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Abstract— Structural dependencies have long been explored in
the context of software quality. More recently, software evolution
researchers have investigated logical dependencies between
artifacts to assess failure-proneness, detect design issues, infer
code decay, and predict likely changes. However, the interplay
between these two kinds of dependencies is still obscure. By
mining 150 thousand commits from the Apache Software
Foundation repository and employing object-oriented metrics
reference values, we concluded that 91% of all established logical
dependencies involve non-structurally related artifacts.
Furthermore, we found some evidence that structural
dependencies do not lead to logical dependencies in most
situations. These results suggest that dependency management
methods and tools should rely on both kinds of dependencies,
since they represent different dimensions of software evolvability.
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management; structural analysis; structural dependencies;
structural coupling; logical dependencies; logical coupling;
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L INTRODUCTION

Software Engineering literature has long recognized the
importance of structural dependencies to software quality
research [1]. In particular, this kind of dependency has been
investigated in the contexts of impact analysis [2], error-
proneness [3], change propagation [4, 34, 35], regression
testing [36], and others.

Recent research in software evolution area has introduced a
novel dependency identification approach that reveals new and
more subtle relationships between software artifacts. The
concept underlying this notion is known as logical
dependencies, which refers to evolutionary dependencies that
are established among source-code files that are frequently
changed together (although not necessarily structurally related).

The relationship between logical dependencies and
software quality has also been investigated. Graves et al. [5]
showed that past changes are good predictors of future faults.
Mockus and Weiss [6] found that the spread of a change over
subsystems and files is a strong indicator that the change will
contain a defect. Cataldo et al. [7] showed through a detailed
empirical study that the effect of logical dependencies on
failure proneness was complementary and significantly more
relevant than the impact of structural dependencies for two
projects from different companies. Logical dependencies have
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also been employed to detect design issues [8], infer code
decay [9], and predict changes in software artifacts [10].

While it seems clear that both kinds of dependencies play a
major role during software evolution, no large-scale empirical
examination has been undertaken to investigate their interplay.
Particularly, the proportion of established logical dependencies
that involve structurally related elements is still unclear. In
addition, classic Software Engineering literature has long stated
that structural coupling should be minimized because every
time a supplier class changes, its clients are also likely to
change [11, 12, 13]. However, little is known about the actual
proportion of structural dependencies that effectively lead to
logical dependencies.

A deeper understanding of the overlapping between these
two kinds of dependencies is fundamental to Software
Evolution research. For instance, if such overlapping is large,
then structural and logical dependencies can be used
interchangeably as input to dependency management methods
and tools. On the other hand, if the overlapping is actually
small, then it would be necessary to conceive and develop
novel dependency management methods and tools that
incorporate both kinds of dependencies. This last hypothetical
situation implies that structural and logical dependencies
represent different dimensions of software evolvability.

In this paper, we intend to better understand the interplay
between structural and logical dependencies by addressing two
research questions (Figure 1).

Q1) What is the proportion of established logical dependencies
that involve non-structurally related elements?

Q2) What is the proportion of formed structural dependencies
that involve non-logically related elements?

Structural
Dependencies

Logical
Dependencies

Figure 1. Venn-diagram illustrating the research questions.
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We identified structural and logical dependencies from a
baseline of 150 thousand revisions from the Apache Software
Foundation (ASF) Subversion (SVN) repository. We used
Doxygen and Doxyparse [l14] to calculate structural
dependencies from Java source-code files, and we used XFlow
[15] to calculate logical dependencies. Once dependencies were
gathered, we conducted a series of statistical analyses to answer
the research questions.

Our main contributions include (i) mining ASF repository
and proving a quantitative analysis of files per revision; (ii)
developing an algorithmic approach to calculate and compare
the degrees of structural and logical coupling; (iii) performing a
segmented analysis of the relation between logical
dependencies origins and structural coupling according to
different support and confidence values; and (iv) analyzing the
evolutionary consequences of structural dependencies by using
object-oriented metrics reference values. Other contributions
include improving Doxyparse metrics calculation and
improving XFlow data collection performance.

The remainder of this paper is organized as follows. In
Section II, we introduce both structural and logical
dependencies and discuss how they can be identified. In
Section III, we present the study setup by showing the rationale
related to the choice of the software repository and the
selection of the study supporting tools. In Section IV, we
present the methodology and the dependency identification
algorithms employed in this study. In Section V, we discuss
our findings and in Section VI we discuss the threats to
validity. In Section VII, we present related work and, in
Section VIII, we state our final conclusions and future work.

II.  SOFTWARE DEPENDENCIES

A dependency is a semantic relationship that indicates that
a client element may be affected by changes performed in a
supplier element [13]. A dependency implies that the semantics
of the client is not complete without its suppliers. We employ
the terms client and supplier throughout this paper.

In the next subsections, we introduce structural
dependencies and discuss how they can be identified in the
context of object-oriented programming. We also present
Coupling Between Objects (CBO) and Message Passing
Coupling (MPC) metrics. Finally, we introduce the concept of
logical dependencies and present the commonly associated
metrics.

A.  Structural Dependencies

Structural dependencies (a.k.a. syntactic dependencies)
occur whenever a compilation unit depends on another at
compilation or linkage time [16]. In this study, the term
compilation unit is used to refer to an abstract class, concrete
class, or an interface.

The identification of structural dependencies is conducted
by recognizing clients and suppliers through code static
analysis (a.k.a. code scanning), and thus it depends on the
programming language in which the system was written.
Occasionally, other metadata such as relationship type and
dependency stereotype are also used. The static analysis is
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performed against source code or compiled code (the latter is
the most common approach for languages such as Java and
C#). A discussion about the advantages and disadvantages of
analyzing each form of code can be found on [17]. In this
study, we identified dependencies by analyzing source code
written in Java (see Section I1I-B).

Several object-oriented metrics rely on the concept of
structural dependencies. Coupling Between Objects (CBO), for
example, measures the number of classes to which a class is
coupled. The original CBO definition by Chidamber and
Kemerer [18] considers the number of classes that a class A
references (a.k.a. Fan-Out) plus the number of classes that
references A (a.k.a Fan-In). If a class appears in both the
referenced and the referred set of classes, it is counted only
once. Message Passing Coupling (MPC) [19] measures the
number of external operation calls, i.e. the number of calls
from methods of a class to operations of other classes.

B. Logical Dependencies

Logical dependencies (a.k.a., change dependencies,
evolutionary dependencies, and co-changes) are implicit
dependencies that happen between software artifacts that
evolved together [21, 20]. These artifacts are not necessarily
structurally related, since they are connected from an
evolutionary point of view, i.e. they have often changed
together in the past, so they are likely to change together in the
future. Hence, while structural dependencies are defined for a
specific time instant, logical dependencies are defined based on
a time interval.

The identification of logical dependencies is usually
performed by parsing and analyzing the logs of version control
systems (VCSs). Unlike structural dependencies analysis
(ak.a., static analysis), this technique is able to spot
dependencies between any kind of artifact that composes a
system, including configuration files (such as XML and
property files) and documentation. In Section III-B, we provide
details on how identified logical dependencies from projects in
the ASF SVN repository.

Logical dependencies are defined for pairs of files and are
commonly treated as data mining association rules [10].
Formally, an association rule is an implication of the form
X=X,, meaning that when X, occurs, X, also occurs. In this
notation, X; and X,are two disjoint sets of items. Furthermore,
X, and X, are called the antecedent (a.k.a, left-hand-side, LHS)
and the consequent (a.k.a., right-hand-side, RHS) of the rule
respectively. For example, the rule {A, B}=C found in the
sales data of a supermarket would indicate that if a customer
buys A and B together, he or she is also likely to buy C. In the
context of our study, a logical dependency from a file f, to
another file f; is denoted by F;=F,, i.e. an association rule in
which the antecedent and consequent are both singleton sets
containing f; and f; respectively.

Measures of interest and significance for association rules
are usually given by support and confidence thresholds. In our
study, the support measure denotes the number of times two
artifacts were changed together. The confidence measure
defines the degree to which artifacts are logically connected,
thus characterizing the strength of the relation. These concepts
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have been formalized by Zimmerman et al. [10] and we have
adapted them for atomic-commit featured VCSs as follows:

Frequency of a set F in a set of commits C as frq(C, F) =
|[{c|c €C,F Sc}|.

Support of a rule X;=X, by a set of commits C as supp(C,
Fi=F,) = frq(C, F,UF,) = P(FiNF,), i.e. the probability of
finding both antecedent and consequent in the set of commits
C.

Confidence of a rule F\=F, as conf(C, F=F,) =
frq(C,F\UF,) / frq(C,F,) = P(F,F,), i.e. the probability of
finding the consequent of the rule in commits under the
condition that these commits also contain the antecedent.

It should be noted that the confidence values for F,=F, and
F,=F, are different. In the first case, the confidence value
determines (by definition) the degree to which file f; is a client
of file f;. Analogously, in the second case, the confidence value
determines the degree to which file f; is a client of file ;. To
illustrate this subtle difference, consider the example shown in
Figure 2.

Commit Time

f, & &

Figure 2. Association rule example.

Most of the time, when f) is commited, f; is also commited.
Therefore, the rule F;=F, (which states that f, depends on f;)
has a high confidence value of 4/5 = 0.8 = 80%. In contrast, the
rule F,=F, (which states that f; depends on f,) has a much
lower confidence value of 4/10 = 0.4 = 40%.

III. STUDY SETUP

Prior to conducting the relationship study itself, we needed
to address questions related to the choice of a software
repository and the selection of tools for dependencies
identification. In the next subsections, we show the rationale of
these choices.

A.  Repository choice

Apache Software Foundation (ASF) is a distinguished non-
profit corporation that has developed nearly a hundred
distinguishing software projects that cover a wide range of
technologies and address several problems from diverse
contexts. Examples of ASF projects include Apache HTTP
Server, Apache Geronimo, Cassandra, Lucene, Maven, Ant,
and Struts.

ASF currently owns a single giant SVN repository (with
almost 1.1 million revisions) that hosts all Apache projects and
subprojects. We chose to mine this repository since (i) it hosts a
large number of relevant FLOSS projects; (ii) although projects
are semi-autonomous, they all follow a well-defined modus
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operandi with relation to commit policies'; (iii) information
about repository characteristics and general usage instructions
are provided”.

B.  Supporting Tools

XFlow. Mining repositories studies usually require
extensive tool support due to large and complex data that need
to be collected, processed, and analyzed [24]. XFlow is an
extensible and interactive open source tool [15] whose general
goal is to provide a comprehensive analysis of software
projects evolution process by mining software repositories and
taking into account both technical and social aspects of the
developed systems. XFlow collects data from version control
systems, then identifies logical dependencies and evaluates
metrics over the collected data, and finally presents rich
interactive visualizations (Figure 3).

J

[ Data Collection ] E>[ Processing ]¢[ Metrics ] E>[ Visualizations
: g g

Persistency

Figure 3. XFlow processing phases.

We decided that conducting the whole study using a single
dependency analysis tool would be better than having separate
tools for structural and logical dependencies, since it would
facilitate, for instance, the grouping and analysis of the results.
Therefore, we took advantage of XFlow extensible architecture
to develop a structural dependencies identification module.
This new developed module relies on both DoxyParse and
DoxyGen tools.

Doxygen and Doxyparse. While designing the case study,
we came up with the following requirements for a structural
dependencies identifier tool:

(i) To identify dependencies through Java source code scan:
since we were dealing with a versioning system, it would be
more practical and straightforward if the identification of
dependencies were done directly upon the source code of Java
compilation units;

(ii) To calculate structural coupling by counting the number
of operation calls from a client to a supplier: this defined our
metric for structural coupling. This can be viewed as the
application of the MPC metric for a single client and a single
supplier. We henceforth denote it by MPC*.

Doxygen® is a documentation system for C++, C, Java,
Objective-C, Python, IDL (Corba and Microsoft flavors),
Fortran, VHDL, PHP, and C#. Doxygen is distributed under the
GPL license and runs on a variety of operating systems.
Doxyparse is a multi-language source code parser that meets
our requirements and is built on top of Doxygen's internals. In
theory, it supports parsing all the languages supported by
Doxygen, although up to now it has only been tested with C,
C++, and Java. Doxyparse's main goal is to serve as a backend

1 http://www.apache.org/dev/new-committers-guide.html

http://www.apache.org/dev/version-control.html
http://www.doxygen.org/index.html

2
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for Analizo [14], which is a source code analysis toolkit mainly
aimed at calculating object-oriented metrics.

Improvements in Doxygen/Doxyparse and XFlow.
Doxygen was not able to detect duplicate client method calls to
the same supplier operation in the case where such calls were
made inside the scope of the same client method. For example,
if a method a () from class A called an operation b () from
class B three times, Doxygen would only count it once. We
hacked Doxygen so that it would count all operation calls
(three in the example). Finally, we also hacked DoxyParse to
remove useless information to this study, so that performance
would be improved.

XFlow was not initially prepared to support large-scale
studies (such as this one, which involves 150k revisions).
Hence, during the study setup, we improved the performance of
the data collection phase of the tool.

Minitab. All statistical analysis of data in this study was
supported by Minitab*. Minitab is an easy to use and yet
powerful statistical package heavily employed in both industry
and statistical courses at universities worldwide.

IV. DATA COLLECTION INSTRUMENTS AND METHODS

Once the repository was chosen and supporting tools were
selected and adapted, we proceeded with the interplay study. In
the next subsections, we present how and what kind of data we
collected from the repository. After that, we show basic
descriptive statistics related to files per revision. Finally, we
discuss how logical and structural dependencies were identified
and how coupling values were calculated.

A. Collecting data

We analyzed 150k revisions from the ASF SVN repository,
which encompasses an activity time frame of approximately 2
years and 4 months (October of 2002 till February of 2005).
We chose to analyze the initial revisions, so that project’s
growth and evolution characteristics would be preserved for the
logical dependency analysis (picking up an arbitrary interval
would provide inaccurate evolutionary information).

To cope with remote repository instability, we built a local
mirror of the ASF SVN repository. After mirroring the
repository, we executed the data collection processing phase of
XFlow (Figure 3), i.e. we collected and parsed the log
messages of all the 150k revisions. Since we needed to
calculate structural coupling, we configured XFlow to
download source code of the versioned files. All files that did
not have a . java extension were filtered out from revisions.
Furthermore, revisions having no Java files were discarded. We
chose to analyze only Java source-code since structural
coupling measures vary from language to language.

After collecting the data, we calculated basic descriptive
statistics to gain insight and better understand the
characteristics of number of files per revision variable (Table I
and Table II). A graphical summary is given in Figure 4.

* http://www.minitab.com/

TABLE L. NUMBER OF FILES PER REVISION — DESCRIPTIVE STATISTICS

N
40,518

StDev
36.24

Kurtosis
1608.65

Skewness
33.54

Mean
6.21

Sum
251,691

Number of revisions and number of files. XFlow data
collection resulted in 40,518 revisions containing at least one
java file, which accounts for 27% of our initial sample (150k
revisions). This amount of revisions contained a total of
251,691 files.

Mean and Standard deviation. The mean value indicates
that revisions contain approximately 6 files in average.
However, standard deviation value shows that the dispersion is
high. The next basic descriptive statistics measures were
employed to better understand this dispersion value.

Skewness. Skewness value denotes the degree to which a
data set is not symmetrical. The positive skewness value
presented in Table I indicates that the data-set is right-skewed,
i.e. the “tail” of the distribution points to the right. Positive
skewness can be clearly noted in Figure 4A.

Kurtosis. Kurtosis value denotes the degree to which a data
set is peaked. Data sets with high kurtosis tend to have a
distinct peak near the mean, decline rather rapidly, and have
heavy tails. The high kurtosis value presented in Table I can be
clearly visualized in Figure 4A.

Test for normality. Analysis of skewness, kurtosis, and
frequency histogram showed that data is not normally
distributed. In fact, we conducted the Anderson-Darling test for
normality and we obtained a p-value < 0005.

TABLE II. NUMBER OF FILES PER REVISION — QUARTILE ANALYSIS
> . Lower Upper
Min | Q1 | Median | Q3 Max IQR Whisker | Whisker
1.0 | 1.0 1.0 4.0 | 2450.0 3.0 1.0 8.5
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Quartile analysis. The boxplot gives another view on the
distribution of the data-set, by showing its shape, central
tendency, and variability (Figure 4B). Lower and upper
whiskers reveal that “usual” revisions encompass 1 to 8 files.
The largest revision included 2,450 files.

40000

A

30000

20000

10000

160 200 240 280 320

Figure 4. Graphical summary of number of files per revision.
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In the next subsection, we describe how dependencies were
identified. We also present assumptions and decisions made
during this task.

B. Identifying dependencies and calculating coupling

As stated in Section III-B, we employed XFlow to detect
both structural and logical dependencies. We referred to the
quartile analysis to exclude revisions that contained an extreme
number of files, since these revisions are statistically
insignificant and would require great computational resources
to be processed’.

Logical dependencies. XFlow processing phase (Figure 2)
applies the method proposed by Cataldo to detect logical
dependencies between software artifacts [25]. The tool
analyzes all previously parsed revisions and builds a square
sparse symmetrical matrix with the following properties:

e cell(i,i): number of times that file / changed

(number of revisions that included file 7).

cell(i,j), for i#j: number of times that file /
and file j changed together (number of revisions that
included both file 7 and file j).

Two logical dependencies are established for each non-
blank cell off the matrix diagonal. The value of such cells
indicates the support for both dependencies. Confidence is
calculated for each one of these two dependencies by
employing the support value and the corresponding value from
the matrix diagonal.

Structural dependencies. While logical dependencies are
defined based on a time interval, structural dependencies are
defined for a specific time instant. Therefore, in order to
compare logical coupling to structural coupling, we developed
an algorithmic strategy. The basic idea is that, for every
established logical dependency F,=F,, we calculate the
associated average structural coupling value. Such value
corresponds to the average number of operation calls from f; to
f, (average MPC*). The following pseudocode®describes the
conceived strategy for structural coupling calculation (Listing
1). Variable names c and s stand for client and supplier
respectively.

13 //Calc. coupling for files outside rev.
14. old s <« XFlow.getOldSuppliers(c)

15 old 8 «—ocld s — files

16, for each file s in old_s

Lihe depDegree « Doxy.calcMPC* (c,s)

18- dep <« XFlow.getDependency (c,s)

18 dep.addDegree (depDegree)

20. end-for

- O end-for

22. end-for

Listing 1. Pseudocode describing the employed strategy for structural
coupling calculation

We first calculate the pair-wise structural coupling between
all files in each revision (2-12). Given that a file £ of a
specific revision may have already been co-changed with other
files in the past, we recalculate the structural coupling value
between £ and the old suppliers of £ (13-21). We assume that
dep is a variable that points to a Dependency object which
provides the average coupling degree for a series of added
degree values (10, 19).

V.

Once dependencies were identified and associated coupling
values were calculated, we started the analysis of the
relationship between structural and logical dependencies. We
first queried XFlow database and obtained a total of 270,010
dependencies, along with their properties. Based on such data,
we built a spreadsheet with the following columns: antecedent
(LHS), consequent (RHS), support, confidence, and MPC*. We
imported the spreadsheet in Minitab and started investigating
our research questions.

RESULTS

In the next subsections, we analyze and discuss the results
obtained for each one of the questions.

A. Research question Q1

Q1) What is the proportion of established logical
dependencies that involve non-structurally related elements?

1. revisions « XFlow.getAllRevisions/()

2. for each revision r in revisions

B files « r.getFiles()

4. for each file c in files

B //Calc. coupling for files in rev.

6. for each file s in files

g 2" if(c # s)

8. depDegree <« Doxy.calcMPC* (c,s)
9. dep « XFlow.getDependency (c,s)
10 dep.addDegree (depDegree)

17 end-if

12 end-for

= In a quartile analysis, extreme values are those beyond Q3+3.0¥IQR

The presented pseudocode is an illustrative high-level description of
how structural coupling is calculated. The real module implemented in XFlow
is much more complex and optimized.

6
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We calculated the proportion of logical dependencies that
involved non-structurally related elements ’ (Figure 5) by
applying the approaches described in Section IV-B. We called
such proportion LCOP (logical-coupling-only proportion).

Structural
Dependencies

Logical
Dependencies

Figure 5. Venn-diagram illustrating research question Q1.

X Non-structurally related elements are those for which the average

MPC* equals zero (see Listing 1).
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Figure 8. Support distribution for lowly (A), medially (B) and highly (C) logically coupled files.

We conducted our analysis by calculating LCOP for three
different confidence intervals that we established:

e  [0.00, 0.33]: Low logical coupling
e ]0.33, 0.66]: Medium logical coupling
e ]0.66, 1.00]: High logical coupling

Table III shows the results for all computed intervals. We
can see that as confidence increased, LCOP value also
increased. Interestingly enough, this revealed that highly
logically coupled files were the ones that suffered the slightest
influence from structural coupling (although they accounted for
only 0.1% of the total number of logical dependencies).
Furthermore, the last table row (which encompasses all logical
dependencies) also presented a high LCOP value (91%).
Therefore, since LCOP values ranged from 91% to
approximately 93%, we conclude that logical dependencies
very frequently involve non-structurally related elements.
Consequently, as correlation is necessary for linear causation,
we have some evidence that logical dependencies are not
directly caused by structural dependencies. This finding
corroborates the results given in [33].

TABLE III. LOGICAL DEPENDENCIES INVOLVING NON-STRUCTURALY
RELATED COMPILATION UNITS
Number of Logical Logical deps. w/o
ko LCOP
dependencies structural counterpart

Confidence 5 5
[0.00, 0.33] 166,378 (61.6%) 151,397 91.0%

Confidence - -
10.33, 0.66] 103,265 (38.2%) 94,074 91.1%

Confidence 2 5
10.66, 1.00] 367 (0.1%) 341 92.9%
Total 270,010 (100%) 245,812 91.0%

To further investigate this research question, we plotted
LCOP for the three confidence intervals (Figure 6). The x-axis
refers to support values. Furthermore, we also computed the
cumulative percentage for the support variable (Figure 7), as
well as the support frequency distribution for lowly, medially,
and highly logically coupled files (Figure 8).
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Figure 6. Logical dependencies involving non structurally related

compilation units (LCOP).
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Figure 7. Support cumulative percentage.

In light of these results, we analyzed LCOP for three
different support intervals:

Support interval [0, 10]: This support interval accounts for
99.9% of all identified logical dependencies (Figure 7). Lowly
logically coupled files showed a decreasing curve (Figure 6),
i.e. LCOP decreased and thus structural dependencies seem to
play a considerable role in these cases. Medium logically
coupled compilation units showed a curve with minor
variations that stayed between 90% and 80% for the considered
support interval. Therefore, as opposed to the previous case,
structural dependencies seem to be poorly responsible for these
logical dependencies.

Support interval [11, 31]: Lowly, medially, and highly
logically coupled files showed curves with high variation
throughout this support interval. This was expected, since such
interval accounts for only 0.1% of all logical dependencies
(Figure 7).
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Support interval [1, 7]: Highly logically coupled files
curve stayed beyond 90% most of the time, which corroborates
our previous finding, i.e. these files suffered the slightest
influence from structural coupling. Figure 8 also shows that
support distribution for highly logically coupled files (C) is
“smoother” than the ones for lowly (A) and medially (B)
logically coupled files.

B. Research Question Q2

Q2) What is the proportion of formed structural
dependencies that involve non-logically related elements

We employed a three-step strategy to calculate the
proportion of structural dependencies that involved non-
logically related elements. We called this proportion SCOP
(structural-coupling-only proportion). As illustrated in Figure
9, we (i) estimated the size of the structural dependencies by
employing reference values for the CBO metric, (ii) calculated
the size of the intersection set, and (iii) calculated the size of
the structural-dependencies-only set based on the results from
(i) and (ii).

Structural
Dependencies

Structural
Dependencies

Logical
Dependencies

Logical
Dependencies

Logical Structural
Dependencies Dependencies

(D,

Figure 9. Venn-diagram illustrating the employed strategy to answer
research question Q2.

i) Estimating the size of the structural dependencies set.
Barkmann et al. developed a set of tools to perform a large-
scale metrics analysis that involved 160 Java FLOSS projects
(70 thousand compilation units and 11 million lines of code) in
order to provide reference values and thresholds [26]. Figure 10
shows a histogram for CBO, in which each grid line
corresponds to a thousand classes. Values below the histogram
refer to minimum, maximum, average, median, and modus
respectively. The author computed CBO by only considering
the Fan-Out of a compilation unit (native API was discarded
and class constructor did not count as a method) [27]. In fact,
CBO and Fan-Out have been treated as synonyms in a number
of studies, e.g. [28, 29].

CBO

0, 184,6.71,4, 1

Figure 10. Reference values for the CBO metric (minimum, maximum,
average, median, modus) [26].
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XFlow data collection phase identified 72,523 distinct
compilation units out of the 150k revisions from ASF SVN
repository. Given that the reference average value for CBO is
6.71 (Figure 10), we estimated that the total number of
structural dependencies is 72,523 * 6.71 = 486,630.

ii) Calculating the size of the intersection set. From the
data provided in the last row of Table III, we calculated the size
of the intersection set: 270,010 - 245,812 =24,198.

iii) Calculating the size of the structural-dependencies-
only set. By subtracting (ii) from (i), we calculated the size of
the structural-dependencies-only set: 486,630 — 24,198
462,432. As a result, SCOP corresponded to 95% of the total
number of estimated structural dependencies. Hence, we
conclude that structural dependencies very frequently involve
non-logically related elements. Consequently, as correlation is
necessary for linear causation, we have some evidence that
structural dependencies do not lead to logical dependencies.

VL

There are some factors that may have influenced the
validity of the study.

THREATS TO VALIDITY

Internal validity. In relation to logical dependencies
detection in SVN repositories, we employed a simple and
recurrently used strategy. Even though Pirklbauer recently
surveyed and evaluated different strategies to detect logical
dependencies [30], his results only apply for two industrial
projects and thus cannot be generalized to our context. Some
constraints on logical coupling detection were also imposed by
XFlow design decisions. One key decision is that replaced files
are considered added files for the sake of logical dependencies
detection. This may break the evolutionary relation between
pairs of files under rare circumstances. Finally, although we
used the ASF SVN repository to minimize bias due to different
commit policies, individual projects may not strictly follow
such policies. Also, these projects may have other particular
characteristics that can affect the results of the employed
logical dependencies detection strategy.

To address the first research question, we divided logical
dependencies in three different confidence intervals of the same
length. It could be that a deeper statistical investigation would
prove that smaller (or even different) intervals would provide
better input to the performed analysis. Finally, we acknowledge
that support and confidence measures can provide misleading
results under rare circumstances. Consider the example in
which a file f; joint-changed 5 times with f, and then, after that,
f, changed alone for other 5 times (f; did not change anymore).
Although the confidence for the logical dependency F,=F,
would be 0.5, it may be the case that f, does not actually
depend on f; anymore (e.g. a refactoring occurred right after f;
and f, changed together for the last time). Finally, even though
the investigated repository hosts all ASF projects, we found a
negligible amount of commits that encompassed files from
different projects. Besides that, revisions regarding large
repository operations that involved a high number of files were
discarded by means of the performed quartile analysis (Section
IV-B). Therefore, the results presented in Table III were not
hindered by the fact that we analyzed ASF SVN “as a whole”.
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While we identified structural dependencies by only
counting external method calls (Listing 1), CBO reference
values used to address the second research question
additionally rely on external instance references. However,
external instance references that receive no operation calls
commonly represent situations of delegation. Thus, we imagine
that these situations occur rather rarely, since object-oriented
systems are made of collaborating objects. In fact, even if the
size of the intersection set was twice as large, SCOP would still
correspond to approximately 90% of the total number of
estimated structural dependencies. Since we made assumptions
based on reference values, we acknowledge that our evidences
for the second research question are less reliable than those
obtained in the investigation of the first research question.

External validity. In relation to external validity, we may
have introduced some bias in the generalization of our results
by having analyzed projects from ASF only. Although this
decision helped us in other dimensions (Section III-A), a
broader analysis should also consider projects from other
FLOSS repositories (such as SourceForge) and communities.
Our study results are applicable for open-source software only,
since industry software projects may have distinct
characteristics that were not considered in this empirical
investigation.

VII. RELATED WORK

Although logical dependencies have been extensively
investigated to different purposes, such as to support change
prediction [10] and establish coordination requirements among
developers [25], few studies have explored the interplay
between logical and structural dependencies.

Hanakawa studied the relation between sets of highly
structurally coupled elements (M) and sets of highly logically
coupled elements (L) throughout time [22]. The hypothesis
stated by the author is that the average intersection between M
and L tends to decrease throughout time due to an increase in
"copy & paste" actions (leading to logical coupling only), and
developers forgetting to commit structurally related classes at
once (leading to structural coupling only). Hanakawa proposes
a complexity metric based on the size of such intersection
(Figure 11). Although the obtained results confirms that the
intersection between M and L does decrease (i.e. complexity
increases) in most situations, there is poor evidence that such
results derive from the author assumptions. This is particularly
evident in the conducted JUnit complexity analysis.

Intersection

M&l Complexity

Time

Figure 11. Hanakawa hyphotesis regarding the relation between M&L
intersection and complexity throughout time.
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Cataldo ef al. examined the relative impact that structural,
logical, and work dependencies have on the failure proneness
of a software system [7]. During this study, the authors
analyzed two projects from different companies and verified
that there were low levels of correlation between structural and
logical dependency measures in the latest version of both
projects. Although details on how dependencies were gathered
are not provided, their result is consistent with ours.

Oliva et al. investigated the origins of logical dependencies
by means of a case study involving a Java FLOSS project [33].
The authors conducted a manual inspection of logical
dependencies origins by reading revision comments, looking at
code diffs, and holding informal interviews with the project
developers. Preliminary results showed that there was no
distinct underlying reason behind the establishment of the
analyzed logical dependencies, since they involved pairs of
files that changed together (“joint-changed”) for different
reasons. The authors noticed that structural dependencies were
responsible for less than 20% of all joint-changes.

Cataldo and Nambiar investigated 189 global software
development (GSD) projects and showed that logical coupling
was the most significant factor impacting software quality
among all considered factors (such as structural coupling,
process maturity, developers’ experience, number of regional
units, and people dispersion) [31]. Pirklbauer et al. developed a
change impact analysis framework (process and tool) that
incorporates both structural and logical dependencies [32].

VIII. CONCLUSION AND FUTURE WORK

In this paper, we conducted a large scale empirical study to
investigate the interplay between structural and logical
dependencies in FLOSS projects. We analyzed all Java files of
the first 150k commits of the Apache Software Foundation
Subversion repository in order to quantify (i) the proportion of
established logical dependencies that involve non-structurally
related elements and (ii) the proportion of formed structural
dependencies that involve non-logically related elements. In
relation to (i), we concluded that in at least 91% of the cases,
logical dependencies involve files that are not structurally
related, i.e. we have some evidence that logical dependencies
are not directly caused by structural dependencies. Regarding
(ii), we concluded that structural dependencies very frequently
involve files that are not logically related, i.e. we have some
evidence that structural dependencies do not usually lead to
logical dependencies. Hence, we conclude that there is a very
small intersection between the sets of structural and logical
dependencies.

Although static analysis mechanisms and frameworks have
proven their value in software maintainability and evolvability
throughout the years [1], our findings support the idea that such
kind of analysis is still necessary but not sufficient. As a result,
we believe that dependency management methods and tools
should rely on both kinds of dependencies, since they represent
different dimensions of software evolvability. An integrated
view of these two kinds of dependencies shall improve the
effectiveness of both software change and maintenance
activities. Finally, we also believe that software visualization
tools that comprise both kinds of dependencies (e.g. [15, 32])
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should be a fertile research field with strong implications in
software quality related areas.

As future work, we plan to conduct a deeper analysis of the
interplay between structural and logical dependencies by (i)
considering the whole ASF SVN repository (~1.1 million
revisions), (ii) employing the adapted sliding time window
algorithm presented in [33] to group related revisions (so that
they are treated as a unit), and (iii) developing a more efficient
structural dependencies identifier module in order to answer
research question Q2 based on the actual data-set (instead of
applying metric reference values). As a final point, we believe
that investigating the interplay between structural dependencies
and other kinds of dependency (e.g. data-flow/hidden [37],
conceptual [38]) should be another fertile research topic.
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