
SOCA (2013) 7:199–216
DOI 10.1007/s11761-012-0125-z

ORIGINAL RESEARCH PAPER

A systematic literature review of service choreography adaptation

Leonardo A. F. Leite · Gustavo Ansaldi Oliva ·
Guilherme M. Nogueira · Marco Aurélio Gerosa ·
Fabio Kon · Dejan S. Milojicic

Received: 26 December 2011 / Revised: 13 October 2012 / Accepted: 6 November 2012 / Published online: 24 November 2012
© Springer-Verlag London 2012

Abstract A service choreography is a distributed service
composition in which services interact without a central-
ized control. Adequate adaptation strategies are required to
face complex and ever-changing business processes, given
the collaborative nature of choreographies. Choreographies
should also be able to adapt to changes in its non-functional
requirements, such as response time, and especially for large-
scale choreographies, adaptation strategies need to be auto-
mated and scale well. However, the body of knowledge
regarding choreography adaptation approaches has not yet
been consolidated and systematically evaluated. By means
of a systematic literature review, in which we examined
seven scientific paper sources, we identified and analyzed
the state-of-the-art in choreography adaptation. We found
24 relevant primary studies and grouped them into six
categories: model-based, measurement-based, multi-agent-
based, formal method-based, semantic reasoning-based, and
proxy layer-based. We analyzed (i) how each strategy deals
with different types of requirements, (ii) what their required

L. A. F. Leite (B) · G. A. Oliva · G. M. Nogueira ·
M. A. Gerosa · F. Kon
Computer Science Department, University of São Paulo (USP),
São Paulo, Brazil
e-mail: leofl@ime.usp.br

G. A. Oliva
e-mail: goliva@ime.usp.br

G. M. Nogueira
e-mail: gmaio@ime.usp.br

M. A. Gerosa
e-mail: gerosa@ime.usp.br

F. Kon
e-mail: kon@ime.usp.br

D. S. Milojicic
HP Labs, Palo Alto, CA, USA
e-mail: dejan.milojicic@hp.com

degree of human intervention is, (iii) how the different stud-
ies considered scalability, (iv) what implementations are
currently available, and (v) which choreography languages
are employed. From the selected studies, we extracted key
examples of choreography adaptation usage and analyzed
the terminology they adopted with respect to dynamic adap-
tation. We found out that more attention has been devoted
to functional requirements and automated adaptation; only
one work performs scalability evaluation; and most studies
present some sort of implementation and use a specific chore-
ography notation.

Keywords Service choreography · Choreographies
adaptation · Choreographies customization · Service
composition · Systematic review

1 Introduction

Service orchestration refers to a service composition para-
digm in which services are controlled in a centralized manner
[42]. A single entity known as the orchestrator is responsi-
ble for managing and coordinating the whole composition
execution flow. Orchestrations are described using orches-
tration languages and executed on an orchestration engine.
Orchestration languages explicitly describe the interactions
among services by identifying messages, branching logic,
and invocation sequences [4]. The Business Process Execu-
tion Language (BPEL) [43] is the current de facto language
for describing orchestrations. A variety of BPEL engines
have been developed and made available by both the industry
(e.g., IBM Websphere Process Server) and the open-source
community (e.g., Apache ODE, JBoss RiftSaw, and OW2
Orchestra). BPEL engines expose orchestrations as ordinary
web services.

123



200 SOCA (2013) 7:199–216

Service choreography models, in turn, describe multi-
party collaboration and focuses on message exchange [4].
Choreography models may be expressed in languages such
as WSCI [59], WS-CDL [60], and BPMN2 [44]. Nonethe-
less, there is not yet a de facto standard for choreography
modeling. Choreographies also refer to a particular service
composition execution model. More specifically, choreogra-
phies rely on the peer-to-peer communication style, that is,
each service involved in the composition knows exactly when
to execute its operations and with whom to interact, without
a centralized control [4]. In this sense, choreographies can
be seen as an agreement among a set of services as to how
a given collaboration should occur. Hence, as opposed to
service orchestrations, the control is decentralized.

Since service choreographies do not rely on a single party
to coordinate the business processes, some authors claim that
they are more scalable than orchestrations [16,42,47,48].
Nanda et al. [42], for example, presents an algorithm to
automatically generate a set of distributed processes given
a single BPEL process as input and provides experimental
results showing improvements on the throughput when ser-
vices interact without the central coordinator. Liu et al. [33]
present an analytical analysis showing that distributed data
flows models (choreographies) have better aggregated cost
and better response time, given some conditions, than cen-
tralized data flows models (orchestrations). Choreographies
have also emerged as a promising approach to the future
Internet context, in which millions of services, things, and
resources take part in large and complex business scenarios
[6,25].

Given the pressure to accommodate business changes and
the dynamics of infrastructure environments, service chore-
ographies need to be adaptable. In other words, they should
be flexible enough as to cope with changes in the functional
requirements, which usually demand the evolution of the
underlying collaboration model (e.g., addition and removal
of parties, redefinitions of message exchanges, etc.), and in
non-functional requirements, such as modifications in the
terms of service level agreements (SLAs). Choreographies
may also need to be adapted due to violations of predefined
quality of service (QoS) threshold values defined in such
SLAs, such as response time and throughput. Choreography
adaptation is particularly important in large-scale scenarios,
where managing and evolving a choreography is even more
difficult and complex [45].

Different service choreography adaptation mechanisms
exist. Each one occur at a specific time (design time vs.
runtime) and require a certain amount of human interven-
tion (automated vs. manual). In the service choreography
domain, manual adaptation is known as choreography cus-
tomization. Flexible adaptation mechanisms enable software
to modify its structure and behavior dynamically in response
to changes in its execution environment [35]. According to

Nitto et al. [16], adaptation mechanisms for service-oriented
applications should be automatic, autonomous, and dynamic.
Finally, although any program can be developed to adapt
itself, adaptation can also be implemented outside the appli-
cation, for example, by a middleware system.

Despite the importance of adaptation to choreographies,
the body of knowledge regarding the existing adaptation
approaches remains to be consolidated and systematically
evaluated. In this paper, we present the results of a system-
atic review aimed at identifying and synthesizing the existing
approaches for service choreography adaptation. Given the
different kinds of existing approaches, we firstly identified
which kind of strategy was employed by each study, grouping
them into six categories. After that, we analyzed how each
selected study characterized its adaptation strategy according
to its (i) support for changes in functional and non-functional
requirements, (ii) degree of required human intervention, (iii)
impact on the choreography scalability, (iv) implementation,
and (v) underlying choreography model. We also selected key
examples of each category, illustrating some choreography
adaptation uses.

Our contributions include the following: thorough char-
acterization and synthesis of a research area; selection of
relevant papers leading toward a taxonomy of adaptation
strategies; comprehensive formulation and integration of
findings by means of an analysis based on data extracted
from the selected papers; and identification of opportunities
for future research by discovering missing coverage.

This paper is organized as follows. In Sect. 2, we describe
the systematic review protocol, and in Sect. 3, we provide an
overview of the selected studies and sources. In Sect. 4, we
present the adaptation strategies and their studies. In Sect. 5,
we present the discussion, the quality assessment, and possi-
ble biases and limitations of this study. In Sect. 6, we describe
related work. Finally, in Sect. 7, we state our conclusions,
research opportunities, and plans for future work.

2 Research method

Systematic Literature Review is a research method to gather
and evaluate the available evidence concerning a specific
topic [37]. In contrast to the usual process of literature
review, a systematic review reduces bias and follows a pre-
cise and rigorous sequence of methodological steps relying
on a well-defined protocol. The protocol presents the topic
under investigation in a structured question format, as well
as instructions for selection, analysis, and summarization of
relevant studies. Systematic reviews are thus auditable and
replicable, in the sense that other researchers may reproduce
the same protocol [17].

Our review protocol was developed and executed accord-
ing to the guidelines and hints provided by Kitchenham and

123



SOCA (2013) 7:199–216 201

Charters [29,37]. The structure of the protocol was adapted
from Dybå [17]. We were also inspired and supported by
previous systematic reviews conducted in Software Engi-
neering [5,17,26], as well as by previous experiences of
our group [54]. A detailed version of our protocol is avail-
able at http://ccsl.ime.usp.br/baile/files/systematic_review_
protocol.pdf.

2.1 Research questions

As described in the Introduction, our research questions were
as follows:

RQ1: What strategy each selected study uses to deal with
service choreography adaptation?

RQ2: How each selected study characterizes its adaptation
strategy according to the following aspects?

(i) Target: Does the adaptation support functional or non-
functional requirements changes?

(ii) Required intervention degree: Is the adaptation auto-
matically performed? Or is human intervention necessary?

(iii) Scalability impact: Is the strategy impact on choreog-
raphy scalability discussed? Is such discussion informal or
does it contain formal proofs/experiments?

(iv) Implementations: Is the strategy implemented by a
tool or prototype? Is the implementation available for down-
load? If so, is it open-source software?

(v) Underlying models: Which choreography models, rep-
resentations, or standards (WS-CDL, WSCI, BPMN, etc.) are
used in the strategy?

2.2 Data sources

We performed automated searches with query string on
the following scientific sources: IEEE Xplore, ACM Digi-
tal Library, CiteSeerX, SciVerse Scopus, SpringerLink, and
Web of Science/ISI Web of Knowledge, which are common
sources used in systematic reviews on computer science areas
and give a reasonable confidence of covering relevant publi-
cations [23]. Additionally, we searched Google Scholar and
manually explored the following publications and confer-
ences: JISA (Journal of Internet Services and Applications),
IJWSP (International Journal of Web Services Practices), and
ZEUS 2011 (Services und ihre Komposition). The manual
search did not provide any relevant study according to the
established criteria (Sect. 2.4).

2.3 Query string

Searches were performed using a query string considering the
papers’ titles and abstracts (* stands for the wild card). Two
concept groups with synonyms connected with OR operators
form the base query: one for choreography and the other for
adaptation. Since both concepts must appear on the papers,

the groups were linked with an AND operator. Entries con-
taining the plural forms of the concepts (e.g., “choreogra-
phies”) were included in the search results. The base query,
which is adapted to each data source syntax, is the following:

2.4 Inclusion and exclusion criteria

To be included, papers should propose or discuss a strategy
for choreographies adaptation. Therefore, we have excluded
works dealing with the following subjects: simple service
selection or adaptation, orchestration adaptation, composi-
tion synthesis, and conformance checking. Simple service
adaptation occurs when a concrete service implementation
is dynamically selected without implying any modification
in the interaction among services, as, for example, the work
of Cavallaro and Di Nitto [10]. We classified a work as being
about orchestration adaptation when adaptation was applied
in a composition with clearly one, and only one, coordinator,
as occurs in the work of Zeng et al. [65].

When the search returned different papers from the same
authors, we verified whether they were about distinct topics.
If not, we chose the most complete paper. In addition, to be
included, papers should be available for download.

Five graduate students and 3 senior researchers executed
the paper selection process according to the stages described
in Table 1 (adapted from [29]). In the initial stages, we carried
out an inclusive approach, that is, for a paper to be selected,
it was considered sufficient if at least one of the researchers
suggested it. In the last stage, the result was refined through
careful paper examination and discussions until there was
an agreement among researchers. We executed the protocol

Table 1 Study selection stages

Stage 1 Researchers applied the search query to all the sources
and gathered the results

Stage 2 Researchers excluded duplicated and invalid papers

Stage 3 Researchers applied inclusion/exclusion criteria to the
papers titles

Stage 4 Researchers applied inclusion/exclusion criteria to
abstracts and conclusions

Stage 5 When necessary, researchers applied
inclusion/exclusion criteria to the whole text

123

http://ccsl.ime.usp.br/baile/files/systematic_review_protocol.pdf
http://ccsl.ime.usp.br/baile/files/systematic_review_protocol.pdf


202 SOCA (2013) 7:199–216

in three phases, always with at least two researchers par-
ticipating. An experienced researcher closely supervised all
the process. Two other experienced researchers helped in the
protocol definition and in discussing various topics related
to this review.

2.5 Data extraction

A structured abstract with the following fields was prepared
for each primary study: source; paper title; paper type {jour-
nal article, conference paper, short conference paper, work-
shop paper, technical report, PhD thesis}; authors; year;
vehicle; paper abstract; research question/issue; choreogra-
phy adaption strategy description; human intervention degree
{manual, automatic, hybrid}; description of the strategy
implementation; strategy limitations and drawbacks; study
results/conclusion; study assessment; additional notes.

Besides the structured abstracts, we also used spreadsheets
to summarize data regarding publication attributes, answers
to the research questions, and studies quality assessment. We
have also identified whether the described implementations
were available for download, and whether it was released as
open-source software.

2.6 Protocol evaluation

As suggested by Kitchenham and Charters [29], before exe-
cuting the actual systematic review, we evaluated the protocol
as follows:

i. Asking five experts in systematic reviews and/or service
choreographies to review the protocol. All observations
made by the experts were taken into account. Some of
their contributions were as follows: additional synonyms
for the keywords, advices on how to perform the synthesis
of findings, and advices on the systematic review method
in general.

ii. Doing a pilot study. We carried out a pilot study of the sys-
tematic review on a single search engine, namely IEEE
Xplore. By executing the protocol on this source iter-
atively, we expanded the review scope (manual recon-
figuration was included), improved query definition, and
improved inclusion/exclusion criteria.

3 Characterization of the selected studies

The execution of the selection process resulted in 24 primary
studies on service choreography adaptation. Table 2 shows
the number of papers returned by each source, as well as
the number of papers that we selected by applying the inclu-
sion/exclusion criteria. The table also presents the differences
between sources in terms of included studies (precision) and
coverage level (recall).

Table 2 Number of retrieved papers per source

Source Query
results

Selected Precision
(%)

Recall
(%)

ACM digital library 55 13 24 54

CiteSeerX 24 3 12 12

IEEE Xplore 54 10 19 42

Google scholar 250 12 5 50

SciVerse Scopus 130 16 12 67

SpringerLink 25 1 4 4

Web of Science 78 7 9 29

Table 3 Paper type distribution

Paper type Quantity Percentage
%

Book chapter 2 8

Workshop paper 3 12

Short conference paper 3 12

Conference paper 14 58

Journal paper 2 8

Total 24 100

Table 4 Distribution of studies per year

Publication
year

Quantity Percentage
(%)

2005 5 21

2006 2 8

2007 4 17

2008 3 12

2009 3 12

2010 4 17

2011 2 8

2012 1 4

Total 24 100

The precision of the sources varied from 4 to 24 % and
the recall from 4 to 67 %. SciVerse Scopus was the source
with more selected studies (16), but with low precision
(12 %). Google Scholar presented the highest number of
items returned by the query (250), but the precision was just
5 %. Google Scholar coverage level (50 %) was less than the
ACMDL one (54 %) that had just 55 results in the query
and the highest precision (24 %). To retrieve all the selected
studies, it would be necessary to use at least ACMDL, Sci-
Verse Scopus, and Google Scholar. Using the two sources
with highest precision (ACMDL and IEEExplore), the recall
would be 46 % (11 selected studies).

We analyzed what kinds of papers were published in the
area (Table 3) and how many studies were published per
year (Table 4). Searches in all sources were performed on

123



SOCA (2013) 7:199–216 203

Table 5 Distribution of studies per focus

Category Quantity Percentage
(%)

Model-based 8 33

Measurement-based 4 17

Multi-agent systems 4 17

Formal methods 4 17

Semantic reasoning 2 8

Proxy layer 2 8

Total 24 100

June 2012. As sources usually take some time to index new
publications, the actual number of publications in 2012 may
be higher.

Most papers were published in conferences (58 %), and
we found only two journal papers. The distribution per year
does not show a clear tendency.

4 Choreography adaptation strategies

In this section, we present synthesized data to answer the
research questions. We first show the synthesis by choreog-
raphy adaptation strategy, which answers RQ1, and then, we
summarize all the studies per adaptation aspect, according to
RQ2.

We grouped the selected studies into categories accord-
ing to their focus: model-based, measurement-based, multi-
agent systems, formal methods, semantic reasoning, and
proxy layer. The categories give us a perspective about tech-
nologies and techniques involved in the area. As presented in
Table 5, one-third of the selected studies were grouped into
the model-based category and the others are well distributed
in the remaining categories.

The next subsections address the systematic review ques-
tions by describing each strategy category and the selected
studies themselves.

4.1 Model-based approaches

Model-based choreography adaptation strategies are related
to model-driven development (MDD) and involve rational-
izing about a choreography adaptation at the high-level
model instead of the specification and code levels. This
strategy is often used to empower business analysts respon-
sible for designing and evolving choreography models, as
MDD emphasizes the use of models as the main tool for
designing and implementing systems [20]. This strategy
also enables automated transformation from one model to
another, offering the potential for automatic transforming
of high-level abstract models into running systems [36]. A

good example of model transformation usage is provided by
Mahfouz et al. [34], in which models representing the global
choreography, local orchestrations, and business require-
ments evolve in a coordinated way: Updating one model
triggers dynamic adaptation in the other models, avoiding
inconsistencies among the models. In total, we grouped nine
studies [8,14,15,20,24,34,38,53] into this category.

Fabra et al. [20] explore the idea of domain-experts
embodying domain knowledge into the system through high-
level specifications, as specialized UML notation. The goal
is to enable business processes to support adaptation due
to unexpected changes, as earthquakes, without any recod-
ing. Usually, orchestration is described as a sequence of
exchanged messages, like in the BPEL language, but this
work proposes reaching flexible business process develop-
ment by separating the business process itself (orchestration
aspect) from the service interaction protocol (choreography
aspect). According to the authors, the choreography aspect is
related to IT infrastructure communication, whose changes
are time and money expensive. Such orchestration and chore-
ography views are described in UML extended notations and
executed by a Petri net platform in an independent but syn-
chronized way. This architecture enables rapid deployment
of business process changes in a SOA-based platform, since
changes in the orchestration aspect do not affect the chore-
ography aspect.

Cottenier and Elrad [14] provide a framework for
on-demand choreography deployment which reduces con-
versational and protocol coupling among processes. Conver-
sational coupling is reduced by enabling the initiator partner
to choreograph existing reactive processes to build a com-
posite service fitting its requirements. Transactional proto-
col coupling is reduced by decomposing the collaboration
into different layers, each dealing with a specific concern
of the application, such as business layer and security layer.
This framework is called Executable Choreography Frame-
work (ECF) and introduces a language and platform to enable
runtime refinements and composition of processes based on
aspect-sensitive processes. These ASPs are process descrip-
tions in which each step is a hook where new actions can
be introduced, and each intermediary step is annotated with
WSDL. These process descriptions can be refined and com-
posed by third parties, as long as the executable process does
not violate the behavioral interface of the ASP. In order to
refine the control flow of the choreography, activity diagrams
or WS-CDL specifications are translated and partitioned by
ECF into several rules, written in an XML-based language
called Executable Choreography Language (ECL). Within
ECL, several rules specify actions to be performed when a
message of interest is intercepted within a target process.
ECF-enabled platforms can then interpret ECL rules and
deploy the corresponding control and data flow logic, in the
native language of the platform.

123



204 SOCA (2013) 7:199–216

Dar et al. [15] aim to bridge physical and Internet world
by exploring service orchestration and choreography under-
taking scalability and dinamicity issues of Internet of Things.
They claim that in the context of dynamic IoT environments,
where a large number of volatile devices and services are
available, adaptability becomes a key features, as it allows
an application to continuously change itself to satisfy new
contexts. Their research challenges are as follows: (i) aware-
ness and adaptability, which is the ability of the system to
provide service composition adaptation and context-aware
dynamic services; (ii) scalability and re-configurability, or
how to design and dynamically compose services related to
huge amount of IoT resources; and (iii) dynamicity. To tackle
these, they propose a composition in two levels: local orches-
trations and global choreography process. Orchestration is
used among devices, as only a small number of them are
usually attached to a gateway (or sink), therefore, allowing
to avoid peer-to-peer interaction among nodes, reducing the
complexity of communication and, therefore, making bet-
ter use of the limited resources this kind of devices have. A
choreography is used for the gateways node, allowing paral-
lelism, and reduced message exchange. This choreography
will run in a distributed middleware acting as Service Chore-
ography Engine and will be described by BPMN2 notations
that are translated into BPEL4Chor code. To provide runtime
reconfiguration, they will use SCA-compliant tools, such as
FraSCAti on gateways and Contiki operating system for IoT
devices. They plan to implement design time reconfiguration
in which the user may customize the composition through a
graphical user interface, which will generate the models to
be translated and deployed on-the-fly.

Stegaru et al. [53] propose an adaptable and dynamic
interoperability high-level model for service choreographies,
incorporating QoS parameters. The author considers that
adaptability can be mapped to three interoperability levels:
organizational, operational, and technical. At the organiza-
tional level, adaptability is viewed as responding positively
to changes in business process, and user’s requirements,
while interoperability as dealing with how these require-
ments are expressed. At the operational level, interoperabil-
ity refers to interactions between services, and adaptability
is concerned with providing alternatives in response to exter-
nal context change. Finally, at technical level, interoper-
ability is concerned with the format of message exchange
among web services. The business layer encompasses the
domain knowledge, as well as QoS requirements and inter-
dependencies among business models that need to inter-
operate. Their model is extremely generic, and as so,
they claim that it can be applied to several different use
cases.

Moo-Mena and Drira [38] handle repair faults at the archi-
tectural level, focusing on service duplication and substitu-
tion, and define adaptation rules as graph transformations.

The first rule defines the basic actions needed to add a web
service to the system. The second rule deals with the addition
of connections between web services. The third rule defines
the necessary actions to remove elements and any associated
connections. Such rules enable developers to understand and
to adapt the choreography as a graph model, without the
need of understanding how service communication is imple-
mented. The transformation rules could also be invoked by
any adaptive software that identifies some evolving require-
ment.

The study of Mahfouz et al. [34] specifies a derivation
algorithm that generates a choreography description based
on requirements defined in the Tropos notation, an agent-
oriented methodology for software development focused on
organizational requirements at various levels of abstraction.
Tropos models capture goals of participants in the interac-
tion, mutual dependencies that motivate them to interact,
and activities they undertake to achieve their goals, includ-
ing physical activities. The adaptation algorithm uses the
requirements’ description to infer constraints on message
exchange, which can result in automatically adding, remov-
ing, or reordering message exchanges.

Hiel et al. [24] make service orchestrations adaptive to
choreography changes based on a model in which develop-
ers specify what should be achieved by which partner rather
than how this should be reached. Adaptability is enabled
through more flexible service compositions, for which devel-
opers specify only key information to be exchanged in
the choreography. The adaptation is performed by scripts
interacting with a manageable orchestrator using three tech-
niques: remapping, reordering, and recomposition. Remap-
ping ensures consistence between objectives and messages.
Reordering defines alternative message orders if necessary.
Finally, recomposition checks whether there are alternative
service configurations that can solve a conformance problem.

Bræk et al. [8] have wrote a book chapter that addresses
concepts and methods to support dynamic service composi-
tions. Service interactions are modeled with UML and asso-
ciated with their executing environment, called situations.
The adaptation strategy uses a policy-driven mechanism to
react to situations and to select the services to be used within
a composition, also considering user preferences.

Although sometimes choreographies and orchestrations
are seen as excluding approaches, some works in the model-
based category endorse that they are actually different views
of service composition, as posed by Poulin [48]. Fabra et al.
[20] define orchestrations as the business processes work-
flows of each party and choreography as the description of
the stable interactions among services. They separate and
coordinate these aspects in runtime by using two interacting
engines: a workflow engine for orchestration and a protocol
engine for choreography. Moreover, Hiel et al. [24] define
choreography as a contract to which business partners should

123



SOCA (2013) 7:199–216 205

adhere and as a (global) perspective to assist developers in
creating inter-organizational processes.

Regarding RQ2, the studies focusing on model-based
approaches cover the following:

Target: All the studies found within this category handled
functional requirements (embodied domain knowledge and
requirements description). Three studies [8,14,53] dealt also
with non-functional requirements.

Required intervention degree: Dar et al. [15] consider
both automatic and human intervention, whereas Mahfouz et
al. [34] and Moo-Mena and Drira [38] consider only manual
adaptation. All the others deal only with automated adapta-
tion.

Scalability impact: Only the work of Dar et al. [15] con-
siders scalability issues. The authors identify scalability as a
issue to be tackled in the very large-scale Internet of Things
context. They also declare that their system is going to be
tested with a huge number of composed resources. However,
the solution to the scalability issue is presented as ongoing
work, and the authors do not show possible ways to handle
it.

Implementations: Two following were found: the chore-
ography customization framework [34], which implements
a derivation algorithm; the DENEB [20], an ESB (enterprise
service bus) based on Petri nets that executes both choreogra-
phies and orchestrations; and the Executable Choreography
Framework [14], which uses Aspect-Based Processes and
an XML-based language to provide runtime refinement and
composition.

Underlying models: identified notations in this category
were UML [20,38]; ACDL [34], which is based on WS-CDL;
Aspect-Sensitive Process, WS-CDL and the XML-based
ECL [14]; BPMN2, BPEL and BPEL4Chor [15]; and a
graphical model provided by the OperA tool [24], which
enables developers to specify choreographies at a high level
of abstraction. It is worth to note that every study in this cate-
gory has clearly defined an underlying choreography model,
except for Stegaru et al. [53].

4.2 Measurement-based approaches

Measurement-based adaptation is triggered when a given
threshold is violated by the choreography, and the recom-
position is calculated to avoid this violation. This strategy is
often used to ensure system invariants, mainly quality of ser-
vice (QoS) parameters. For example, in Colman et al. [12],
library managers are interested in monitoring terms-of-trade
to buy books from supplier services. Such terms-of-trade
include cost, delivery time, supplier reputation, etc., which
are QoS parameters for this application. Considering all these
variables, a broker service chooses a supplier service. Since
different suppliers may present different interaction patterns,

the broker is able to dynamically change its interaction behav-
ior to adapt to the chosen supplier service.

An important piece of the measurement-based approach
is the “monitor,” which holds a global view [19] of the sys-
tem and is responsible for triggering the adaptation when
some invariant is violated or a service fault occurs. Such vio-
lations can also be continuously predicted by the monitor
[63], which can be achieved by the utility functions usage
[46]. The monitor can also play an active role, holding the
behavioral and recovery policies that enable the choreog-
raphy to be reconfigured [18]. To avoid having the moni-
tor as a single point of failure, Ezenwoye et al. [18] state
that multiple monitors could be used. In Colman et al. [12],
the monitor is referred to as “adaptive application-specific
middleware” and is responsible for setting non-functional
requirements and measuring QoS. To deal with functional
requirements, monitors may track exchanged messages and
try to detect unexpected content [19]. A weakness of the
measurement-based approach is that retrieving the global
state in distributed systems is not a trivial task: a peer state
can change just after the old state is sent to the moni-
tor, and synchronizing distributed monitors presents sim-
ilar challenges. In this category, we counted five studies
[12,18,46,63].

Paspallis and Papadopoulos [46] strategy performs con-
tinuous evaluation and selection of a composition that maxi-
mizes the utility function, which is a quantifiable measure of
service quality. The authors suggest two kinds of reasoning:
proactive and reactive. Proactive reasoning is more likely to
achieve faster and more accurate results and requires all con-
text data to be communicated as soon as it becomes available.
In contrast, reactive adaptation reasoning is better in terms of
resource consumption, as it defers the communication of such
contextual data until they are actually needed. The authors
also argue that the proposed strategy provides additional ben-
efits such as robustness, agility, and scalability, but without
explicit evaluation of these aspects.

Yang et al. [63] propose a strategy to achieve global
optimization in decentralized service composition by peri-
odically predicting QoS. Prediction is based on a semi-
Markov probabilistic model, using the “EX-QoS model,”
which extends the traditional QoS by considering the rela-
tion of data transmission between services. The process of
reselection, based on a heuristic algorithm, is triggered when
a service is predicted to become unavailable. Such prediction
strategy does not affect the runtime performance, since when
invocation happens, the reselection has been already done.
Simulation experiments were performed to test: (i) the effec-
tiveness of the proposed performance predicting approach
based on the semi-Markov model; (ii) the performance of
the heuristic algorithm for finding replacement; and (iii) the
effectiveness of the EX-QoS model. All the experiments
resulted in favor of the authors’ proposals.

123



206 SOCA (2013) 7:199–216

Ezenwoye et al. [18] identify the requirements for dynamic
reconfiguration of data-intensive service compositions and
poses a reconfiguration strategy based on the monitoring
approach, and in a hybrid composition model, combining
the positive attributes of orchestration (easy management)
and choreography (efficient data flow and scalability). The
monitoring is based on a WS-CDL-derived model that rep-
resents the global view of the service interaction. WS-CDL
is extended by introducing redundancy and other construc-
tions (fault-tolerance pattern). By analyzing the model, the
monitor detects failed executions, checks for violations of
desired invariants, detects deadlocks, and computes global
quantities such as cost. When the monitor detects some of
these behaviors, an adaptive action is triggered according to
specified recovery policies.

Finally, Colman et al. [12] introduces adaptive run-
time role structures that enable services to be composed
and autonomously reconfigured. Dynamic contracts control
interactions between services by setting and measuring non-
functional requirements for these interactions. The paper
describes a middleware that can adapt services in two ways:
regulation and reconfiguration. Regulation involves setting
non-functional requirements in the contracts. Reconfigura-
tion involves changing role structure by creating or destroy-
ing roles and contracts, or swapping services. Changes to
non-functional requirements, computed as utility function
objects, can only be triggered by means of the management
interface, available either from another composition or by a
supervisory control program.

The category aspects regarding RQ2 are as follows:
Target: Only Ezenwoy et al. [18] concern functional

requirements; two out of five studies concern non-functional
requirements [46,63], and only one concerns both require-
ments at the same time [12].

Required intervention degree: Three studies [12,46,63]
were classified as performing automated adaptations, while
one study [18] was classified as presenting a hybrid approach.

Scalability impact: Paspallis and Papadopoulos [46] claim
to achieve scalability through the use of utility functions;
however, being a short paper, scalability is not further
addressed. Yang et al. [63] have the only work that performs
experimental validation of scalability and do it simulating the
dynamic creation of multiple scenarios, varying the amount
of service roles and services for each role.

Implementations: The study of Paspallis and Papadopou-
los [46] presents an extension of the MADAM middleware,
which is a platform to support adaptive behavior in mobile
applications. The MADAM middleware source code is avail-
able on the project website1 under the GPL license. Yang
et al. [63] do not clearly provide an implementation in their
work, but the performed experiments suggest the existence

1 http://www.intermedia.uio.no/display/madam.

of some. Colman et al. [12] introduce “adaptive application-
specific middleware composites,” built by using the ROAD
framework, which enables services to be composed and
autonomously reconfigured.

Underlying models: We have identified no underlying
models in this category. However, another paper from Ezen-
woye and Tang [19] uses WS-CDL. Such paper is a simplified
version from the Ezenwoye’s selected study.

4.3 Multi-agent-based approaches

Multi-agent systems (MAS) are systems in which programs
called “agents” interact with each other, achieving a set of
goals or accomplishing tasks [32]. Each agent has autonomy
to use the most appropriate approach to solve its particular
problem, and coordination is necessary only when interde-
pendencies arise [56]. Agents can also learn, self-analyze,
and adjust their own behavior according to the environment,
even with partial knowledge about the whole context. Agents
are often implemented with artificial intelligence techniques,
such as execution plans [64], and the BDI (beliefs, desires,
and intentions) model [40]. In the service choreography con-
text, agents can also be used to recover from interaction fail-
ures based on declarative policy specifications [7].

The strategy presented by Yau et al. [64], for example, is
based on agents that exchange information to produce and
execute mission plans. In this scenario, agents may dynami-
cally invoke mission planners to retrieve execution plans that
specify how to coordinate invocations to other services. Such
execution plans may be recalculated during their execution if
context properties are violated. In the provided example, the
execution plan is a rescue plan involving different ships and
a helicopter. Each ship and the helicopter are coordinated
by different agents. The context property is the number of
life-threatening injuries.

Although the multi-agents collaborative behavior seems
to be well suited to the distributed coordination paradigm,
some authors, such as Fernandez-Llatas et al. [21], claim
that multi-agent approaches may suffer from performance
issues.

Four studies explicitly use a multi-agent system to dynam-
ically adapt web service choreographies [7,40,62,64].

Xu et al. [62] propose a framework for dynamic service
composition that relies on Spi calculus, which is an exten-
sion of π -calculus especially designed for the description
and analysis of cryptographic protocols [1]. In particular, the
framework defines four roles that the agents can play and for-
mally describes how the interaction between such roles takes
place using Spi calculus. The framework is then applied by
“agentifying” choreography services and making the agent
roles exchangeable. Although no detailed empirical evidence
is given, the authors claim that such exchange can improve

123

http://www.intermedia.uio.no/display/madam


SOCA (2013) 7:199–216 207

robustness, adaptability, and reliability of web services com-
position.

Morreale et al. [40] argue that current web service tech-
nology does not meet the real business needs. It says that
instead of using each other, companies create collaborative
relationships, with interactions respecting the identity and
autonomy of each party. To support such interactions, web
services must be more flexible, focusing on message and
conversations instead of invocations. Aiming at providing
such flexible system, they define a software component that
enables agents to dynamically establish conversations with
other agents without any specific interaction protocol. Their
interactions are defined by an extended WS-CDL notation,
which can be set at design time or runtime, thus allowing
agents to take part in conversations previously unknown to
them. Such component is included in the PRACTIONIST
framework [39], which aims to support the implementation
of agent systems according to the BDI model. The framework
also provides each agent with a choreography engine, which
is able to parse and execute the extended WS-CDL files. The
authors state that defining shared choreographies for specific
conversations could support the collaborative attitude and the
adaptive behavior within agent societies, especially in open
and dynamic environments.

Blanchet et al. [7] investigate how to avoid workflow
failures that result from out-of-sync distributed workflow
models maintained by different organizations. In particular,
the authors tackle problems that are detectable through cer-
tain types of conversation errors. The authors propose an
approach that defines an agent layer, which wraps each web
service, operating with a conversation layer that defines nor-
mative message exchange based on the underlying workflow
model. Deviations from this normative message exchange
trigger a conversation error, which is regarded by both agents
as a symptom of mismatching workflows. The agents consult
policies to resolve which model is to be used as the correct
one and then restart their interaction.

Xu et al. [62] propose a model for situation-awareness
(SAW) requirements in service-based systems. SAW refers
to the capability of being aware of situations and adapting
the system’s behavior accordingly. In addition, the authors
develop agents to incorporate SAW and adaptive coordina-
tion in service-based systems. The approach assumes the
existence of a mission planner (MP), which is a component
that accepts goals specified by the users and generates execu-
tion plans based on available services and current situation. In
turn, SAW agents are mainly responsible for situation analy-
sis (monitoring) and coordination of services. In summary,
SAW agents are able to adaptively coordinate services in exe-
cution plans as follows: (i) At each step of execution, SAW
agents check whether all the dependencies are satisfied; (ii)
if the dependency on a situation is not satisfied, SAW agents
check whether the step can be undone; (iii) if the step is

undoable, SAW agents first undo the step and then search for
an alternative service; (iv) if an alternative service is found,
SAW agents resume the execution using the alternative ser-
vice; otherwise, SAW agents notify MP to do the replanning
to find an alternative workflow.

The category aspects regarding RQ2 are as follows:
Target: The studies of Morreale et al. [40] and Blanchet

et al. [7] deal with functional requirements. The studies of
Xu et al. [62] and Yau et al. [64] handle both functional
and non-functional requirements. Xu et al. [62] are the only
authors that consider security issues.

Required intervention degree: All studies of this category
deal with automated adaptation.

Scalability impact: No studies in this category showed
concerns with scalability.

Implementations: We have found the security-aware
CSMWC, based on Spi calculus [62], in which agents
retrieve requirements, search for services fulfilling these
requirements, and perform the adaptation when necessary;
the PRACTIONIST framework,2 released under the LGPL
license and based on BDI techniques [40], in which the mes-
sage exchange sequence is abstracted to the user, and handled
by the agents; and the Workflow Reconfiguration with Agent-
and BPEL-Based Intercommunication Technology (WRAB-
BIT) [7], which recognizes conversation errors and supports
dynamic adjustment of workflow scripts to avoid such errors.

Underlying models: multi-agents adaptation strategies
employed WS-CDL [40] and Spi calculus [62] as underlying
models.

4.4 Formal method-based approaches

This category encompasses adaptation strategies that rely
on either process calculus or finite state machine models.
Process calculus is a diverse family of related approaches
to formally model concurrent systems. Process calculi sup-
port high-level description of interactions, communica-
tions, and synchronizations among independent agents or
processes [3]. Process calculi also provide algebraic laws that
enable process descriptions to be manipulated and analyzed,
and enable formal reasoning about equivalences between
processes. Regarding service choreography, such techniques
are used to check the realizability of a choreography and the
automatic generation of prototypes [51].

Leading examples of process calculi include CSP, ACP,
LOTOS, π -calculus (pi-calculus), and CCS process algebra.
Depending on the process calculus employed, it is also possi-
ble to derive finite state machines [50], finite state processes
(FSPs), or labeled transitions systems (LTSs) from the formal
models [51].

2 http://www.practionist.org.

123

http://www.practionist.org


208 SOCA (2013) 7:199–216

Using FSP and LTS representations, Roohi et al. [51] pro-
vide peer generation, realizability check, and configuration
check to a simple choreography: A broker service buys metal
from a market service through an auction system, and a board
service publishes the auction result.

Adaptations strategies are usually implemented by means
of a formalization of choreography definition or their require-
ments [27] in a process calculus notation. We found five stud-
ies in this category [27,50,51,61].

Roohi et al. [51] propose an encoding of Chor (simplified
version of WS-CDL) into the FSP process algebra. From
such encoding, the authors investigate whether a set of peers
can be generated to realize a choreography. Furthermore, the
authors propose a method to check the reconfigurability of
a choreography. The reconfiguration check receives as input
two choreographies CI and CR written in Chor, where CI

stands for the initial choreography and CR stands for the
reconfigured one. A trace, containing the interactions his-
tory of a current enactment, is obtained from CI . If the trace
can be reenacted in the peers generated from CR , then CR is
accepted, which means that the actions that took place before
the reconfiguration can be reproduced in the new choreogra-
phy. Finally, the authors propose a reconfiguration strategy
in which actual peers matching abstract descriptions (LTSs)
derived from CR are taken from databases of peers (e.g.,
UDDI), instantiated, and executed according to the history
stored in the trace.

Wombacher [61] claims that business critical informa-
tion is maintained in the orchestration and not shared with
choreography partners. However, changes in the choreogra-
phy level may require other services to adapt their chore-
ographies and orchestrations, and therefore, there needs to
be integration of changes in choreography level into existing
orchestrations. The procedure proposed by Wombacher uses
annotated finite state automata (aFSA) to represent chore-
ographies and nested word automata (NWA) to represent
BPEL orchestrations. Together with a set of axioms and
invariants, it is possible to superimpose a semantic repre-
sentation of the orchestration. The approach is able to propa-
gate: subtractive changes (removing message sequences) and
additive changes (adding message sequences), derived using
the DYCHOR [50] method, and adapts the resulting NWA to
conform with BPEL language. The method outputs a set of
change recommendations to be evaluated by the developer,
and if approved will generate to a new BPEL.

Jureta et al. [27] state that the openness and adaptability of
service-oriented systems influence the way in, and degrees
to, which initial functional and non-functional requirements
are satisfied at runtime. The authors argue that, to remain
relevant after deployment, initial requirements specification
ought to be continually updated. The authors call “Client RE”
the requirements engineering (RE) devoted to quality para-
meters and constraints guiding service composition. Client

RE assumes a coordination mechanism that is defined, and
guided, by constraints to be followed and quality parameters
to optimize (e.g., QoS, execution time, service reputation). In
order to assist existing RE methods in dealing with Client RE,
the authors propose the Dynamic Requirements Adaptation
Method (DRAM). DRAM relies on updated rules that auto-
matically (or with limited human involvement) change the
initial requirements specification according to quality para-
meters, their values, and constraints on inputs and outputs
characterizing the services composed at runtime to satisfy
service requests. The strategy main limitation regards the
lack of automated means for defining or facilitating the def-
inition of updated rules. In summary, instead of describing
how a choreography should be adapted, the work discusses
how an initial choreography specification (along with qual-
ity attributes) could be kept updated in the face of runtime
changes.

Rinderle et al. [50] present an approach to support the con-
trolled evolution of business process choreographies. Part-
ners involved in a choreography often exchange messages
via their public processes, which can be considered as special
views of their private processes (orchestrations). Therefore,
the authors discuss how changes in a private process may
affect the public process of its own enterprise and how they
can possibly propagate to other partners. To be able to deter-
mine whether a change needs to be adequately propagated,
the authors introduce a formal model based on annotated
finite state automata (aFSA). It checks whether a change
adds message sequences to the public process automation
or remove message sequences from it. Then, it indicates
whether a change causes effects on partners’ processes by
checking the consistency between the public processes of two
organizations. In order to check whether two public processes
are consistent, the two respective aFSAs are intersected. Due
to the autonomy of the partners and due to privacy of busi-
ness decisions, an automatic adaptation on partner’s private
process is not desired, but the proposed framework assists
the user in correctly accomplishing this task by suggesting
adaptations.

The category aspects regarding RQ2 are as follows:
Target: All the studies of this strategy category deal with

functional requirements, but Roohi et al. [51] and Jureta et al.
[27] deal with non-functional requirements as well.

Required intervention degree: In this category, we have
identified two studies [50,61] performing manual adaptation
only, one study [27] performing automated adaptation only
and one study [51] dealing with a hybrid approach. These
results suggest that formal methods are a flexible solution
regarding this aspect.

Scalability impact: No work in this category showed con-
cerns with scalability.

Implementations: Rinderle et al. [50] present the
DYCHOR framework, which exploits the semantics of the

123



SOCA (2013) 7:199–216 209

private process changes to automatically determine the adap-
tations necessary for the partner processes. In these studies,
message sequences are represented using annotated finite
state automata (aFSA), which enables reasoning about the
correctness of choreography definitions and changes. Wom-
bacher [61] has a partial implementation of the proposed
approach. Roohi et al. [51] present an implementation to
check the realizability of a choreography encoded into the
FSP process algebra and to automatically generate Java code
for the corresponding peers for rapid prototyping purposes.

Underlying models: We have found studies using anno-
tated finite state automata (aFSA) [50,61], nested word
automata (NWA) [61], FSP process algebra [51], and Chor
calculus[51].

4.5 Semantic reasoning-based approaches

Studies in this category make use of ontologies to reason
about the communication among services and their replace-
ability. They are frequently used to foster interoperability
in cross-organizational business contexts. In the Fernandez-
Llatas et al. study [21], for example, the goal is to enable the
communication among a set of heterogeneous sensors that
are choreographed within a factory environment.

According to Fernandez-Llatas et al. [21], the use of
semantic information enables the services to properly inter-
pret the semantic meaning of the data sent by other services.
However, this semantic reasoning depends on sharing ontolo-
gies across domain boundaries, which is not always possible.

Two studies belongs to this category [21,41].
Fernandez-Llatas et al. [21] proposes a semantically

tagged architecture based on process choreography for dis-
tributed management of sensors. The architecture is based
on the deployment of a semantic layer in choreography mod-
els to improve the configurability of the intercommunication
among services.

Nabuco et al. [41] propose a self-healing ontology to
describe a self-healing model, creating a shared “healing
vocabulary” to project developers. This work is part of the
WS-Diamond project for web services monitoring and diag-
nosis. The model deals with monitoring, diagnostics, heal-
ing actions, and goals. There are two levels of monitoring
addressed: process and interaction. Process level deals with
BPEL flow, specified using SH-BPEL (Self-Healing BPEL),
and is related to diagnostic of faulty services mainly by
tracking timeouts and problems during a call to a service.
Interaction level deals with message exchange, by intercept-
ing messages, extending headers with QoS parameters and
processing content of SOAP body, thus dealing with diag-
nostic of semantic and QoS faults. The recovery process acts
both upon single web services and composition of web ser-
vices. The recovery is performed with actions such as retrying
the execution of a process activity, redoing the execution

of a process activity with different parameters, updating
the value of internal variables and substituting a faulty ser-
vice. The main contributions of the study are the SH-BPEL
engine extension, responsible for the recovery actions, and
the model, which deals with monitoring, fault diagnosis, and
recovery plans.

The category aspects regarding RQ2 are as follows:
Target: Both papers aim to support functional and non-

functional adaptation.
Required intervention degree: Fernandez-Llatas et al. [21]

deal with automated adaptation, whereas Nabuco et al. [41]
deal with both manual and automatic intervention levels.
Although some healing actions are automatically performed,
the generation of adapters is a semiautomatic task.

Scalability impact: No work in this category showed con-
cerns with scalability.

Implementations: Nabuco et al. [41] offer a plug-in for
BPEL engines that provides an API to the healing system to
interact with the BPEL flow. There is a page3 describing the
software produced by the WS-Diamond project, including
the SH-BPEL plug-in, but no downloads are available.

Underlying models: Nabuco et al. [41] provide adaptation
performed on a BPEL model.

4.6 Proxy layer approaches

The proxy layer category is related to strategies that use a
software layer called proxy to intercept service messages
to make the necessary adaptation. Such adaptation can be to
select the final target to the message or to change the message
structure to make it compliant with some service interface.
We have classified two papers in this category [13,55].

Cottenier and Elrad [13] provide a Contextual Aspect
Sensitive Service (CASS) platform that encapsulates coordi-
nation, activity lifecycle, and context propagation in service-
oriented environments. It is built upon aspect-oriented
service composition, with collaboration-based design. It
operates on message level, intercepting SOAP messages at
the boundaries of service components, and including mecha-
nisms to transform, compose, synchronize, and multicast the
intercepted messages.

Svirskas et al. [55] presents an approach to adapt chore-
ographies without the need to change all the endpoints’
implementations, which would be a very costly activity.
Change propagations are carried by proxies, which map
incoming messages to the appropriate service. The approach
is very similar to pure service adaptation, but service
selection is taken considering requirements from differ-
ent partners. According to the authors, “these requirements
are contradictory in many cases and cannot be efficiently
addressed in isolation.” In this work, the proxy has also the

3 http://wsdiamond.di.unito.it/.

123

http://wsdiamond.di.unito.it/


210 SOCA (2013) 7:199–216

Table 6 Study category characteristics

Category Targets Intervention degree Scalability Implem. Models

Functional
requirem.

Nonfunc.
requirem.

Manual Automated

Model-based [8,14,15,20,24,34,38,53] [8,14,53] [8,15,34,38,53] [14,15,20,24] [15] [14,24,34] [8,14,15,20,24,34,38]

Measurement-based [12,18] [12,46,63] [18] [12,18,46,63] [63] [12,46,63]

Multi-agent [7,40,62,64] [62,64] [7,40,62,64] [7,40,62] [7,40,62]

Formal methods [27,50,51,61] [27,51] [50,51,61] [27,51] [50,51,61] [50,51,61]

Semantic reasoning [21,41] [21,41] [41] [21,41] [41] [41]

Proxy layer [13,55] [55] [13,55] [13] [13]

tasks of maintaining the state of the conversations between
services and verifying whether a message exchange occurs
in accordance with choreography rules.

The category aspects regarding RQ2 are as follows:
Target: Cottenier and Elrad [13] deal only with functional

properties, while Svirskas et al. [55] deal with both functional
and non-functional properties.

Required intervention degree: Both works in this category
provide automatic adaptation.

Scalability impact: Svirskas et al. [55] recommends apply-
ing an established “application-level gateway” pattern to
achieve scalability, but they do not further explore how to
actually use such pattern within the proposed solution.

Implementations: Cottenier and Elrad [13] provide the
Context Aspect Sensitive Service platform.

Underlying models: Cottenier and Elrad [13] have no
model, as their approach operates on the message level.
Svirskas et al. [55] strategy is independent from model, but
the authors cite WS-CDL as an option to define message
exchange rules.

4.7 Relations among categories

The division into categories was performed considering the
most relevant aspects of each work. However, there are some
overlapping characteristics among the presented adaptation
strategies of different categories. Model-based strategies are
mainly supported by the idea of a business-driven approach,
but sometimes, the underlying model is a formal choreog-
raphy representation, such as graphs or Petri nets, which
are closer to formal methods. Measurement-based strate-
gies make a comparison between the current state and a
predefined choreography model. Such model can be writ-
ten in the same languages used in model-based strategies,
such as WS-CDL. Both multi-agent-based and measurement-
based strategies need to verify the current choreography state,
although multi-agent-based strategies admit each agent hav-
ing partial knowledge about the choreography state. Multi-
agent-based strategies may also take advantage of WS-CDL
models and Spi calculus process algebra.

In Table 6, we summarize how the selected studies of each
category are distributed across the adaptation aspects’ set
in the research questions, regarding targets (functional and
non-functional requirements), required intervention degree
(manual and automated), presence of a discussion about scal-
ability impact, and existence of implementation and under-
lying models.

5 Discussion

In this section, we synthesize the data about the analyzed
aspects and discuss terminology. We also discuss the review
process carried out and threats to the validity of this study.

5.1 Synthesis of strategies aspects

To fully answer RQ2, we synthesized the findings across all
the studies, with respect to each strategy aspect.

Adaptation to functional requirement changes has been
more broadly investigated, 92 % of the studies investigated
this kind of adaptation (Fig. 1). Just two studies (8 %) dealt
with non-functional requirements only, but 46 % dealt with
both targets. Among the studies handling non-functional
requirements, only one [62] considered security issues,
and only one tackled transactional issues [14], which are
important aspects for large-scale choreographies involving
multiple parties.

Fig. 1 Strategy targets analysis

123



SOCA (2013) 7:199–216 211

Fig. 2 Strategy human intervention degree analysis

Fig. 3 Strategy impact on choreography scalability analysis

Strategies with automated intervention degree are pre-
dominant (Fig. 2). Just 8 studies (33 %) considered approa-
ches requiring human intervention to trigger or refine the
adaptation. We found relationships between categories and
intervention degree types: measurement-based and multi-
agent-based adaptation strategies are always related to auto-
mated adaptation, although measurement-based sometimes
presents hybrid mechanisms. On the other hand, strategies
that present only manual adaptation are either in model-based
or in formal method categories.

The scalability impact issue is missing in almost every
work (Fig. 3). The single work that deals with scalability
[63] uses simulation, not real implemented services. There
are other three studies [15,46,55] that talk about scalability,
but just in a informal way. They claim that their works provide
or will provide scalability, but they do not supply evidences
of such claims. The lack of scalability treatment throughout
the papers is relevant, since one important claim about chore-
ographies is that they are more scalable than orchestrations
[30].

More than half of the studies (58 %) present some sort of
implementation, although most of them are just prototypes
(Fig. 4). Just two implementations [40,46] are available for
download, and they are both released as open-source soft-
ware. The Executable Process Choreography [13,14] has a
release, the cassServer, but there is no license information,
and the download link was broken at the time of this writing.
The implementation presence is well distributed through the

Fig. 4 Implementation analysis

Fig. 5 Strategy underlying models analysis

categories. They are present in all strategy variants: func-
tional and non-functional requirements targets, and auto-
mated and manual intervention degrees.

The notation used is explicitly described in 10 out of
the 24 studies (Fig. 5). We have grouped the found nota-
tion into six groups: BPMN, WS-CDL like, UML, process
algebra, automata, and “others.” The “WS-CDL like” group
includes ACDL. Process algebra encompasses FSP and Spi
calculus. Automata includes annotated finite state automata
(aFSA) and nested word automata (NWA). Finally, the
group “others” holds OperA, conversational scripts, aspect-
sensitive process (ASP), and the executable choreography
language (ECL).

5.2 Used terminology

The literature about distributed service composition has not
yet a unified terminology, and the recent choreography tech-
nology development has posed difficulties to precise such ter-
minology, which is a reason to recent work to claim “the need
of a refined choreography notion” [52]. Table 7 describes the
occurrences of the terms in the analyzed papers according to
the following:

Clear—The paper clearly defines the employed term;
Inferred—The meaning of the term can be inferred in the
paper;
None—The paper uses the term, but it does not explain its
meaning.

123



212 SOCA (2013) 7:199–216

Table 7 Terms related to
service adaptation that were
found in the selected studies

Term Clear Inferred None

Adaptable/adaptive [15,20,24,27,46,55,63] [8,14,34,50,53,64] [12]

Dynamic [40,51,62] [15] [8,13,18,53]

Realizability [51]

Self-healing [41]

Self-configurable [21]

Auto coordination [21]

Runtime repair [7]

Policies [7]

Agile [20,50]

To customize {a choreography} [34] [15]

Distributed adaptation reasoning [46]

Autonomous [18]

Awareness [50,64] [15]

Context-sensitive [13]

On-demand deployment [14]

According to the table, 53 % of the listed terms were used
by some paper without any definitions, whereas the same
amount (53 %) was well described. The clear definitions were
present at 62 % of the papers, and the usages without any
definitions appeared in 42 of the papers.

We could verify that the term “adaptation,” with its
variants, is used with slightly different meanings. Some stud-
ies use “to adapt” as the ability to change the choreogra-
phy model according to environment changes, whereas other
works use “adaptation” to talk about dynamic service selec-
tion in a defined choreography model. We have noticed that
there are many terms introduced with recursive statements,
as “Adaptive, mobile applications are designed to constantly
adapt to the contextual conditions in an autonomous man-
ner.” Finally, we have checked that many works use terms
without proper definition.

This situation poses many difficulties on the field to com-
pare related works. A study working on such definitions and
proposing a clear terminology would be welcome.

5.3 Threats to validity

The paper selection may suffer from subjective bias. To
reduce such bias, at least two reviewers participated in the
selection process in each phase and a third researcher repli-
cated some parts of it independently. Experienced researchers
supervised the whole process.

We could not conduct an exhaustive search in every
source. Although Goggle Scholar returned a thousand entries
in response to our query string, we had examined just the 250
first entries. The last results were of low relevance for the
research.

Regarding extraction bias, most part of the papers does
not explicitly present the applicability context, precondi-
tions, limitations, and drawbacks. Therefore, reviewers had
to deduce and rationalize about these topics in some occa-
sions. We evaluated aspects concerning the research method
of each selected primary study. Almost every paper presented
a clear description of the adaptation strategy goals. Half of
the papers presented the applicability context and precondi-
tions. Only 6 out of the 20 studies explicitly described the
limitations and drawbacks of the proposed strategy. Almost
half of the studies provided some kind of validation of the
proposed strategy, but just four of them carried experimental
validation.

Publication bias, which refers to the problem that positive
results are more likely to be published than negative results,
was not addressed in this systematic review. We also tried
to avoid any bias related to the search string by employing
as many synonyms as we could identify for the keywords.
The query was also reviewed by more experienced external
researchers.

Finally, we have noticed that conducting systematic
reviews on emergent research topics is difficult, since a
common terminology is not well established. This poses
difficulties on the elaboration of the search query and the
inclusion/exclusion criteria. Such difficulties led us to ana-
lyze the terms concerning adaptation that were found on the
selected studies.

6 Related work

To the best of our knowledge, no systematic reviews have
been produced in the specific field of service choreography

123



SOCA (2013) 7:199–216 213

adaptation. The closest work seems to be that of Kell [28],
who conducted a survey of practical software adaptation
techniques. The author proposes a taxonomy for adaptation
and then describes and contrasts different existing adaptation
techniques.

Several adaptation studies have been conducted in the
more general field of service-oriented computing. For ins-
tance, Zeng et al. [65] present AgFlow, which is a
platform that applies an extensible multi-dimensional QoS
evaluation model to adequately select candidate services.
Furthermore, AgFlow adapts to changes that occur during
the execution of a composite service in order to comply
with user-defined QoS constraints. The composite service
is modeled as a state chart that composes other services,
and the QoS constraints are modeled using a service ontol-
ogy. Van der Aalst et al. [57] demonstrate the feasibility of
service behavior conformance checking by comparing mes-
sage logs with service behavior specifications to detect and
quantify deviations. The check is performed by mapping
abstract BPEL descriptions into Petri nets that describe ser-
vice behavior specifications. Although conformance check-
ing is an important step in the life cycle of an adaptive
system, it does not induce an adaptive change or deter-
mine how the adaptation occurs. Therefore, this system-
atic review does not cover studies dealing only with this
topic.

Adaptation has also been extensively studied in the
domain of workflows. According to Agostini and De
Michelis [2], workflow management systems are the main
technology for supporting business process. Market, social,
and technological factors require frequent changes in the
business process of any organization, which demands flexi-
ble workflow management systems [2]. Workflows are com-
posed of tasks, which are units of work to be performed by
a human or an automated agent, and connectors that define
the order in which such tasks must be executed (control flow)
[9]. Synchronizing concurrent executions can also be spec-
ified by means of joins and forks (also called splits) control
flow constructs. As surveyed by Rinderle et al. [49], work-
flow changes can be of two types. Instance specific changes
are applied to a single specific instance, without disturbing
other instances from the same process type. Schema changes
update all the instances of a process type. In the same work,
the authors also discuss how running workflow instances can
be migrated to a new workflow schema. According to Casati
et al. [9], simple solutions, such as letting the processes
finish according to the old model or aborting them, are
often inconvenient or impossible to be applied. The work
of Cicirelli et al. [11] deals with updating running instances
of distributed workflow systems, where a workflow is
formally modeled by a Petri net. The authors propose
a decentralized Petri net execution engine that enables
the deployment and enactment of a new version of an

existing model without requiring to stop or remove the
older instances still running. The approach uses decentralized
migration procedures that migrate asynchronously portions
of older instances to the new process model. In fact, the
domain of distributed component-based systems also faces
the problem of updating running instances. For example,
Kramer and Magee [31] present a model for dynamic
change management that enables leaving the updated sys-
tem in a consistent state by describing just the structural
changes, making the reconfiguration system independent
from application. Vandewoude et al. [58] follow a similar
approach, but they focus instead on how to minimize the
time components get blocked in order to achieve consistent
updates.

Finally, some studies have employed model-driven devel-
opment to support the development of adaptive systems.
According to Zhang and Cheng [66], an adaptive program
needs mechanisms to ensure that the program is able to oper-
ate correctly during and after adaptations. The authors intro-
duce a process to construct adaptation models, automatically
generate adaptive programs from the models, and verify and
validate the models.

7 Conclusion, research opportunities, and future work

Among other benefits, reviewing the literature helps advanc-
ing the field by seeking new lines of inquiry, identi-
fying recommendations for further research, discovering
important variables relevant to the topic, and character-
izing the subject vocabulary [22]. By means of a sys-
tematic review, this study provided a summary of the
state-of-the-art in service choreography adaptation. We iden-
tified 24 relevant studies and classified them into six
categories according to their foci. This small number of
retrieved studies corroborates our perception that service
choreography dynamic adaptation is a research field not well
explored.

Model-based approaches leverage techniques from model-
driven development (MDD) and involve rationalizing about
adaptation at a high level of abstraction. This approach
is often used to empower the business analyst responsi-
ble for designing and evolving the choreography model.
Measurement-based approaches rely on monitoring mech-
anisms to trigger adaptation whenever a given threshold
is violated during runtime. This approach is often used to
ensure a system invariant, such as average response time
and availability. Multi-agent-based approaches use artifi-
cial intelligence techniques, such as execution plans and
the BDI (beliefs, desires, and intentions) model, to define
the roles and dynamics of agents. These approaches can
be used to support dynamic negotiation of interaction con-
tracts by treating choreography partners as software agents.

123



214 SOCA (2013) 7:199–216

Formal-models-based approaches rely on process calculus
and finite state machine models to describe interactions,
communications, and synchronizations among services. This
enables a formal reasoning about equivalences, compatibil-
ity, and replaceability of choreography services, as well as
ensuring services interface conformance to a choreography
model. Semantic reasoning-based approaches make use of
ontologies to reason about the communication and replace-
ability of services. These approaches are frequently used to
foster interoperability in cross-organizational business con-
texts. Finally, proxy layer approaches are closer to the imple-
mentation level, and suggest architectural patterns to enable
service choreographies adaptation.

We analyzed adaptation strategies concerning their tar-
gets (handling functional or non-functional requirements),
required intervention degree (automated or manual),
scalability impact, implementations, and choreography rep-
resentations (underlying models). We found out that more
attention has been devoted to functional requirements and
automated adaptation; only one work performs scalability
evaluation; most studies present some sort of implementa-
tion and state which choreography notation is used. We have
also provided some key examples of choreography dynamic
adaptation usage retrieved from the selected studies. Such
examples were presented within their respective adaptation
strategy categories.

Research opportunities: We have noticed that some fun-
damental aspects are commonly ignored or poorly discussed,
such as scalability, limitations, drawbacks, and evaluation.
The lack of available implementations is an issue, since
reproducibility is a science requirement. Security and trans-
actions are handled by only a single study each. Further-
more, terminology is not well established. The deficiency
in the treatment of these aspects raises opportunities for the
improvement of existing adaptation strategies, as well as for
future research in the area. Finally, we highlight that although
service selection, conformance checking, and choreography
synthesis are topics that do not directly deal with adapta-
tion, they provide the necessary tools and techniques for a
middleware to support adaptive choreographies [25]. Hence,
we believe that adaptation mechanisms would benefit from
deeper research into the aforementioned themes.

Future work: Future work to this systematic review
encompasses (i) broadening the review scope by also con-
sidering orchestration adaptation approaches; (ii) assessing
to which degree the existing implementations support real-
world scenarios; (iii) and evaluating the scalability of the
proposed adaptation solutions.

Acknowledgments The research leading to these results has received
funding from HP Brasil under the Baile Project and from the European
Community’s Seventh Framework Programme FP7/2007-2013 under
grant agreement number 257178 (project CHOReOS—Large Scale

Choreographies for the Future Internet). Marco Gerosa receives indi-
vidual grant from CNPq.

References

1. Abadi M, Gordon AD (1997) A calculus for cryptographic proto-
cols: the SPI calculus. In: Proceedings of the 4th ACM conference
on computer and communications security. ACM, pp 36–47

2. Agostini A, De Michelis G (2000) Improving flexibility of work-
flow management systems. In: Business process management. Lec-
ture Notes in Computer Science, vol 1806. Springer, pp 289–342

3. Baeten JCM (2005) A brief history of process algebra. Theor Com-
put Sci 335:131–146

4. Barker A, Walton CD, Robertson D (2009) Choreographing web
services. IEEE Trans Serv Comput 2(2):152–166

5. Beecham S, Baddoo N, Hall T, Robinson H, Sharp H (2008) Moti-
vation in software engineering: a systematic literature review. Inf
Softw Technol 50(9–10):860–878

6. Ben Hamida A, Kon F, Ansaldi Oliva G, Dos Santos C, Lorré
JP, Autili M, De Angelis G, Zarras A, Georgantas N, Issarny V,
Bertolino A (2012) An integrated development and runtime envi-
ronment for the future internet. In: The future internet. Lecture
Notes in Computer Science, vol 7281. Springer, pp 81–92

7. Blanchet W, Elio R, Stroulia E (2005) Conversation errors in web
service coordination: Run-time detection and repair. In: Proceed-
ings of the 2005 IEEE/WIC/ACM international conference on web
intelligence. IEEE, pp 442–449

8. Bræk R, Castejón H, Le H, Rossebø J (2005) Policy-based service
composition and recommendation. In: Service intelligence and ser-
vice science: evolutionary technologies and challenges. Addison
Wesley, pp 1–20

9. Casati F, Ceri S, Pernici B, Pozzi G (1998) Workflow evolution.
Data Knowl Eng 24(3):211–238

10. Cavallaro L, Di Nitto E (2008) An approach to adapt service
requests to actual service interfaces. In: Proceedings of the 2008
international workshop on software engineering for adaptive and
self-managing systems, SEAMS ’08 ACM, pp 129–136

11. Cicirelli F, Furfaro A, Nigro L (2010) A service-based archi-
tecture for dynamically reconfigurable workflows. J Syst Softw
83(7):1148–1164

12. Colman A, Pham L, Han J, Schneider J (2006) Adaptive
application-specific middleware. In: Proceedings of the 1st work-
shop on middleware for service oriented computing. ACM, pp 6–11

13. Cottenier T, Elrad T (2005) Dynamic and decentralized service
composition. In: Proceedings web information systems and tech-
nologies. INSTICC Press, pp 56–63

14. Cottenier T, Elrad T (2005) Engineering distributed service com-
positions. In: Proceedings of the first international workshop on
engineering service compositions, WESC’05. IBM, pp 51–58

15. Dar K, Taherkordi A, Rouvoy R, Eliassen F (2011) Adaptable
service composition for very-large-scale internet of things sys-
tems. In: Proceedings of the 8th middleware doctoral symposium,
MDS ’11. ACM, pp 2:1–2:6

16. Di Nitto E, Ghezzi C, Metzger A, Papazoglou M, Pohl K (2008)
A journey to highly dynamic, self-adaptive service-based applica-
tions. Autom Softw Eng 15(3):313–341

17. Dybå T, Dingsøyr T (2008) Empirical studies of agile software
development: a systematic review. Inf Softw Technol 50(9–10):
833–859

18. Ezenwoye O, Busi S, Sadjadi SM (2010) Dynamically reconfig-
urable data-intensive service composition. In: Proceedins of the
6th international conference on web information systems and tech-
nologies. Springer, pp 125–130

123



SOCA (2013) 7:199–216 215

19. Ezenwoye O, Tang B (2010) Monitoring decentralized interacting
services with a global state choreography model. In: Proceedings
of 8th international conference on web services IEEE, pp 671–672

20. Fabra J, Peña J, Ruiz-Cortés A, Ezpeleta J (2008) Enabling the
evolution of service-oriented solutions using an UML2 profile and
a reference Petrinets execution platform. In: Proceedings of 3rd
international conference on internet and web applications and ser-
vices. IEEE, pp 198–204

21. Fernandez-Llatas C, Mocholi JB, Moyano A, Meneu T (2010)
Semantic process choreography for distributed sensor manage-
ment. In: Proceedings of the international workshop on semantic
sensor web. SciTePress, pp 32–37

22. Gall M, Borg W, Gall J (1996) Educational research: an introduc-
tion. Longman Publishing

23. Gu Q, Lago P (2009) Exploring service-oriented system engineer-
ing challenges: a systematic literature review. Serv Oriented Com-
put Appl 3(3):171–188

24. Hiel M, Aldewereld H, Dignum F (2010) Ensuring conformance in
an evolving choreography. In: Proceedings of IEEE 2010 interna-
tional conference on service-oriented computing and applications.
IEEE, pp 1–4

25. Issarny V, Georgantas N, Hachem S, Zarras A, Vassiliadist P, Autili
M, Gerosa M, Hamida A (2011) Service-oriented middleware for
the future internet: state of the art and research directions. J Internet
Serv Appl 2(1):1–23

26. Jorgensen M, Shepperd M (2006) A systematic review of soft-
ware development cost estimation studies. IEEE Trans Softw Eng
33(1):33–53

27. Jureta I, Faulkner S, Thiran P (2007) Dynamic requirements spec-
ification for adaptable and open service-oriented systems. In: Pro-
ceedings of the 5th international conference on service-oriented
computing. Springer, pp 270–282

28. Kell S (2008) A survey of practical software adaptation techniques.
J Univers Comput Sci 14(13):2110–2157

29. Kitchenham B, Charters S (2007) Guidelines for performing
systematic literature reviews in software engineering. Technical
Report, EBSE 2007–001, University Joint Report. Keele Univer-
sity and Durham

30. Kokash N, D’Andrea V (2005) Service oriented computing and
coordination models. In: Proceedings of challenges in collaborative
engineering workshop. Citeseer, pp 95–103

31. Kramer J, Magee J (1990) The evolving philosophers prob-
lem: dynamic change management. IEEE Trans Softw Eng
16(11):1293–1306

32. Lesser V (2003) Multi-agent Systems. In: Encyclopedia of com-
puter science, 4th edn. Wiley, pp 1194–1196

33. Liu D, Law KH, Wiederhold G (2002) Analysis of integration mod-
els for service composition. In: Proceedings of the 3rd international
workshop on software and performance, WOSP ’02. ACM, pp 158–
165

34. Mahfouz A, Barroca L, Laney R, Nuseibeh B (2009) Requirements-
driven collaborative choreography customization. In: Proceedings
of the 7th international joint conference on service-oriented com-
puting Springer, pp 144–158

35. McKinley P, Sadjadi S, Kasten E, Cheng B (2004) Composing
adaptive software. IEEE Comput 37(7):56–64

36. Mellor SJ, Clark AN, Futagami T (2003) Guest editors’ introduc-
tion: model-driven development. IEEE Softw 20:14–18

37. Mian P, Conte T, Natali A, Biolchini J, Travassos G (2007) A
systematic review process for software engineering. Empir Softw
Eng 32(3):1–6

38. Moo-Mena F, Drira K (2007) Modeling architectural level repair in
web services. In: Proceedings of the 3rd international conference
on web information systems and technologies. Springer, pp 240–
245

39. Morreale V, Bonura S, Francaviglia G, Cossentino M, Gaglio S
(2005) PRACTIONIST: a new framework for BDI agents. In: Pro-
ceedings of the 3rd European workshop on multi-agent systems,
pp 236–247

40. Morreale V, Puccio M, Cammarata G, Francaviglia G (2007)
Dynamic conversations between agents with the PRACTIONIST
framework. In: Proceedings of 5th IEEE international conference
on industrial informatics. IEEE, pp 1065–1070

41. Nabuco O, Halima R, Drira K, Fugini M, Modafferi S, Mussi E
(2008) Model-based QoS-enabled self-healing web services. In:
Proceedings of the 19th international conference on database and
expert systems application. IEEE, pp 711–715

42. Nanda MG, Chandra S, Sarkar V (2004) Decentralizing execution
of composite web services. In: Proceedings of the 19th annual ACM
SIGPLAN conference on object-oriented programming, systems,
languages, and applications, OOPSLA ’04 ACM, pp 170–187

43. OASIS: Web services business process execution language (WS-
BPEL), version 2.0 (2007). http://docs.oasis-open.org/wsbpel/2.0/
OS/wsbpel-v2.0-OS.html

44. OMG: business process model and notation (BPMN), version 2.0
(2011). http://www.omg.org/spec/BPMN/2.0

45. Papazoglou MP, Traverso P, Dustdar S, Leymann F (2007) Service-
oriented computing: state of the art and research challenges. IEEE
Comput 40(11):38–45

46. Paspallis N, Papadopoulos G (2006) Distributed adaptation reason-
ing for a mobility and adaptation enabling middleware. In: On the
move to meaningful internet systems 2006: OTM 2006 workshops,
Springer, pp 17–18

47. Pedraza G, Estublier J (2009) Distributed orchestration versus
choreography: the FOCAS approach. In: Proceedings of the
2009 international conference on software and systems process.
Springer, pp 75–86

48. Poulin M (2011) Collaboration patterns in the SOA ecosystem. In:
Proceedings of the 3rd workshop on behavioural modelling. ACM,
pp 12–16

49. Rinderle S, Reichert M, Dadam P (2004) Correctness criteria for
dynamic changes in workflow systems—a survey. Data Knowl Eng
50(1):9–34

50. Rinderle S, Wombacher A, Reichert M (2006) Evolution of process
choreographies in DYCHOR. In: On the move to meaningful inter-
net systems 2006: CoopIS, DOA, GADA, and ODBASE. Springer,
pp 273–290

51. Roohi N, Salaün G, France V (2011) Realizability and dynamic
reconfiguration of Chor specifications. Inf int J Comput Inf
35(1):39–49

52. Schönberger A (2011) Do we need a refined choreography notion?
In: Proceedings of the 3rd central-European workshop on services
and their composition, ZEUS, CEUR workshop proceedings, vol
705, pp 16–23. CEUR-WS.org

53. Stegaru G, Stanescu AM, Sacala I, Moisescu M (2012) Dynamic
interoperability model for web service choreographies. In: Enter-
prise interoperability V. Proceedings of the I-ESA conferences,
vol 5. Springer, pp 81–91

54. Steinmacher I, Chaves AP, Gerosa MA (2010) Awareness support
in global software development: a systematic review based on the
3C collaboration model. In: Proceedings of the 16th international
conference on Collaboration and technology, Springer, pp 185–201

55. Svirskas A, Roberts B, Ignatiadis I (2008) Adaptive service chore-
ography support in virtual enterprises. In: Agent and web service
technologies in virtual enterprises. IGI Global, pp 66–74

56. Sycara KP (1998) Multiagent systems. AI Mag 19(2)
57. Van der Aalst WMP, Dumas M, Ouyang C, Rozinat A, Verbeek

E (2008) Conformance checking of service behavior. ACM Trans
Internet Technol 8(3):13:1–13:30

123

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.omg.org/spec/BPMN/2.0


216 SOCA (2013) 7:199–216

58. Vandewoude Y, Ebraert P, Berbers Y, D’Hondt T (2007) Tranquil-
ity: a low disruptive alternative to quiescence for ensuring safe
dynamic updates. IEEE Trans Softw Eng 33(12):856–868

59. W3C: Web service choreography interface (WSCI) (2002) version
1.0. http://www.w3.org/TR/2002/NOTE-wsci-20020808

60. W3C: Web services choreography description language (WS-
CDL) (2005) Version 1.0. http://www.w3.org/TR/2005/CR-ws-
cdl-10-20051109

61. Wombacher A (2009) Alignment of choreography changes in
BPEL processes. In: Proceedings of IEEE 2009 international con-
ference on services computing. IEEE, pp 1–8

62. Xu D, Qi Y, Di Hou Y, Liu L (2007) A formal model for dynamic
web services composition MAS-Based and simple security analy-
sis using SPI calculus. In: Proceedings of the 3rd international
conference on next generation web services practices. IEEE, pp
69–72

63. Yang L, Dai Y, Zhang B (2009) Performance prediction based EX-
QoS driven approach for adaptive service composition. J Inf Sci
Eng 25(2):345–362

64. Yau S, Huang D, Gong H, Davulcu H (2005) Situation-awareness
for adaptive coordination in service-based systems. In: Proceedings
of the 29th annual international computer software and applications
conference. IEEE, pp 107–112

65. Zeng L, Benatallah B, Ngu A, Dumas M, Kalagnanam J, Chang
H (2004) QoS-aware middleware for web services composition.
IEEE Trans Softw Eng 30(5):311–327

66. Zhang J, Cheng BHC (2006) Model-based development of dynam-
ically adaptive software. In: Proceedings of the 28th international
conference on software engineering, ICSE ’06, ACM, pp 371–380

123

http://www.w3.org/TR/2002/NOTE-wsci-20020808
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109

	A systematic literature review of service choreography adaptation
	Abstract 
	1 Introduction
	2 Research method
	2.1 Research questions
	2.2 Data sources
	2.3 Query string
	2.4 Inclusion and exclusion criteria
	2.5 Data extraction
	2.6 Protocol evaluation

	3 Characterization of the selected studies
	4 Choreography adaptation strategies
	4.1 Model-based approaches
	4.2 Measurement-based approaches
	4.3 Multi-agent-based approaches
	4.4 Formal method-based approaches
	4.5 Semantic reasoning-based approaches
	4.6 Proxy layer approaches
	4.7 Relations among categories

	5 Discussion
	5.1 Synthesis of strategies aspects
	5.2 Used terminology
	5.3 Threats to validity

	6 Related work
	7 Conclusion, research opportunities, and future work
	Acknowledgments
	References


