
Preprocessing Change-Sets to Improve

Logical Dependencies Identification

Gustavo Ansaldi Oliva, Marco Aurélio Gerosa

Computer Science Department,

University of São Paulo (USP)

São Paulo, Brazil

{goliva, gerosa}@ime.usp.br

Francisco Werther Santana, Cleidson R. B. de Souza

Computing Department

Federal University of Pará (UFPA)

Belém, Brazil

wertherjr@gmail.com, cleidson.desouza@acm.org

Abstract— Several software evolution studies exploit the concept

of logical dependencies. Such kind of dependency arises between

software artifacts that have frequently changed together

throughout software development. In the specific context of

atomic-commit-featured repositories (e.g. Subversion), evolution

studies often infer dependency dependencies based on the

analysis of the committed change-sets. However, the

implementation of a single change may span consecutive and

closely related commits. In this paper, we propose a particular

commit grouping approach that is inspired by the sliding time

window algorithm. We performed a preliminary evaluation of

our approach by executing it in the Apache Software Foundation

code repository. Results showed that 4.6% of the produced

windows contained at least two revisions and that these windows

indeed grouped closely related revisions. Based on these findings,

we envision that software evolution research and tools may be

improved by using more accurate methods to infer logical

dependencies.

Keywords- mining software repositories; sliding time window;

logical dependencies; co-changes; logical coupling; Apache

Software Foundation; empirical software engineering; software

evolution.

I. INTRODUCTION

Previous research in software evolution has introduced an
approach for dependency identification that is able to reveal
subtle relationships between software artifacts stored in version
control systems (VCSs) [1]. The concept underlying this notion
is known as logical dependencies [2] and arises from
relationships established among artifacts that are frequently
changed together. These artifacts are not necessarily
structurally related, since they are connected from an
evolutionary point of view, i.e. they have often changed
together in the past, so they are likely to change together in the
future. Unlike structural dependencies analysis (a.k.a., static
analysis), this technique spots dependencies between any kind
of artifact that composes a system, including configuration files
(such as XML and property files) and documentation. The
identification of logical dependencies is usually performed by
parsing and analyzing the commit logs of a VCS.

The analysis of logical dependencies has supported a series
of software evolution studies. For instance, Graves et al. [3]
showed that past changes are good predictors of future faults.
Mockus and Weiss [4] found that the spread of a change over
subsystems and files is a strong indicator that the change will

contain a defect. Cataldo et al. [5] reported through a detailed
empirical study that the effect of logical dependencies on fault
proneness was complementary and significantly more relevant
than the impact of structural dependencies in two software
projects from different companies. Cataldo and Nambiar [6]
investigated 189 global software development (GSD) projects
and showed that logical dependencies were the most significant
factor impacting software quality among a series of considered
factors, such as structural coupling, process maturity,
developers’ experience, number of regional units, and people
dispersion. Logical dependencies have also been employed to
detect design issues [7], infer code decay [8], and predict
changes in software artifacts [9].

The reliability of all studies that employ logical
dependencies is intrinsically connected to the accuracy of the
approach used to identify such dependencies. In atomic-
commit-featured VCSs, mutually checked-in files result in a
single commit that contain all these files (change-set). In this
scenario, researchers and tools developers often rely on the
existence of the atomic commit feature and consider the
change-set as the actual set of files that were changed together
by a developer while working on a given task. However, the
implementation of a change can span a series of consecutive
and closely related commits. Therefore, simply inspecting the
change-sets may lead to incomplete or incorrect results in terms
of logical dependencies identification.

In this paper, we argue that related change-sets should be
first appropriately grouped prior to the process of logical
dependencies identification. As a proof of concept, we
introduce a grouping approach that is inspired by the sliding
time window algorithm [10] (presented in Section II). We also
conducted a preliminary evaluation of our approach by means
of an exploratory study with the Apache Software Foundation
code repository (Subversion). Our main contributions include
(i) raising the issue of using raw change-sets to identify logical
dependencies in atomic-commit-featured VCSs and (ii)
proposing and preliminarily evaluating our approach. An
additional contribution includes implementing our approach in
the XFlow tool [11].

The remainder of this paper is organized as follows. In
Section II, we introduce the sliding time window algorithm. In
Section III, we introduce our approach for grouping related
change-sets in atomic-commit-featured VCSs. In Section IV,
we present the design and results of a preliminary evaluation of
our solution. In Section V, we present the related work. Finally,

in Section VI, we state our conclusions and plans for future
work.

II. THE SLIDING TIME WINDOW ALGORITHM

Logical dependencies (a.k.a. change dependencies [12],
evolutionary dependencies [13], and co-changes [14]) are
implicit dependencies that connect software artifacts that have
evolved together. Logical dependencies analysis has the
potential to spot indirect or semantic relationships between
artifacts that are not explicitly deducible from the programming
language constructs [2, 5]. Logical dependencies are often
detected by mining the logs of the project’s VCS. In the context
of VCSs that do not support atomic commits (e.g. CVS),
change transactions need to be reconstructed before logical
dependencies can be identified. In fact, a few algorithms have
been proposed to reconstruct change transactions in such kind
of VCSs.

The fixed time window algorithm [15, 16, 17] restricts the
maximal duration of a transaction and groups commits that are
made by the same author with the same message (comments),
i.e. it assumes that such commits are related to a single
modification derived from a task the author was working on. In
this algorithm, the time interval always begins at the first
check-in. An improved version of such algorithm was later
proposed by Zimmerman et al. [10]. The authors coined it
sliding time window, since it consists of “sliding” the time
window to the last commit in the window, i.e. the beginning of
the chosen time interval is shifted to the most recent commit.
As such algorithm restricts the maximal gap between two
subsequent commits, it may lead to the detection of
transactions that take longer to complete than the specified
length of the time window [10]. Formally, in a sliding time
window of x seconds, the following conditions hold for all
commits δ1, … , δk (sorted by time(δi)) that are part of a
transaction Δ [10]:

a. ∀δi ∈ Δ : author(δ1) = author(δ1)
b. ∀δi ∈ Δ : log_message(δi) = log_message(δ1)
c. ∀I ∈ {2, …, 3} : |time(δi) – time(δi-1)| ≤ x seconds
d. ∀δa,∀δb ∈ Δ : δa ≠ δb ⇒ file(δa) ≠ file(δb)

Figure 1(a) illustrates how the fixed time window works in

the CVS repository (commit labels are written using the pattern
<name:x.y>, where name stands for the file name and x.y
stands for its revision number). Right after commit A:1.3, a
time window is created. Since A:1.3, B:1.2 and C:1.4 are (i)
visible within the time window (drawn in white), (ii) made by
the same author, and (iii) have the same log message, they are
considered as being part of the same change transaction. Figure
1(b), in turn, illustrates how the sliding time window works. It
shows that a sliding time window also considers commits D:1.3
and E:1.5, because the time window “slides” from commit
A:1.3 to E:1.5. The window is closed after E:1.5, since no
further commit exists within the time window.

Figure 1. Fixed time window (a) and sliding time window (b) algorithms for

recovering change transactions in CVS (adapted from [10])

Inspired by the sliding time window algorithm, we
conceived a change-set grouping approach specially designed
for atomic-commit-featured VCSs. In the following section, we
present our motivation and describe the proposed approach
itself.

III. GROUPING CHANGE-SETS

In the early days of logical dependencies studies,

researchers conceived methods to recover change transactions

in the CVS repository (e.g. fixed time window and sliding

time window algorithms). At the time researchers had started

mining atomic-commit-featured repositories (e.g. Subversion,

Git) for logical dependencies identification, the problem of

reconstructing change transactions was often neglected, since

such repositories provided the required information (change-

sets) out-of-the-box, i.e. which software artifacts changed

together throughout the analyzed software development

period. However, the implementation of a single change may

span consecutive and closely related commits. It is also

difficult to predict the commit habits of developers since it

depends on a series of context variables, such as the software

development process, the versioning system, and the task at

hand. As a result, we believe that the approaches for logical

dependencies identification in this kind of VCSs should take

this phenomenon into account.

Inspired by the core ideas embedded in the sliding time

window algorithm, we developed an approach to group closely

related change sets in atomic-commit-featured VCSs.

Nevertheless, since the sliding time window and our approach

were conceived for different purposes, there are also some

fundamental differences between them. For instance, the

sliding time window algorithm creates a new empty window

every time the same file reappears during the current window

scope (see condition d in Section II). The main reason behind

it is that the algorithm was conceived to recreate change-sets

[10] and, per definition, a change-set cannot contain the same

file twice. However, in the context of atomic-commit-featured

VCSs, our ultimate goal is to better reconstruct change

transactions by grouping closely related change-sets. Hence, in

our proposed approach, we do not recreate the window when

the same file reappears. Instead, we keep the window running

and add the file. Such design decision poses a series of

challenges to be faced, such as handling files that are added,

modified, and removed in the different change-sets included a

single window. Consequently, after the window is closed, an

algorithmic procedure is run in order to create consolidated

versions of the files.

In the following, we present a detailed description of our

approach. We also show algorithms written in pseudo-code

notation and explain its main steps.

A. Algorithm Description

The algorithm shown in Listing 1 describes our proposed

approach. For each author in the project (1-2), we obtain the

list of his/her commits in chronological order (4). Afterwards,

we investigate timely adjacent commits and decide whether

they should belong to the same window (7-9). Adjacent

commits are then grouped until one of following criteria is not

satisfied: (i) revisions are seconds apart (input parameter to

the algorithm) and (ii) revisions have the same author

comments. When the grouping ends, the window is created

and saved (10-12).

Algorithm: Change-set grouper

Parameters: seconds

1. authors  Project.getAuthors(project);

2. for each author a in authors

3. windowRevsList  new List()

4. allRevsList  Project.getRevsSortedByDate(a)

5. allRevsList.add(Project.createDummyRev())

6. prevRev  allRevsList.removeFirst()

7. for each revision rev in allRevsList

8. windowRevsList.add(prevRev)

9. if (!revsOnSameWindow(prevRev,rev,secs))

10. window  createWindow(a,windowRevsList)

12. saveWindow(window)

13. windowRevsList.clear()

14. end-if

15. prevRev  rev

16. end-for

17. end-for

Figure 2. Change-set grouper algorithm

The subroutine shown in Figure 3 describes the process of
window creation. First, basic window properties are set,
including its timestamp (inherited from last commit) and length
(3-9). After that, the files from all of the window revisions are

obtained (11). Then, for each file, a list of its versions in

chronological order is obtained (13). We consider that a file
has more than one version when it is committed in different
commits of the same window.

As previously described, our proposed solution does not
create a new window whenever the same file reappears in the
window scope. For instance, consider a window that groups
revisions 1, 2, 3 and 4. Suppose that a developer adds the file
Foo.java in revision 1, modifies it in revision 2, modifies it
again in revision 3, and then decides to delete it in revision 4.
In this scenario, the file Foo.java would have 4 versions.

As the grouping of commits should necessarily result in a
new commit, all versions of the same file should be

consolidated into a new file. As a matter of fact, in case a file
has two or more versions (14), we obtain its first and last

versions (15, 16), create a consolidated file (17), and add it to

the window (18). In the simple case in which only a single

version exists, then we just add it straight to the window (20).

After processing all files, the time window is returned (23).

Subroutine: Window builder

Parameters: author, windowRevsList

1. firstRev  windowRevsList.getFirst()

2. lastRev  windowRevsList.getLast()

3. //Creating the window

4. window  new Window()

5. window.setAuthor(author)

6. window.setComment(lastRev.getComments())

7. window.setTimestamp(lastRev.getTimestamp())

8. length  getLength(firstRev,lastRev)

9. window.setLength(length)

10. //Adding the files to the window

11. files  getAllFiles(windowRevsList)

12. for each file f in files

13. versionsList  f.getVersionsSortedByDate()

14. if (versionsList.size() >= 2)

15. firstVer  versionsList.getFirst();

16. lastVer  versionsList.getLast();

17. file  handleVersions(firstVer, lastVer);

18. window.addFile(file)

19. else

20. window.addFile(versions.getFirst())

21. end-if-else

22. end-for

23. return window

Figure 3. Window builder subroutine

The subroutine handleVersions (17) creates a consolidated

version of a file based on its initial and final versions. In fact,

the consolidated file directly inherits all properties from the

final version (including the code itself). However, the

consolidated file status (added, modified, or deleted) must be

carefully chosen. In the following, we describe the set of rules

that we conceived in order to decide upon the ultimate status

of a file within a specific window (Table I). We use the

template <Status of Initial File Version> →

<Status of Last File Version> to refer to the

rules.

TABLE I. RULES FOR HANDLING DIFFERENT VERSIONS OF A FILE

Initial Version/
Last Version

 Deleted Modified Added

Deleted Deleted Modified Added

Added Deleted Added Added

Modified Deleted Modified Modified

 {Deleted, Added, Modified} → Deleted

If the last file version has the status deleted, then no

matter what the status of the initial version is, the ultimate

status will be deleted. In fact, if a file is deleted, there is

no point in calculating its logical dependencies to other

files in the system.

If the last version of a file has the status deleted and the

initial version has the status added, then we treat the file

as if it had never existed within the window. In fact, if

such file only exists in this window, then the file will be

completely will not take part in the logical dependencies

identification process (noise reduction).

 {Deleted, Modified} → Modified

If the last version of a file has the status modified, then the

ultimate status will be modified in the cases where the

initial version status is either deleted or modified.

If the first version has the status deleted and the last

version of a file has the status modified, then we simply

ignore all intermediate versions of the file and pick up

only the last version. As illustrated in Figure 4, we treat

the file as if it had never been deleted.

Figure 4. Preserving the file status (ignoring intermediate statuses)

 Added → Modified

If the initial version of a file has the status added and the

last version has the status modified, then the ultimate

status will be considered as added (as if all subsequent

modifications to the file had been done when it was first

added).

 {Added, Deleted} → Added

If the last version of a file has the status added, then the

ultimate status will be added in the cases where the initial

version status is either added or deleted.

 Modified → Added

If the initial version of a file has the status added and the

last version has the status modified, then the ultimate

status will be considered as modified. In this case, we

treat the addition as if it were a subsequent change to the

initial version of the file.

This aforementioned set of rules represents the main

contribution of the proposed algorithm.

IV. PRELIMINARY EVALUATION

In this section, we describe a preliminary evaluation of our
proposed algorithm. We present the supporting tools, the data
collection procedures, and the results of our quantitative and
qualitative empirical studies.

A. Supporting tools

In the following, we describe the supporting tools that we

used to conduct the evaluation:
XFlow. Mining repositories studies usually require

extensive tool support due to large and complex data that need
to be collected, processed, and analyzed [18]. XFlow is an
extensible and interactive open source tool [11] whose general
goal is to provide a comprehensive analysis of software
projects evolution process by mining software repositories and
taking into account both technical and social aspects of the
developed systems. XFlow collects data from version control
systems, identifies logical dependencies, evaluates metrics over
project’s artifacts, and presents interactive visualizations.

Minitab. All statistical analysis of data in this study was
supported by Minitab

1
. Minitab is an easy to use and yet

powerful statistical package heavily employed in both industry
and statistical courses at universities worldwide.

B. Study Setup and Data collection

Apache Software Foundation (ASF) is a non-profit
organization that has developed nearly a hundred
distinguishing software projects that cover a wide range of
technologies and address several problems from diverse
contexts. Examples of ASF projects include Apache HTTP
Server, Apache Geronimo, Cassandra, Lucene, Maven, Ant,
and Struts. ASF currently owns a single Subversion repository
that hosts all Apache projects and subprojects.

The context of our study comprehends the whole ASF
Subversion repository. This repository encompasses 1,120,394
revisions, nearly 100 top-level projects (some of which have a
few subprojects), 2421 developers, and an activity time frame
of approximately 16 years and 9 months (August of 1994 till
May of 2011). Working with large remote repositories poses a
series of challenges. Firstly, to cope with repository instability,
we built a local mirror of the whole ASF Subversion
repository. This task was rather time-consuming due to the
inefficiency of the Subversion protocol and available network
bandwidth. After mirroring the repository, we executed the data
collection processing phase of XFlow, in which the tool
collects and parses the log messages of all considered revisions.
Due to practical constraints, we only considered Java files, i.e.

we filtered out the files that did not have the .java
extension. Furthermore, revisions having no Java files were
discarded. This data collection process was rather complex,
since we had to deal with inconsistent data found on some
revisions, such as files being deleted without ever being added.
Such data collection process took approximately 6 hours in a
dedicated Dell XPS L502X notebook (Core i7 2820QM, 6GB
RAM DDR3, 500GB HD 7200RPM) and resulted in 479,794
revisions, which corresponds to approximately 43% of all ASF
Subversion revisions.

1 http://www.minitab.com/

Finally, we applied our algorithm with a window size of
200 seconds. This is a default value that has been extensively
used in literature for the original sliding time windows
algorithm [10, 9, 19, 20, 21, 7, 22].

C. Quantitative evaluation

We calculated basic descriptive statistics for the number of
revisions per window variable in order to investigate to which
extent the revisions were actually grouped. As depicted in
Table II, the algorithm resulted in 453,865 windows. Most
important, it produced 20,812 (4.6%) windows that grouped
two or more revisions. The largest window grouped 106
revisions. Overall, there was little dispersion among the values,
as evidenced by the mean and standard deviation values.

TABLE II. NUMBER REVISIONS PER WINDOW - DESCRIPTIVE STATISTICS

N Sum Mean Max StDev

453,865 479,790 1.06 106 0.41

We also computed basic descriptive statistics for the length

per window variable to better understand the results of the
grouping. According to Table III, there was little dispersion
among the values, as evidenced by mean and standard
deviation values. The algorithm produced 12,103 (2.7%)
windows whose length was larger than or equal to 6 seconds.
In fact, as depicted in Figure 3, there are few windows that
have a long length. The largest window length was of 34
minutes and 10 seconds. This shows that even very time-distant
revisions can be change coupled.

TABLE III. LENGTH PER WINDOW - DESCRIPTIVE STATISTICS

N Max Mean StDev

453,865 34.17 0.038 (2.28s) 0.34

Figure 5. Scatterplot of length versus number of windows

Finally, we calculated basic descriptive statistics for the
number of files per revision variable (Table IV). This
calculation was done prior to and after the application of the
algorithm, so that we could compare the results and check how
many files would disappear.

TABLE IV. NUMBER OF FILES PER REVISION - DESCRIPTIVE STATISTICS

 N Sum Mean StDev Skewness Kurtosis

Before 479,794 3,206,900 6.68 37.84 33.80 1,844.00

After 453,865 3,174,051 6.99 40.79 39.56 2,829.94

As we stated earlier, the application of the sliding time

window resulted in 453,865 revisions. These revisions

encompassed a total of 3,174,051 Java files (including all

distinct versions of the file), which represent a reduction of

approximately 1% in the original number of Java files. The

mean value indicates that revisions contain 7 files in average.

However, standard deviation value shows that the dispersion is

very high. Both mean and standard deviation did not change

much when compared to original values. As a final point, we

calculated skewness and kurtosis values to further investigate

such dispersion. The positive skewness value indicates that the

dataset is right-skewed, i.e. the “tail” of the distribution points

to the right. Also, the high kurtosis indicates that the data set

has a distinct peak near the mean, declines rather rapidly, and

has heavy tails. Although these values increased when

compared to original ones, they did not change the shape of

the distribution curve. In fact, we also performed a quartile

analysis of the variable in question and we confirmed that

there were no changes in the quartiles, including the median.

Furthermore, as a result of the quartile analysis, we noticed

that “usual” revisions (or windows) encompassed 1 to 8 files.

D. Qualitative evaluation

We qualitatively evaluated the algorithm by manually

inspecting a random sample
2
 of the 20,812 windows that

contained at least two revisions. In this preliminary evaluation,

we inspected a total of 20 windows and analyzed whether the

revisions should be really grouped, i.e. if they were related to a

single change purpose. Such inspection enabled us to

generalize the results with a margin of error of 15% and

confidence level of 82%
3
. The results of our inspection are

given in Table V.

By checking the revision files, comments, and diff code,

we were able to judge whether the grouping made sense.

Except for the last grouping (which we classified as

inconclusive), all of the others seemed perfectly appropriate.

As depicted in the aforementioned table, such groupings

involved fixing a specific bug, implementing a specific

change, or adjusting code style and documentation.

2 The sampling was obtained directly from the MySQL database by

means of the RAND() function.

3 http://www.vsai.pt/amostragem.php

TABLE V. QUALITATIVE EVALUATION OF REVISION GROUPINGS

Window Revisions
Makes

sense?
Notes

1
1116762,
1116764

Yes Deleting Files

2
135701,

145726
Yes

Bug fix in two stages (same set of

modified files)

3
768654,
768655

Yes
Running checkstyle on files from same

folder

4
431981,

431983
Yes

Applying a patch to different versions of

same file

5
1017168,
1017169

Yes
Fixing a bug in

CollectionFieldMethodsFacetFactory.java

6

987268,

987269,
987270

Yes
Fixing a bug in different versions of same

file

7

549264,

549265,

549266

Yes
Removing blank lines (adjusting style)

from files in same folder

8
504397,

504398
Yes

Fixing a bug in different versions of same

file

9
1100057,

1100058
Yes Merge of a change in different branches

10
246361,

253433
Yes Fixing a bug (same diff in both revisions)

11
225245,
225246

Yes
Fixing a bug in different versions of same

file

12
1014042,

1014043
Yes Implementing a change

13
245235,
252307

Yes Fixing a bug (same diff in both revisions)

14
1118611,

1118612
Yes Implementing a change

15
334583,
334584

Yes
Change made in two steps (fixing/adding

info to Javadoc in class)

16
73016,

73991
Yes Fixing a bug (same diff in both revisions)

17
235594,
236846

Yes Fixing style (same diff in both revisions)

18
914457,

914458
Yes Implementing a change

19
1106641,
1114539

Yes Implementing a change

20
1118631,

1118632
? Inconclusive

We believe that the absence of false-positives can be

explained by the conservative nature of the algorithm, i.e. a

window is created only when revisions have the same author,

same comments, and are close in time.

V. RELATED WORK

Gall et al. [2] used information from the release history of

a telecommunications system to discover logical dependencies

and change patterns among modules and subsystems. Gall et

al. [16] later on proposed the Relation Analysis (RA)

technique to identify logical dependencies. The technique

consists in an investigation of the classes that frequently

changed together. More precisely, the authors mined logs in

the CVS repository and identified classes that were changed

together by a same author. A fixed time window of four

minutes was considered, since large commits usually take

some time to be completed. Zimmermann et al. [17] applied

the same technique, but they considered a fixed time window

of three minutes instead. Besides that, the authors introduced

the idea of support and confidence as measures of significance

for logical dependencies. Canfora et al. [22] propose the use of

a multivariate time series approach (based on the Granger

causality test) to address the issue that we raise in this paper,

i.e. capturing logical dependencies between artifacts that are

modified in subsequent change-sets. Pirklbauer [23]

empirically evaluated a series of logical dependencies

identification approaches, including those that are only

suitable when change #id information is provided in commit

log messages [10, 24, 25, 26]. Although not clear, it seems that

the author does not group commits when there is an

intersection between their sets of files. Fluri and Gall [28]

argue that logical dependencies that arise from code styling

and minor adjustments (such as the inclusion of code

comments) are not significantly relevant. Based on an

empirical evaluation, the authors conceived a classification of

changes in order to filter out irrelevant logical dependencies.

Hence, logical dependencies analysis can be improved by not

only grouping change-sets prior to the dependencies

identification (as in our proposal), but also after all

dependencies are actually discovered.

In the following, we present less related but yet relevant

work. Canfora et al. [29] proposed the concept of line co-

change to identify cross-cutting concerns in code hosted in

CVS. In the context of Model Driven Development (MDD),

Wenzel et al. [30] used a differencing algorithm called SiDiff

to identify logical dependencies between elements of a model.

Wang et al. [31] proposed a method to identify existing fine

grained logical dependencies between functions.

VI. CONCLUSION

In this paper, we discussed about the importance of
grouping related change-sets in atomic-commit-featured VCSs
before performing the identification of logical dependencies
between software artifacts. We argued that changes in the
system may span a series of timely-close and semantically-
related commits. In fact, grouping related change-sets refines
and improves the process of logical dependencies
identification, since evolutionary links between artifacts are
more accurately recovered.

As a proof of concept, we presented a rather conservative
approach that is inspired by the sliding time window algorithm
(whose purpose is to reconstruct change transactions in VCSs
that do not support atomic commits) [10]. The preliminary
evaluation that we conducted showed that our approach is
feasible and produced relevant results. Our analysis indicated
that approximately 4.6% of the produced windows contained at
least two revisions and that these windows indeed grouped
closely related revisions. We also leverage the external validity
of our study, since we applied it to a large repository hosting
more than a million of revisions. Based on these outcomes, we
claim that software evolution research and tools can definitely
be improved by using more accurate methods to infer logical
dependencies.

 Some factors, however, may have influenced our results. In
terms of the approach input, we chose the default time window
value found in the literature (200 seconds). We believe that
trying other values (especially large ones, like a week) may

provide completely different results. This is thus a future
research path that could be explored. Furthermore, we
acknowledge that analyzing a larger number of windows would
make our evidence stronger. Finally, because of practical
constraints of processing time, we may have introduced some
bias by considering only the Java files in the revisions.

As future work, we plan to apply the algorithm to a single
software project and empirically evaluate its effectiveness in
terms of precision and recall. We will also investigate whether
some minor variations and heuristics can improve the results,
such as considering only non-blank revision comments.
Finally, we also envision empirically comparing the algorithm
to other proposals found in the literature.

ACKNOWLEDGMENT

This work is also partially supported by HP (Baile project),
CHOReOS EC FP7 project, and FAPESP. Marco Gerosa
receives individual grant from CNPq.

REFERENCES

[1] T. Ball, J.-M. K. Adam, A. P. Harvey, and P. Siy, “If your version
control system could talk...” in ICSE Workshop on Process Modeling
and Empirical Studies of Software Engineering, Mar. 1997.

[2] H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling based
on product release history,” in Proceedings of the International
Conference on Software Maintenance, ser. ICSM ’98. Washington, DC,
USA: IEEE Computer Society, 1998, pp. 190–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=850947.853338

[3] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predicting fault
incidence using software change history,” IEEE Trans. Softw. Eng.,
vol. 26, pp. 653–661, July 2000. [Online]. Available: http://dl.acm.org/-
citation.cfm?id=347489.347496

[4] A. Mockus and D. Weiss, “Predicting risk of software changes,” Bell
Labs Technical Journal, vol. 5, no. 2, Apr. 2000.

[5] M. Cataldo, A. Mockus, J. A. Roberts, and J. D. Herbsleb, “Software
dependencies, work dependencies, and their impact on failures,” IEEE
Trans. Softw. Eng., vol. 35, pp. 864–878, November 2009. [Online].
Available: http://dx.doi.org/10.1109/TSE.2009.42

[6] M. Cataldo and S. Nambiar, “The impact of geographic distribution and
the nature of technical coupling on the quality of global software
development projects,” Journal of Software Maintenance and Evolution:
Research and Practice, 2010. [Online]. Available: http://dx.doi.org/-
10.1002/smr.477

[7] M. D’Ambros, M. Lanza, and M. Lungu, “Visualizing co-change
information with the evolution radar,” IEEE Trans. Software Eng,
vol. 35, no. 5, pp. 720–735, 2009. [Online]. Available: http://-
doi.ieeecomputersociety.org/10.1109/TSE.2009.17

[8] S. G. Eick, T. L. Graves, A. F. Karr, A. Mockus, and P. Schuster,
“Visualizing software changes,” IEEE Trans. Softw. Eng., vol. 28, pp.
396–412, April 2002. [Online]. Available: http://dx.doi.org/10.1109/-
TSE.2002.995435

[9] T. Zimmermann, P. Weissgerber, S. Diehl, and A. Zeller, “Mining
version histories to guide software changes,” IEEE Trans. Softw. Eng.,
vol. 31, pp. 429–445, June 2005. [Online]. Available: http://dx.doi.org/-
10.1109/TSE.2005.72

[10] T. Zimmermann and P. Weißgerber, “Preprocessing CVS data for fine-
grained analysis,” in Proceedings 1st International Workshop on Mining
Software Repositories (MSR 2004). Los Alamitos CA: IEEE Computer
Society Press, 2004, pp. 2–6.

[11] F. Santana, G. Oliva, C. R. B. de Souza, and M. A. Gerosa, “Xflow: An
extensible tool for empirical analysis of software systems evolution,” in
Proceedings of the VIII Experimental Software Engineering Latin
American Workshop, ser. ESELAW ’11, 2011.

[12] M. D’Ambros, H. Gall, M. Lanza, and M. Pinzger, “Analysing software
repositories to understand software evolution,” in Software Evolution,

T. Mens and S. Demeyer, Eds. Springer, 2008, pp. 37–67. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-76440-3

[13] M. Burch, S. Diehl, and P. Wei, “Visual data mining in software
archives,” in Proceedings of the 2005 ACM symposium on Software
visualization, ser. SoftVis ’05. New York, NY, USA: ACM, 2005, pp.
37–46. [Online]. Available: http://doi.acm.org/10.1145/-
1056018.1056024

[14] D. Beyer and A. Noack, “Clustering software artifacts based on frequent
common changes,” in Proceedings of the 13th International Workshop
on Program Comprehension. Washington, DC, USA: IEEE Computer
Society, 2005, pp. 259–268. [Online]. Available: http://dl.acm.org/-
citation.cfm?id=1058432.1059363

[15] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies of
open source software development: Apache and mozilla,” ACM Trans.
Softw. Eng. Methodol., vol. 11, pp. 309–346, July 2002. [Online].
Available: http://doi.acm.org/10.1145/567793.567795

[16] H. Gall, M. Jazayeri, and J. Krajewski, “Cvs release history data for
detecting logical couplings,” in Proceedings of the 6th International
Workshop on Principles of Software Evolution. Washington, DC, USA:
IEEE Computer Society, 2003, pp. 13–. [Online]. Available: http://-
dl.acm.org/citation.cfm?id=942803.943741

[17] T. Zimmermann, S. Diehl, and A. Zeller, “How history justifies system
architecture (or not),” in Software Evolution, 2003. Proceedings. Sixth
International Workshop on Principles of, sept. 2003, pp. 73 – 83.

[18] J. Bevan, E. J. Whitehead, Jr., S. Kim, and M. Godfrey, “Facilitating
software evolution research with kenyon,” SIGSOFT Softw. Eng. Notes,
vol. 30, pp. 177–186, September 2005. [Online]. Available: http://-
doi.acm.org/10.1145/1095430.1081736

[19] S. Breu, T. Zimmermann, and C. Lindig, “Mining eclipse for cross-
cutting concerns,” in Proceedings of the 2006 international workshop on
Mining software repositories, ser. MSR ’06. New York, NY, USA:
ACM, 2006, pp. 94–97. [Online]. Available: http://doi.acm.org/-
10.1145/1137983.1138006

[20] L. Aversano, L. Cerulo, and M. D. Penta, “Relating the evolution of
design patterns and crosscutting concerns,” in Proceedings of the
Seventh IEEE International Working Conference on Source Code
Analysis and Manipulation. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 180–192. [Online]. Available: http://dl.acm.org/-
citation.cfm?id=1306878.1307347

[21] L. Aversano, L. Cerulo, and M. Di Penta, “How clones are maintained:
An empirical study,” in Proceedings of the 11th European Conference
on Software Maintenance and Reengineering. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 81–90. [Online]. Available: http://-
dl.acm.org/citation.cfm?id=1251979.1252776

[22] G. Canfora, M. Ceccarelli, L. Cerulo, and M. Di Penta, “Using
multivariate time series and association rules to detect logical change
coupling: An empirical study,” in Software Maintenance (ICSM), 2010
IEEE International Conference on, sept. 2010, pp. 1 –10.

[23] G. Pirklbauer, “Empirical evaluation of strategies to detect logical
change dependencies,” in Proceedings of the 36th Conference on
Current Trends in Theory and Practice of Computer Science, ser.
SOFSEM ’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 651–662.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-11266-9_54

[24] J. Sliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” in Proceedings of the 2005 international workshop on Mining
software repositories, ser. MSR ’05. New York, NY, USA: ACM, 2005,
pp. 1–5. [Online]. Available: http://doi.acm.org/10.1145/-
1082983.1083147

[25] R. Robbes, “Mining a change-based software repository,” in
Proceedings of the Fourth International Workshop on Mining Software
Repositories, ser. MSR ’07. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 15–. [Online]. Available: http://dx.doi.org/10.1109/-
MSR.2007.18

[26] G. Canfora and L. Cerulo, “Impact analysis by mining software and
change request repositories,” in Proceedings of the 11th IEEE
International Software Metrics Symposium. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 29–. [Online]. Available: http://-
dl.acm.org/citation.cfm?id=1090955.1092169

[27] G. Antoniol, V. Rollo, and G. Venturi, “Detecting groups of co-changing
files in cvs repositories,” in Principles of Software Evolution, Eighth
International Workshop on, sept. 2005, pp. 23 – 32.

[28] B. Fluri and H. Gall, “Classifying change types for qualifying change
couplings,” in Program Comprehension, 2006. ICPC 2006. 14th IEEE
International Conference on, 0-0 2006, pp. 35 –45.

[29] G. Canfora, L. Cerulo, and M. Di Penta, “On the use of line co-change
for identifying crosscutting concern code,” in Software Maintenance,

2006. ICSM ’06. 22nd IEEE International Conference on, sept. 2006,
pp. 213 –222.

[30] S. Wenzel, H. Hutter, and U. Kelter, “Tracing model elements,” in
Software Maintenance, 2007. ICSM 2007. IEEE International
Conference on, oct. 2007, pp. 104 –113.

[31] X. Wang, H. Wang, and C. Liu, “Predicting co-changed software entities
in the context of software evolution,” in Information Engineering and
Computer Science, 2009. ICIECS 2009. International Conference on,
dec. 2009, pp. 1 –5.

