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ABSTRACT 

Context: Previous work that used prediction models on Software 

Engineering included few social metrics as predictors, even though 

many researchers argue that Software Engineering is a social activity. 

Even when social metrics were considered, they were classified as 

part of other dimensions, such as process, history, or change. 

Moreover, few papers report the individual effects of social metrics. 

Thus, it is not clear yet which social metrics are used in prediction 

models and what are the results of their use in different contexts. 

Objective: To identify, characterize, and classify social metrics 

included in prediction models reported in the literature. Method: We 

conducted a mapping study (MS) using a snowballing citation 

analysis. We built an initial seed list adapting strings of two previous 

systematic reviews on software prediction models. After that, we 

conducted backward and forward citation analysis using the initial 

seed list. Finally, we visited the profile of each distinct author 

identified in the previous steps and contacted each author that 

published more than 2 papers to ask for additional candidate studies. 

Results: We identified 48 primary studies and 51 social metrics. We 

organized the metrics into nine categories, which were divided into 

three groups - communication, project, and commit-related. We also 

mapped the applications of each group of metrics, indicating their 

positive or negative effects. Conclusions: This mapping may support 

researchers and practitioners to build their prediction models 

considering more social metrics. 

Categories and Subject Descriptors 

D.2.8 [Software Engineering]: Metrics--Process metrics 

General Terms 

Measurement, Experimentation, Human Factors 

Keywords 

Mapping study, prediction models, social metrics, social network 

analysis. 

1. INTRODUCTION 
Software development is an inherently sociotechnical endeavor, 

especially, because of the collaboration and communication that take 

place among stakeholders [7, 33]. Repositories have introduced many 

social tools to facilitate the interaction among developers. This 

phenomenon is known as “social coding” and Github is an example 

of these repositories. Therefore, human factors considerably 

influence software development.  

Previous studies in the literature considered few social metrics to 

build prediction models compared to the number of process metrics 

[9, 13, 18, 28, 31]. Hall et al. [13] highlights that there are few 

studies that consider developer information in prediction models and 

it is difficult to know the effectiveness of social metrics.  

A possible explanation for this scenario can be related to the social 

metrics classification. Most part of the previous works considered 

social metrics as part of other dimension, and the performance of 

each predictor is frequently not discussed. For example, “number of 

developers” metric was used by researchers as part of different 

dimensions, such as change metrics [23], people metrics [25], 

developer information [24], team [12], developer activity [30], 

project level [35], and process metrics [10].  

In this paper, we used the term “social metrics” to refer to any metric 

that measures aspects of the interactions between developers. For 

example, we consider as social metrics the number of comments, 

number of distinct authors that committed a file or metrics from the 

social networks extracted from these interactions. We also considered 

aspects related to developers' skill, like experience and ownership as 

part of social dimension. This definition is broader than the definition 

of Social Dimension proposed by Ibrahim et al. [14]. For them, the 

Social Dimension comprises metrics that capture the communication 

activity between developers and measures the impact of inter-

personal relations.  

We conducted a mapping study, following the snowballing method 

proposed by Webster and Watson [34], to identify, characterize, and 

classify the use of social metrics in prediction models. We chose this 

approach, because it offers a good coverage at the same time that it is 

less influenced by the amount of noise from digital libraries searches 

[16].  

By conducting this mapping study, we aimed to answer two main 

questions: RQ1: Which social metrics were used in prediction 

models? and RQ2: Did the social metrics have positive effect when 

they were considered as predictors? 

In summary, the main contributions of this study were: 

 The conduction a secondary study to summarize the current 

state of research on the use of social metrics in prediction 

models. We described the effect of social metrics usage for each 

paper found in the literature. We described the applicability, 

prediction models techniques, and social metrics (Section 4).  

 A classification of social metrics in three groups and nine 

categories. We classified twenty-one metrics as communication, 
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eighteen metrics as project, and twelve metrics as commit-

related. We also found forty-five social network analysis metrics 

on eight types of social networks (Section 4). 

 The comparison of the current study to six previous 

systematic literature reviews showing differences and updating 

the survey of the state of the art in prediction models (Section 

2). 

 The discovery of areas that require further attention, 
presenting opportunities for new researches considering the use 

of social metrics in prediction models on software engineering 

(Section 6). 

2. RELATED WORK 
We identified six systematic literature reviews related to our study. 

Table 1 presents these studies reporting whether they mentioned 

social metrics. 

Table 1. Previous systematic literature reviews related to 

prediction models 

Study Focus 
Results and mentions of social 

metrics 

Hall et al.,2012 

[13] 

Fault prediction 

models 

The models that perform well use 

simple modelling techniques and 

combination of indepent variables. 

Few papers considered social 

metrics. 

Radjenovic et al., 
2013 [28] 

Fault prediction 
metrics 

Object-oriented and process 

metrics were reported to be more 

successful in finding faults 
compared to traditional size and 

complexity metrics. Process 

metrics seem to be better at 
predicting post-release faults 

compared to any static code metric. 

Like Hall et al.[13], they reported 
that developer information was 

used to build prediction models. 

Just 8 papers reported the use of 

social metrics. 

Jureczko and 
Madeyski, 2011 

[18] 

A review of 
process metrics 

Taxonomy of process metrics with 

five metrics. The only social 

metric identified was number of 

distinct commiters. 
Catal, 2011 [9] 

and Catal and 

Diri, 2009 [8]  

Current trend of 

fault prediction 

models  

Few papers using process metrics 

was reported. Social metrics were 

not discussed. 

Riaz et al., 2009 

[31] 

Maintainability 
prediction and 

metrics 

Predictors reported were based on 

size, complexity, and coupling, and 
were gathered at source code level. 

Social metrics were not 

discussed. 

Jorgensen and 

Shepperd [17] 
Cost estimation 

Provide a basis for the 
improvement of software 

estimation research. Social metrics 

were not discussed. 

Azhar et al., [2] 
Web resource 

estimation 

The aim of this paper is to present a 

SR of Web resource estimation in 
order to define the current state of 

the art. Social metrics were not 

discussed. 
 

Jureczko and Madeyski [18] discussed the difference between 

product and process metrics. They described five process metrics: 

Number of Revisions, Number of Distinct Committers, Number of 

Modified Lines, Is New, and Number of Defects in Previous 

Revision. Number of distinct committers was presented as a 

“developer related-metric.”  

Hall et al. [13] updated Catal´s work investigating the context of 

model, the independent variables, and the modelling techniques used 

to build fault prediction models. As a result, they reported 36 studies. 

The models that perform well tended to be based on simple modeling 

techniques such as Naïve Bayes or Logistic Regression and have used 

combinations of independent variables. Feature selection has been 

applied to these combinations in order to discover the performance of 

each individual metric. They also reported many different types of 

independent variables. Considering process metrics, Hall et al. [13] 

mentioned that few studies using developer information in models 

report conflicting results. Our work complements Hall et al. 

systematic review, showing the effectiveness of social metrics in 

prediction models and focusing on the distinction of process metrics 

and social metrics. 

Radjenovic et al. [28] presented a SLR considering 106 papers 

published between 1991 and 2011. The selected papers were 

classified according to metrics and context properties. They found 

that object-oriented metrics (49%) were used nearly twice as often 

when compared to traditional source code metrics (27%) or process 

metrics (24%). Chidamber and Kemerer’s (CK) object-oriented 

metrics were most frequently used. Radjenovic et al. found 8 papers 

that used developer information to build prediction models. They 

emphasized that the usability of developer information in fault 

prediction remains an important unanswered research question. 

Our mapping study differs from these related ones since we are 

focusing on social metrics used as predictors and we were not 

restricted to a specific goal of the prediction. Previous reviews have 

focused mainly in fault prediction. Nevertheless, we were able to find 

in our initial seed all the papers mentioned in these literature reviews 

that used at least one social metric. 

3. METHODOLOGICAL APPROACH 
This section presents the methodological approach to conduct this 

mapping study. First, we discuss each research question. After, we 

show the review method, inclusion/exclusion criteria, and seed 

validation analysis. Finally, we present a summarization of the data 

extraction.   

3.1 Research Questions 
We defined the following research questions:  

RQ1: Which social metrics were used in prediction models? We 

wanted to investigate this question since the previous systematic 

literature reviews (Section 2) did not discuss which social metrics 

were considered as predictors to build prediction models and primary 

works use an inconsistent terminology for classifying social metrics 

and often do not report their individual result.  

RQ2: Did the social metrics have positive effect when they were 

considered as predictor? By answering this question, we aimed to 

show the implications of social metrics to build prediction models on 

software engineering. We used three different analysis to show the 

effectiveness of social metrics. First, we identified papers describing 

evidences about the effects of social metrics. After that, we 

summarized the proposed classification, linking each group of 

metrics to the applicability of prediction models. Finally, we mapped 

in which application each group of social metrics were used so far. 

Our intention was to provided an overview of social metrics, papers, 

prediction techniques, and their applicability. 

3.2 Review Method 
A software engineering systematic mapping is defined as a method to 

build a classification scheme and structure a field of interest [26]. 

This kind of study follow the systematic review guidelines, but as a 

result are reported the frequency of publications for categories within 
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a proposed scheme. Thus, the coverage of the research field can be 

analyzed and different facets of the scheme can be combined to 

answer more specific research questions.  

Systematic studies of the literature can be conducted following 

different guidelines or methods. Two methods are commonly used. 

Kitchenham and Charters [4] focus on systematic searches in 

databases using well-defined search strings to find relevant papers. 

Webster and Watson [34] proposed the use of snowballing citation 

analysis as the main method to find relevant literature. Jalali and 

Wohlin [16] compared snowballing and search method to do 

systematic literature studies and did not find any remarkable 

differences between the results.  

We applied the search method, following Kichenham and Charters 

[4] guideline. We used the string1 extended from Hall et al. [13] and 

Radjenovic et al. [28] to find the initial list of candidate papers. Since 

we had many general terms, we were not able to lead with the amount 

of unrelated results returned using the search method.  

Jalali and Wohlin [16] showed that snowballing might be more 

efficient when the keywords for searching include general terms. 

Webster and Watson [34] claim that this method avoid the amount of 

noise returned by exhaustive database searches. They also suggest 

that researchers should apply backward and forward snowballing 

citation analysis. 

Following these recommendations, we used the snowballing to 

perform the systematic literature review. The Figure 1 shows the 

steps of our research. We conducted five main steps to select papers. 

In the first step, we used the adapted string from Hall et al. [13] and 

Radjenovic et al. [28] to produce the initial seed based on searches on 

ACM, IEEE, and Scopus.   

In these two initial steps, we considered initially the title and 

abstracts. When they did not bring enough information to judge the 

criteria for inclusion and exclusion, the full text was also considered. 

We just excluded a paper from our seed list if it was clearly out of 

scope, considering the exclusion criteria.  

We kept all potential primary studies for further analysis, because we 

knew that social metrics could be listed on different dimensions of 

software development and had different names. We used the 

inclusion/exclusion criteria to guide the first discussion between two 

researchers to define the agreement or disagreement for each selected 

paper. Using this candidate list, the same two authors inspected each 

paper applying the quality criteria listed on Table 2 to generate the 

seed list of papers.  

Using the seed list, we performed backward analysis (step 2) by 

reviewing the reference lists to find new relevant paper and 

conducted a forward analysis (step 3) by identifying articles that cited 

papers of our selected paper list.  

Once again, we used the inclusion/exclusion criteria to guide the 

discussion between two researchers to define the agreement or 

                                                                 

1 The query string used was (software OR "open source" OR 

repository OR repositories) AND (fault OR effort OR defect OR 

quality OR error-prone OR error-proneness OR failure OR error 

OR prone) AND (metric OR metrics OR measurement OR measure 

OR measuring OR social OR socio-technical OR "communication 

network" OR "developer network" OR "developer information" OR 

"developer interaction" OR "human factor") AND (predict* OR 

estimat* OR classificat* OR regression) 

disagreement for each paper found on backward and forward steps. 

To include a paper on a backward or forward list two authors 

discussed about each paper using the quality criteria. We searched for 

new papers checking the DBLP profile of each author identified on 

the seed, backward, or forward list. As described above, we evaluate 

each paper found using the quality assessment checklist (Table 2). 

We follow the Dybå and Dingsoyr´s checklist [11] to evaluate if a 

paper would stay in our final list of papers.  

Finally, to confirm the results, we used a validation step, suggested 

by Kitchenham and Brereton [19]. We sent e-mails to all the 

researchers that wrote more than two papers in our final list of 

papers. We used the answers to check possible flaws while 

performing the previous four steps. 

 

Figure 1. Snowballing process used in our study 
 

3.3 Inclusion/Exclusion criteria 
To analysis each paper, we used the inclusion and exclusion criteria 

to select candidate papers. We include all papers that used prediction 

models for Software Engineering aspects (e.g. fault, change 

proneness, bug, vulnerability, and effort) and used metrics not related 

to source-code code. We choose this generic criterion because many 

times authors mention about process, history, change, or 

organizational metrics without the term “social.”  

We were attentive not to exclude a relevant paper, considering that 

social metric could be part of these dimensions (group of metrics). 

Papers were included also based on the following inclusion criteria: 

 Papers from journals, conferences, or workshops; and 

 with at least one metric that could be classified as “social 

metric.” 

Papers were excluded from this study also based on the following 

exclusion criteria: 

 Papers that explicitly mention only code metrics, objected 

oriented metrics, or static metrics 

 Papers not written in English. 

 Papers with full-text not accessible. 

 Papers that were a preliminary or shorter version of the study 

published in other paper. 

74



Table 2 presents the eight questions to validate the quality of each 

selected paper. Papers needed to receive “YES” on the first five 

questions to remain in the final list. Questions 6, 7, and 8 did not 

exclude papers from the final list. 

Table 2. Quality criteria to include a paper 

Problem Statement 

1. Is the objective of the research is explained and well-motivated? 

Data Collection 

2. Is there at least one metric that was computed considering some social aspect? 

(developer, communication, collaboration, experience, ownership, etc.) 

3. Are the metrics appropriately described? 

4. Is it possible to reproduce the social metric? 

Research Design 

5. Is there any type (classification or statistical) of prediction model used? 

Data Analysis 

6.  Are there evaluation metrics applied on prediction models to evaluate the prediction 

results?  

7. Are the results explained using feature selection algorithms or method to compare 

metrics to each other? 

Conclusion 

8. Does the paper discuss limitations or validity? 

3.4 Seed validation analysis 
To validate the list of papers obtained, we sent e-mails for all 

researchers that produced more than two primary studies. We sent 21 

emails and received 10 answers. The specialists recommended 26 

authors. Thereby, 11 were new authors and 15 had already been 

checked during the step four of our method. For each of these 11 new 

authors, we visited the DBLP page and did not find any paper to 

include in our final list of paper. All of them had works that 

considered social aspects, but they did not used prediction models. 

3.5 Summarization of Data Extraction 
This section summarizes the data extraction of each paper selected. 

Table 3 presents the summarization of 48 primary studies selected 

during each step of our method. We counted the number of papers 

published in conferences or workshops (#inc), the number of papers 

published on journals (#jou), and the number of papers rejected 

(#rej). Considering the number of rejected papers during the 

backward and forward citation analysis, we report the distinct number 

of papers rejected, instead of the total number of references found 

and rejected.  

Table 3. Summary of number of primary studies 

 included (#inc / #jou) and rejected (#rej)  

Seed Backward Forward DBLP 

#inc #jou #rej  #inc # jou #rej  #inc #jou #rej  #inc #jou #rej  

19 4 48 6 5 419 9 2 212 1 2 34 
 

Most part of the papers included in our final list were identified in 

this step. The backward and forward steps returned similar number of 

papers, but considering #rej, backward excluded many more papers. 

Just 3 papers were included after the visit to the DBLP page of each 

author, all the others relevant papers were already covered in the 

previous steps.  

Considering the excluded papers, 5 of them were excluded from our 

seed list during the quality criteria analysis (Table 2). The backward 

and forward list had 1 paper removed by quality criteria. All papers 

from DBLP list were removed by exclusion and quality criteria. 

Many papers were excluded because they presented social metrics, 

but they did not used prediction models. For example, we found 

papers that the main objective was to investigate the evolution of 

software communities, problems related to global software 

engineering, how to find mentors to help newcomers, or tools to 

visualize social interaction in software engineering.  

We selected 48 primary studies in our final list of papers. These 

papers were produced by 103 distinct authors. The seed step 

identified 55 authors. The backward analysis identified 30 authors, 17 

of them appeared in the seed step. The forward step included 38 

distinct authors, 4 of them appeared in our seed author list, and 3 of 

them appeared in our backward author list. Considering the papers 

found in DBLP, we included more 6 authors. Five of them appeared 

in our seed author list, 5 on backward author list, and 2 of them in the 

forward author list.  

Regarding venue of publication, 35 papers were published in 

conferences and workshops and 13 in journals. We found papers 

from the International Conference on Software Engineering (ICSE) 

with 10 papers between 2008 to 2013, International Symposium on 

the Foundations of Software Engineering (FSE) with 6 papers 

published in 2008, 2010, 2011, and 2012; and International 

Conference on Predictive Models in Software Engineering 

(PROMISE) with 5 papers published in 2007, 2010, 2011 (2), 2012. 

The main journals identified were the Empirical Software 

Engineering (SPRINGER), Transactions on Software Engineering 

(IEEE), Information and Software Technology (ELSEVIER) and 

Journal of Systems and Software (ELSEVIER). Just one journal 

paper was published in 2000; all others were published between 2008 

to 2013. 

4. SOCIAL METRICS IN PREDICTION 

MODELS ON SOFTWARE ENGINEERING  
In this section, we discuss which social metrics were used in 

prediction models (Section 4.1) and how the literature classified the 

social metrics (Section 4.1.1). Aiming at answering the research 

questions, we present a classification schema that maps the use of 

social metrics in prediction models on software engineering (Section 

4.1.1.1). We provide the complementary material used in our analysis 

as appendices. This material presents the metrics, effects, complete 

references of each paper selected and quality criteria analysis. These 

appendices are available at https://github.com/igorwiese/promise14. 

4.1 RQ1: Which social metrics were used in 

prediction models?  
We identified 48 primary studies and 51 social metrics. We noticed 

that depending on the design of the study, the same metric could be 

computed by different ways and aggregations. For example, the 

number of distinct developer was computed using the number of 

cumulative distinct developers considering the whole history of the 

project, a specific timeframe, previous release, or the same release 

that the analysis was performed. Considering the aggregations, we 

found the mean, maximum, minimum value, or entropy as ways to 

aggregate the value of one metric to specific timeframe analysis.  

The number of distinct developers that committed a file was the 

metric that presented the highest number of different classifications 

(11), being process as the most common. This metric also was used 

with 18 different names and appeared in 32 different papers. This 

illustrates that there is no standard in terms of classification and 

terminology.  

Considering the amount of times that each metric was cited we 

highlight that amount of major contributor to specific file (5 papers), 

developer experience (4 papers), reputation of issue reporter (4 

papers), amount of messages in a discussion (4 papers), and amount 

of words in a discussion (4 papers) were frequently considered as a 

predictor.  
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To summarize which were these metrics, we proposed a classification 

for the use of social metrics in prediction models. We discuss and 

present the mapping of social metrics and papers in Section 4.1.2. 

4.1.1 RQ1.1: How are the social metrics classified, 

considering the set of metrics used to build prediction 

models?  
In this paper, we used the term “social metrics” to refer to any metric 

that measures aspects of the interactions between developers. Since 

these interactions happen in the context of a software process, 

previous work considered social metrics as part of process metrics 

[15] or other dimensions.  

Process metrics reflect the changes over time, e.g. the number of code 

changes [18]. Recently, the term historical metrics is sometimes used 

instead of process metrics. D’Ambros et al. [10] define that process 

metrics are extracted from the versioning system, assuming that 

frequently changed files are part of process metrics.  

Arisholm et al. [1] argue that process metrics require records of 

detailed information about developers work (e.g., changes and fault 

corrections, developer information, time of changes, whether a 

change passed certain test procedures, etc.). For example, they 

considered experience measures of each developer performing each 

change and the number of developers that have made changes to a 

file as process metrics. 

D´Ambros et al. [10] classified approaches for predicting defects. 

Three papers selected in our final list of papers were included in an 

“other approaches” category by this author. Two of them [3, 36] are 

exclusively related to social metrics, and the third paper explored 

developer-module networks to predict defects [27].  

We found two different interpretations to process metrics. Moser et 

al. [10] used a set of metrics based in “file-centered” process metrics, 

like number of revisions, number of times that the file was refactored, 

lines added and removed from each file, change set size, and age of 

each file. The unique social metric extracted from this study was 

number of authors. Rahman and Devanbu [29] presented more 

“human-centered” process metrics. The authors explored 14 process 

metrics, 9 of them having social metrics related. For example, non-

social process metrics were number of lines added and removed from 

each file and number of commits made to a file. Metrics like number 

of active developer and owner´s experience can reflect the social side 

of process metrics. 

On the other hand, instead of using process metrics, some authors 

considered different “dimensions” of software development. For 

example, Shihab et al. [32] considered time, size, code, file, purpose, 

and personnel aspects to predict risk changes. We selected Developer 

Experience from Personnel Dimension as social metric in our list. 

One of the most cited classification was “organizational metrics.” 

This category grouped metrics related to ownership, authorship 

experience, and roles of developers. Normally, these metrics were 

used by studies that analyzed data provided by companies. A good 

example of this classification were found in Mockus and Nagappan et 

al. [22, 24]. 

We also found papers that considered different types of social 

networks. Developer and Communication networks were used by 

Meneely et al. [20], Bird et. al [7], Wolf et al. [36], and Biçer et al. 

[6]. In these studies, the social interactions were recovered when 

developers committed on the same file or commented on the same 

issue/work item. The social metrics in these cases were computed 

using social network analysis (SNA). We found that 45 different 

SNA metrics were used in these studies. These set of metrics address 

different properties of these networks. We found SNA metrics 

classified as “Global and Local Measures” that explores concepts 

like centrality, ego, and structural holes of the networks. 

Finally, we found papers that discussed about software quality and 

social structures. Nicollas et al. [5] proposed dimensions to capture 

aspects from social interaction related to Discussion Contents, 

Communication Dynamics, and Social Structures. Discussion 

Contents are related to communication aspects like number of source 

code found in a discussion, or number of links listed in a discussion. 

Communication Dynamics are metrics that capture aspects from 

messages exchanged between developers, like reply time and number 

of messages. These metrics were also computed from developer 

mailing-list by Ibrahim et al. [14].  

4.1.1.1 Classification proposed 
Based on the previous discussion (Section 4.1) we proposed a 

classification schema to social metrics with three different groups: 

communication, project, and commit-related. We reported metrics 

used in the 48 papers selected in our systematic review. These 

metrics were classified twenty-one metrics in communication group, 

eighteen metrics in project group, and twelve metrics in commit 

group. We also found forty-five social network analysis metrics on 

eight types of social networks 

Figure 2 presents the proposed classification. We used a mind-map 

schema to summarize the classification. First, we propose three 

groups. Each group is related to different groups of social metrics that 

represents the different interactions between developers during the 

software development.  

The first group is the “Communication.” The main sources to 

compute this set of metrics are issue trackers (like Github, JIRA, 

Bugzilla, etc) and mailing lists. Three different categories were 

described and 21 metrics were grouped. The first category represents 

the Communication Dynamics. This dynamic is related to the 

discussion activity, such as experience and role of participants 

involved in a discussion or temporal aspects of the messages. The 

metrics reporter reputation (P[6,21,46,48]), amount of messages 

(P[17,21,39,48]) and amount of words (P[17,21,39,48]) were the 

most frequently used metrics. The second category grouped metrics 

related to Discussion Contents. This category represents the 

interaction of developers during the   exchange of   messages and  got 

information about the content of each message. For example, the 

amount of source code snippets written in a discussion. Just two 

papers P[17,21] used metrics of this group. The third category, called 

Communication Structure denotes the relationship among the 

developers during the communication tasks. We found 4 different 

types of social networks. The Developer Communication Network 

(P[7,13,17,50]) was the most cited network. We identify 45 SNA 

metrics used to analysis different types of networks, for example, 

developer communication network or task-assigned networks.  

The second group, called “Commit-related” is related to the 

cooperative work carried by developers around the change of files. 

The main source to compute this set of metrics is the software 

repository. We also split this group in 3 main categories, grouping 12 

metrics. Ownership grouped all metrics related to the developer 

contribution on commit time. We found 6 different metrics to 

compute the ownership. The two most cited metrics were amount of 

distinct developers that committed a file/module (cited by 26 distinct 

papers) and major contributor (P[20, 22,27,28,34]). 
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Figure 2. Mind Map with Social Metrics identified from distinct prediction models  

77



 

The second category is related to the Developer Experience. We 

found 8 papers. They used 5 metrics to compute experience of each 

developer. The third category, called Cooperation Structure denotes 

the relationship among the developers when they commit the same 

file/module. The Developer/Contribution network was cited by 8 

papers (P[15,16,19,28,36,40,50,51]).  

The last group was called “Project.” We grouped 18 metrics in 3 

categories. The first category is related to the developer activity. The 

proportion of all developers contributing to the project (P[22,27,52]) 

was the most cited metric. The second category is Organization 

Dynamic. We grouped metrics related to the experience, size of 

team/organization, and metrics relate to the workflow of the project. 

We found 10 metrics used by 8 papers. The last category represents 

the Organizational structure, in which three different networks were 

identified: socio-technical congruence, socio-technical network 

between file and developers,  and coordination requirements.  

4.2 Implications to prediction models on 

software Engineering  
To show the implications of social metrics to build prediction 

models, we discussed whether social metrics have positive, negative 

or neutral effect when they were considered as predictors. 

4.2.1 RQ2: Did the social metrics have positive effect 

when they were considered as predictors? 
During the quality criteria analysis (Table 2, question 7), we 

summarized which papers compared social metrics against other 

predictors or dimensions.  

Table 4 shows the summary of social contribution to prediction 

models by the papers perspective. The column effect represents our 

interpretation for each result discussed by the original authors. We 

used the symbol “+” when the conclusion about the effectiveness of 

social metric was positive. The positive effect means that the results 

were stated satisfactory considering their evaluation approach. For 

example, one social metric has high accuracy or it was selected by 

one feature selection algorithm. The symbol “-” indicates the 

negative effect and “+ -” the neutral effect. The column indications 

report the summary of results presented by original author. If we are 

not able to identify the effect of the set of metrics used, the paper did 

not appeared on Table 4. 

Table 4. Summary of social contribution 

Paper Effect Indications 

P[2] + 
developer experience was most important indicator of 

risky changes 

P[3] + 

Social metrics improved the prediction performance when 

combined with other dimension. Strong correlation 

between fauls and developers 

P[7] + 
SNA metrics from communication network reduced the 

cost required to verify the prediction results 

P[8] + 
There is evidence that involving many authors in the 

same build also reduces the build success when using a 
weighted congruence conceptualization. 

P[9] + 
The most significant predictors to predict failures are 

number of developer’s and number of commits. 

P[10] + 
Number of active developers gains significance when the 
prediction granularity was changed of file to package. 

P[13] + 
Developer communication plays an important role in the 

quality of software integrations. 

P[17] - 

The contents of discussions were considerably more 
relevant than roles of participants. Social information 

cannot explain a similar amount of variance than 

traditional models but complements the defect prediction 
models increasing their explanatory power. 

P[18] +  
Developer expertise, expressed as the number of deltas a 

developer has made to the code, is a strong predictor of 
change quality 

P[19] + 
Files are likely to be vulnerable when changed by many 

developers who have made many changes to other files. 

P[21] + 
The content, the length of a thread and the contribution 

activity of a developer are the most important contribution 

factors. 

P[24] - 
Slighter difference when developer information were add 

in prediction models. 

P[27] + High levels of ownership are associated with less defects. 

P[28] + 
When developer attention focus is higher, fewer defects 
were introduced 

P[29] - 
The number of developers who had changed a module 

did not help predicting numbers of faults 

P[33] - 
The developer information only slight improve the 
prediction results. 

P[34] + 
Repository metrics (ownership) were able to get lower pf 

rate on the average from 32% to 23%. compared to static 
code attributes 

P[36] + - 
Code churn, commit changes, and developer activity can 

potentially reduce the vulnerability inspection effort 

compared to a random selection of files 

P[37] + 
Found that bug fixing by authors who were active in the 

learning period helps to improve defect prediction quality. 

P[39] - 
In conjunction with source code and change metrics, 

popularity metrics increase both the explanative and 
predictive power of existing defect prediction techniques. 

P[40] + - 

Social network metrics alone do not have significant 

impact on the prediction performance of the model. 
Although social metrics give us the lowest false alarm (pf) 

rates, the detection rates are also very low 

P[41] - 
The developer information cannot improve significantly 

the prediction results 

P[42] - 
The developer information cannot improve the prediction 

results. 

P[43] + 
Coordination requirements were more likely to have 

defects in the files they worked on.  

P[46] + 
Submitter and ownership are the top 2 most important 

features 

P[48] + 
Number of stakeholders was good predictors of issue 
lead time 

P[50] + 

Significant aspects of the relationship between developer 

communication and the units of work around which such 

communication takes place in a large-scale software 
project. 

P[51] + 
Networks built using data from Bug Re-assignment and 

Co-Commit developers’ network were relevant. 

P[52] + 
Organizational metrics provide a better basis for 
predicting long-term code churn for individual files than 

code metrics 

P[54] + 
The number of distinct authors that performed changes 
to a file  show strong correlations with a file’s defect count 

We observed that 21 papers recommended the use of social metrics in 

prediction models against 6 papers that mentioned negative effect of 

social metrics. Two papers presented neutral results. Even when the 

results shown positive or negative effect, the conclusions were 

careful reported, indicating that more studies are necessary to explore 

the useful of social metrics in prediction models.  

For example, we were not able to draw conclusions about the results 

of P[44]. However, authors noticed that future defect prediction 

models need to use more information from developers’ and micro 

level interactions for effective defect prediction. Once this first 

analysis was focused on the papers, we provide on more fine-grained 

analysis focusing on our group of metrics proposed on Section 4.1.2 

(Figure 2). 
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We want to highlight that the effects reported in Table 4 follow the 

authors indications. It is risky to draw conclusion on the positive, 

negative or neutral effect of social metrics from different papers, 

because each paper has its own context, machine learning method, 

experimental approach, performance measures, and so on, so they are 

not comparable. 

4.2.2 Mapping prediction applicability, prediction 

techniques, social metrics and papers. 
In this section, we mapped the groups of social metrics and prediction 

applicability. After, we performed the same analysis linking each 

prediction techniques for each group. Our aim was provide insights 

for help researchers to get an overview about the social metrics, 

prediction applicability and techniques used so far. 

Table 5 presented the group of metrics and the applicability (purpose) 

for each study. The intersection between applicability and metrics 

indicated that at least one metric classified in our study was used as 

predictor. We noticed that the commit-related and project factors 

grouped the most part of the papers. The highest concentration of 

metrics were used to build models to predict fault/bug proneness and 

few groups were used to predict other applicability’s. Considering the 

groups of metrics, ownership, communication structure, developer 

activity and cooperation structure were most selected by the studies. 

We also want to highlight that previous studies reported centrality 

measures computed using social network techniques for 

communication and developer networks as recurrent predictors.  

Table 6 focused to present techniques to build prediction models. We 

observed that ownership metrics were most selected as predictor to 

classification and regression models. Considering the techniques, 

Naïve Bayes, J48, Decision Tree (classification models) and Logistic 

Regression (statistical model) were recurrently selected by 

researchers as techniques to build prediction models.   

The mapping showed that the most groups of social metrics were 

used on spread way. They were considered in some specific 

applicability’s.  

5. Threats of Validity 
Even though we have conducted snowballing process to select 

primary studies, we are aware that the selection of papers may not 

have captured all relevant studies during the first step (seed list). To 

treat this issue, we used two validation steps described in Section 4.3 

and this validation was conduct by an author that did not participate 

in the first four steps (seed, backward, forward, and DBLP). We 

highlight that we received answers of 10 specialists and all suggested 

papers were found in some stage of our review method.  

Another potential threat in snowballing is that we might find several 

papers from the same authors since their previous research is usually 

relevant and was cited. Thus, the results of snowballing approach 

might be biased by over presenting specific authors’ research. To 

minimize this threat, for each of the 103 distinct authors identified 

during the seed, backward, and forward analysis, we visited the 

DBLP author’s page, searching for new papers that could be included 

in our SLR. We found 3 additional papers during this step.  

During the steps of selection and synthesis, some bias can be 

inserted. To reduce this issue, the selection process was conducted by 

two authors and constantly crosschecked. These two authors also 

jointly performed the synthesis. Conflicts were discussed until 

consensus was reached. 

During the steps of selection and synthesis, some bias can be 

inserted. To reduce this issue, the selection process was conducted by 

two authors and constantly crosschecked. These two authors also 

jointly performed the synthesis. Conflicts were discussed until 

consensus was reached 

The mind map reflects our interpretation about the papers and social 

metrics. As mentioned, we classified as social metrics, but many 

metrics were classified by other authors as process metrics. We 

encourage other researches refine our classification. 

There are important factors influencing the use of social metrics, for 

example, whether open source or commercial software projects are 

studied, whether social metrics are combined with other prediction 

metrics. So, the effects of social metrics reported by each study are 

related to their context. 

6. CONCLUSION 
We conducted a systematic mapping to identify the use of social 

metrics in prediction models on the Software Engineering context. 

We found 48 papers that applied at least one metric that could be 

classified as social. We proposed a classification with 3 groups 

(communication, project, and commit-related) and nine categories. 

We grouped 21 metrics at communication, 18 metrics at project, and 

12 metrics at commit group. We found 45 SNA metrics (centrality, 

global, ego, and structural hole measures) used to analyze social 

interactions.  

Considering the prediction models built, the most frequent techniques 

were Naïve Bayes and Logistic Regression. More than one metric 

were used to evaluate the prediction results. Defect predictions on file 

level were the most common granularity and application. Only 14 

studies considered more than 3 projects on their dataset´s. Menzies 

[21] recommended that it is necessary to discover and describe more 

information about the data collected from software development. He 

also recommend the use of other types of analysis to explore the data 

and its mining rules.  

We observed that even when social metrics were considered, they 

were classified as part of other dimension, such as process, history, or 

change. Moreover, few papers reported the individual performance of 

social metrics as predictors. 

Considering the results published so far, it could be risky to draw 

generalized conclusions about social metrics, since the studies 

employed many different techniques and investigated a limited 

number of software projects in different contexts. More studies are 

needed on this area, exploring the social metrics mapped on this 

study or proposing their own social metrics.  

These studies should consider large scale and longitudinal analysis to 

investigate the effectiveness of social metrics to build prediction 

models. Since many previous works explored defect prediction on 

file level, to predict fault proneness, we encourage researchers to 

build predictive models to other related problems in software 

engineering, like tasks triage. 

Finally, we claim that this work may support researchers and 

practitioners to build their prediction models, considering more social 

metrics, as well as the investigation of new hypothesis of influences 

of social aspects in software engineering activities. 
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Table 5. Applicability of prediction models using Social Metrics 

Social Metric 

Group 

Social Metric Sub-

Group 

Applicability 

Fault/Bug Risky 
Build 

Success 
Vulnerability 

Discussion  

Recomm. 

Bug 

Triage 

Bug 

Fixing 

Time 

Re-opened 

Issues 
Effort 

Bug 

Severity 

Churn 

File 

Communication 

Dynamics (*) 

Experience P6,P17    P21  P46, P48     

Role 
P6,P17,P39 

,P50 
   P21  P46, P48     

Temporal P17, P39    P21  P48     

Discussion 

Contents (*) 
- P17    P21       

Communication 

Structure (*) 
- 

P7, P17, P32, 

P43, P47, 

P50,P51 

 P13   P45   P51 P51  

Ownership (**) - 

P3, P20, P22, 

P27, P28, P30, 

P34, P44 

          

Experience (**) - 
P20, P24, P28, 

P32, P34 
P2, P18         P52 

Cooperation 

Structure (**) 
- 

P15,P16,P28, 

P40, P50, P51 
  P19, P36     P51 P51  

Developer 

Activity (***) 
- 

P3, P20, P22, 

P27, P37, P50 
    P49 P48 P47    P52 

Organizational 

Dynamics (***) 

Experience  P20, P32       P47   P52 

Team/Organization 

Site 

P32, P37 
          

Workflow 
P17, P29, P30, 

P32 
          

Organizational 

Structure (***) 
- P16,P43,P50  P8         

(*) communication factor, (**) commit factor, and (***) project factor 

Ownership – # distinct developers that committed the file/module was cited 32 times (fault, risky, build, vulnerability) 
 

Table 6. Prediction techniques using Social Metrics 

 Social Metric Group 

Prediction technique 

Classification Statistical  

NayB J48 DT BayN SVM RanF RBFB NN KNN LogR LinR BinR MLR PoiR RTree NLDT 

Communication 

Dynamics (*) 

P21, 

P46 

P48 P21, 

P46 

P46, 

P48 

- - P46, 

P48 

- P46 P6, P17, 

P48 

P48 - P39, 

P48, 

P50 

- - - 

Discussion Contents(*) P21 - P21 - - - - - - P17 - - - - - - 

Communication 

Structure (*) 

P7,P13 - - - P45 - - - - P32, P47 - - P50 P15 - - 

Ownership (**) 

P1,P20 

P26, 

P34, 

P36, 

P40 

P1,P2, 

P36, 

P37 

P3,P21

,P26,P

30,P44

,P46, 

P52 

P12,P1

9,P36 

P20 P36 - P52 - P1, P2,P8 

P9,P10, 

P15,P16,

P18,P20,

P22,P26,

P32,P36,

P38 

P3, 

P30 

P5,P15

,P24, 

P28, 

P33, 

P41, 

P42 

P27, 

P39, 

P50 

P15, 

P29 

P30 P35 

Experience (**) 
P20 P2 P52 - P20 - - P52 - P2 

,P20, P32 

- P24, 

P28 

- - - - 

Cooperation Structure 

(**) 

P36 - - P36 - p36 - - - P15, 

P16,P36 

- P15, 

P28 

P50 P15 - - 

Developer Activity 

(***) 

P20 

,P49 

P37, 

P48 
P3 P48 

P20, 

P49 
- P48 P52 - 

P3, 

P22,P47,

P48 

P3, 

P48 
- 

P27, 

P48, 

P50 

- - - 

Organizational 

Dynamics (***) 
- - 

P30 

 
- P20 - - P52 - 

P17,P20, 

P32,P47 P30 - - P29 P30 - 

Organizational 

Structure (***) 
- - - - - - - - - 

P8,P16, 

P43 - - - - - - 

Naive Bayes (NayB), Decision Tree (DT), Bayes Network (BayN), Random Forest (RanF), RBF Bayes (RBFB), Neural Network (NN), Logistical Regression (LogR), Linear 

Regression (LinR), Binomial Regression (BinR), Multiple Linear Regression (MLR), Poison Regression (PoiR), Regression Tree (RTree), Non-linear Decision Tree (NLDT) 
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