
Social Metrics included in Prediction Models on Software
Engineering: A Mapping Study

Igor Scaliante Wiese, Filipe Roseiro Côgo,
Reginaldo Ré, Igor Steinmacher

Computer Science Department
Federal University of Technology - Parana (UTFPR)

{igor, filiper, reginaldo.re, igorfs}@utfpr.edu.br

Marco Aurélio Gerosa,
Department of Computer Science

University of São Paulo (USP)

gerosa@ime.usp.br

ABSTRACT

Context: Previous work that used prediction models on Software

Engineering included few social metrics as predictors, even though

many researchers argue that Software Engineering is a social activity.

Even when social metrics were considered, they were classified as

part of other dimensions, such as process, history, or change.

Moreover, few papers report the individual effects of social metrics.

Thus, it is not clear yet which social metrics are used in prediction

models and what are the results of their use in different contexts.

Objective: To identify, characterize, and classify social metrics

included in prediction models reported in the literature. Method: We

conducted a mapping study (MS) using a snowballing citation

analysis. We built an initial seed list adapting strings of two previous

systematic reviews on software prediction models. After that, we

conducted backward and forward citation analysis using the initial

seed list. Finally, we visited the profile of each distinct author

identified in the previous steps and contacted each author that

published more than 2 papers to ask for additional candidate studies.

Results: We identified 48 primary studies and 51 social metrics. We

organized the metrics into nine categories, which were divided into

three groups - communication, project, and commit-related. We also

mapped the applications of each group of metrics, indicating their

positive or negative effects. Conclusions: This mapping may support

researchers and practitioners to build their prediction models

considering more social metrics.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics--Process metrics

General Terms

Measurement, Experimentation, Human Factors

Keywords

Mapping study, prediction models, social metrics, social network

analysis.

1. INTRODUCTION
Software development is an inherently sociotechnical endeavor,

especially, because of the collaboration and communication that take

place among stakeholders [7, 33]. Repositories have introduced many

social tools to facilitate the interaction among developers. This

phenomenon is known as “social coding” and Github is an example

of these repositories. Therefore, human factors considerably

influence software development.

Previous studies in the literature considered few social metrics to

build prediction models compared to the number of process metrics

[9, 13, 18, 28, 31]. Hall et al. [13] highlights that there are few

studies that consider developer information in prediction models and

it is difficult to know the effectiveness of social metrics.

A possible explanation for this scenario can be related to the social

metrics classification. Most part of the previous works considered

social metrics as part of other dimension, and the performance of

each predictor is frequently not discussed. For example, “number of

developers” metric was used by researchers as part of different

dimensions, such as change metrics [23], people metrics [25],

developer information [24], team [12], developer activity [30],

project level [35], and process metrics [10].

In this paper, we used the term “social metrics” to refer to any metric

that measures aspects of the interactions between developers. For

example, we consider as social metrics the number of comments,

number of distinct authors that committed a file or metrics from the

social networks extracted from these interactions. We also considered

aspects related to developers' skill, like experience and ownership as

part of social dimension. This definition is broader than the definition

of Social Dimension proposed by Ibrahim et al. [14]. For them, the

Social Dimension comprises metrics that capture the communication

activity between developers and measures the impact of inter-

personal relations.

We conducted a mapping study, following the snowballing method

proposed by Webster and Watson [34], to identify, characterize, and

classify the use of social metrics in prediction models. We chose this

approach, because it offers a good coverage at the same time that it is

less influenced by the amount of noise from digital libraries searches

[16].

By conducting this mapping study, we aimed to answer two main

questions: RQ1: Which social metrics were used in prediction

models? and RQ2: Did the social metrics have positive effect when

they were considered as predictors?

In summary, the main contributions of this study were:

 The conduction a secondary study to summarize the current

state of research on the use of social metrics in prediction

models. We described the effect of social metrics usage for each

paper found in the literature. We described the applicability,

prediction models techniques, and social metrics (Section 4).

 A classification of social metrics in three groups and nine

categories. We classified twenty-one metrics as communication,

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

PROMISE '14, September 17 2014, Torino, Italy

Copyright 2014 ACM 978-1-4503-2898-2/14/09…$15.00.
http://dx.doi.org/10.1145/2639490.2639505.

72

eighteen metrics as project, and twelve metrics as commit-

related. We also found forty-five social network analysis metrics

on eight types of social networks (Section 4).

 The comparison of the current study to six previous

systematic literature reviews showing differences and updating

the survey of the state of the art in prediction models (Section

2).

 The discovery of areas that require further attention,
presenting opportunities for new researches considering the use

of social metrics in prediction models on software engineering

(Section 6).

2. RELATED WORK
We identified six systematic literature reviews related to our study.

Table 1 presents these studies reporting whether they mentioned

social metrics.

Table 1. Previous systematic literature reviews related to

prediction models

Study Focus
Results and mentions of social

metrics

Hall et al.,2012

[13]

Fault prediction

models

The models that perform well use

simple modelling techniques and

combination of indepent variables.

Few papers considered social

metrics.

Radjenovic et al.,
2013 [28]

Fault prediction
metrics

Object-oriented and process

metrics were reported to be more

successful in finding faults
compared to traditional size and

complexity metrics. Process

metrics seem to be better at
predicting post-release faults

compared to any static code metric.

Like Hall et al.[13], they reported
that developer information was

used to build prediction models.

Just 8 papers reported the use of

social metrics.

Jureczko and
Madeyski, 2011

[18]

A review of
process metrics

Taxonomy of process metrics with

five metrics. The only social

metric identified was number of

distinct commiters.
Catal, 2011 [9]

and Catal and

Diri, 2009 [8]

Current trend of

fault prediction

models

Few papers using process metrics

was reported. Social metrics were

not discussed.

Riaz et al., 2009

[31]

Maintainability
prediction and

metrics

Predictors reported were based on

size, complexity, and coupling, and
were gathered at source code level.

Social metrics were not

discussed.

Jorgensen and

Shepperd [17]
Cost estimation

Provide a basis for the
improvement of software

estimation research. Social metrics

were not discussed.

Azhar et al., [2]
Web resource

estimation

The aim of this paper is to present a

SR of Web resource estimation in
order to define the current state of

the art. Social metrics were not

discussed.

Jureczko and Madeyski [18] discussed the difference between

product and process metrics. They described five process metrics:

Number of Revisions, Number of Distinct Committers, Number of

Modified Lines, Is New, and Number of Defects in Previous

Revision. Number of distinct committers was presented as a

“developer related-metric.”

Hall et al. [13] updated Catal´s work investigating the context of

model, the independent variables, and the modelling techniques used

to build fault prediction models. As a result, they reported 36 studies.

The models that perform well tended to be based on simple modeling

techniques such as Naïve Bayes or Logistic Regression and have used

combinations of independent variables. Feature selection has been

applied to these combinations in order to discover the performance of

each individual metric. They also reported many different types of

independent variables. Considering process metrics, Hall et al. [13]

mentioned that few studies using developer information in models

report conflicting results. Our work complements Hall et al.

systematic review, showing the effectiveness of social metrics in

prediction models and focusing on the distinction of process metrics

and social metrics.

Radjenovic et al. [28] presented a SLR considering 106 papers

published between 1991 and 2011. The selected papers were

classified according to metrics and context properties. They found

that object-oriented metrics (49%) were used nearly twice as often

when compared to traditional source code metrics (27%) or process

metrics (24%). Chidamber and Kemerer’s (CK) object-oriented

metrics were most frequently used. Radjenovic et al. found 8 papers

that used developer information to build prediction models. They

emphasized that the usability of developer information in fault

prediction remains an important unanswered research question.

Our mapping study differs from these related ones since we are

focusing on social metrics used as predictors and we were not

restricted to a specific goal of the prediction. Previous reviews have

focused mainly in fault prediction. Nevertheless, we were able to find

in our initial seed all the papers mentioned in these literature reviews

that used at least one social metric.

3. METHODOLOGICAL APPROACH
This section presents the methodological approach to conduct this

mapping study. First, we discuss each research question. After, we

show the review method, inclusion/exclusion criteria, and seed

validation analysis. Finally, we present a summarization of the data

extraction.

3.1 Research Questions
We defined the following research questions:

RQ1: Which social metrics were used in prediction models? We

wanted to investigate this question since the previous systematic

literature reviews (Section 2) did not discuss which social metrics

were considered as predictors to build prediction models and primary

works use an inconsistent terminology for classifying social metrics

and often do not report their individual result.

RQ2: Did the social metrics have positive effect when they were

considered as predictor? By answering this question, we aimed to

show the implications of social metrics to build prediction models on

software engineering. We used three different analysis to show the

effectiveness of social metrics. First, we identified papers describing

evidences about the effects of social metrics. After that, we

summarized the proposed classification, linking each group of

metrics to the applicability of prediction models. Finally, we mapped

in which application each group of social metrics were used so far.

Our intention was to provided an overview of social metrics, papers,

prediction techniques, and their applicability.

3.2 Review Method
A software engineering systematic mapping is defined as a method to

build a classification scheme and structure a field of interest [26].

This kind of study follow the systematic review guidelines, but as a

result are reported the frequency of publications for categories within

73

a proposed scheme. Thus, the coverage of the research field can be

analyzed and different facets of the scheme can be combined to

answer more specific research questions.

Systematic studies of the literature can be conducted following

different guidelines or methods. Two methods are commonly used.

Kitchenham and Charters [4] focus on systematic searches in

databases using well-defined search strings to find relevant papers.

Webster and Watson [34] proposed the use of snowballing citation

analysis as the main method to find relevant literature. Jalali and

Wohlin [16] compared snowballing and search method to do

systematic literature studies and did not find any remarkable

differences between the results.

We applied the search method, following Kichenham and Charters

[4] guideline. We used the string1 extended from Hall et al. [13] and

Radjenovic et al. [28] to find the initial list of candidate papers. Since

we had many general terms, we were not able to lead with the amount

of unrelated results returned using the search method.

Jalali and Wohlin [16] showed that snowballing might be more

efficient when the keywords for searching include general terms.

Webster and Watson [34] claim that this method avoid the amount of

noise returned by exhaustive database searches. They also suggest

that researchers should apply backward and forward snowballing

citation analysis.

Following these recommendations, we used the snowballing to

perform the systematic literature review. The Figure 1 shows the

steps of our research. We conducted five main steps to select papers.

In the first step, we used the adapted string from Hall et al. [13] and

Radjenovic et al. [28] to produce the initial seed based on searches on

ACM, IEEE, and Scopus.

In these two initial steps, we considered initially the title and

abstracts. When they did not bring enough information to judge the

criteria for inclusion and exclusion, the full text was also considered.

We just excluded a paper from our seed list if it was clearly out of

scope, considering the exclusion criteria.

We kept all potential primary studies for further analysis, because we

knew that social metrics could be listed on different dimensions of

software development and had different names. We used the

inclusion/exclusion criteria to guide the first discussion between two

researchers to define the agreement or disagreement for each selected

paper. Using this candidate list, the same two authors inspected each

paper applying the quality criteria listed on Table 2 to generate the

seed list of papers.

Using the seed list, we performed backward analysis (step 2) by

reviewing the reference lists to find new relevant paper and

conducted a forward analysis (step 3) by identifying articles that cited

papers of our selected paper list.

Once again, we used the inclusion/exclusion criteria to guide the

discussion between two researchers to define the agreement or

1 The query string used was (software OR "open source" OR

repository OR repositories) AND (fault OR effort OR defect OR

quality OR error-prone OR error-proneness OR failure OR error

OR prone) AND (metric OR metrics OR measurement OR measure

OR measuring OR social OR socio-technical OR "communication

network" OR "developer network" OR "developer information" OR

"developer interaction" OR "human factor") AND (predict* OR

estimat* OR classificat* OR regression)

disagreement for each paper found on backward and forward steps.

To include a paper on a backward or forward list two authors

discussed about each paper using the quality criteria. We searched for

new papers checking the DBLP profile of each author identified on

the seed, backward, or forward list. As described above, we evaluate

each paper found using the quality assessment checklist (Table 2).

We follow the Dybå and Dingsoyr´s checklist [11] to evaluate if a

paper would stay in our final list of papers.

Finally, to confirm the results, we used a validation step, suggested

by Kitchenham and Brereton [19]. We sent e-mails to all the

researchers that wrote more than two papers in our final list of

papers. We used the answers to check possible flaws while

performing the previous four steps.

Figure 1. Snowballing process used in our study

3.3 Inclusion/Exclusion criteria
To analysis each paper, we used the inclusion and exclusion criteria

to select candidate papers. We include all papers that used prediction

models for Software Engineering aspects (e.g. fault, change

proneness, bug, vulnerability, and effort) and used metrics not related

to source-code code. We choose this generic criterion because many

times authors mention about process, history, change, or

organizational metrics without the term “social.”

We were attentive not to exclude a relevant paper, considering that

social metric could be part of these dimensions (group of metrics).

Papers were included also based on the following inclusion criteria:

 Papers from journals, conferences, or workshops; and

 with at least one metric that could be classified as “social

metric.”

Papers were excluded from this study also based on the following

exclusion criteria:

 Papers that explicitly mention only code metrics, objected

oriented metrics, or static metrics

 Papers not written in English.

 Papers with full-text not accessible.

 Papers that were a preliminary or shorter version of the study

published in other paper.

74

Table 2 presents the eight questions to validate the quality of each

selected paper. Papers needed to receive “YES” on the first five

questions to remain in the final list. Questions 6, 7, and 8 did not

exclude papers from the final list.

Table 2. Quality criteria to include a paper

Problem Statement

1. Is the objective of the research is explained and well-motivated?

Data Collection

2. Is there at least one metric that was computed considering some social aspect?

(developer, communication, collaboration, experience, ownership, etc.)

3. Are the metrics appropriately described?

4. Is it possible to reproduce the social metric?

Research Design

5. Is there any type (classification or statistical) of prediction model used?

Data Analysis

6. Are there evaluation metrics applied on prediction models to evaluate the prediction

results?

7. Are the results explained using feature selection algorithms or method to compare

metrics to each other?

Conclusion

8. Does the paper discuss limitations or validity?

3.4 Seed validation analysis
To validate the list of papers obtained, we sent e-mails for all

researchers that produced more than two primary studies. We sent 21

emails and received 10 answers. The specialists recommended 26

authors. Thereby, 11 were new authors and 15 had already been

checked during the step four of our method. For each of these 11 new

authors, we visited the DBLP page and did not find any paper to

include in our final list of paper. All of them had works that

considered social aspects, but they did not used prediction models.

3.5 Summarization of Data Extraction
This section summarizes the data extraction of each paper selected.

Table 3 presents the summarization of 48 primary studies selected

during each step of our method. We counted the number of papers

published in conferences or workshops (#inc), the number of papers

published on journals (#jou), and the number of papers rejected

(#rej). Considering the number of rejected papers during the

backward and forward citation analysis, we report the distinct number

of papers rejected, instead of the total number of references found

and rejected.

Table 3. Summary of number of primary studies

 included (#inc / #jou) and rejected (#rej)

Seed Backward Forward DBLP

#inc #jou #rej #inc # jou #rej #inc #jou #rej #inc #jou #rej

19 4 48 6 5 419 9 2 212 1 2 34

Most part of the papers included in our final list were identified in

this step. The backward and forward steps returned similar number of

papers, but considering #rej, backward excluded many more papers.

Just 3 papers were included after the visit to the DBLP page of each

author, all the others relevant papers were already covered in the

previous steps.

Considering the excluded papers, 5 of them were excluded from our

seed list during the quality criteria analysis (Table 2). The backward

and forward list had 1 paper removed by quality criteria. All papers

from DBLP list were removed by exclusion and quality criteria.

Many papers were excluded because they presented social metrics,

but they did not used prediction models. For example, we found

papers that the main objective was to investigate the evolution of

software communities, problems related to global software

engineering, how to find mentors to help newcomers, or tools to

visualize social interaction in software engineering.

We selected 48 primary studies in our final list of papers. These

papers were produced by 103 distinct authors. The seed step

identified 55 authors. The backward analysis identified 30 authors, 17

of them appeared in the seed step. The forward step included 38

distinct authors, 4 of them appeared in our seed author list, and 3 of

them appeared in our backward author list. Considering the papers

found in DBLP, we included more 6 authors. Five of them appeared

in our seed author list, 5 on backward author list, and 2 of them in the

forward author list.

Regarding venue of publication, 35 papers were published in

conferences and workshops and 13 in journals. We found papers

from the International Conference on Software Engineering (ICSE)

with 10 papers between 2008 to 2013, International Symposium on

the Foundations of Software Engineering (FSE) with 6 papers

published in 2008, 2010, 2011, and 2012; and International

Conference on Predictive Models in Software Engineering

(PROMISE) with 5 papers published in 2007, 2010, 2011 (2), 2012.

The main journals identified were the Empirical Software

Engineering (SPRINGER), Transactions on Software Engineering

(IEEE), Information and Software Technology (ELSEVIER) and

Journal of Systems and Software (ELSEVIER). Just one journal

paper was published in 2000; all others were published between 2008

to 2013.

4. SOCIAL METRICS IN PREDICTION

MODELS ON SOFTWARE ENGINEERING
In this section, we discuss which social metrics were used in

prediction models (Section 4.1) and how the literature classified the

social metrics (Section 4.1.1). Aiming at answering the research

questions, we present a classification schema that maps the use of

social metrics in prediction models on software engineering (Section

4.1.1.1). We provide the complementary material used in our analysis

as appendices. This material presents the metrics, effects, complete

references of each paper selected and quality criteria analysis. These

appendices are available at https://github.com/igorwiese/promise14.

4.1 RQ1: Which social metrics were used in

prediction models?
We identified 48 primary studies and 51 social metrics. We noticed

that depending on the design of the study, the same metric could be

computed by different ways and aggregations. For example, the

number of distinct developer was computed using the number of

cumulative distinct developers considering the whole history of the

project, a specific timeframe, previous release, or the same release

that the analysis was performed. Considering the aggregations, we

found the mean, maximum, minimum value, or entropy as ways to

aggregate the value of one metric to specific timeframe analysis.

The number of distinct developers that committed a file was the

metric that presented the highest number of different classifications

(11), being process as the most common. This metric also was used

with 18 different names and appeared in 32 different papers. This

illustrates that there is no standard in terms of classification and

terminology.

Considering the amount of times that each metric was cited we

highlight that amount of major contributor to specific file (5 papers),

developer experience (4 papers), reputation of issue reporter (4

papers), amount of messages in a discussion (4 papers), and amount

of words in a discussion (4 papers) were frequently considered as a

predictor.

75

To summarize which were these metrics, we proposed a classification

for the use of social metrics in prediction models. We discuss and

present the mapping of social metrics and papers in Section 4.1.2.

4.1.1 RQ1.1: How are the social metrics classified,

considering the set of metrics used to build prediction

models?
In this paper, we used the term “social metrics” to refer to any metric

that measures aspects of the interactions between developers. Since

these interactions happen in the context of a software process,

previous work considered social metrics as part of process metrics

[15] or other dimensions.

Process metrics reflect the changes over time, e.g. the number of code

changes [18]. Recently, the term historical metrics is sometimes used

instead of process metrics. D’Ambros et al. [10] define that process

metrics are extracted from the versioning system, assuming that

frequently changed files are part of process metrics.

Arisholm et al. [1] argue that process metrics require records of

detailed information about developers work (e.g., changes and fault

corrections, developer information, time of changes, whether a

change passed certain test procedures, etc.). For example, they

considered experience measures of each developer performing each

change and the number of developers that have made changes to a

file as process metrics.

D´Ambros et al. [10] classified approaches for predicting defects.

Three papers selected in our final list of papers were included in an

“other approaches” category by this author. Two of them [3, 36] are

exclusively related to social metrics, and the third paper explored

developer-module networks to predict defects [27].

We found two different interpretations to process metrics. Moser et

al. [10] used a set of metrics based in “file-centered” process metrics,

like number of revisions, number of times that the file was refactored,

lines added and removed from each file, change set size, and age of

each file. The unique social metric extracted from this study was

number of authors. Rahman and Devanbu [29] presented more

“human-centered” process metrics. The authors explored 14 process

metrics, 9 of them having social metrics related. For example, non-

social process metrics were number of lines added and removed from

each file and number of commits made to a file. Metrics like number

of active developer and owner´s experience can reflect the social side

of process metrics.

On the other hand, instead of using process metrics, some authors

considered different “dimensions” of software development. For

example, Shihab et al. [32] considered time, size, code, file, purpose,

and personnel aspects to predict risk changes. We selected Developer

Experience from Personnel Dimension as social metric in our list.

One of the most cited classification was “organizational metrics.”

This category grouped metrics related to ownership, authorship

experience, and roles of developers. Normally, these metrics were

used by studies that analyzed data provided by companies. A good

example of this classification were found in Mockus and Nagappan et

al. [22, 24].

We also found papers that considered different types of social

networks. Developer and Communication networks were used by

Meneely et al. [20], Bird et. al [7], Wolf et al. [36], and Biçer et al.

[6]. In these studies, the social interactions were recovered when

developers committed on the same file or commented on the same

issue/work item. The social metrics in these cases were computed

using social network analysis (SNA). We found that 45 different

SNA metrics were used in these studies. These set of metrics address

different properties of these networks. We found SNA metrics

classified as “Global and Local Measures” that explores concepts

like centrality, ego, and structural holes of the networks.

Finally, we found papers that discussed about software quality and

social structures. Nicollas et al. [5] proposed dimensions to capture

aspects from social interaction related to Discussion Contents,

Communication Dynamics, and Social Structures. Discussion

Contents are related to communication aspects like number of source

code found in a discussion, or number of links listed in a discussion.

Communication Dynamics are metrics that capture aspects from

messages exchanged between developers, like reply time and number

of messages. These metrics were also computed from developer

mailing-list by Ibrahim et al. [14].

4.1.1.1 Classification proposed
Based on the previous discussion (Section 4.1) we proposed a

classification schema to social metrics with three different groups:

communication, project, and commit-related. We reported metrics

used in the 48 papers selected in our systematic review. These

metrics were classified twenty-one metrics in communication group,

eighteen metrics in project group, and twelve metrics in commit

group. We also found forty-five social network analysis metrics on

eight types of social networks

Figure 2 presents the proposed classification. We used a mind-map

schema to summarize the classification. First, we propose three

groups. Each group is related to different groups of social metrics that

represents the different interactions between developers during the

software development.

The first group is the “Communication.” The main sources to

compute this set of metrics are issue trackers (like Github, JIRA,

Bugzilla, etc) and mailing lists. Three different categories were

described and 21 metrics were grouped. The first category represents

the Communication Dynamics. This dynamic is related to the

discussion activity, such as experience and role of participants

involved in a discussion or temporal aspects of the messages. The

metrics reporter reputation (P[6,21,46,48]), amount of messages

(P[17,21,39,48]) and amount of words (P[17,21,39,48]) were the

most frequently used metrics. The second category grouped metrics

related to Discussion Contents. This category represents the

interaction of developers during the exchange of messages and got

information about the content of each message. For example, the

amount of source code snippets written in a discussion. Just two

papers P[17,21] used metrics of this group. The third category, called

Communication Structure denotes the relationship among the

developers during the communication tasks. We found 4 different

types of social networks. The Developer Communication Network

(P[7,13,17,50]) was the most cited network. We identify 45 SNA

metrics used to analysis different types of networks, for example,

developer communication network or task-assigned networks.

The second group, called “Commit-related” is related to the

cooperative work carried by developers around the change of files.

The main source to compute this set of metrics is the software

repository. We also split this group in 3 main categories, grouping 12

metrics. Ownership grouped all metrics related to the developer

contribution on commit time. We found 6 different metrics to

compute the ownership. The two most cited metrics were amount of

distinct developers that committed a file/module (cited by 26 distinct

papers) and major contributor (P[20, 22,27,28,34]).

76

Figure 2. Mind Map with Social Metrics identified from distinct prediction models

77

The second category is related to the Developer Experience. We

found 8 papers. They used 5 metrics to compute experience of each

developer. The third category, called Cooperation Structure denotes

the relationship among the developers when they commit the same

file/module. The Developer/Contribution network was cited by 8

papers (P[15,16,19,28,36,40,50,51]).

The last group was called “Project.” We grouped 18 metrics in 3

categories. The first category is related to the developer activity. The

proportion of all developers contributing to the project (P[22,27,52])

was the most cited metric. The second category is Organization

Dynamic. We grouped metrics related to the experience, size of

team/organization, and metrics relate to the workflow of the project.

We found 10 metrics used by 8 papers. The last category represents

the Organizational structure, in which three different networks were

identified: socio-technical congruence, socio-technical network

between file and developers, and coordination requirements.

4.2 Implications to prediction models on

software Engineering
To show the implications of social metrics to build prediction

models, we discussed whether social metrics have positive, negative

or neutral effect when they were considered as predictors.

4.2.1 RQ2: Did the social metrics have positive effect

when they were considered as predictors?
During the quality criteria analysis (Table 2, question 7), we

summarized which papers compared social metrics against other

predictors or dimensions.

Table 4 shows the summary of social contribution to prediction

models by the papers perspective. The column effect represents our

interpretation for each result discussed by the original authors. We

used the symbol “+” when the conclusion about the effectiveness of

social metric was positive. The positive effect means that the results

were stated satisfactory considering their evaluation approach. For

example, one social metric has high accuracy or it was selected by

one feature selection algorithm. The symbol “-” indicates the

negative effect and “+ -” the neutral effect. The column indications

report the summary of results presented by original author. If we are

not able to identify the effect of the set of metrics used, the paper did

not appeared on Table 4.

Table 4. Summary of social contribution

Paper Effect Indications

P[2] +
developer experience was most important indicator of

risky changes

P[3] +

Social metrics improved the prediction performance when

combined with other dimension. Strong correlation

between fauls and developers

P[7] +
SNA metrics from communication network reduced the

cost required to verify the prediction results

P[8] +
There is evidence that involving many authors in the

same build also reduces the build success when using a
weighted congruence conceptualization.

P[9] +
The most significant predictors to predict failures are

number of developer’s and number of commits.

P[10] +
Number of active developers gains significance when the
prediction granularity was changed of file to package.

P[13] +
Developer communication plays an important role in the

quality of software integrations.

P[17] -

The contents of discussions were considerably more
relevant than roles of participants. Social information

cannot explain a similar amount of variance than

traditional models but complements the defect prediction
models increasing their explanatory power.

P[18] +
Developer expertise, expressed as the number of deltas a

developer has made to the code, is a strong predictor of
change quality

P[19] +
Files are likely to be vulnerable when changed by many

developers who have made many changes to other files.

P[21] +
The content, the length of a thread and the contribution

activity of a developer are the most important contribution

factors.

P[24] -
Slighter difference when developer information were add

in prediction models.

P[27] + High levels of ownership are associated with less defects.

P[28] +
When developer attention focus is higher, fewer defects
were introduced

P[29] -
The number of developers who had changed a module

did not help predicting numbers of faults

P[33] -
The developer information only slight improve the
prediction results.

P[34] +
Repository metrics (ownership) were able to get lower pf

rate on the average from 32% to 23%. compared to static
code attributes

P[36] + -
Code churn, commit changes, and developer activity can

potentially reduce the vulnerability inspection effort

compared to a random selection of files

P[37] +
Found that bug fixing by authors who were active in the

learning period helps to improve defect prediction quality.

P[39] -
In conjunction with source code and change metrics,

popularity metrics increase both the explanative and
predictive power of existing defect prediction techniques.

P[40] + -

Social network metrics alone do not have significant

impact on the prediction performance of the model.
Although social metrics give us the lowest false alarm (pf)

rates, the detection rates are also very low

P[41] -
The developer information cannot improve significantly

the prediction results

P[42] -
The developer information cannot improve the prediction

results.

P[43] +
Coordination requirements were more likely to have

defects in the files they worked on.

P[46] +
Submitter and ownership are the top 2 most important

features

P[48] +
Number of stakeholders was good predictors of issue
lead time

P[50] +

Significant aspects of the relationship between developer

communication and the units of work around which such

communication takes place in a large-scale software
project.

P[51] +
Networks built using data from Bug Re-assignment and

Co-Commit developers’ network were relevant.

P[52] +
Organizational metrics provide a better basis for
predicting long-term code churn for individual files than

code metrics

P[54] +
The number of distinct authors that performed changes
to a file show strong correlations with a file’s defect count

We observed that 21 papers recommended the use of social metrics in

prediction models against 6 papers that mentioned negative effect of

social metrics. Two papers presented neutral results. Even when the

results shown positive or negative effect, the conclusions were

careful reported, indicating that more studies are necessary to explore

the useful of social metrics in prediction models.

For example, we were not able to draw conclusions about the results

of P[44]. However, authors noticed that future defect prediction

models need to use more information from developers’ and micro

level interactions for effective defect prediction. Once this first

analysis was focused on the papers, we provide on more fine-grained

analysis focusing on our group of metrics proposed on Section 4.1.2

(Figure 2).

78

We want to highlight that the effects reported in Table 4 follow the

authors indications. It is risky to draw conclusion on the positive,

negative or neutral effect of social metrics from different papers,

because each paper has its own context, machine learning method,

experimental approach, performance measures, and so on, so they are

not comparable.

4.2.2 Mapping prediction applicability, prediction

techniques, social metrics and papers.
In this section, we mapped the groups of social metrics and prediction

applicability. After, we performed the same analysis linking each

prediction techniques for each group. Our aim was provide insights

for help researchers to get an overview about the social metrics,

prediction applicability and techniques used so far.

Table 5 presented the group of metrics and the applicability (purpose)

for each study. The intersection between applicability and metrics

indicated that at least one metric classified in our study was used as

predictor. We noticed that the commit-related and project factors

grouped the most part of the papers. The highest concentration of

metrics were used to build models to predict fault/bug proneness and

few groups were used to predict other applicability’s. Considering the

groups of metrics, ownership, communication structure, developer

activity and cooperation structure were most selected by the studies.

We also want to highlight that previous studies reported centrality

measures computed using social network techniques for

communication and developer networks as recurrent predictors.

Table 6 focused to present techniques to build prediction models. We

observed that ownership metrics were most selected as predictor to

classification and regression models. Considering the techniques,

Naïve Bayes, J48, Decision Tree (classification models) and Logistic

Regression (statistical model) were recurrently selected by

researchers as techniques to build prediction models.

The mapping showed that the most groups of social metrics were

used on spread way. They were considered in some specific

applicability’s.

5. Threats of Validity
Even though we have conducted snowballing process to select

primary studies, we are aware that the selection of papers may not

have captured all relevant studies during the first step (seed list). To

treat this issue, we used two validation steps described in Section 4.3

and this validation was conduct by an author that did not participate

in the first four steps (seed, backward, forward, and DBLP). We

highlight that we received answers of 10 specialists and all suggested

papers were found in some stage of our review method.

Another potential threat in snowballing is that we might find several

papers from the same authors since their previous research is usually

relevant and was cited. Thus, the results of snowballing approach

might be biased by over presenting specific authors’ research. To

minimize this threat, for each of the 103 distinct authors identified

during the seed, backward, and forward analysis, we visited the

DBLP author’s page, searching for new papers that could be included

in our SLR. We found 3 additional papers during this step.

During the steps of selection and synthesis, some bias can be

inserted. To reduce this issue, the selection process was conducted by

two authors and constantly crosschecked. These two authors also

jointly performed the synthesis. Conflicts were discussed until

consensus was reached.

During the steps of selection and synthesis, some bias can be

inserted. To reduce this issue, the selection process was conducted by

two authors and constantly crosschecked. These two authors also

jointly performed the synthesis. Conflicts were discussed until

consensus was reached

The mind map reflects our interpretation about the papers and social

metrics. As mentioned, we classified as social metrics, but many

metrics were classified by other authors as process metrics. We

encourage other researches refine our classification.

There are important factors influencing the use of social metrics, for

example, whether open source or commercial software projects are

studied, whether social metrics are combined with other prediction

metrics. So, the effects of social metrics reported by each study are

related to their context.

6. CONCLUSION
We conducted a systematic mapping to identify the use of social

metrics in prediction models on the Software Engineering context.

We found 48 papers that applied at least one metric that could be

classified as social. We proposed a classification with 3 groups

(communication, project, and commit-related) and nine categories.

We grouped 21 metrics at communication, 18 metrics at project, and

12 metrics at commit group. We found 45 SNA metrics (centrality,

global, ego, and structural hole measures) used to analyze social

interactions.

Considering the prediction models built, the most frequent techniques

were Naïve Bayes and Logistic Regression. More than one metric

were used to evaluate the prediction results. Defect predictions on file

level were the most common granularity and application. Only 14

studies considered more than 3 projects on their dataset´s. Menzies

[21] recommended that it is necessary to discover and describe more

information about the data collected from software development. He

also recommend the use of other types of analysis to explore the data

and its mining rules.

We observed that even when social metrics were considered, they

were classified as part of other dimension, such as process, history, or

change. Moreover, few papers reported the individual performance of

social metrics as predictors.

Considering the results published so far, it could be risky to draw

generalized conclusions about social metrics, since the studies

employed many different techniques and investigated a limited

number of software projects in different contexts. More studies are

needed on this area, exploring the social metrics mapped on this

study or proposing their own social metrics.

These studies should consider large scale and longitudinal analysis to

investigate the effectiveness of social metrics to build prediction

models. Since many previous works explored defect prediction on

file level, to predict fault proneness, we encourage researchers to

build predictive models to other related problems in software

engineering, like tasks triage.

Finally, we claim that this work may support researchers and

practitioners to build their prediction models, considering more social

metrics, as well as the investigation of new hypothesis of influences

of social aspects in software engineering activities.

7. ACKNOWLEDGMENTS
We thank Fundação Araucária, NAWEB and NAPSOL for the

financial support. Marco G. receives individual grant from CNPq and

FAPESP. Igor W. and Igor S. receive grants from CAPES (Process

BEX 2039-13-3 and Process BEX 2038-13-7).

79

Table 5. Applicability of prediction models using Social Metrics

Social Metric

Group

Social Metric Sub-

Group

Applicability

Fault/Bug Risky
Build

Success
Vulnerability

Discussion

Recomm.

Bug

Triage

Bug

Fixing

Time

Re-opened

Issues
Effort

Bug

Severity

Churn

File

Communication

Dynamics (*)

Experience P6,P17 P21 P46, P48

Role
P6,P17,P39

,P50
 P21 P46, P48

Temporal P17, P39 P21 P48

Discussion

Contents (*)
- P17 P21

Communication

Structure (*)
-

P7, P17, P32,

P43, P47,

P50,P51

 P13 P45 P51 P51

Ownership (**) -

P3, P20, P22,

P27, P28, P30,

P34, P44

Experience (**) -
P20, P24, P28,

P32, P34
P2, P18 P52

Cooperation

Structure (**)
-

P15,P16,P28,

P40, P50, P51
 P19, P36 P51 P51

Developer

Activity (***)
-

P3, P20, P22,

P27, P37, P50
 P49 P48 P47 P52

Organizational

Dynamics (***)

Experience P20, P32 P47 P52

Team/Organization

Site

P32, P37

Workflow
P17, P29, P30,

P32

Organizational

Structure (***)
- P16,P43,P50 P8

(*) communication factor, (**) commit factor, and (***) project factor

Ownership – # distinct developers that committed the file/module was cited 32 times (fault, risky, build, vulnerability)

Table 6. Prediction techniques using Social Metrics

 Social Metric Group

Prediction technique

Classification Statistical

NayB J48 DT BayN SVM RanF RBFB NN KNN LogR LinR BinR MLR PoiR RTree NLDT

Communication

Dynamics (*)

P21,

P46

P48 P21,

P46

P46,

P48

- - P46,

P48

- P46 P6, P17,

P48

P48 - P39,

P48,

P50

- - -

Discussion Contents(*) P21 - P21 - - - - - - P17 - - - - - -

Communication

Structure (*)

P7,P13 - - - P45 - - - - P32, P47 - - P50 P15 - -

Ownership (**)

P1,P20

P26,

P34,

P36,

P40

P1,P2,

P36,

P37

P3,P21

,P26,P

30,P44

,P46,

P52

P12,P1

9,P36

P20 P36 - P52 - P1, P2,P8

P9,P10,

P15,P16,

P18,P20,

P22,P26,

P32,P36,

P38

P3,

P30

P5,P15

,P24,

P28,

P33,

P41,

P42

P27,

P39,

P50

P15,

P29

P30 P35

Experience (**)
P20 P2 P52 - P20 - - P52 - P2

,P20, P32

- P24,

P28

- - - -

Cooperation Structure

(**)

P36 - - P36 - p36 - - - P15,

P16,P36

- P15,

P28

P50 P15 - -

Developer Activity

(***)

P20

,P49

P37,

P48
P3 P48

P20,

P49
- P48 P52 -

P3,

P22,P47,

P48

P3,

P48
-

P27,

P48,

P50

- - -

Organizational

Dynamics (***)
- -

P30

- P20 - - P52 -

P17,P20,

P32,P47 P30 - - P29 P30 -

Organizational

Structure (***)
- - - - - - - - -

P8,P16,

P43 - - - - - -

Naive Bayes (NayB), Decision Tree (DT), Bayes Network (BayN), Random Forest (RanF), RBF Bayes (RBFB), Neural Network (NN), Logistical Regression (LogR), Linear

Regression (LinR), Binomial Regression (BinR), Multiple Linear Regression (MLR), Poison Regression (PoiR), Regression Tree (RTree), Non-linear Decision Tree (NLDT)

8. REFERENCES
[1] Arisholm, E., Briand, L.C. and Johannessen, E.B. 2010. A

systematic and comprehensive investigation of methods to

build and evaluate fault prediction models. Journal of

Systems and Software. 83, 1 (2010), 2–17.

[2] Azhar, D., Mendes, E. and Riddle, P. 2012. A systematic

review of web resource estimation. PROMISE (2012), 49–58.

[3] Bacchelli, A., D’Ambros, M. and Lanza, M. 2010. Are

Popular Classes More Defect Prone? Proceedings of the 13th

FASE (2010), 59–73.

[4] Barbara Kitchenham, S.C. 2007. Guidelines for Performing

Systematic Literature Reviews in Software Engineering

Technical Report EBSE-2007-01. (2007).

[5] Bettenburg, N. and Hassan, A.E. 2013. Studying the impact

of social interactions on software quality. Empirical Softw.

Engg. 18, 2 (Apr. 2013), 375–431.

80

[6] Biçer, S., Bener, A.B. and Çaglayan, B. 2011. Defect

prediction using social network analysis on issue repositories.

Proceedings of ICSSP 2011 (2011), 63–71.

[7] Bird, C., Nagappan, N., Gall, H., Murphy, B. and Devanbu,

P. 2009. Putting It All Together: Using Socio-technical

Networks to Predict Failures. Proceedings of the 2009 20th

International Symposium on Software Reliability Engineering

(2009), 109–119.

[8] Catal, C. 2011. Software fault prediction: A literature review

and current trends. Expert Systems with Applications. 38, 4

(2011), 4626–4636.

[9] Catal, C. and Diri, B. 2009. A systematic review of software

fault prediction studies. Expert Systems with Applications. 36,

4 (2009), 7346–7354.

[10] D’Ambros, M., Lanza, M. and Robbes, R. 2012. Evaluating

defect prediction approaches: a benchmark and an extensive

comparison. Empirical Softw. Eng. 17, 4-5 (Aug. 2012), 531–

577.

[11] Dybå, T. and Dingsøyr, T. 2008. Strength of Evidence in

Systematic Reviews in Software Engineering. Proceedings of

the Second ACM-IEEE International Symposium on

Empirical Software Engineering and Measurement (2008),

178–187.

[12] Graves, T.L., Karr, A.F., Marron, J.S. and Siy, H. 2000.

Predicting fault incidence using software change history.

Software Engineering, IEEE Transactions on. 26, 7 (Jul.

2000), 653–661.

[13] Hall, T., Beecham, S., Bowes, D., Gray, D. and Counsell, S.

2012. A Systematic Literature Review on Fault Prediction

Performance in Software Engineering. IEEE Trans. Software

Eng. 38, 6 (2012), 1276–1304.

[14] Ibrahim, W.M., Bettenburg, N., Shihab, E., Adams, B. and

Hassan, A.E. 2010. Should I contribute to this discussion?

MSR ’10: Proceedings (2010), 181–191.

[15] Illes-Seifert, T. and Paech, B. 2010. Exploring the

relationship of a file’s history and its fault-proneness: An

empirical method and its application to open source

programs. Information and Software Technology. 52, 5

(2010), 539–558.

[16] Jalali, S. and Wohlin, C. 2012. Systematic Literature Studies:

Database Searches vs. Backward Snowballing. Proceedings

of the ACM-IEEE ESEM (2012), 29–38.

[17] Jorgensen, M. and Shepperd, M. 2007. A Systematic Review

of Software Development Cost Estimation Studies. Software

Engineering, IEEE Transactions on. 33, 1 (Jan. 2007), 33–53.

[18] Jureczko, M. and Madeyski, L. 2011. A review of process

metrics in defect prediction studies. Metody Informatyki

Stosowanej. 5 (2011), 133–145.

[19] Kitchenham, B. and Brereton, P. 2013. A systematic review

of systematic review process research in software

engineering. Information and Software Technology. 55, 12

(2013), 2049–2075.

[20] Meneely, A., Williams, L., Snipes, W. and Osborne, J. 2008.

Predicting Failures with Developer Networks and Social

Network Analysis. Proceedings of the 16th ACM SIGSOFT

International Symposium on Foundations of Software

Engineering (2008), 13–23.

[21] Menzies, T. 2012. Predicting the Future of Predictive

Modeling. NSF Workshop: Planning Future Directions in AI

&SE (AISE’12) (Sep. 2012).

[22] Mockus, A. 2010. Organizational Volatility and Its Effects on

Software Defects. Proceedings of the Eighteenth ACM

SIGSOFT FSE (2010), 117–126.

[23] Moser, R., Pedrycz, W. and Succi, G. 2008. A comparative

analysis of the efficiency of change metrics and static code

attributes for defect prediction. Proceedings of the 30th ICSE

(2008), 181–190.

[24] Nagappan, N., Murphy, B. and Basili, V.R. 2008. The

influence of organizational structure on software quality: an

empirical case study. ICSE (2008), 521–530.

[25] Nagappan, N., Zeller, A., Zimmermann, T., Herzig, K. and

Murphy, B. 2010. Change Bursts as Defect Predictors.

Proceedings of the ISSRE 2010 (2010), 309–318.

[26] Petersen, K., Feldt, R., Mujtaba, S. and Mattsson, M. 2008.

Systematic Mapping Studies in Software Engineering.

Proceedings of the 12th EASE (2008), 68–77.

[27] Pinzger, M., Nagappan, N. and Murphy, B. 2008. Can

Developer-module Networks Predict Failures? Proceedings

of the 16th ACM SIGSOFT FSE (2008), 2–12.

[28] Radjenović, D., Heričko, M., Torkar, R. and Živkovič, A.

2013. Software fault prediction metrics: A systematic

literature review. Information and Software Technology. 55, 8

(2013), 1397–1418.

[29] Rahman, F. and Devanbu, P. 2013. How, and why, process

metrics are better. Proceedings of the 2013 International

Conference on Software Engineering (2013), 432–441.

[30] Ratzinger, J., Pinzger, M. and Gall, H. 2007. EQ-mine:

Predicting Short-term Defects for Software Evolution.

Proceedings of the 10th International Conference on

Fundamental Approaches to Software Engineering (2007),

12–26.

[31] Riaz, M., Mendes, E. and Tempero, E. 2009. A systematic

review of software maintainability prediction and metrics.

Empirical Software Engineering and Measurement (Oct.

2009), 367–377.

[32] Shihab, E., Hassan, A.E., Adams, B. and Jiang, Z.M. 2012.

An industrial study on the risk of software changes.

Proceedings of the ACM SIGSOFT 20th FSE (2012), 62:1–

62:11.

[33] Souza, C.R. de, Quirk, S., Trainer, E. and Redmiles, D.F.

2007. Supporting Collaborative Software Development

Through the Visualization of Socio-technical Dependencies.

Proceedings of the 2007 GROUP (2007), 147–156.

[34] Webster, J. and Watson, R.T. 2002. Analyzing the Past to

Prepare for the Future: Writing a Literature Review. MIS Q.

26, 2 (Jun. 2002), xiii–xxiii.

[35] Weyuker, E.J., Ostrand, T.J. and Bell, R.M. 2008. Do too

many cooks spoil the broth? Using the number of developers

to enhance defect prediction models. Empirical Software

Engineering. 13, 5 (2008), 539–559.

[36] Wolf, T., Schroter, A., Damian, D. and Nguyen, T. 2009.

Predicting build failures using social network analysis on

developer communication. Software Engineering, 2009. ICSE

2009. (May. 2009), 1–11.

81

