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Abstract— Several software evolution studies exploit the concept 

of logical dependencies. Such kind of dependency arises between 

software artifacts that have frequently changed together 

throughout software development. In the specific context of 

atomic-commit-featured repositories (e.g. Subversion), evolution 

studies often infer dependency dependencies based on the 

analysis of the committed change-sets. However, the 

implementation of a single change may span consecutive and 

closely related commits. In this paper, we propose a particular 

commit grouping approach that is inspired by the sliding time 

window algorithm. We performed a preliminary evaluation of 

our approach by executing it in the Apache Software Foundation 

code repository. Results showed that 4.6% of the produced 

windows contained at least two revisions and that these windows 

indeed grouped closely related revisions. Based on these findings, 

we envision that software evolution research and tools may be 

improved by using more accurate methods to infer logical 

dependencies. 

Keywords- mining software repositories; sliding time window; 

logical dependencies; co-changes; logical coupling; Apache 

Software Foundation; empirical software engineering; software 

evolution. 

I.  INTRODUCTION 

Previous research in software evolution has introduced an 
approach for dependency identification that is able to reveal 
subtle relationships between software artifacts stored in version 
control systems (VCSs) [1]. The concept underlying this notion 
is known as logical dependencies [2] and arises from 
relationships established among artifacts that are frequently 
changed together. These artifacts are not necessarily 
structurally related, since they are connected from an 
evolutionary point of view, i.e. they have often changed 
together in the past, so they are likely to change together in the 
future. Unlike structural dependencies analysis (a.k.a., static 
analysis), this technique spots dependencies between any kind 
of artifact that composes a system, including configuration files 
(such as XML and property files) and documentation. The 
identification of logical dependencies is usually performed by 
parsing and analyzing the commit logs of a VCS.  

The analysis of logical dependencies has supported a series 
of software evolution studies. For instance, Graves et al. [3] 
showed that past changes are good predictors of future faults. 
Mockus and Weiss [4] found that the spread of a change over 
subsystems and files is a strong indicator that the change will 

contain a defect. Cataldo et al. [5] reported through a detailed 
empirical study that the effect of logical dependencies on fault 
proneness was complementary and significantly more relevant 
than the impact of structural dependencies in two software 
projects from different companies. Cataldo and Nambiar [6] 
investigated 189 global software development (GSD) projects 
and showed that logical dependencies were the most significant 
factor impacting software quality among a series of considered 
factors, such as structural coupling, process maturity, 
developers’ experience, number of regional units, and people 
dispersion. Logical dependencies have also been employed to 
detect design issues [7], infer code decay [8], and predict 
changes in software artifacts [9]. 

The reliability of all studies that employ logical 
dependencies is intrinsically connected to the accuracy of the 
approach used to identify such dependencies. In atomic-
commit-featured VCSs, mutually checked-in files result in a 
single commit that contain all these files (change-set). In this 
scenario, researchers and tools developers often rely on the 
existence of the atomic commit feature and consider the 
change-set as the actual set of files that were changed together 
by a developer while working on a given task. However, the 
implementation of a change can span a series of consecutive 
and closely related commits. Therefore, simply inspecting the 
change-sets may lead to incomplete or incorrect results in terms 
of logical dependencies identification. 

In this paper, we argue that related change-sets should be 
first appropriately grouped prior to the process of logical 
dependencies identification. As a proof of concept, we 
introduce a grouping approach that is inspired by the sliding 
time window algorithm [10] (presented in Section II). We also 
conducted a preliminary evaluation of our approach by means 
of an exploratory study with the Apache Software Foundation 
code repository (Subversion). Our main contributions include 
(i) raising the issue of using raw change-sets to identify logical 
dependencies in atomic-commit-featured VCSs and (ii) 
proposing and preliminarily evaluating our approach. An 
additional contribution includes implementing our approach in 
the XFlow tool [11]. 

The remainder of this paper is organized as follows. In 
Section II, we introduce the sliding time window algorithm. In 
Section III, we introduce our approach for grouping related 
change-sets in atomic-commit-featured VCSs. In Section IV, 
we present the design and results of a preliminary evaluation of 
our solution. In Section V, we present the related work. Finally, 



in Section VI, we state our conclusions and plans for future 
work. 

II. THE SLIDING TIME WINDOW ALGORITHM 

Logical dependencies (a.k.a. change dependencies [12], 
evolutionary dependencies [13], and co-changes [14]) are 
implicit dependencies that connect software artifacts that have 
evolved together. Logical dependencies analysis has the 
potential to spot indirect or semantic relationships between 
artifacts that are not explicitly deducible from the programming 
language constructs [2, 5]. Logical dependencies are often 
detected by mining the logs of the project’s VCS. In the context 
of VCSs that do not support atomic commits (e.g. CVS), 
change transactions need to be reconstructed before logical 
dependencies can be identified. In fact, a few algorithms have 
been proposed to reconstruct change transactions in such kind 
of VCSs. 

The fixed time window algorithm [15, 16, 17] restricts the 
maximal duration of a transaction and groups commits that are 
made by the same author with the same message (comments), 
i.e. it assumes that such commits are related to a single 
modification derived from a task the author was working on. In 
this algorithm, the time interval always begins at the first 
check-in. An improved version of such algorithm was later 
proposed by Zimmerman et al. [10]. The authors coined it 
sliding time window, since it consists of “sliding” the time 
window to the last commit in the window, i.e. the beginning of 
the chosen time interval is shifted to the most recent commit. 
As such algorithm restricts the maximal gap between two 
subsequent commits, it may lead to the detection of 
transactions that take longer to complete than the specified 
length of the time window [10]. Formally, in a sliding time 
window of x seconds, the following conditions hold for all 
commits δ1, … ,  δk (sorted by time(δi)) that are part of a 
transaction Δ [10]: 

 
a. ∀δi ∈ Δ : author(δ1) = author(δ1) 
b. ∀δi ∈ Δ : log_message(δi) = log_message(δ1) 
c. ∀I ∈ {2, …, 3} : |time(δi) – time(δi-1)| ≤ x seconds 
d. ∀δa,∀δb ∈ Δ : δa ≠ δb ⇒ file(δa) ≠ file(δb) 
 
Figure 1(a) illustrates how the fixed time window works in 

the CVS repository (commit labels are written using the pattern 
<name:x.y>, where name stands for the file name and x.y 
stands for its revision number). Right after commit A:1.3, a 
time window is created. Since A:1.3, B:1.2 and C:1.4 are (i) 
visible within the time window (drawn in white), (ii) made by 
the same author, and (iii) have the same log message, they are 
considered as being part of the same change transaction. Figure 
1(b), in turn, illustrates how the sliding time window works. It 
shows that a sliding time window also considers commits D:1.3 
and E:1.5, because the time window “slides” from commit 
A:1.3 to E:1.5. The window is closed after E:1.5, since no 
further commit exists within the time window. 

 

 
Figure 1.  Fixed time window (a) and sliding time window (b) algorithms for 

recovering change transactions in CVS (adapted from [10]) 

Inspired by the sliding time window algorithm, we 
conceived a change-set grouping approach specially designed 
for atomic-commit-featured VCSs. In the following section, we 
present our motivation and describe the proposed approach 
itself. 

III. GROUPING CHANGE-SETS 

In the early days of logical dependencies studies, 

researchers conceived methods to recover change transactions 

in the CVS repository (e.g. fixed time window and sliding 

time window algorithms). At the time researchers had started 

mining atomic-commit-featured repositories (e.g. Subversion, 

Git) for logical dependencies identification, the problem of 

reconstructing change transactions was often neglected, since 

such repositories provided the required information (change-

sets) out-of-the-box, i.e. which software artifacts changed 

together throughout the analyzed software development 

period. However, the implementation of a single change may 

span consecutive and closely related commits. It is also 

difficult to predict the commit habits of developers since it 

depends on a series of context variables, such as the software 

development process, the versioning system, and the task at 

hand. As a result, we believe that the approaches for logical 

dependencies identification in this kind of VCSs should take 

this phenomenon into account. 

Inspired by the core ideas embedded in the sliding time 

window algorithm, we developed an approach to group closely 

related change sets in atomic-commit-featured VCSs. 

Nevertheless, since the sliding time window and our approach 

were conceived for different purposes, there are also some 

fundamental differences between them. For instance, the 

sliding time window algorithm creates a new empty window 

every time the same file reappears during the current window 

scope (see condition d in Section II). The main reason behind 

it is that the algorithm was conceived to recreate change-sets 

[10] and, per definition, a change-set cannot contain the same 

file twice. However, in the context of atomic-commit-featured 

VCSs, our ultimate goal is to better reconstruct change 

transactions by grouping closely related change-sets. Hence, in 



our proposed approach, we do not recreate the window when 

the same file reappears. Instead, we keep the window running 

and add the file. Such design decision poses a series of 

challenges to be faced, such as handling files that are added, 

modified, and removed in the different change-sets included a 

single window. Consequently, after the window is closed, an 

algorithmic procedure is run in order to create consolidated 

versions of the files. 

In the following, we present a detailed description of our 

approach. We also show algorithms written in pseudo-code 

notation and explain its main steps. 

A. Algorithm Description 

The algorithm shown in Listing 1 describes our proposed 

approach. For each author in the project (1-2), we obtain the 

list of his/her commits in chronological order (4). Afterwards, 

we investigate timely adjacent commits and decide whether 

they should belong to the same window (7-9). Adjacent 

commits are then grouped until one of following criteria is not 

satisfied: (i) revisions are seconds apart (input parameter to 

the algorithm) and (ii) revisions have the same author 

comments. When the grouping ends, the window is created 

and saved (10-12).  

 
Algorithm: Change-set grouper 

Parameters: seconds 

1.  authors  Project.getAuthors(project); 

2.  for each author a in authors 

3.    windowRevsList  new List() 

4.    allRevsList  Project.getRevsSortedByDate(a) 

5.    allRevsList.add(Project.createDummyRev()) 

6.    prevRev  allRevsList.removeFirst() 

7.    for each revision rev in allRevsList 

8.      windowRevsList.add(prevRev) 

9.      if (!revsOnSameWindow(prevRev,rev,secs)) 

10.         window  createWindow(a,windowRevsList) 

12.         saveWindow(window) 

13.         windowRevsList.clear() 

14.     end-if 

15.     prevRev  rev 

16.   end-for 

17. end-for 

Figure 2.  Change-set grouper algorithm 

The subroutine shown in Figure 3 describes the process of 
window creation. First, basic window properties are set, 
including its timestamp (inherited from last commit) and length 
(3-9). After that, the files from all of the window revisions are 

obtained (11). Then, for each file, a list of its versions in 

chronological order is obtained (13). We consider that a file 
has more than one version when it is committed in different 
commits of the same window.  

As previously described, our proposed solution does not 
create a new window whenever the same file reappears in the 
window scope. For instance, consider a window that groups 
revisions 1, 2, 3 and 4. Suppose that a developer adds the file 
Foo.java in revision 1, modifies it in revision 2, modifies it 
again in revision 3, and then decides to delete it in revision 4. 
In this scenario, the file Foo.java would have 4 versions.  

As the grouping of commits should necessarily result in a 
new commit, all versions of the same file should be 

consolidated into a new file. As a matter of fact, in case a file 
has two or more versions (14), we obtain its first and last 

versions (15, 16), create a consolidated file (17), and add it to 

the window (18). In the simple case in which only a single 

version exists, then we just add it straight to the window (20). 

After processing all files, the time window is returned (23). 
 

Subroutine: Window builder 

Parameters: author, windowRevsList 

1.  firstRev  windowRevsList.getFirst() 

2.  lastRev  windowRevsList.getLast() 

3.  //Creating the window 

4.  window  new Window() 

5.  window.setAuthor(author) 

6.  window.setComment(lastRev.getComments()) 

7.  window.setTimestamp(lastRev.getTimestamp()) 

8.  length  getLength(firstRev,lastRev) 

9.  window.setLength(length) 

10. //Adding the files to the window 

11. files  getAllFiles(windowRevsList) 

12. for each file f in files 

13.   versionsList  f.getVersionsSortedByDate() 

14.   if (versionsList.size() >= 2) 

15.     firstVer  versionsList.getFirst(); 

16.     lastVer  versionsList.getLast(); 

17.     file  handleVersions(firstVer, lastVer); 

18.     window.addFile(file) 

19.   else 

20.     window.addFile(versions.getFirst()) 

21.   end-if-else 

22. end-for 

23. return window 

Figure 3.  Window builder subroutine 

The subroutine handleVersions (17) creates a consolidated 

version of a file based on its initial and final versions. In fact, 

the consolidated file directly inherits all properties from the 

final version (including the code itself). However, the 

consolidated file status (added, modified, or deleted) must be 

carefully chosen. In the following, we describe the set of rules 

that we conceived in order to decide upon the ultimate status 

of a file within a specific window (Table I). We use the 

template <Status of Initial File Version> → 

<Status of Last File Version> to refer to the 

rules. 

TABLE I.  RULES FOR HANDLING DIFFERENT VERSIONS OF A FILE 

Initial Version/
Last Version

 Deleted Modified Added 

Deleted Deleted Modified Added 

Added Deleted Added Added 

Modified Deleted Modified Modified 

 

 {Deleted, Added, Modified} → Deleted 

 

If the last file version has the status deleted, then no 

matter what the status of the initial version is, the ultimate 

status will be deleted. In fact, if a file is deleted, there is 

no point in calculating its logical dependencies to other 

files in the system. 

 



If the last version of a file has the status deleted and the 

initial version has the status added, then we treat the file 

as if it had never existed within the window. In fact, if 

such file only exists in this window, then the file will be 

completely will not take part in the logical dependencies 

identification process (noise reduction). 

 

 {Deleted, Modified} → Modified  

 

If the last version of a file has the status modified, then the 

ultimate status will be modified in the cases where the 

initial version status is either deleted or modified.  

 

If the first version has the status deleted and the last 

version of a file has the status modified, then we simply 

ignore all intermediate versions of the file and pick up 

only the last version. As illustrated in Figure 4, we treat 

the file as if it had never been deleted. 

 

 
Figure 4.  Preserving the file status (ignoring intermediate statuses) 

 Added → Modified 

 

If the initial version of a file has the status added and the 

last version has the status modified, then the ultimate 

status will be considered as added (as if all subsequent 

modifications to the file had been done when it was first 

added). 

 

 {Added, Deleted} → Added 

 

If the last version of a file has the status added, then the 

ultimate status will be added in the cases where the initial 

version status is either added or deleted. 

 

 Modified → Added 

 

If the initial version of a file has the status added and the 

last version has the status modified, then the ultimate 

status will be considered as modified. In this case, we 

treat the addition as if it were a subsequent change to the 

initial version of the file. 

 

This aforementioned set of rules represents the main 

contribution of the proposed algorithm. 

IV. PRELIMINARY EVALUATION 

In this section, we describe a preliminary evaluation of our 
proposed algorithm. We present the supporting tools, the data 
collection procedures, and the results of our quantitative and 
qualitative empirical studies. 

A. Supporting tools 

In the following, we describe the supporting tools that we 

used to conduct the evaluation: 
XFlow. Mining repositories studies usually require 

extensive tool support due to large and complex data that need 
to be collected, processed, and analyzed [18]. XFlow is an 
extensible and interactive open source tool [11] whose general 
goal is to provide a comprehensive analysis of software 
projects evolution process by mining software repositories and 
taking into account both technical and social aspects of the 
developed systems. XFlow collects data from version control 
systems, identifies logical dependencies, evaluates metrics over 
project’s artifacts, and presents interactive visualizations. 

Minitab. All statistical analysis of data in this study was 
supported by Minitab

1
. Minitab is an easy to use and yet 

powerful statistical package heavily employed in both industry 
and statistical courses at universities worldwide. 

B. Study Setup and Data collection 

Apache Software Foundation (ASF) is a non-profit 
organization that has developed nearly a hundred 
distinguishing software projects that cover a wide range of 
technologies and address several problems from diverse 
contexts. Examples of ASF projects include Apache HTTP 
Server, Apache Geronimo, Cassandra, Lucene, Maven, Ant, 
and Struts. ASF currently owns a single Subversion repository 
that hosts all Apache projects and subprojects. 

The context of our study comprehends the whole ASF 
Subversion repository. This repository encompasses 1,120,394 
revisions, nearly 100 top-level projects (some of which have a 
few subprojects), 2421 developers, and an activity time frame 
of approximately 16 years and 9 months (August of 1994 till 
May of 2011). Working with large remote repositories poses a 
series of challenges. Firstly, to cope with repository instability, 
we built a local mirror of the whole ASF Subversion 
repository. This task was rather time-consuming due to the 
inefficiency of the Subversion protocol and available network 
bandwidth. After mirroring the repository, we executed the data 
collection processing phase of XFlow, in which the tool 
collects and parses the log messages of all considered revisions. 
Due to practical constraints, we only considered Java files, i.e. 

we filtered out the files that did not have the .java 
extension. Furthermore, revisions having no Java files were 
discarded. This data collection process was rather complex, 
since we had to deal with inconsistent data found on some 
revisions, such as files being deleted without ever being added. 
Such data collection process took approximately 6 hours in a 
dedicated Dell XPS L502X notebook (Core i7 2820QM, 6GB 
RAM DDR3, 500GB HD 7200RPM) and resulted in 479,794 
revisions, which corresponds to approximately 43% of all ASF 
Subversion revisions.  

                                                           
1  http://www.minitab.com/ 



Finally, we applied our algorithm with a window size of 
200 seconds. This is a default value that has been extensively 
used in literature for the original sliding time windows 
algorithm [10, 9, 19, 20, 21, 7, 22]. 

C. Quantitative evaluation 

We calculated basic descriptive statistics for the number of 
revisions per window variable in order to investigate to which 
extent the revisions were actually grouped. As depicted in 
Table II, the algorithm resulted in 453,865 windows. Most 
important, it produced 20,812 (4.6%) windows that grouped 
two or more revisions. The largest window grouped 106 
revisions. Overall, there was little dispersion among the values, 
as evidenced by the mean and standard deviation values. 

TABLE II.  NUMBER REVISIONS PER WINDOW - DESCRIPTIVE STATISTICS 

N Sum Mean Max StDev 

453,865 479,790 1.06 106 0.41 

 
We also computed basic descriptive statistics for the length 

per window variable to better understand the results of the 
grouping. According to Table III, there was little dispersion 
among the values, as evidenced by mean and standard 
deviation values. The algorithm produced 12,103 (2.7%) 
windows whose length was larger than or equal to 6 seconds. 
In fact, as depicted in Figure 3, there are few windows that 
have a long length. The largest window length was of 34 
minutes and 10 seconds. This shows that even very time-distant 
revisions can be change coupled. 

TABLE III.  LENGTH PER WINDOW - DESCRIPTIVE STATISTICS 

N Max Mean StDev 

453,865 34.17 0.038 (2.28s) 0.34 

 

 
Figure 5.  Scatterplot of length versus number of windows 

Finally, we calculated basic descriptive statistics for the 
number of files per revision variable (Table IV). This 
calculation was done prior to and after the application of the 
algorithm, so that we could compare the results and check how 
many files would disappear. 

 
 

TABLE IV.  NUMBER OF FILES PER REVISION - DESCRIPTIVE STATISTICS 

 N Sum Mean StDev Skewness Kurtosis 

Before 479,794 3,206,900 6.68 37.84  33.80 1,844.00 

After 453,865 3,174,051 6.99 40.79 39.56 2,829.94 

 

As we stated earlier, the application of the sliding time 

window resulted in 453,865 revisions. These revisions 

encompassed a total of 3,174,051 Java files (including all 

distinct versions of the file), which represent a reduction of 

approximately 1% in the original number of Java files. The 

mean value indicates that revisions contain 7 files in average. 

However, standard deviation value shows that the dispersion is 

very high. Both mean and standard deviation did not change 

much when compared to original values. As a final point, we 

calculated skewness and kurtosis values to further investigate 

such dispersion. The positive skewness value indicates that the 

dataset is right-skewed, i.e. the “tail” of the distribution points 

to the right. Also, the high kurtosis indicates that the data set 

has a distinct peak near the mean, declines rather rapidly, and 

has heavy tails. Although these values increased when 

compared to original ones, they did not change the shape of 

the distribution curve. In fact, we also performed a quartile 

analysis of the variable in question and we confirmed that 

there were no changes in the quartiles, including the median. 

Furthermore, as a result of the quartile analysis, we noticed 

that “usual” revisions (or windows) encompassed 1 to 8 files. 

D. Qualitative evaluation 

We qualitatively evaluated the algorithm by manually 

inspecting a random sample
2
 of the 20,812 windows that 

contained at least two revisions. In this preliminary evaluation, 

we inspected a total of 20 windows and analyzed whether the 

revisions should be really grouped, i.e. if they were related to a 

single change purpose. Such inspection enabled us to 

generalize the results with a margin of error of 15% and 

confidence level of 82%
3
. The results of our inspection are 

given in Table V. 

By checking the revision files, comments, and diff code, 

we were able to judge whether the grouping made sense. 

Except for the last grouping (which we classified as 

inconclusive), all of the others seemed perfectly appropriate. 

As depicted in the aforementioned table, such groupings 

involved fixing a specific bug, implementing a specific 

change, or adjusting code style and documentation.  

 

 

 

 

 

 

 

                                                           
2 The sampling was obtained directly from the MySQL database by 

means of the RAND() function. 

 
3 http://www.vsai.pt/amostragem.php 



TABLE V.  QUALITATIVE EVALUATION OF REVISION GROUPINGS 

Window Revisions 
Makes 

sense? 
Notes 

1 
1116762, 
1116764 

Yes Deleting Files 

2 
135701, 

145726 
Yes 

Bug fix in two stages (same set of 

modified files) 

3 
768654, 
768655 

Yes 
Running checkstyle on files from same 

folder 

4 
431981, 

431983 
Yes 

Applying a patch to different versions of 

same file 

5 
1017168, 
1017169 

Yes 
Fixing a bug in 

CollectionFieldMethodsFacetFactory.java 

6 

987268, 

987269, 
987270 

Yes 
Fixing a bug in different versions of same 

file 

7 

549264, 

549265, 

549266 

Yes 
Removing blank lines (adjusting style) 

from files in same folder 

8 
504397, 

504398 
Yes 

Fixing a bug in different versions of same 

file 

9 
1100057, 

1100058 
Yes Merge of a change in different branches 

10 
246361, 

253433 
Yes Fixing a bug (same diff in both revisions) 

11 
225245, 
225246 

Yes 
Fixing a bug in different versions of same 

file 

12 
1014042, 

1014043 
Yes Implementing a change 

13 
245235, 
252307 

Yes Fixing a bug (same diff in both revisions) 

14 
1118611, 

1118612 
Yes Implementing a change 

15 
334583, 
334584 

Yes 
Change made in two steps (fixing/adding 

info to Javadoc in class) 

16 
73016, 

73991 
Yes Fixing a bug (same diff in both revisions) 

17 
235594, 
236846 

Yes Fixing style (same diff in both revisions) 

18 
914457, 

914458 
Yes Implementing a change 

19 
1106641, 
1114539 

Yes Implementing a change 

20 
1118631, 

1118632 
? Inconclusive 

 

We believe that the absence of false-positives can be 

explained by the conservative nature of the algorithm, i.e. a 

window is created only when revisions have the same author, 

same comments, and are close in time. 

V. RELATED WORK 

Gall et al. [2] used information from the release history of 

a telecommunications system to discover logical dependencies 

and change patterns among modules and subsystems. Gall et 

al. [16] later on proposed the Relation Analysis (RA) 

technique to identify logical dependencies. The technique 

consists in an investigation of the classes that frequently 

changed together. More precisely, the authors mined logs in 

the CVS repository and identified classes that were changed 

together by a same author. A fixed time window of four 

minutes was considered, since large commits usually take 

some time to be completed. Zimmermann et al. [17] applied 

the same technique, but they considered a fixed time window 

of three minutes instead. Besides that, the authors introduced 

the idea of support and confidence as measures of significance 

for logical dependencies. Canfora et al. [22] propose the use of 

a multivariate time series approach (based on the Granger 

causality test) to address the issue that we raise in this paper, 

i.e. capturing logical dependencies between artifacts that are 

modified in subsequent change-sets. Pirklbauer [23] 

empirically evaluated a series of logical dependencies 

identification approaches, including those that are only 

suitable when change #id information is provided in commit 

log messages [10, 24, 25, 26]. Although not clear, it seems that 

the author does not group commits when there is an 

intersection between their sets of files. Fluri and Gall [28] 

argue that logical dependencies that arise from code styling 

and minor adjustments (such as the inclusion of code 

comments) are not significantly relevant. Based on an 

empirical evaluation, the authors conceived a classification of 

changes in order to filter out irrelevant logical dependencies. 

Hence, logical dependencies analysis can be improved by not 

only grouping change-sets prior to the dependencies 

identification (as in our proposal), but also after all 

dependencies are actually discovered. 

In the following, we present less related but yet relevant 

work. Canfora et al. [29] proposed the concept of line co-

change to identify cross-cutting concerns in code hosted in 

CVS. In the context of Model Driven Development (MDD), 

Wenzel et al. [30] used a differencing algorithm called SiDiff 

to identify logical dependencies between elements of a model. 

Wang et al. [31] proposed a method to identify existing fine 

grained logical dependencies between functions. 

VI. CONCLUSION 

In this paper, we discussed about the importance of 
grouping related change-sets in atomic-commit-featured VCSs 
before performing the identification of logical dependencies 
between software artifacts.  We argued that changes in the 
system may span a series of timely-close and semantically-
related commits. In fact, grouping related change-sets refines 
and improves the process of logical dependencies 
identification, since evolutionary links between artifacts are 
more accurately recovered. 

As a proof of concept, we presented a rather conservative 
approach that is inspired by the sliding time window algorithm 
(whose purpose is to reconstruct change transactions in VCSs 
that do not support atomic commits) [10]. The preliminary 
evaluation that we conducted showed that our approach is 
feasible and produced relevant results. Our analysis indicated 
that approximately 4.6% of the produced windows contained at 
least two revisions and that these windows indeed grouped 
closely related revisions. We also leverage the external validity 
of our study, since we applied it to a large repository hosting 
more than a million of revisions. Based on these outcomes, we 
claim that software evolution research and tools can definitely 
be improved by using more accurate methods to infer logical 
dependencies. 

 Some factors, however, may have influenced our results. In 
terms of the approach input, we chose the default time window 
value found in the literature (200 seconds). We believe that 
trying other values (especially large ones, like a week) may 



provide completely different results. This is thus a future 
research path that could be explored. Furthermore, we 
acknowledge that analyzing a larger number of windows would 
make our evidence stronger. Finally, because of practical 
constraints of processing time, we may have introduced some 
bias by considering only the Java files in the revisions.  

As future work, we plan to apply the algorithm to a single 
software project and empirically evaluate its effectiveness in 
terms of precision and recall. We will also investigate whether 
some minor variations and heuristics can improve the results, 
such as considering only non-blank revision comments. 
Finally, we also envision empirically comparing the algorithm 
to other proposals found in the literature. 
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