Impacts of Coding Practices on Readability

Rodrigo Magalhaes dos Santos
Instituto de Pesquisas Tecnoldgicas de
Sao Paulo — IPT-SP
rodrigo.santos@ipt.br

ABSTRACT

Several conventions and standards aim to improve maintain-
ability of software code. However, low levels of code readabil-
ity perceived by developers still represent a barrier to their
daily work. In this paper, we describe a survey that assessed
the impact of a set of Java coding practices on the readability
perceived by software developers. While some practices pro-
moted an enhancement of readability, others did not show
statistically significant effects. Interestingly, one of the prac-
tices worsened the readability. Our results may help to iden-
tify coding conventions with a positive impact on readability
and, thus, guide the creation of coding standards.

KEYWORDS

Code Readability, Code Comprehension, Programming Style,
Coding Best Practices, Software Developers’ Opinions Sur-
vey

ACM Reference Format:

Rodrigo Magalhdes dos Santos and Marco Aurélio Gerosa. 2018.
Impacts of Coding Practices on Readability. In ICPC ’18: ICPC
’18: 26th IEEE/ACM International Conference on Program Com-
prehension , May 27-28, 2018, Gothenburg, Sweden. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3196321.3196342

1 INTRODUCTION

Coding standards and conventions are common in the soft-
ware development industry. Most standards aim at improv-
ing maintainability, assuring that a shared vision among all
team members will be kept across the entire — or most of —
code base [1, 7, 13, 14, 19, 23]. On the other hand, there are
standards focused on quality attributes other than maintain-
ability, e.g. safety on mission critical software [2, 15].
Despite many available coding conventions, several reports
[3, 24] on problems related to low readability can be found
in the literature, with significant negative impacts on soft-
ware projects. For instance, there is evidence of a correlation
between high code complexity and a decline in contributions

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

ICPC ’18, May 27-28, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5714-2/18/05. .. $15.00
https://doi.org/10.1145/3196321.3196342

Marco Aurélio Gerosa
Northern Arizona University — NAU
Flagstaff, Arizona
Marco.Gerosa@nau.edu

received by open source projects [24] and a correlation be-
tween high code complexity and delays in the first contribu-
tions made by developers [3].

In this paper, we describe a survey aiming at finding de-
tails about how coding practices influence — positive or neg-
atively — on levels of code readability as perceived by de-
velopers. We analyzed opinions from two groups of devel-
opers: computer science bachelor students and professional
programmers of a large Brazilian software company. Given
some peculiarities of this survey, we developed a web appli-
cation tailored to the task. A set of 11 coding practices were
derived from code readability models [6, 27]. For each coding
practice, a pair of code snippets were defined, so that one
snippet adhered to the practice and the other violated it.
A random sample of 10 pairs was presented to participants
asking them to tell which code snippet they considered the
most readable.

This survey aims to answer the following research ques-
tions:

RQ.1 How coding practices influence the readability levels
as perceived by readers?

RQ.2 What is the influence of readers’ characteristics over
their perceptions of readability?

Among 11 coding practices assessed, 8 showed statistically
significant results: 7 of them increased the readability and 1
decreased it. The remaining 3 practices did not present statis-
tically significant effects. Moreover, further analysis looking
for relations between participants’ profiles and their opinions
did not present statistically significant correlations, suggest-
ing that there is no relation between developers’ profiles and
code readability as perceived by them.

This article is organized as follows: Section 2 presents a
literature review of previous related work. Section 3 outlines
details about the web application built for the survey, the
coding practices assessed, the process of building the pairs
of code snippets and the statistical tests employed. Section 4
summarizes participant profiles, their votes and their com-
ments, followed by the results of statistical tests and a dis-
cussion about them. Section 5 discusses threats to validity
and, finally, in Section 6, we summarize results and present
proposals for further investigations.

2 RELATED WORK

In the early XX century, efforts towards modeling readabil-
ity began, intending to guide the production of content at
degrees of difficulty well suited to target audiences [10]. As
programming languages evolved and programs increased in

https://doi.org/10.1145/3196321.3196342
https://doi.org/10.1145/3196321.3196342

ICPC '18, May 27-28, 2018, Gothenburg, Sweden

complexity, the development of methods aiming at the eval-
uation of code readability began.

Coding standards and conventions, two elements commonly
related to code complexity management [16], have also been
discussed in the literature. Although there is no previous
work discussing general properties of coding standards, there
are studies discussing the effects of adopting coding stan-
dards in software development projects.

2.1 Text Readability Models

One of the first studies on the readability of texts in Eng-
lish was published by Edward L. Thorndike in 1921 [29].
Analyzing a large number of works focused on children, he
found out that the more often a word is used, easier it is
assimilated. Such result suggests that the level of difficulty
associated to a word is derived from how frequent it is used,
what, by its turn, points to a relation between readability
and the conventional use of a language. The word frequency
table developed by Thorndike was later adopted for building
predictive models of text readability [20].

It is noteworthy that statistical readability models are not
intended to ezplain how readability is affected by text fea-
tures. They are built to explore correlations between text
features and readability levels perceived by readers. More-
over, due to their statistical nature, readability models are
prone to errors in specific cases. For instance, the expression
“To be or not to be” is short and only contains frequently
used words, what qualifies it to be classified as a highly read-
able sentence. However, it is known that that sentence bears
a deep, philosophical meaning, which no statistical model
would be able to detect [8].

Such characteristic is not restricted to text readability
models, having also been described in models of source code
readability [9].

2.2 Code Readability Models

More recently, the development of code readability models
based on logistic models began. Following a process simi-
lar to the one adopted in the development of text read-
ability models like the Flesch-Kincaid readability tests [12],
developers’ opinions about several code snippets were col-
lected and used for training models based on static code
attributes. These models have been showing results succes-
sively closer to developers’ opinions in comparison to their
predecessors [6, 25, 27], also highlighting the role of code
spatial distribution throughout the screen [9].

In this work, we used two of the aforementioned models
to derive the coding practices assessed: the models of Buse
and Weimer and Scalabrino et al. [6, 27]. To the best of our
knowledge, Buse and Weimer were the first to build a code
readability model based on logistic regression — logistic mod-
els provide outputs within the interval of]0, 1[, thus working
as classifiers with outputs closer to 1 in the case of inputs
classified as readable and 0 otherwise.

The development of Buse and Weimer’s model began by
electing static code attributes like, for instance, average line

Santos; Gerosa

lengths and average number of identifiers per line. In order to
obtain data to train the model, they surveyed opinions of 120
software developers about 100 code snippets. The answers
were used to establish weights to different code attributes
measured by their model.

Scalabrino et al. [27] follow a similar process. However,
their model focuses solely on textual features, like number
of dictionary words used to name identifiers, degree of speci-
ficity or generality of meanings, and number of different
words within the same code block.

In this work, we used some of the highest-weighted at-
tributes from the aforementioned models. Based on these
attributes, we described coding practices intended to opti-
mize such attributes and, thus, optimize code readability as
measured by the employed models.

2.3 Coding Standards

We found several works discussing the effect of coding stan-
dards adoption on their respective projects [4, 5, 11, 17,
18, 28]. Another important result brought by previous work
relates to the “emergency” of coding conventions in open
source projects, reporting two interesting phenomena [16]:
code contributions more similar to existing code base are
more likely to be accepted; and contributions made by a
given developer along the time get more similar to the exist-
ing code base as that developer get more experienced in the
project.

There are works presenting coding standards as a result
of years of experience accumulated by their authors [21, 22].
However, only one previous work presenting the creation of
a coding standard in a more systematic way was found [11],
and its results were assessed in a case study.

3 METHOD

In this section, we describe the web application used to sup-
port the survey and present data about the participants in-
vited. The method of analysis of the data obtained from the
survey is also discussed.

3.1 Web Application

Tools like Google Forms and Survey Monkey are well suited
to a wide range of general purpose internet-based surveys.
However, considering some quirks regarding the survey pre-
sented in this work, e.g. the need of showing code snippets
in a particular disposition and gathering auxiliary data like
screen sizes and answering times, we decided to build an
application from scratch.

One of our biggest concerns was to guarantee that most
of the participants were not going to abandon the survey
before finishing it. Therefore, one major design principle was
to make all data fields optional. Every participant’s action
was recorded for subsequent analysis. Even some seemingly
trivial actions were considered, as they could contribute to
the final results in unanticipated ways.

The application comprises a) an initial screen to pick a
user interface language; b) a screen with instructions; c¢) screens

Impacts of Coding Practices on Readability

3574 O Students
2 o105
o |
™
& 14172
(22.6% / 3.2%)
S 6/1
(9.7% / 1.6%)

e—

Female Male Not informed

Figure 2: Distributions of Genders, as informed by
participants

to show code snippet pairs and collect opinions and com-
ments from participants, and d) a form to collect profile data.
The screen showing code snippet pairs is schematically rep-
resented in the Figure 1.

3.2 Invited Participants

Developers invited to take the survey are from two groups.
The first and larger one comprises 55 students of the Soft-
ware Engineering discipline in the Computer Science course
of an American University. This group took the survey as
part of their extra class activities.

The second and smaller group is composed of 7 profes-
sional programmers, employees of a large Brazilian software
development company. This group took the survey answering
an invitation sent to all programmers of one of the company’s
software factories.

Figures 2, 3 and 4 present, respectively, the distributions
of genders, age brackets, and programming experience time.

3.3 Code Snippets Composing

The search for code snippets was executed using the sample
GitHub database accessible through Google BigQuery'. We
queried repository names and source code file paths taking
the following predicates into account: a) files with a .java
extension, and b) files containing import clauses.

Results were sorted in descending order of number of import
clauses. This way, files with a larger number of external de-
pendencies were at the top of the list. This was employed
to obtain files with non-trivial code, as we considered the
number of dependencies as a proxy of complexity.

Source code files in the resulting list were inspected and
their contents were assessed looking for sections useful to
illustrate the coding practices which effects we intended to
evaluate.

Lhttps://cloud.google.com/bigquery/

ICPC '18, May 27-28, 2018, Gothenburg, Sweden

8B 30/2 O Students
(65.2% / 4.3%) B Professionals
o |
o™
[Tolu|
N
o |
N
B 11/1
(23.9% / 2.2%)
o |
—
0 2
(4.3%)
o |
up to 20 y.o. b/w 21 and 36 older than 37

Figure 3: Distributions of ages. Uninformed ages
were omitted

50

41/4
W Professionals

40
Il

30
|

20
|

13/1
(21% / 1.6%)

1/2
(1.6% / 3.2%)

- |

< 3years

b/w 4 and 7 yrs > 8 years

Figure 4: Programming Experience Time, as in-
formed by participants.

3.4 Assessed Coding Practices

The coding practices assessed in this work were derived from
attributes of the Buse and Weimer’s [6] and Scalabrino’s
et al. [27] code readability models. In the following list, we
enumerate the model metrics underlying our assessed coding
practices:

(1) Buse and Weimer [6]:
a) Average blank lines;

) Average keywords per line;

) Average indents per line;

) Maximum number of identifiers in a single line;
(e) Average “.” characters;

) Maximum length of a single line;

) Average “(” and “{” per line;

) Average line length;

https://cloud.google.com/bigquery/

ICPC '18, May 27-28, 2018, Gothenburg, Sweden

Santos; Gerosa

1 @override
2 public PhysicalOperation visitMarkDistinct (MarkDistinctNode node, LocalExecutionPlanConte
3¢

4 PhysicalOperation source = node.getSource () .accept (this, context);
5
6 List<Integer> channels = getChannelsForSymbols (node.getDistinctSymbols (), source.getl
7 Optional<Integer> hashChannel = node.getHashSymbol () .map (channelGetter (source))
8 MarkDistinctOperatorFactory operator = new MarkDistinctOperatorFactory(context.getNe>
9 return new PhysicalOperation (operator, makeLayout (node), source);
10 }
»
This

Comments about your vote (optional):

Back

In your opinion, which code snippet is the most readable? Sample 1/10

1 @override
2 public PhysicalOperation visitMarkDistinct (MarkDistinctNode node,

3 LocalExecutionPlanContext context)
4 |
5 PhysicalOperation source = node.getSource () .accept (this, context);
6
7 List<Integer> channels = getChannelsForSymbols (node.getDistinctSymbols (),
8 source.getLayout ()) ;
9
10 Optional<Integer> hashChannel = node.getHashSymbol ()
11 .map (channelGetter (source)) ;
12
13 MarkDistinctOperatorFactory operator =
14 new MarkDistinctOperatorFactory(context.getNextOperatorId(), node.getId(),
15 source.getTypes (), channels, hashChannel, joinCompiler);
16
17 return new PhysicalOperation (operator, makeLayout (node), source);
18 }
This

Next

Figure 1: Most readable snippet selection screen. Participants were asked to pick the most readable snippet

and provide comments about their decisions.

(i) Average number of identifiers;
(2) Scalabrino et al. [27]:
(a) Number of identifiers using dictionary words.

The following list presents the coding practices assessed
in this paper. Every coding practice is identified by a code,
in order to facilitate references throughout the text:

(P.1) There must be a blank line following code block open-
ing and closing curly braces; exception: closing braces
terminating code blocks of statements containing sec-
ondary paths of execution, e.g.: closing braces of if
statements followed by an else; closing braces of try
statements followed by a catch;

(P.2) Curly braces opening a code block must reside at the
same line of their statements, in case there is one; clos-
ing braces must reside at their own lines;

(P.3) Blank lines must be used to create a vertical separation
between related instructions;

(P.4) Line lengths must be kept within the limit of 80 char-
acters;

(P.5) Indent markers must be made of 4 space characters;

(P.6) There should not be more than three levels of code
block nesting;

(P.7) Avoid writing multiple statements separated by a < ;’?
in a single line. Each statement should be in a line of
its own,;

(P.8) Avoid, whenever possible, using fully-qualified names
to reference class names in code; use import clauses
instead;

(P.9) Frequent calls to sub-properties of class member prop-
erties should be made storing a reference to that sub-
property, avoiding multiple statements containing long
chains of objects and sub-properties;

(P.10) Intermediary computations in long logical expressions
should be stored in separate variables and subsequently
composed in a single expression; avoid writing long
chains of logical expressions;

(P.11) Identifier names should use dictionary words.

The source code files returned by the query described in
Section 3.3 were employed to create code snippet pairs. For
each one of the 11 assessed practices, a file was elected and
a code section was extracted to build two code snippets: one
of them adhering to the practice and the other, violating it.
Upon the access of a new participant, the application ran-
domly selected 10 snippet pairs and presented them, asking
her to pick those snippets she thought were the most read-
able.

3.5 Data Analysis

In this section, we describe the methods of analysis employed
to answer each of the proposed research questions. Through-
out the description of the method and the presentation of the
results, we use the notion of diverging vote, which consists
in the vote given by participants on a code snippet violating
the coding practice exercised by its code snippet pair.

3.5.1 Research Question RQ.1. In order to answer the re-
search question RQ.1, we used a two-tailed test for proportion
configured as follows:

(1) Significance level: 0.05;

Impacts of Coding Practices on Readability

(2) Null hypothesis: proportion of diverging votes equals
to 0.5, i.e., votes equally distributed across adhering
and violating snippets;

(3) Alternative hypothesis: proportion of diverging votes
different from 0.5, indicating an effect induced by the
coding practice.

We applied such test to each snippet pair individually. Be-
ing each snippet pair associated to one and only one coding
practice, the results performed by a snippet pair work as a
proxy of the effects induced by its associated coding practice.
Proportions of diverging votes smaller than 0.5 indicate an
enhancement on readability, while proportions greater than
0.5 indicate a decrease.

3.5.2 Research Question RQ.2. In order to answer research
question RQ.2, a series of Fisher’s Exact tests were per-
formed. In those tests, votes on snippets pairs were consid-
ered as a categorical variable of two levels: “adhering” or
“violating”, depending on which snippet — respectively, the
adhering or violating one — the vote was on.

The categorical vote variables were organized in records
along categorical variables related to the profiles of their
respective participants. The records were grouped practice-
wise and, for each group, the vote variable was tested against
all the other profile variables. The resulting p-values are pre-
sented in Table 2. Values below the significance level of 0.05
are highlighted.

3.6 Qualitative Analysis

As shown in Figure 1, there is a field for optional comments
below each pair of snippets. Respondents were asked to com-
ment about their decisions. In order to better understand
practices that resulted inconclusive or conclusively worsened
the perceived readability, we proceeded to a qualitative anal-
ysis of the content of comments. We considered comments
provided together with diverging votes and looked for ex-
planations about the reasoning and motivations underlying
them.

4 RESULTS

Analyzing the received votes, we could note varying opinions
about each coding practice. One categorical variable — gen-
der — showed some correlation with opinions about practices
P.7 and P.10. However, as it is discussed below, further anal-
ysis suggested that such correlations do not seem to indicate
an important difference between genders’ ways of reasoning
about readability.?

4.1 Votes

Table 1 summarizes the votes on each code snippet pair.
Code pairs are identified by the same code of their respective
coding practices. Besides the percentage of diverging votes,
there is a symbol indicating which kind of votes prevailed:

2Data gathered for this study, as well as the programs used to analyze
them, are available online: https://doi.org/10.1145/3196321.3196342.
Source code of the web application available upon request.

ICPC '18, May 27-28, 2018, Gothenburg, Sweden

Table 3: Frequencies of adhering/violating votes per
gender on Practice P.7

Female Male

Adherent 2 33
Violating 5 4

Table 4: Frequencies of adhering/violating votes per
gender on Practice P.10

Female Male

Adherent 4 9
Violating 1 27

the symbol A indicates that code snippets adhering to the
practice got the majority of the votes; the symbol Vv indi-
cates the prevalence of votes in the violating code snippets;
and the symbol ¢ indicates a tie.

The total amount of votes per snippet pair varies due to
two reasons: first, considering that the snippet pairs were
showed randomly to participants, each snippet pair was ex-
hibited a random number of times — even though every pair
had the same chance of being exhibited. Second, voting in a
snippet pair was optional and some pairs may have gotten
fewer votes than their exhibitions.

4.2 Coding Practices and the Perceived
Readability

Table 1 demonstrates the p-values for the statistical tests for
proportions. All results below the significance level (p-value
< 0.05) are highlighted. Coding practices P.3, P.5, P.6, and
P.10 did not show enough evidence to reject the null hypoth-
esis and, thus, there is no evidence of effects induced by those
practices on the readability perceived by the participants.
Coding practices P.1, P.4, P.7, P.8, P.9, and P.11 pointed
to an enhancement on the perceived readability. Practice P.2,
on the other hand, showed a majority of violating votes and
a p-value below the significance level. These results indicate
that practice P.2 decreased the levels of perceived readability.

4.3 Developers’ Profile and the Perceived
Readability

As discussed in Section 3, a total of 77 Fisher’s tests (11 prac-
tices X 7 categorical variables) were run in order to find pos-
sible correlations between votes and variables derived from
the profiles provided by participants. The resulting p-values
are listed in Table 2.

Most of the tested variables did not reach statistical sig-
nificance. The only exception was the gender categorical
variable in relation to the practices P.7 and P.10. Contin-
gency tables showing the frequencies of votes by each gender
for practices P.7 and P.10 are presented, respectively, in ta-
bles 3 and 4.

https://doi.org/10.1145/3196321.3196342

ICPC '18, May 27-28, 2018, Gothenburg, Sweden

Santos; Gerosa

Table 1: Received Votes per Code Snippet Pair and P-Values of Tests for Proportions

Code Short Adherent Violating % of Total Proportion Test
Practice Description Votes Votes Violating Votes P-Value
P.1 Blank following curly braces 45 7 13.46% A 52 0.0000
P.2 Opening braces at the same line as clause’s 16 37 69.81% v 53 0.0060
P.3 Blanks separating related instructions 28 28 50.00% ¢ 56 1.0000
P4 Line lengths not exceeding 80 chars 44 15 25.42% A 59 0.0003
P.5 Indents as 4 spaces 21 29 58.00% v 50 0.3222
P.6 At most 3 levels of code block nesting 34 19 35.85% A 53 0.0545
P.7 Avoid mult. statements on a same line 48 10 17.24% A 58 0.0000
P.8 Avoid fully qualified names 52 6 10.34% A 58 0.0000
P.9 Avoid child properties; use references 45 9 16.67% A 54 0.0000
P.10 Variables to store intermediary logicals 21 34 61.82% v 55 0.1056
P.11 Names using dictionary words 42 12 22.22% A 54 0.0001
Table 2: P-Values for the series of Fisher’s Exact Tests
Factors
. Java Programming Age . Learning | Group (Student
Practice | Gender Experience Experience Bracket Schooling Profile Profe(ssional) /
Pp.01 0.2040 1.0000 0.3834 0.7274 1.0000 1.0000 0.1798
P.02 0.1520 0.3019 0.2010 0.3063 0.5117 0.5586 0.1550
P.03 0.0994 0.4909 0.0747 0.2109 0.6304 0.7385 0.1927
P.04 0.3470 1.0000 1.0000 0.8209 0.3643 1.0000 1.0000
P.05 0.6303 0.1714 0.6569 0.8539 0.6840 0.0538 0.6378
P.06 1.0000 1.0000 0.8713 0.7429 0.5042 0.0558 0.6117
P.o7 0.0020 1.0000 0.6066 1.0000 0.7479 0.1125 0.5770
P.08 0.2476 1.0000 0.1438 0.3068 0.6730 1.0000 0.4970
P.09 1.0000 0.3082 1.0000 1.0000 0.7381 0.6037 0.5743
P.10 0.0284 0.5192 0.1290 0.1755 0.0513 0.1957 0.3588
P.11 0.1147 1.0000 0.1662 0.5475 0.7514 1.0000 0.0667

4.4 Developers’ Comments

Participants were asked to comment their votes, as we pre-
sumed that such comments would allow us to understand the
provided votes, specially in the cases of practices worsening
readability.

In the following sections, we summarize comments that
were provided together with diverging votes. Only comments
from practices P.2, P.3, P.5, P.6, and P.10 are mentioned,
once those were the practices presenting negative or incon-
clusive results.

4.4.1 Comments for Practice P.2. This practice led to a
statistically significant decrease in readability. Curly braces
in the violating snippet of the practice P.2 followed C# con-
ventions, i.e., opening and curly braces in a line of their
own. In general, respondents state appreciation for the ex-
tra spacing promoted by the use of C# convention, as put
in comments like “The code on the right uses white space
and making clear blocks of code to signify what code is part
of what conditions and such.” and “The code seems to look
slightly more readable, and grouping things like if clauses and

arguments is more clear with a clear indication of a start and
end.” Besides, they appreciate the vertical alignment of re-
lated curly braces, saying it is easier to see where a code
block starts and ends, once matching curly braces are in-
dented the same — e.g. “Aligning curly braces allows for easy
identification of enclosed statement blocks”.

4.4.2 Comments for Practice P.3. This practice led to a
tie, resulting as statistically inconclusive. The snippets were
functionally equivalent, but with instructions in a slightly
different order. Such reordering was not meant to exercise
the coding practice: it was done only to allow the grouping
of some related instructions. However, some comments show
that such instruction reordering caught too much attention
from some respondents (“The other change at the bottom
with the swapping of code makes no difference to me”; “some
lines are change around”; “just the left one is ordered a lit-
tle differently and has an extra blank line”). This may have
happened to other participants besides those who mentioned
that in their comments. Among the 28 violating votes, only 7
comments were provided. Some affirmed seeing no advantage

Impacts of Coding Practices on Readability

in using blanks, and some even thought the blanks broke the
code reading flow.

4.4.3 Comments for Practice P.5. The violating snippet
used an indentation of 2 spaces, while the adhering one used
4 spaces. Such difference is barely noticed when comparing
snippets side by side — with snippets presented vertically,
such comparison would probably be easier. For some un-
known reason, some developers understood that the adher-
ing snippet, indented with 4 spaces, were actually using tabs
instead of spaces, as mentioned in comments like “the one
I selected has less tabs” and “the right-side one looks more
like a tab”, and, based on that assumption, they voted on
the violating snippet.

4.4.4 Comments for Practice P.6. From the 19 diverging
votes, 8 were accompanied by comments. The violating snip-
pet, containing deeper levels of if nesting and, as a conse-
quence, more indenting, presented more white space. Inter-
estingly, such increased white space caused by deeper inden-
tation was appreciated by some of the participants who voted
on the violating snippet, as it can be found in comments like
“Felt like my eyes had more space to navigate in between” and
“The more white space is easier on my eyes”. The other group
of violating voters mentioned that, despite a deeper nesting,
the violating code separated conditionals more clearly — they
preferred a deeper nesting more than more complex condi-
tionals: “I prefer having a chain of nested ”if” statements,
rather than having an ”if” statement condition so large that
it has to be broken across multiple lines” (even though such
“large condition broken across multiple lines” was not the
case in the adhering snippet) and “It splits the conditionals
into if else blocks rather than if, else if, and else. This makes
it much easier to read and comprehend as it is in a true false
format”.

4.4.5 Comments for Practice P.10. Fourteen comments were
provided. They basically criticize the fact that a new vari-
able was created, but no gain resulted from that — “There is
no reason to create an extra boolean variable at all, it adds
more clutter to the screen” and “Pulling out the boolean ex-
pression doesn’t make it more readable for me”. Some stated
that they understood the motivation behind the creation of
a new variable, intended to name an intermediary logical
computation. But, according to them, the clarification pro-
vided by that additional name was not worth the effort and
resources related to a new variable in memory — “it does give
insight into what it is checking is 1s01dSdk but by reading
the if statement you can assume it is checking if one build
version is greater than the other”.

4.5 Discussion

Regarding the results of the tests for proportions, most of
the practices resulted in a statistically significant increase in
readability. On the other hand, only one resulted in a sta-
tistically significant decrease. These results are in agreement
with the readability models that served as a foundation for
the composition of our coding practices.

ICPC '18, May 27-28, 2018, Gothenburg, Sweden

We found no evidence that either Java or general pro-
gramming previous experience played a role, as none of the
tests involving these categorical variables reached statistical
significance. On the other hand, previous experiences with
other similar languages, like C#, may have played some role,
as suggested by the results of practice P.2 — the winner snip-
pet followed C# conventions. The instructions presented at
the beginning of the survey stated that the snippets were all
written in Java, but it is plausible to expect that previous
experience with C# may have influenced opinions. Previous
experience with that language was not measured, though.

The results regarding gender look intriguing at first glance,
but we think they are of lesser relevance, as the correla-
tions do not seem to form a consistent pattern. From a
code-compactness standpoint, both P.7 and P.10 recommend
vertically “wider” code representations — the former, by rec-
ommending that each instruction be on a line of its own,
and the latter, that logical expressions be broken in smaller,
intermediary steps. Despite both practices point away from
compactness, females were more often averse to practice P.7
and less often averse to P.10. Males, by their turn, showed
an opposite trend.

Comments on practice P.2 cited the matching by inden-
tation of curly braces as an important feature. However, in
both samples, the contents of their code blocks were verti-
cally aligned. This should have clearly established the bound-
aries of the given code blocks, despite the opening brace be-
ing misaligned in relation to its closing counterpart.

Some respondents commenting the practice P.4 saw a tab
character on the adhering snippet. Some of them even pointed
that such misunderstanding influenced their votes, as in “I
selected the one with less tabs”. Four out of 14 comments
mentioned this fact, and it is possible that more respondents
thought this way. We inspected the snippets in order to check
if they got rendered on screen with tabs due to some cause —
perhaps a programming error in the routines that converted
the snippets to their web representations, but that was not
the case. The four spaces indentation probably simply resem-
bled a tab character to those respondents, and they made
their decisions based on that.

Features like white spacing seem to be under a complex
dispute. Opinions of different developers about white spaces
in a certain situation may be contradictory. Indeed, some
comments of votes violating the practice P.6 argued they
were based on the presence of more whitespace.

Opinions about whitespace gathered in this survey may be
grouped in two categories: white space is positive, because
it provides visual help to read the code, like in “better in my
opinion mostly due to spacing between lines”; white space is
negative because it actively hinders the code readability, like
in “(...) lines that deal with the same thing are separated by
new lines (...)”. These comments refer to the same snip-
pet (P.3), suggesting that opinions may vary not only about
the use of a given convention in diverse situations: opinions
about a given convention within a given circumstance may
also strongly vary.

ICPC '18, May 27-28, 2018, Gothenburg, Sweden

Regarding the practice P.10, developers thought that the
example was too simple and the practice was not worth the
effort. This perhaps indicates that developers expect more
flexible formatting rules in case of simple programs. Beside
the violating — and most often preferred — snippet, there was
an adhering snippet, naming an intermediary logical expres-
sion and providing a better context to the whole function
performed by the code. It is possible that the presence of the
adhering snippet and the explanation provided by it made
the violating snippet look simpler, which, by its turn, may
have led more respondents to classify this snippet as too
simple to be worth the practice application.

5 THREATS TO VALIDITY

The source code files intended for the application of our cod-
ing practices were obtained by means of a query based on
the predicates described in Section 3. However, the selection
of code sections meant to illustrate the adherences and vio-
lations of the coding practices were made manually.

The comments and results obtained suggest there are some
potential problems with the adopted approach. The presen-
tation of a code snippets pair followed by a request for point-
ing the most readable invariably led the respondent to make
a comparison between both snippets, which, as some com-
ments reveal, confused them in cases where the difference
between them was too subtle.

5.1 Internal Validity

For every coding practice, we selected a code section that
provided opportunities for being reformatted in such a way
that allowed us to illustrate violations and adherences of
the referred coding practice. These code sections were manu-
ally selected, among the 40 source code files returned by the
query discussed in Section 3.

The manual selection and reformatting of such source code
files may have introduced errors capable of influencing re-
spondents’ opinions. For instance, by formating a code sec-
tion intending to make it adhere to a particular coding prac-
tice, we may have introduced violations to other coding prac-
tices, negatively influencing opinions of some respondents.

The use of code static analysis tools could have attenuated
such issue, scanning the resulting code for violations of a
broad range of pre-programmed coding practices.

Interestingly, some comments suggest that developers care-
fully inspected both snippets within the pairs trying to spot
differences between them. This, by its turn, suggests that
decisions were not made based on how the code looked and
felt, but, instead, on an objective classification of differences
found. Such proceeding may have caused some distortions
in votes on practices with snippets only subtly different. An
A /B test exposing developers to only one of the versions
(adhering or violating) could provide a rich set of data for
further qualitative analyses.

By analyzing some comments, it seems that presenting
violating and adhering snippets side by side may have influ-
enced some judgments. Some developers voted against some

Santos; Gerosa

practices generally stating that the coding practice did not
promote a gain in readability proportional to its cost. This
happened specially in practices P.10 and P.11, where some
participants did not see the point of using more verbose
coding on such self-explaining situations. It is possible that
the presence of an adhering and more self-explaining code
snippet may have fed respondents with valuable information.
This way, possessing such information provided by the adher-
ing snippet, they may have rated the practice as superfluous.

The examples used in the survey were simple. Such sim-
plicity was intentionally promoted in order to make the sur-
vey feasible — overly complex examples could probably have
discouraged some respondents. This was a significant risk,
considering that an online survey may be abruptly aban-
doned as soon as the respondent feels bored. We acknowl-
edge, though, that those simple snippets are not the best
possible representatives of code bases commonly dealt with
by developers during their daily routines.

5.2 External Validity

The survey respondents form a relatively restricted group of
developers: students of an American university and profes-
sional programmers of a Brazilian company. Although they
are representative of important groups of interest on software
developers communities, they do not form a large and varied
enough sample to allow the extension of our conclusions to
more general groups of software developers.

6 CONCLUSIONS AND FUTURE
WORK

The results allowed us to answer research question RQ.1, re-
vealing that, in 8 out of 11 assessed coding practices, there
is evidence that the coding practices affected readability as
perceived by surveyed developers. In 3 out of 11 practices
(P.3, P.5, and P.10), there was not enough evidence to al-
low us to refute the null hypothesis. Thus, we cannot affirm
that these practices affected readability. Regarding research
question RQ.2, except for the correlations between practices
P.7 and P.10 and gender, we could find no evidence of a cor-
relation between the studied profile factors and developer
opinions. Besides, further analysis indicates that even these
correlations do not represent a consistent difference between
the way that females and males deal with the practices.

The dataset collected during this survey could be used to
look for new correlations between code features and the read-
ability levels perceived by our respondents, revealing unan-
ticipated correlations and new perspectives over the data we
already gathered [26].

Our group of respondents is mostly composed of students.
The results presented here may contribute to the creation
of coding samples used on classes, generating snippets and
samples better suited to students’ needs.

White spaces played an important role in this study. Many
comments brought them up, even in conventions not directly
related to them. Moreover, the practice P.3, regarding the

Impacts of Coding Practices on Readability

use of blank lines to visually group related statements, re-
sulted in a tie. These results may provide an interesting path
for further investigations, testing for some hypotheses about
the reasons behind so heterogeneous opinions on blank lines
and white spaces in general.

Being averse or sympathetic to a given convention may be,
in some cases, just a matter of taste. As it has been shown,
developers may have strongly opposite opinions about the
same convention. Our results may be valuable for identifying
such cases, helping developers tasked with the definition of
a project’s coding standard to decide whether they follow
their own opinions or seek some advice.

REFERENCES

[1] 2016. Google C++ Style Guide. (2016).

(10

https://google.github.
io/styleguide/cppguide.html

Motor Industry Software Reliability Association et al. 2008.
MISRA-C: 2004: Guidelines for the Use of the C Language
in Critical Systems. MIRA.

Christian Bird, Alex Gourley, Prem Devanbu, Anand Swami-
nathan, and Greta Hsu. 2007. Open borders? immigration in
open source projects. In Mining Software Repositories, 2007.
ICSE Workshops MSR’07. Fourth International Workshop on.
IEEE, 6-6.

C. Boogerd and L. Moonen. 2008. Assessing the value of cod-
ing standards: An empirical study. In Software Maintenance,
2008. ICSM 2008. IEEE International Conference on. 277-286.
https://doi.org/10.1109/ICSM.2008.4658076

Cathal Boogerd and Leon Moonen. 2009. Evaluating the re-
lation between coding standard violations and faults within
and across software versions. In Mining Software Repositories,
2009. MSR’09. 6th IEEE International Working Conference on.
IEEE, 41-50.

Raymond PL Buse and Westley R Weimer. 2010. Learning a
metric for code readability. Software Engineering, IEEE Trans-
actions on 36, 4 (2010), 546-558.

Chromium Project. 2016. The Chromium Projects Coding Style.
(2016). https://www.chromium.org/developers/coding-style
Edgar Dale and Jeanne S Chall. 1948. A formula for predicting
readability: Instructions. Educational research bulletin (1948),
37-54.

Jonathan Dorn. A General Software
ability Model. MSC Thesis avatable
(http://www.cs.virginia. edu/weimer/students/dorn-mcs-
paper.pdf) (2012).

William H DuBay. 2007. The Classic Readability Studies. Online
Submission (2007).

2012. Read-

from

(11]

(12]

(13]

(14]
(15]

16]

(17]

(18]

(19]
(20]
(21]
[22]

(23]

(26]

[27]

(28]

[29]

ICPC '18, May 27-28, 2018, Gothenburg, Sweden

Xuefen Fang. 2001. Using a coding standard to improve program
quality. In Quality Software, 2001. Proceedings.Second Asia-
Pacific Conference on. 73-78. https://doi.org/10.1109/APAQS.
2001.990004

Rudolph Flesch. 1948. A new readability yardstick. Journal of
applied psychology 32, 3 (1948), 221.

GNOME Project. 2014. Gnome — C Coding Style.
(2014). https://developer.gnome.org/programming-guidelines/
stable/c-coding-style.html.en

Les Hatton. 1995. Safer C: Developing Software for in High-
Integrity and safety-critical systems. McGraw-Hill, Inc.

Klaus Havelund and Al Niessner. 2014. Nasa JPL Java Coding
Conventions. (2014).

V.J. Hellendoorn, P.T. Devanbu, and A. Bacchelli. 2015. Will
They Like This? Evaluating Code Contributions with Lan-
guage Models. In Mining Software Repositories (MSR), 2015
IEEE/ACM 12th Working Conference on. 157-167. https:
//doi.org/10.1109/MSR.2015.22

Xiaosong Li. 2006. Using peer review to assess coding standards-
a case study. In Frontiers in education conference, 36th annual.
IEEE, 9-14.

Xjaosong Li and Christine Prasad. 2005. Effectively teaching cod-
ing standards in programming. In Proceedings of the 6th confer-
ence on Information technology education. ACM, 239-244.
Linux Foundation. 2016. Linux Kernel Coding Style. (2016).
https://www.kernel.org/doc/Documentation/CodingStyle
Bertha A.. Lively and Sydney Leavitt Pressey. 1923. A method
for measuring the” vocabulary burden” of textbooks.

Robert C. Martin. 2009. Clean Code: A handbook of agile soft-
ware craftsmanship. Prentice Hall.

Steve McConnell. 2004. Code Complete, Second Edition. Mi-
crosoft Press, Redmond, WA, USA.

Microsoft Inc. 2016. C# Coding Conventions. (2016).
//msdn.microsoft.com/en-us/library /ff926074.aspx
Vishal Midha, Rahul Singh, Prashant Palvia, and Nir Kshetri.
2010. Improving open source software maintenance. Journal of
Computer Information Systems 50, 3 (2010), 81-90.

Daryl Posnett, Abram Hindle, and Premkumar Devanbu. 2011.
A simpler model of software readability. In Proceedings of the
8th working conference on mining software repositories. ACM,
73-82.

Rodrigo Magalhédes dos Santos and Marco Aurélio Gerosa. 2018.
Impacts of Coding Practices on Readability - Dataset. (March
2018). https://doi.org/10.1145/3196321.3196342

S. Scalabrino, M. Linares-Vsquez, D. Poshyvanyk, and R. Oliveto.
2016. Improving code readability models with textual features.
In 2016 IEEE 24th International Conference on Program Com-
prehension (ICPC). 1-10. https://doi.org/10.1109/ICPC.2016.
7503707

Michael Smit, Barry Gergel, H James Hoover, and Eleni Stroulia.
2011. Maintainability and source code conventions: An analysis
of open source projects. University of Alberta, Department of
Computing Science, Tech. Rep. TR11-06 (2011).

Edward L Thorndike. 1921. The teacher’s word book. (1921).

https:

https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/cppguide.html
https://doi.org/10.1109/ICSM.2008.4658076
https://www.chromium.org/developers/coding-style
https://doi.org/10.1109/APAQS.2001.990004
https://doi.org/10.1109/APAQS.2001.990004
https://developer.gnome.org/programming-guidelines/stable/c-coding-style.html.en
https://developer.gnome.org/programming-guidelines/stable/c-coding-style.html.en
https://doi.org/10.1109/MSR.2015.22
https://doi.org/10.1109/MSR.2015.22
https://www.kernel.org/doc/Documentation/CodingStyle
https://msdn.microsoft.com/en-us/library/ff926074.aspx
https://msdn.microsoft.com/en-us/library/ff926074.aspx
https://doi.org/10.1145/3196321.3196342
https://doi.org/10.1109/ICPC.2016.7503707
https://doi.org/10.1109/ICPC.2016.7503707

	Abstract
	1 Introduction
	2 Related Work
	2.1 Text Readability Models
	2.2 Code Readability Models
	2.3 Coding Standards

	3 Method
	3.1 Web Application
	3.2 Invited Participants
	3.3 Code Snippets Composing
	3.4 Assessed Coding Practices
	3.5 Data Analysis
	3.6 Qualitative Analysis

	4 Results
	4.1 Votes
	4.2 Coding Practices and the Perceived Readability
	4.3 Developers' Profile and the Perceived Readability
	4.4 Developers' Comments
	4.5 Discussion

	5 Threats to Validity
	5.1 Internal Validity
	5.2 External Validity

	6 Conclusions and Future Work
	References

