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ABSTRACT
Bots have become popular in software projects as they play critical
roles, from running tests to �xing bugs/vulnerabilities. However,
the large number of software bots adds extra e�ort to practitioners
and researchers to distinguish human accounts from bot accounts
to avoid bias in data-driven studies. Researchers developed several
approaches to identify bots at speci�c activity levels (issue/pull re-
quest or commit), considering a single repository and disregarding
features that showed to be e�ective in other domains. To address
this gap, we propose using a machine learning-based approach
to identify the bot accounts regardless of their activity level. We
selected and extracted 19 features related to the account’s pro�le
information, activities, and comment similarity. Then, we evaluated
the performance of �ve machine learning classi�ers using a dataset
that has more than 5,000 GitHub accounts. Our results show that
the Random Forest classi�er performs the best, with an F1-score
of 92.4% and AUC of 98.7%. Furthermore, the account pro�le in-
formation (e.g., account login) contains the most relevant features
to identify the account type. Finally, we compare the performance
of our Random Forest classi�er to the state-of-the-art approaches,
and our results show that our model outperforms the state-of-the-
art techniques in identifying the account type regardless of their
activity level.
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1 INTRODUCTION
Software Engineering (SE) bots are a game-changer in software
development where they serve as a conduit that connects software
developers and services [44, 46] and provide additional value on
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top of services’ basic capabilities [29]. Bots assist practitioners in
automating tedious and repetitive tasks in software projects. For
example, practitioners use bots to �x bugs [34], refactor source
code [50], recommend tools [10], and update out-of-date dependen-
cies [33]. Automating tedious tasks allows the project maintainers
to focus on the core and critical tasks related to the project. Inter-
estingly, bots produce more activities (e.g., commits or issues/pull
requests) than humans in some software projects [17] and change
how developers communicate and deal with pull requests [47].

Due to their ability to save resources and increase software devel-
opment velocity [2, 3, 44, 46], bots are becoming more prevalent in
the SE environments [46] and getting progressively harder to iden-
tify, biasing data-driven research and impacting practitioners [24].
Therefore, the research community needs to be able to isolate bots
and their activities in empirical studies [16, 28, 30, 41]. For example,
Dey et al. [16] �nd that bots create the majority of issues and pull re-
quests in the examined repositories, which might bias their results
and conclusions. Developers are also looking for ways to identify
bots on GitHub and ask questions on Q&A websites [26, 52].

Although several approaches have been proposed to detect bots
on social coding platforms [17, 19, 24, 25], they are limited to de-
tecting bots in speci�c development activities. For example, Dey et
al.’s approach [17] detects software bots that commit code, while
Golzadeha et al.’s approach [24] detects bots that comment on is-
sues and pull requests. In other words, none of these approaches is
generalized to detect bots that commit code and operate on issues
and pull requests. Consequently, practitioners need to run more
than one approach to identifying all bots in their repositories.

In this paper, we present an approach to detect software bots in
multiple activity levels (i.e., commit and issue bots) on GitHub. Our
approach leverages di�erent account activities that occur in mul-
tiple repositories to train a machine learning classi�er to identify
the account type (i.e., human or bot). More speci�cally, we extract
19 features that can be grouped into three dimensions: (1) pro�le
information related to GitHub user (e.g., account login), (2) account
activity related to di�erent events performed by the user (e.g., the
total number of activities), and (3) text similarity, which is related
to the text similarity on issue comments and commit messages. We
extract the 19 features from 5,107 GitHub accounts. Finally, we train
�ve machine learning classi�ers to identify the account type. To
evaluate the e�ectiveness of the techniques, we conduct a study to
answer the following research questions:
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• RQ1:Which classi�er performs best at detecting bots?
We built �ve machine learning classi�ers: Logistic Regres-
sion, K-Nearest Neighbors, Decision Tree, Random Forest,
and Support-Vector Machine, using 19 features, such as ac-
count login and median response time. Then, we evaluated
the classi�ers’ performance on a dataset containing human
and bot (issue and commit bots) accounts. The results show
that the Random Forest classi�er accurately predicts the
account type with an F1-score of 92.4% and AUC of 98.3%.

• RQ2: What features are the best indicators of bot ac-
counts? We studied the most relevant features that con-
tribute towards the account type prediction to understand
the characteristics that di�erentiate bots from humans on
GitHub. The features related to the account pro�le (e.g., ac-
count login, account name) are the best indicators of the
account type on GitHub. In addition, the ‘similarity of the
issue/PR comments’ and ‘median activity per day’ features
are important factors in identifying the account type.

• RQ3: How e�ective is our approach compared to the
state-of-the-art?We compared the best classi�er’s perfor-
mance from RQ1 (i.e., Random Forest) with the performance
of the state-of-the-art approaches. The results show that the
Random Forest classi�er outperforms the state-of-the-art
approaches in identifying the account type on GitHub.

Based on our results, we provide a set of implications for re-
searchers, practitioners, and social coding platforms. To help prac-
titioners identify the user account type on GitHub, we develop a
tool using our approach, called BotHunter, and make it publicly
available [5]. Finally, we share all of our datasets [4] to accelerate
future research in the area.

Paper Organization. The remainder of the paper is organized
as follows. Section 2 presents the work related to our study. We
detail our approach to identify the account type and the study setup
in Section 3. Section 4 presents the results. We discuss our �ndings
in Section 5 and their implications in Section 6. Section 7 discusses
the threats to validity, and Section 8 concludes the paper.

2 RELATEDWORK
In this section, we discuss the work most related to our study.
We divide the prior work into two main areas: (i) work related to
detecting social media bots and (ii) work that identi�es bots on
GitHub.

2.1 Identifying Social Media Bots
Some studies focus on identifying software bots on social media [15,
20, 32, 36, 37, 40]. For example, Santia et al. [40] used text and
timestamp related features to detect bots on Facebook. Efthimion
et al. [20] focused on Twitter bots and used features related to
user pro�le (e.g., has less than 30 followers), text analysis (e.g.,
Levenshtein distance between user’s tweets is less than 30), and
account activity (e.g., Tweeting time) to train supervised machine
learning algorithms. Polignano et al. [36] trained a convolutional
neural network on the tweet content to identify whether a Twitter
account type is a bot or human. Davis et al. [15] trained a Random
Forest model using features related to network (e.g., centrality),
account (e.g., creation time), friends (e.g., number of followers), time

(e.g., inter-tweet time distribution), tweet content, and sentiment.
The authors evaluated their model on 31,000 Twitter accounts and
achieved an AUC of 0.95. These studies show the importance of
using the user account information (e.g., number of followers) and
activities to predict the account type. Moreover, they inspired us to
include such features to detect bots in social coding platforms.

2.2 GitHub Bots
Software Engineering bots assist developers in their daily tasks
such as generating bug �xes [12, 42, 45], answering developers’
technical questions [2, 39], and performing code refactoring [51].
Recently, researchers proposed approaches that work on the com-
ment level to identify whether a comment is generated by a human
or bot [13, 23]. For example, Cassee et al. [13] evaluated three
machine learning classi�ers to identify the pull-request and issue
comments posted by bots on GitHub. The work closest to ours is the
work that proposes approaches to identify the type (bot or human)
at the account level on social coding platform (e.g., GitHub) [17, 23–
25]. For example, Golzadeh et al. [25] proposed an approach that
identi�es the account type based on the text similarity between the
comments issued by the account. This is based on the idea that bots
perform repetitive tasks, which yield to generate repetitive com-
ments. Also, Golzadeh et al. [24] proposed BoDeGHa, a machine
learning-based approach to detect software bots that comment on
issues and pull requests on GitHub based on comments-related
features (e.g., repetitive comment patterns). The authors evaluated
the proposed approach on 5,000 GitHub accounts. The results show
that BoDeGHa achieved an F1 score of 0.98. On the other hand,
Dey et al. [17] developed BIMAN to identify bots that commit code
using commits meta-data (e.g., �les modi�ed by the commit) and
achieved an AUC-ROC of 0.9.

The previous studies focused on detecting bots that operate on
a single activity level (i.e., issues/pull requests or commits) on the
GitHub repository using certain types of features (e.g., text-based
features). Our work di�ers and complements the prior work in
di�erent ways. First, our approach identi�es bots regardless of their
activity level. Second, having an overview of various types of ac-
count activities (e.g., create a pull request and commit a code), rather
than a single type of activity, helps to better identify the account
type. Third, we leverage a rich and comprehensive set of features
(e.g., pro�le information features) to identify the user account type
on GitHub. Finally, our approach provides a consistent account
type across all repositories, enabling us to build a benchmark of
the bot accounts on GitHub, which can be used to advance future
research in the �eld.

3 STUDY SETUP
The main goal of our study is to detect bots regardless of their
activity levels (e.g., commit bot) on GitHub. To achieve this goal,
we propose the use of machine learning techniques. Therefore, we
start by examining the di�erent users’ activities on GitHub. More
speci�cally, we inspect the code commits, issues, and pull requests
activities performed by a user in other repositories to identify the
features that could reveal the user account type. Then, we extract
the selected features from di�erent types (e.g., human) of GitHub
accounts used in similar work and use them to evaluate our machine
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Table 1: An overview of features used to identify account type in GitHub.

Dimensions Features De�nition

Pro�le
Information

Account login The primary identi�cation of an account.
Account name The name of an account on GitHub.
Account bio The short bio description of an account.
Number of followings The total number of users that an account is following.
Number of followers The total number of users is following the account.
Account tag Used to tag GitHub applications as “bot”.

Account
Activity

Total number of repository activities Number of activities performed by an account on at the repository level (e.g., repository fork).
Total number of issue activities Number of issue activities an account has performed (e.g., close an issue).
Total number of pull request activities Number of pull request activities performed by an account (e.g., assign a reviewer).
Total number of commit activities Number of commit activities performed by an account (e.g., push code).
Unique repository activities Di�erent repository activities performed by the account.
Unique issue activities Unique issue activities performed by an account.
Unique pull request activities Distinct pull request activities an account has performed.
Unique commit activities Unique commit activities an account has executed.
Median activity per day Median number of activities performed per day.
Median response time Median response time to the earliest event in issue or pull request.

Text
Similarity

Issue/Pull request comments Issue and pull request comments similarity created by an account.
Preceding comments Text similarity of comments that precede bot events (e.g., @dependabot merge) on issues and pull

requests.
Commit messages Commit messages similarity made by an account.

learning classi�ers. In this section, we describe the features used
to classify the account type, present our dataset, and detail the
machine learning classi�ers and evaluation process.

3.1 Feature Selection
To generate a comprehensive behavior pro�le for a given GitHub
account, we need to have a large collection of features that captures
di�erent aspects of user characteristics and activities. By covering
various features, we reduce bias and expand the quantity and types
of bots that we can identify. To achieve this, �rst, we randomly
examine 20 popular software (i.e., non-educational) projects on
GitHub [4] in terms of the number of stars. More speci�cally, the
�rst two authors independently inspected each of the accounts’
pro�le and their activity history (e.g., pull request comments and
commits meta-data) in those repositories looking for features that
help to reveal the account type. We found 23 bot accounts [4] in
the examined repositories. Finally, the �rst two authors discussed
the features until they reached a consensus. At the end of this pro-
cess, we selected 19 features grouped into three dimensions: pro�le
information, account activities, and text similarity. Table 1 presents
an overview of the dimensions and their associated features. Next,
we discuss those dimensions and their features in more detail.

Pro�le information. Every user on GitHub has an account
pro�le that contains 1) personal information such as name, login,
and a short bio; and 2) social information, such as the followings
and followers accounts by other GitHub users. We hypothesize
that such information might contribute to distinguishing bot from
human accounts. We considered six features in this dimension:

Account login: The account login (i.e., username) is the primary
identi�er of an account on GitHub. Figure 1 shows the pro�le infor-
mation of a bot account, called ‘WhiteSource Renovate’, on GitHub.

As shown in the �gure, the account login of the ‘WhiteSource Ren-
ovate’ is renovate-bot. During the manual inspection of the GitHub
pro�les for the examined accounts, we noticed that the bot accounts
are likely to contain the ‘bot’ substring in their logins. In particular,
48% of the bot accounts have ‘bot’ in their logins such as traviscibot,
dependabot, and pyup-bot.

Account name: User accounts might also provide a pro�le name
to identify themselves (e.g., ‘WhiteSource Renovate’ in Figure 1)
thereby complementing their pro�le information. Similar to the
account login, bot accounts tend to have the ‘bot’ substring in their
pro�le name. Among the inspected accounts, we �nd 40% of them
have ‘bot’ in their names (e.g., CamperBot and pyup.io bot).

Account bio: Users on GitHub can write a short bio on their pro-
�les to describe their interests and skills. For example, the ‘White-
Source Renovate’ account describes itself as “A bot to keep the
dependencies updated in the PRs” in its bio, as shown in Figure 1.
Also, the ‘crowndin bot’ account describes itself as “Just a robot”
in its bio. We notice that 35% of the bot accounts explicitly declare
themselves bots in their bios.

Number of followings: Users follow other accounts on GitHub to
receive activity updates, learn from them, and socializing [9]. We
believe that these social activities are more related to humans than
bots. In other words, human accounts aremore likely to follow other
account activities to stay aware of their most recent activities on
GitHub. Therefore, we identify the number of following accounts as
an indicator of human social activity. We �nd that human accounts
have on median eight followings. On the other hand, bot accounts
are unlikely to have followings. The number of followings of the
inspected bot accounts ranges from 0 to 1, with a median of 0
followings. For example, the ‘WhiteSource Renovate’ bot is not
following any account (i.e., the number of followings is 0) onGitHub,
as shown in Figure 1.
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Number of followers: In addition to the number of followings,
we also identify the total number of followers of an account as
another indicator of human social activity. Among the examined
accounts, human accounts have on median 36 followers, while the
bot accounts have on median one follower. However, there are
nine bots that have a high number of followers because they are
well-known bots in the community (e.g. Dependabot, Greenkeeper,
renovate-bot) or highly active on large projects (e.g. Camperbot)
which increased their popularity.

Account tag: Bot developers can build their bots and share them
as GitHub Apps to be easily integrated with the repositories. Devel-
opers usually tag the app as a ‘bot’ on the GitHub platform. Thus,
we examine whether an account is used by a GitHub App1 and
found that 43% of the bot accounts were tagged as ‘bot’ from the
examined accounts.

Account Activity. Some bots cannot be captured using the pro-
�le information features only since these bots do not have the
speci�ed features, e.g., bots that do not have the word ‘bot’ in
their bios. Thus, we explore the features related to the activities
performed by bot accounts on GitHub. More speci�cally, we exam-
ine the type and number of account activities in this dimension.
Features that characterize the activities of an account shed light
on the amount of e�ort and time the human or bot puts in when
accomplishing tasks. Therefore, those features might contribute
toward revealing the account type on GitHub. In the following, we
detail the activities-related features.

Total number of activities: Bots and humans are likely to have
di�erent activity patterns since the bot tasks are strict, and their
actions are previously de�ned. Therefore, as a proxy for activity
level, we calculate the total number of account activities, grouping
them into four di�erent groups of activities: 1) activities related to
repositories (total number of repository activities) such as creating
a new repository, fork an existing repository, or watch a repository
to be noti�ed in case there are updates; 2) activities related to is-
sues (total number of issue activities), including opening, closing,
labeling, and posting comments on issues; 3) activities related to
pull requests (total number of pull request activities), including
opening, closing, labeling, and posting review comments on pull re-
quests; and 4) activities related to commits (total number of commit
activities) such as pushing one or more commits to a repository.

Unique activities: Users perform di�erent events related to an
activity on GitHub. For example, users can comment on an issue
and assign a developer to �x it. Both events are related to the issue
activities. In contrast to human accounts, most bots on GitHub per-
form a single type of activity (e.g., measure the code coverage) [46].
Thus, we consider the unique number of activities performed by an
account to indicate the account activity level. Therefore, we com-
pute the number of unique activities for an account, grouping them
into four di�erent groups: 1) repository (e.g., creating branches); 2)
issue (e.g., label an issue); 3) pull request (e.g., assign a reviewer to
the pull request); and 4) commit (e.g., push a commit).

Median activity per day: Bots e�ciently automate repetitive tasks,
saving development cost, time, and e�ort [44]. During our man-
ual analysis, we noticed that bots are more likely to have a higher
daily activity level than humans. This is expected because there

1https://docs.github.com/en/developers/apps/about-apps
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Figure 1: Example of renovate-bot pro�le on GitHub.

are limits to how rapidly and often humans can perform tasks. For
example, openapi-sdkautomation, renovate-bot, and codecov-io bots
perform on median 300 activities per day. Therefore, we compute
an account’s median number of daily activities (e.g., comments on
issues).

Median response time: In addition to the high level of activity
per day, we also notice that bots are likely to respond quickly to
an event compared to human accounts. This is because bots are
tools that constantly monitor the repository, and they are triggered
based on a prede�ned action (e.g., issue or pull request creation).
Therefore, we consider the earliest event of an issue or pull request
timeline to indicate the account type. In particular, we compute
the median time an account takes to respond to an event where an
issue or pull request are created, regardless of whether the account
is mentioned or not.

Text similarity. Since bots automate tedious tasks onGitHub [23,
46], we expect bots’ comments to have a higher text similarity com-
pared to humans. Some bots post comments after performing an
action to indicate whether they act on something or report the
action results (e.g., display the test code coverage). For example,
CamperBot adds the following description “This PR was opened
auto-magically by Crowdin” when it creates a new pull request on
the repository. Next, we describe the three features related to the
text similarity.

Issue/Pull request comments similarity: Features quantifying the
repetition patterns on the accounts’ comments have been shown
to be e�ective in identifying bots that work on issues and pull
requests [24, 25]. To measure the similarity between comments
made by an account, we rely on the cosine similarity metric (i.e.,
similarity(A,B) = cos(\ ) = A·B

kAk kBk ), as used by prior work [2, 6, 53].
To compute the cosine similarity for an account on GitHub, we �rst
compute the text similarity between all pairs of issue and pull
request comments made by the account on each repository. Then,
we calculate the median of comment similarities across the di�erent
repositories the accounts have contributed, as the prede�ned bot’s

https://docs.github.com/en/developers/apps/about-apps
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Table 2: The GitHub accounts distribution in the oracle.

Account Type Count (%) Repositories

Humans 4,428 (86.7%) 3,489
Issue/PR bots 455 (9%) 444
Commit bots 224 (4.3%) 256,775

response might be di�erent across di�erent repositories. We use
Scikit-learn, which is a Python machine learning library [35], to
calculate the cosine similarity of the comments.

Preceding comment similarity: Some bots that perform activities
on pull requests and issues are triggered by speci�c comment pat-
terns, commands, tags, or combinations. For example, a user could
close a pull request by adding a comment for the dependabot such
as “@dependabot close”, which triggers dependabot to close the pull
request. We hypothesize that these trigger comments help identify
the bots as users add similar comments to ask the bot to act. Similar
to the Issue/Pull request comments similarity feature, for each repos-
itory, we measure the similarity between comments that occurred
before the targeted account action (e.g., close a PR) using the cosine
similarity. Then, we compute the median of comments similarities
across the di�erent repositories.

Commit messages similarity: Similar to the Issue/Pull request com-
ments similarity, code commit bots tend to have prede�ned commit
messages. One example is the nextcloud-bot that has the following
commit message pattern: “[tx-robot] updated from transifex”. We
perform the same process as in the Issue/Pull request comments
similarity feature on the commit messages to calculate the median
of the commit messages similarity for the target account.

3.2 Dataset
To evaluate our approach in identifying di�erent types of bots (i.e.,
commit and/or issue bots) in GitHub, we select two representative
datasets composed of bots that perform issue/pull request [24]
and commits [17] related activities. Golzadeh et al. [24] randomly
selected 136K GitHub repositories of 37 software package registries
(e.g., PyPI). Then, they excluded the accounts with less than ten
comments, resulting in 79,342 GitHub accounts. Finally, the authors
randomly selected 5,082 accounts to manually annotate them based
on the issues/pull requests comments. The �nal dataset contains
5,000 GitHub accounts, where 4,473 are human accounts and 527
are bot accounts.

Dey et al. [17] shared a dataset of bots and their commits used to
evaluate their approach (BIMAN). Their dataset is composed of 461
bot accounts with 13,762,430 commits. While this dataset contains
commit meta-data, account names, and e-mail addresses, it lacks
the GitHub account logins. Our approach requires the accounts’
login to collect their activities on GitHub, as discussed in Section 3.1.
Therefore, we extended the dataset by leveraging the GitHub API to
retrieve the logins for these accounts based on the provided e-mail
addresses. We found the GitHub logins for 300 bot accounts.

For both datasets (issue/pull request and commit), we �lter out
inactive accounts (those with no activities since 2017). We were
left with 5,107 GitHub accounts, which composed our oracle. Ta-
ble 2 presents the distribution of the GitHub account types and

the number of repositories that these accounts have contributed
to. Most accounts (86.7%) in our oracle are of human accounts,
while bots compose 13.3% distributed across issue/pull requests and
commit bots. Moreover, we notice that bots contribute to more soft-
ware projects than humans in our dataset. This evidence the need
for a general approach to detect bots by leveraging the activities
from di�erent repositories to provide a consistent classi�cation of
the account type on GitHub rather than using the activities in a
single repository which might lead to incorrect and inconsistent
classi�cation.

3.3 Performance Evaluation
To perform our predictions, we leverage �ve machine learning clas-
si�ers: Logistic Regression, K-Nearest Neighbors, Decision Tree,
Random Forest, and Support-Vector Machine. These classi�ers have
di�erent assumptions about the analyzed data and can deal with
over�tting [11]. Moreover, they have been commonly used by soft-
ware engineering work [1, 8, 17, 24, 27]. To measure the perfor-
mance of the classi�ers, we compute the precision, recall, and F1
score. In our study, precision is the percentage of correctly classi�ed
accounts type relative to the total number of classi�ed accounts
(i.e., Precision = )%

)%+�% ). Recall is the percentage of the correctly
classi�ed account type to the total number of accounts in the oracle
(i.e., Recall = )%

)%+�# ). We then combine the precision and recall
using the F1-score (i.e., F1-score = 2 ⇥ %A428B8>=⇥'420;;

%A428B8>=+'420;; ) to have an
overall performance for each classi�er. As discussed in Section 3.2,
our data is highly skewed since the majority of accounts are human
accounts. Therefore, we exploit Area Under the ROC Curve (AUC)
to measure the ability of the classi�ers to discriminate between
account types. The AUC is computed by measuring the area under
the curve that plots the true positive rate against the false-positive
rate while varying the threshold used to determine whether an ac-
count is human or bot. The value of AUC ranges between 0-1, and
a larger value of AUC indicates better classi�cation performance.

4 RESULTS
In this section, we present the results of our study. We describe our
motivation, methodology to answer the question, and results for
each research question.

4.1 RQ1: Which classi�er performs best at
detecting bots?

Motivation:ManyOpen Source Software (OSS) projects on GitHub
use software bots to automate tedious tasks [46]. This implies that
software practitioners should consider their presence while main-
taining their projects or mining software repositories data (e.g.,
exclude bots [16, 30, 41]). The goal of this research question is to
evaluate the classi�ers described in Section 3.3 to determine which
classi�er leads to the best results in identifying the account type.
This helps the SE practitioners to have an accurate prediction of the
account type that acts in their software project so they can manage
those accounts based on their types.
Approach: To evaluate the performance of the classi�ers, �rst,
we extract the features for all GitHub accounts (5,107 accounts)
in our oracle using the GitHub API. Next, we check the highly
correlated features to avoid the multicollinearity problem checking
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Table 3: Performance of the classi�ers.

Classi�er Precision
(%)

Recall
(%)

F1-score
(%)

AUC
(%)

Logistic Regression 95.3 84.2 89.4 97.6
K-Nearest Neighbors 84.1 60.1 70.1 89.4
Decision Tree 88.4 86.6 87.5 93.0
Random Forest 95.7 89.4 92.4 98.3
Support-Vector
Machine

90.5 82.8 86.5 92.4

whether two independent variables have a linear relationship. More
speci�cally, we perform pairwise Pearson correlation between the
features and remove those correlated with over > 70% to any other
feature. The only features that are highly correlated are “unique
pull-request activities” and “unique repository activity”. Then, we
use the collected data to evaluate the classi�ers’ performance in
predicting the account type. In particular, we use strati�ed 10-folds-
cross-validation. We randomly divide our oracle into ten equal folds
where each fold maintains a consistent distribution of account types
as the one in the oracle. Next, we train the classi�er on nine folds
and use the remaining fold to evaluate the classi�er’s performance.
This process is repeated ten times for each classi�er, and the average
performance of these runs presents the overall performance for that
classi�er. It is important to note that we use the same folds to train
and test all classi�ers. Moreover, we use the CountVectorizer (word
count) to encode the features used to train the machine learning
models. In our work, we implement all models using the default
parameter settings on top of scikit-learn [35].
Results: Table 3 presents the precision, recall, F1-score, and AUC
values for all classi�ers. Overall, the classi�ers achieve high perfor-
mance (F1-score > 80% and AUC > 89%) in identifying the account
type on GitHub. Random Forest stands out as the best classi�er,
achieving the highest F1-score (92.4%) and AUC (98.3%).

After evaluating the performance of our approach on di�erent
types of bots (e.g., bots working at the commit level), we set out
to examine the performance of our approach in identifying bots
that operate at each activity level (i.e., commits or issues/PRs). This
analysis provides a snapshot of our approach performance when
it is used by practitioners that want to study a speci�c type of
bot (e.g., commit bots). Therefore, we split the bots that operate
on di�erent activity levels into two di�erent datasets: issue_bots
and commit_bots datasets. We add all accounts of type human that
exist in the oracle to both datasets. Then, we apply the strati�ed
10-folds-cross-validation process to evaluate all classi�ers discussed
in Section 3.3 on each dataset.

Table 4 presents the results of all classi�ers evaluated on is-
sue_bots and commit_bots datasets. The Random Forest classi�er
outperforms other classi�ers with F1-score 91.7% and AUC 98.7% in
detecting the issue/PR bots in the issue_bots dataset. Also, Random
Forest achieves the best performance in identifying the commit
bots in the commit_bots dataset with an F1-score 89.7%. Logistic
Regression achieves the best performance in terms of AUC (97.3%).

Our results show that using pro�le information (e.g., account
bio) and account activity features (e.g., median activity per day)

beside the text similarity features (e.g., commit message similar-
ity) collected from di�erent repositories is e�ective to identify the
account type (i.e., human or bot) of a GitHub user.

The Random Forest classi�er performs best in detecting
bots, with an F1-score 92.4%. The Random Forest model
outperforms other classi�ers in detecting bots on com-
mits or issues bots with F1-score 91.7% and 89.7%, respec-
tively.

4.2 RQ2: What features are the best indicators
of bot accounts?

Motivation: Given that Random Forest achieves a high perfor-
mance (92.4%) in identifying the account type, we want to better
understand the most important features that contribute to the pre-
diction. By understanding these in�uential factors, we may further
study the characteristics that di�erentiate bots from humans on so-
cial coding platforms. Also, these features can be used to manually
identify bots on GitHub.
Approach:Weuse the permutation feature importance technique [7]
to measure the most in�uential features in the Random Forest clas-
si�er. This technique randomly permutes the values of one feature
while maintaining the values of the remaining features. This is
done to dissociate between the permuted feature and the target
variable. Finally, we evaluate the classi�er’s performance using the
test set and compare its performance to the performance before
the permutation (baseline). The permuted feature is considered
important if the classi�er’s performance decreases signi�cantly
compared to the baseline’s performance. This process is applied to
all features discussed in Section 3.1. We use permutation_importance
function in the Scikit-learn to compute the feature importance val-
ues in the Random Forest. To statistically compare the important
feature distributions between bots and humans, we use the non-
parametric Mann-Whitney-Wilcoxon test [49]. In this context, the
null hypothesis (�0) is that the feature distribution of bots and
humans are the same, and the alternative hypothesis (�1) is that
these distributions di�er. Moreover, we also use Cli�’s Delta [38]
to quantify the di�erence between these groups of observations
beyond ?-value interpretation. We use Romano et al. [38] guides
for interpreting the e�ect size (|X |) using the following thresholds:
|X | < 0.147 ‘negligible’, |X | < 0.33 ‘small’, |X | < 0.474 ‘medium’,
otherwise ‘large’.
Results: Table 5 presents the distributions of the �ve most impor-
tant features of the features discussed in Section 3.1. The features
are sorted by their importance level, from most to least impor-
tant. We notice that the most important features are related to the
account pro�le information. On the other hand, we �nd that the
unique repository activities, unique commit activities, commit mes-
sage text similarity features are not helpful for bot detection. In
other words, these features do not provide signi�cant contributions
to the prediction. Thus, they can be removed from the classi�er.

Upon closer examination of the most important feature (account
name) distributions for both humans and bots, we �nd that while
42.2% of bot accounts names (287 accounts) contain the term ‘bot’,
only 0.13% of the human accounts name (6 accounts) contain it.
Moreover, we �nd a statistically signi�cant di�erence (?-value= 0)
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Table 4: Performance of the classi�ers on issue_bots and commit_bots.

Classi�er Precision (%) Recall (%) F1-score (%) AUC (%)

is
su

e_
bo

ts

Logistic Regression 94.6 83.3 88.6 98.0
K-Nearest Neighbors 81.0 51.0 62.6 86.0
Decision Tree 88.0 85.3 86.6 93.7
Random Forest 95.3 88.4 91.7 98.7
Support-Vector Machine 88.2 80.6 84.2 91.5

co
m
m
it
_b

ot
s Logistic Regression 92.3 79.9 85.7 97.3

K-Nearest Neighbors 80.5 54.0 64.6 87.9
Decision Tree 81.0 80.4 80.7 89.5
Random Forest 92.1 87.5 89.7 95.9
Support-Vector Machine 92.0 87.0 89.4 94.3

between these distributions with a medium e�ect size (X = 0.421).
The second most important feature, according to our analysis, is
the account login. Comparing the account login distributions of
bots and humans, the results show that 71% of bot accounts login
(482 accounts) contain the term ‘bot’, and only 1% of the human
accounts name (42 accounts) contain it. In addition to that, the
statistical analysis also shows that the di�erence between these
distributions is statistically signi�cant (?-value= 0) with a large
e�ect size (X = 0.699). Also related to the account pro�le informa-
tion, the number of followers is within the most relevant features
to determine the account type. Compared to humans, bots tend to
have fewer followers: the median number of followers for bot ac-
counts is 0, while human accounts have seven followers on median.
These di�erences in the number of followers between the humans
and bots distributions are statistically signi�cant with a large e�ect
size (?-value= 8.87218, X = �0.74).

Besides the pro�le information, the Issue/PR comments similarity
feature also contributes to distinguishing bot accounts from human
accounts due to the high similarity within bots’ comments. Our
statistical analysis shows that the distributions are di�erent (?-
value= 0.005, X = 0.064). For human accounts, Table 5 shows that
the mean Issue/PR comments similarity is 11%. On the other hand,
the mean Issue/PR comments similarity of the bot accounts is 34%.
Further, 25% (3rd quartile) of bot accounts have more than 89% of
text similarity on pull requests and issues. The account activity
feature is also relevant for distinguishing the account type. The
distribution of the median activity per day in Table 5 shows that
bots are more active than humans, where bots and humans have
on average 18.01 and 2.27 median activity per day, respectively.
The statistical analysis shows that the di�erence between these
distributions is statistically signi�cant (?-value= 1.5�11) with a
negligible e�ect size (X = 0.138).

Account pro�le information features (account login and
name) are the best indicators to identify the account type.
Comment similarity in issues and pull requests is an-
other important indicator that contributes to correctly
predicting the account type on GitHub.

4.3 RQ3: How e�ective is our approach
compared to the state-of-the-art?

Motivation: In RQ1, we assessed the performance of our approach
and found that the Random Forest classi�er achieves the best re-
sults in identifying bot accounts with an F1 score of 92.4%. In this
RQ, we set out to examine the performance of the state-of-the-art
approaches (BoDeGHa [24] and BIMAN [17]) in detecting bots re-
gardless of their types (i.e., commit or issue bots). This analysis
allows us to put our results into perspective and compares the per-
formance of our approach against the state-of-the-art approaches.
In addition, it will give us an idea about the practicality of our
approach to detecting di�erent types of bots.
Approach:To evaluate the performance of BoDeGHa on our dataset,
we employed the tool implemented by BoDeGHa authors [22],
which takes the repository name as an input and prints the list of
accounts and their types (human or bots). Therefore, we provide
the list of repositories in our dataset discussed in Section 3.2 as
an input and store the tool’s output. We ran the tool using the
default parameters [24]. For some repositories, the tool might re-
turn accounts that do not exist in the oracle (i.e., we do not have
their ground truth). These accounts might have contributed to the
repository after the creation of the oracle. Therefore, we only con-
sider the accounts that exist in our oracle. Unsurprisingly, we �nd
610 cases where BoDeGHa returns inconsistent account types of
the same account. For example, the ualbertalib-bot account in ual-
bertalib/NEOSDiscovery repository is considered human, but in
ualbertalib/jupiter repository is considered a bot. This happens
because BoDeGHa analyzes the account activities (e.g., pull request
comments) in a single repository to perform the classi�cations. In
other words, the account activities di�er from one repository to
another, which leads to di�erent classi�cations of the same account.
To mitigate this issue, we use the majority vote by taking the ac-
count type returned by most of the repositories. For example, in the
case of ualbertalib-bot, we consider it as a bot because BoDeGHa
classi�ed the account as a bot in two repositories and a human
in one repository. It is important to note that we �nd 15 accounts
where the number of votes on their type is equal. We consider those
cases as false negative because the user of BoDeGHa would not be
able to identify their types without a manual examination of these
accounts.



MSR 2022, May 23–24, 2022, Pi�sburgh, PA, USA Ahmad Abdellatif, Mairieli Wessel, Igor Steinmacher, Marco A. Gerosa, and Emad Shihab

Table 5: The distribution of the most important features.

Feature Account Type Min. Q25% Median Mean Q75% Max.

Account
name

Bots 0 0 0 0.42 1 1
Humans 0 0 0 0.001 0 1

Account
login

Bots 0 0 1 0.70 1 1
Humans 0 0 0 0.01 0 1

Number
of followers

Bots 0 0 0 1.47 0 444
Humans 0 1 7 31.11 27 3470

Issue/PR
comments similarity

Bots 0 0 0 0.34 0.89 1
Humans 0 0 0.09 0.11 0.18 1

Median activity
per day

Bots 0 0 0 18.01 6 300
Humans 0 0 0 2.27 1 78

To evaluate BIMAN’s performance, we run its tool [18] on all
accounts that exist in our datasets. BIMAN requires the users’ com-
mits meta-data such as commit message, �lenames, and timestamp
to make the prediction. Therefore, we leverage World of Code
(WoC) [31] to collect the required data for all users in our dataset.
WoC is a collection of software development activities for open-
source projects. The account name and email combination serves as
the account’s primary ID on the WoC dataset. We use the account
login on GitHub to retrieve the name and email address associated
with that account using the GitHub API. We �nd the information
for 2,133 accounts (2,061 humans and 72 bots). Then, we fetch the
collected information into WoC to retrieve the commits’ meta-data
associated with these accounts. WoC has only the information for
1,938 accounts (1,898 humans and 40 bots), totaling more than 6
million commits. Finally, we provide the WoC output as an input
for BIMAN to identify the type for these accounts. Finally, we
compare BoDeGHa and BIMAN’s performance to the classi�er’s
performance that achieved the best results in RQ1 (i.e., Random
Forest). It is important to note that we evaluate the performance
of another Random Forest classi�er using the same dataset (1,938
accounts) used to assess BIMAN’s performance to compare the
Random Forest’s against BIMAN’s performances.

Table 6: Comparison of our approach against the state-of-art
approaches.

Approach Precision (%) Recall (%) F1-score (%)

BoDeGHa 77.5 5.9 11
Random Forest 95.7 89.4 92.4
BIMAN* 83.6 99.4 90.8
Random Forest* 100 100 100

* The results are based on 1,938 GitHub accounts.

Results: Table 6 presents the F1-score for the state-of-the-art ap-
proaches against the Random Forest classi�ers when identifying
the account type in our dataset. We observe that the Random For-
est classi�er outperforms BoDeGHa and BIMAN with an F1-score
higher than 92.4%. Surprisingly, BoDeGHa achieves a low F1-score
(12.1%) in identifying the account type. To better understand the

reason for BoDeGHa’s low performance, we examined the results
and found that BoDeGHa tool has a limitation that requires at least
ten comments for each account in the repository. Maybe this is due
to the reason that BoDeGHa achieves the best performance when
the examined account has at least ten comments [24]. This serves
as another reason for leveraging the global activities of an account
on GitHub (i.e., activities in all repositories) rather than a single
repository. This is especially useful in case the practitioners exam-
ine repositories with low activity. On the other hand, the Random
Forest classi�er outperforms BIMAN with F1-score 100% when it is
evaluated on the same dataset (1,938 accounts). The reason behind
the Random Forest’s high performance is that most of the bot ac-
counts have the word ‘bot’ in the account login and name. These
two features (account login and name) are the two most important
features, as discussed in RQ2. For the bot accounts that do not have
the word ‘bot’ in the pro�le information, they either have no (or a
low number of) followers or the median activity per day is 0. Our
�ndings highlight the importance of using features other than the
text-similarity features to identify the account type in GitHub.

Our Random Forest classi�er outperforms the state-of-
the-art approaches in identifying bots that operate at the
commit or issue/PR level with an F1-score higher than
92.4%.

5 DISCUSSION
To have deeper insights into the reasons that led our approach to
misclassify the account types in RQ1, the �rst two authors examined
the RQ1 results. We found �ve main reasons that yield to account
type misclassi�cation:
No activity: One dimension that our approach depends on to clas-
sify the account type is the activities performed by an account. We
found 29 bots misclassi�ed as humans. Those misclassi�ed accounts
had been inactive for the last three months before we conducted
this study. To retrieve the account activities on GitHub, we lever-
aged GitHub API as discussed in Section 3.2. We reiterate that the
GitHub API returns the latest 300 activities that occurred in the last
three months only. Due to this limitation, our approach e�ectively
identi�es the type of active accounts. Even with this limitation, our
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approach outperforms the state-of-art approaches in identifying
the account type as shown in the results of RQ3.
Hasword ‘Bot’ in their login or bio:We found that our approach
misclassi�ed 17 human accounts as bots. Upon closer examination,
those accounts have the word ‘bot’ in their logins (e.g., brokenbot).
This is expected because the ‘Account login’ feature is the most
important feature used by the Random Forest model to predict the
account type, as discussed in RQ2.
Di�erent activity type: There are 14 misclassi�ed accounts with
no text (e.g., issue comment) associated with these accounts. Inter-
estingly, they are active accounts but without comments related
to these activities. For example, osrfbuild bot opens a pull request
without providing any text/comment to describe the pull request.
Among the 14 misclassi�ed accounts, there are 12 bots accounts
classi�ed as humans because they perform di�erent types of ac-
tivities in the repository. The osrfbuild bot performs three distinct
activities on GitHub related to the repository, pull requests, and
commit activities. Therefore, our approach misclassi�ed it as a hu-
man. On the other hand, the remaining two accounts of type human
are misclassi�ed as bots. Both accounts perform a single type of
task on GitHub (e.g., create a repository). That is because most
activities of these two accounts are either on private repositories
or the accounts have a low activity rate (i.e., not too active). This
suggests that future detection approaches should not entirely de-
pend on account comments to identify the account type. Moreover,
they need to consider that a bot can perform various tasks on the
repository in the future, although there are currently few bots who
can do multiple tasks [46].
Mixed accounts: We found 14 misclassi�ed bot accounts with a
high number of followings (on median 87.5 followings). We deep-
dived into the results and observed that these accounts are mixed
account types. In other words, these are human accounts and the
account owner allows bots to perform tasks using these accounts.
In fact, in some accounts, we have di�culty identifying their types.
This is also observed by the authors of BoDeGHa while manually
annotating the accounts to create the ground-truth [24]. New tech-
niques are necessary to identify those accounts on social coding
platforms (e.g., GitHub). There are early-stage studies focusing
on identifying the mixed accounts at the comment level (e.g., PR
comment) [13, 23]. To the best of our knowledge, no approach
identi�es the mixed accounts at the account level. Thus, we en-
courage the research community to advance this area by studying
the mixed accounts and their characteristics, proposing account
levels techniques to identify those accounts. We plan in the future
to evaluate our approach performance in identifying the mixed
accounts besides the full human and bot accounts.

6 IMPLICATIONS
In the following, we discuss implications of our approach and results
for researchers, practitioners, and social coding platforms.

6.1 Implications for Researchers
Although using bots on the social coding platform has several ad-
vantages (e.g., decreases time to merge pull requests [47]), they add
extra e�ort on the researchers’ side to �lter them out, especially
those who depend on the software project historical data. In fact,

some empirical studies acknowledged that they applied pre- and
post-processing techniques to �lter out bots [16, 30, 41]. Our ap-
proach can help researchers to identify the bot presence regardless
of their activities in order to handle them di�erently based on the
researcher’s intention.

Considering that bots on GitHub have di�erent behaviours [46],
such as posting comments on issues or creating new pull requests,
identifying commit or issue bots opens new research directions
related to their e�ects on developers. For example, researchers can
investigate the impact of bots that create new pull requests on the
developers’ behaviors and decision making.

As discussed in Section 5, some bots can perform more than one
task in the project. Therefore, we encourage the research commu-
nity to explore how practitioners perceive multitasks bots versus
several bots that perform the same tasks in the repository [14].

6.2 Implications for Practitioners
Some software practitioners are worried about bots’ intrusive be-
haviors on social coding platforms. For example, bots change pull
requests content or even spam repositories with unsolicited com-
ments on the GitHub issues [48]. Using our approach, repository
owners and projects maintainers can monitor the contributors (e.g.,
bots that impersonate humans) and take action once they identify
undesirable bot behaviors on a repository.

Prior work shows that newcomers feel intimidated by bots re-
sponding to them on pull requests [48], which adds to the large
number of barriers already faced by these contributors [43]. This
might decrease the success of their contributions since newcomers
get discouraged by the bot comments. It is crucial for newcomers
to be aware of the presence of bots and know beforehand whether
they are communicating with a human or bot. Using our approach
helps the newcomers to identify bots in their project and react
accordingly to the comments based on its author account type.

6.3 Implications for Social Coding Platforms
Because of the growing use of bots for collaborative development
activities [21], a proliferation of bots to automate software develop-
ment tasks on social coding platforms is expected. Consequently,
we encourage social coding platforms to leverage our approach to
distinguish human contributors from bot contributors in a reposi-
tory by tagging the bot accounts on the platform. This enables the
platforms to summarize di�erent bot activities to keep the reposi-
tory owners and maintainers aware of these activities. For example,
the summary report can include the interaction of bots and humans,
the frequency of bots’ activities, and their types (e.g., commit code)
for each bot. This report might help the project maintainers to
identify and monitor bots that operate on the repository and have
not been approved by them (i.e., external bots). This would facili-
tate the management of bots on the repository and avoid wasting
maintainers’ time �ltering non-humans’ content.

6.4 BotHunter Tool
As we showed in RQ1, our approach e�ectively identi�es the ac-
count type on GitHub. To put our approach into the hands of prac-
titioners and researchers, we implemented it as a tool called BotH-
unter and made it publicly available [5]. BotHunter can yield more
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accurate and consistent results in classifying the GitHub accounts
as human or bot, requiring a single tool for multiple activity types.

BotHunter takes two inputs, the GitHub API key and GitHub
account login, for the account to be examined. Then, it leverages
the GitHub API to extract features for the speci�ed account. Finally,
it uses a Random Forest model to classify the accounts. We trained
this Random Forest classi�er on all GitHub accounts in our dataset.

7 THREATS TO VALIDITY
In this section, we discuss the threats to our study’s internal and
external validity.

7.1 Internal validity
Internal validity concerns confounding factors that could have
in�uenced our results. To extract the features for the accounts
in our dataset, we depended on the GitHub API to collect those
features. However, the GitHub API returns the top 300 activities
in the last three months. Including activities that span more than
three months might change our results. Nevertheless, our approach
achieves high performance (F1-measure 92.4%) on predicting the
accounts type with this limitation.

Another threat to internal validity is that we constructed our
oracle using datasets of previous studies [17, 24], which may not
be curated correctly. However, both datasets have been curated by
at least two annotators (authors of the previous work) with a high
level of agreement between the annotators. Moreover, during our
examination of the misclassi�ed cases by our approach in Section
5, we did not �nd any mislabeled account type (e.g., bot labeled as
human), which makes us con�dent in the used datasets.

7.2 External validity
External validity concerns the generalization of our �ndings. In our
study, we assessed the performance of our approach using 5,107
GitHub accounts collected from prior work. Hence, our results may
not generalize to other datasets or social coding platforms (e.g., Bit-
Bucket). However, we believe that our dataset is comprehensive and
contains human, commit, and issue bots. Future work can evaluate
our approach on a larger dataset that composes more accounts on
di�erent social coding platforms (e.g., BitBucket). Another threat
is that we used strati�ed 10-folds-cross-validation to evaluate the
classi�ers, and we do not have a separate test set, which might
a�ect the generalizability of the results. We plan to evaluate the
classi�ers on test sets that have not been used in this work.

8 CONCLUSION
In this paper, we propose an approach that identi�es bots in GitHub
regardless of their activity levels (issues or commits), considers
multiple projects, and includes features disregarded in previous
work. We extracted 19 features related to the account’s pro�le
information (e.g., account login), activities (e.g., median response
time), and text similarity (e.g., commit messages similarity) for
5,107 GitHub accounts. Then, we evaluated the performance of
�ve machine learning classi�ers, namely, Logistic Regression, K-
Nearest Neighbors, Decision Tree, Random Forest, and Support-
Vector Machine, in identifying the account type (i.e., human or bot).
The Random Forest classi�er achieved the best results among all

the classi�ers with an F1-score of 92.4% and AUC of 98.7%. Also, our
results show that account login and name are the most important
features used by the Random Forest classi�er to reveal the account
type. Finally, our Random Forest classi�er outperforms the state-
of-the-art approaches in detecting bots regardless of their types.

In the future, we plan to evaluate our approach on social coding
platforms other than GitHub (e.g., BitBucket, GitLab) and larger
datasets. Moreover, we will evaluate more sophisticated models
(e.g., neural networks and transformers) on the task of identifying
software bots on GitHub. We plan (and encourage others) to pro-
pose and evaluate approaches to identify the mixed accounts on
social coding platforms. Finally, we will use our approach to con-
duct a large-scale study to understand the amount of bots adopted
in software projects and their impact on software development
(e.g., issue �xing time). By making BotHunter available as a tool
we expect to empower practitioners and researchers who want to
classify GitHub user accounts as bots and humans.
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