracker

Source code

artifacts

Relationship Analyzer

Sociability Analyzer

Temporal Analyzer

Workspace

information

Workspace Metrics

Analyzer

Technical Score

(Temporal)

Social Score

(Temporal)

Mentor Recommender

Recent Context

Analyzer

Current Interest

Score

Figure 1. System high level architecture

is straightforward to extract the relationship among source
code artifact and developer – ‘who changed what’ – simply
checking the history. It is also possible to infer logical
dependencies among source code artifacts by checking the
co-changes [13] – ‘which artifacts were changed and
committed together’. Also using the source code repository it
is possible to gather implicit relationships among developers
using the method proposed by Cataldo et al. [14] – ‘which
developers cooperated by changing related artifacts’. The
information from source code repository will be used to
calculate the technical score. From the issue tracker we can
extract the developers that collaborated – ‘who collaborated
with a task’ – and information from the comments and
attachments, that will compose the technical score.

From mail lists and issue trackers comments it is
possible to check the social relationship among developers –
‘who talked to who’ – checking the threads and discussions.
This information will compose the social score.

The workspace information enables us to be aware of
the micro interactions among developer and artifacts –
‘which artifacts had been locally handled by who’. In
addition, it provides richer information, enabling one to
measure how much effort a developer put in editing a given
artifact (and in a project), what is the frequency that a
developer work on a project, the “degree of interest” [15] in
a file, what are the most accessed artifacts (even if not
edited). This information will also be used to compose the
developers technical score.

The workspace information can also be used to gather
developers’ recent activities, enabling to retrieve their
current interest and the amount of effort spent with the
project recently, even before they commit to a repository or
report something in mail lists or forums. This will be the
input used to calculate developers current interest score.

B. Recommendation System Architecture

The inputs presented will be further analyzed by the
recommendation system modules to calculate the technical,
social and current interest score. In this subsection, we will

briefly explain how the modules handle the inputs to
recommend the mentors.

Relationship Analyzer: This module is responsible for
linking historical information from different sources. The
links will be created by using text similarity and a set of
heuristics. The heuristics to be used include textual analysis
and bug report attachments to verify explicit references that
links source code, messages and bugs. For example, it is
possible to link specific commits with bugs verifying the
existence of a bug identifier in a commit message. Also, in
some cases a bug report can present a stack trace, enabling to
check where the root of the problem reported is. The output
of the relationship analyzer is a data structure that links items
from different sources, as show in Fig. 2, enabling the
system to infer the relationship issue x developer.

Issue

Comment

Source Code

Artifact

Maillist

thread

Comment Developer

Is similar to

Is similar to
Is logically

related to

Committed by

(Date/Time)

Written by

(Date/Time)

Is similar to/

Has reference to

Figure 2. Links among items from different sources of information

Temporal Analyzer: The linked items will be then
analyzed in order to make the recent relations more relevant
than old ones. This will be made depreciating the older
interactions and emphasizing recurrent interactions. For
example, commits made in the current month will be
considered fresh and their score will be fully considered.

65

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on May 18,2022 at 02:31:18 UTC from IEEE Xplore. Restrictions apply.

Last month commits will have their score depreciated to
90%, commits made the month before last month will be
depreciated to 80% and so on. If a developer commits a
software artifact recurrently, this score of this interaction will
be amplified. By analyzing the information temporally we
aim to focus on recent and recurrent activities, enabling to
find recent interests and developers that are currently active.
It is worth noticing that the temporal analysis will be
conducted only over the relations that involve developers.

Sociability Analyzer: This module is responsible for
checking the social activity and skills of a developer. The
goal is to verify developers who also contribute answering
mail lists and posting comments on issue trackers. The
output is a map linking developers and a sociability score
that consider the amount and the temporality of comments.

Workspace Metrics Analyzer: This module will handle
the data captured from developers’ interaction with their
integrated development environments (IDE). The events
captured include editing, selecting and opening source code
artifacts. These information will be used to calculate Micro
Interaction Metrics [11], quantifying the complexity and
intensity of developers' interaction activities such as
browsing or editing of files. The metrics extracted mainly
link developer and files regarding the effort and degree of
interest [15]. The output will also be linked to the issues in
the relationship analyzer module, since it can provide
important information regarding the interaction between
developers and source code artifacts.

Recent Context Analyzer: This module will be
responsible for analyzing the information collected from
developers’ IDEs recently. The goal is to be aware of the
developers’ current activity level and their current interest
(focus). This information can be used to fine tune our
recommendation system. For example: recommending a
currently active mentor can increase the chance of a timely
response; recommending a mentor based on the current
focus, can enhance the chance to choose a developer
currently interested on a related issue or feature; dismissing
developers with low recent activity level can avoid
newcomers to have a non-replied email.

Mentor recommender: This module is responsible for
combining the information generated by Temporal Analyzer,
Sociability Analyzer and Recent Context Analyzer,
classifying developers according to their scores and
recommending the most suitable mentor for an issue at that
moment. The most suitable mentor will be the developer that
presents the best combination of current interest, social and
technical skills.

IV. RELATED WORKS

There are many works in the literature that deal with the
person recommendation in software engineering. Most part
focus on recommending experts in a given subject or artifact.

Expertise Browser (ExB) [16] is a tool that uses the
concept of Experience Atoms (EAs) to represent the
expertise unities gathered from source code repositories. EAs
are used to generate a sociotechnical network involving the
relationships among artifacts, people, and tasks. It is used to
identify experts and trace their relationships.

SmallBlue [17] uses social networks extracted from
email messages and instant messenger to rank the experts.
The analysis is performed by associating names and topics
extracted from the messages. The experts search is made via
web, where a user can provide a subject, and the system
generates an ordered list with the experts on that subject.

STeP_IN [8] recommends developers with expertise in a
specific Java class or method analyzing the source code and
mail contacts. When a question about a piece of code is sent
to the mail list, the system forward the message to a set of
developers that are expected to answer the question. To
choose the experts the tool check the developers who had
already being in touch with that artifact and the social
network of the developer who asked the question.

Conscius [9] also aims to facilitate access to experts on a
given software project. The ranking of the experts is made by
mining the SCM change history and archived mail threads.
The tool analyzes the content of the communication to
improve the usual recommendations based on the source
code history and the relationship between the source code.

Codebook [18] is a tool that generates a social network

from source code repositories, documentation and messages.

Links are established between activities (work items), their

artifacts, and developers involved. The resulting network

can be consumed by tools, such as the Hoozizat [18], a web

search portal to search for specific experts on features, APIs,

products, or systems.
Emergent Expertise Locator (EEL) [10] also aims to

recommend experts on a given subject. It uses the change
history of source code to rank the experts of a given artifact.
To sort the experts, the tool makes use of the coordination
matrix proposed by Cataldo et al. [14].

None of the approaches proposed to recommend experts
focus on the retention of newcomers, focusing on finding out
experts in a given artifact or subject, based on historical
perspective. Other than this, they do not look at messages
temporality to verify the recent interests and activity to check
who the ‘most suitable person at the moment’ is.
Additionally, in our proposal we aim to use developer’s
workspace contextual information, to make
recommendations more specific [19].

We also found in the literature a recommendation tool
called Hipikat [4], that aims to support newcomers by
building a group memory using source code, email
discussions and bug trackers. The user proactively request
recommendation based on existent artifacts. Hipikat returns a
list of source code, mails messages and bug reports that
present are related to the queried artifact. This is the closest
approach we encountered, but it differs from ours because in
our approach we believe that a human mentor can be more
helpful than providing a set of artifacts (that not necessarily
are up-to-date) to support user actions.

Our work is also related to researches that studies OSS
projects joining process, and the importance of newcomers to
OSS projects. Von Krogh et al. [5] conducted a qualitative
study over Freenet project and proposed the concept of a
“joining script” for new developers joining a community.
They emphasize the importance of newcomers, noting the

66

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on May 18,2022 at 02:31:18 UTC from IEEE Xplore. Restrictions apply.

high turnover rate among developers, and that recruiting is a
concern among the developers. Ye and Kishida [20]
describes a conceptual framework to analyze the
motivational issues in OSS. They state that newcomers are
vital to the success of OSS projects. Park and Jensen [1]
studies the information needs of newcomers and the potential
benefits of visualization tools to support newcomers learning
about an OSS project and help them finding information
more efficiently and effectively. Jensen et al. [6] study
mailing lists of four OSS projects to understand how
politeness, helpfulness and timeliness of the replies to
newcomers questions influences their future interactions.
They found that prompt feedback is essential to continued
participation, and indifferent replies can have a chilling
effect on lurkers, who may decide to give up.

V. CONCLUDING REMARKS

In this paper, we present the proposal of a
recommendation system that aims to identify who is the most
suitable person to mentor a newcomer in an OSS project task
to reduce the problem of initial interactions. By using
temporal and social analysis, we aim to recommend the
mentors that are active and have social skills. The use of
recent contextual information improves the quality of the
recommendation, aiming to point the newcomers to mentors
that are active and focusing on related issues.

Next steps include implementing the approach presented
and conduct experiments based on historical information
mined from bug trackers, and also case studies. Our final
goal is to answer the following research questions:

 Do newcomers remain for longer periods in OSS
projects if the right mentor is recommended to them?

 Is a mentor recommendation system a good approach to
avoid core developers’ overload?

 Can we improve the recall and precision of mentor
recommendations if we analyze the temporality and
sociability aspects of the relationships?

ACKNOWLEDGEMENT

This work was partially funded by Fundação Araucária.
The authors would also like to thank Ana Paula Chaves and
Marcela Batista for proofreading preliminary versions of this
document. Marco Aurélio Gerosa receives individual grant
from Brazilian National Research Council (CNPq).

REFERENCES

[1] Y. Park and C. Jensen, "Beyond pretty pictures: Examining the
benefits of code visualization for Open Source newcomers," in 5th
IEEE International Workshop on Visualizing Software for
Understanding and Analysis (VISSOFT), 2009, pp. 3-10.

[2] B. Dagenais, H. Ossher, R. K. E. Bellamy, M. P. Robillard, and J. P.
de Vries, "Moving into a new software project landscape," in
Software Engineering, 2010 ACM/IEEE 32nd International
Conference on, May 2010, pp. 275-284.

[3] W. Scacchi, "Understanding the requirements for developing open
source software systems," Software, IEE Proceedings -, v. 149, no. 1,
pp. 24-39, Feb. 2002.

[4] D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth, "Hipikat: a
project memory for software development," IEEE Trans. Softw. Eng.,
v. 31, no. 6, pp. 446-465, Jun. 2005.

[5] G. von Krogh, S. Spaeth, and K. R. Lakhani, "Community, joining,
and specialization in open source software innovation: a case study,"
Res. Policy, v. 32, no. 7, pp. 1217-1241, Jul. 2003.

[6] C. Jensen, S. King, and V. Kuechler, "Joining Free/Open Source
Software Communities: An Analysis of Newbies' First Interactions on
Project Mailing Lists," in Proceedings of the 2011 44th Hawaii
International Conference on System Sciences, Washington, DC,
USA, 2011, pp. 1-10.

[7] M. S. Elliott and W. Scacchi, "Free software developers as an
occupational community: resolving conflicts and fostering
collaboration," in Proceedings of the 2003 international ACM
SIGGROUP conference on Supporting group work, New York, NY,
USA, 2003, pp. 21-30.

[8] Y. Ye, K. Nakakoji, and Y. Yamamoto, "Reducing the Cost of
Communication and Coordination in Distributed Software
Development," in Software Engineering Approaches for Offshore and
Outsourced Development, Springer Berlin / Heidelberg, 2007, v.
4716, pp. 152-169.

[9] A. Moraes, E. Silva, C. da Trindade, Y. Barbosa, and S. Meira,
"Recommending experts using communication history," in
Proceedings of the 2nd International Workshop on Recommendation
Systems for Software Engineering, New York, USA, 2010, pp. 41-45.

[10] S. Minto and G. C. Murphy, "Recommending Emergent Teams," in
Proceedings of the Fourth International Workshop on Mining
Software Repositories, Washington, DC, USA, 2007.

[11] T. Lee, J. Nam, D. Han, S. Kim, and H. P. In, "Micro interaction
metrics for defect prediction," in Proceedings of the 19th ACM
SIGSOFT symposium and 13th European conference on Foundations
of software engineering, New York, USA, 2011, pp. 311-321

[12] I. Omoronyia, J. Ferguson, M. Roper, and M. Wood, "Using
Developer Activity Data to Enhance Awareness during Collaborative
Software Development," Computer Supported Cooperative Work
(CSCW), vol. 18, pp. 509-558, 2009.

[13] G. A. Oliva, F. W. S. Santana, M. A. Gerosa, and C. R. B. de Souza,
"Towards a classification of logical dependencies origins: a case
study," in Proceedings of the 12th International Workshop on
Principles of Software Evolution and the 7th ERCIM Workshop on
Software Evolution, New York, NY, USA, 2011, pp. 31-40.

[14] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M. Carley,
"Identification of coordination requirements: implications for the
Design of collaboration and awareness tools," in Proceedings of the
2006 conference on Computer supported cooperative work, New
York, NY, USA, 2006, pp. 353-362.

[15] M. Kersten and G. C. Murphy, "Using task context to improve
programmer productivity," in Proceedings of the 14th ACM
SIGSOFT international symposium on Foundations of software
engineering, New York, NY, USA, 2006, pp. 1-11.

[16] A. Mockus and J. D. Herbsleb, "Expertise Browser: a quantitative
approach to identifying expertise," in. Proceedings of the 24rd
International Conference on Software Engineering, 2002, May 2002,
pp. 503-512.

[17] N. S. Shami, K. Ehrlich, and D. R. Millen, "Pick me!: link selection
in expertise search results," in Proceedings of the 2008 Conference on
Human Factors in Computing Systems, New York, 2008, pp. 1089-
1092.

[18] A. Begel, Y. P. Khoo, and T. Zimmermann, "Codebook: discovering
and exploiting relationships in software repositories," in Proceedings
of the 32nd ACM/IEEE International Conference on Software
Engineering, vol. 1, Cape Town, South Africa,, 2010, pp. 125-134.

[19] H. Happel and W. Maalej, "Potentials and challenges of
recommendation systems for software development," in Proceedings
of the 2008 international workshop on Recommendation systems for
software engineering, New York, NY, USA, 2008, pp. 11-15.

[20] Y. Ye and K. Kishida, "Toward an understanding of the motivation
Open Source Software developers," in Proceedings of the 25th
International Conference on Software Engineering, Washington, DC,
USA, 2003, pp. 419-429.

67

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on May 18,2022 at 02:31:18 UTC from IEEE Xplore. Restrictions apply.

