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Abstract—Background: Systematic literature reviews (SLRs)
require robust search strategies to ensure comprehensive cover-
age. Although database searches have traditionally been the pri-
mary method, snowballing has emerged as an effective alternative
strategy in software engineering research. However, the success of
snowballing heavily depends on the initial seed set’s composition,
particularly regarding diversity across authors, publication years,
and venues. Objective: This study investigates how different
diversity characteristics in seed set creation influence snowballing
performance and effectiveness in identifying relevant literature.
Method: We conducted replication studies of two existing SLRs,
comparing their conventional seed set creation approaches with
our diversity-driven methodology, where we systematically incor-
porated diversity characteristics into constructing the seed sets.
Results: Our diversity-based approach demonstrated substantial
improvements, with a precision of 0.019 (compared to 0.006 in the
original), a relative recall of 0.97 (versus 0.921), and an F-measure
of 0.0372 (improving from 0.0119). Conclusions: The empirical
evidence suggests that incorporating diversity criteria in seed
set creation enhances snowballing efficacy while maintaining
comprehensive coverage of relevant literature. This approach
offers a systematic and effective method for conducting snowball-
based literature reviews in software engineering research.

Index Terms—Software Engineering, Snowballing, Systematic
Literature Review, Systematic Mapping Review, Seed set

I. INTRODUCTION

A systematic literature review (SLR) has a strong focus
on comprehensiveness, as noted in its definition: “...a study
that reviews all primary studies related to a specific research
question...” [1]. To ensure comprehensive coverage in their
evidence synthesis, the software engineering (SE) community
has employed two principal search approaches [2]: database
search and snowballing [3]. Each method offers distinct ad-
vantages and challenges in achieving comprehensive literature
coverage.

The challenges in String-based database searches include
the labor-intensive process of refining search strings, the effort
required to sift through extensive irrelevant results, and the
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technical constraints of digital library platforms for performing
reviews [2], [4]. These limitations significantly impact both the
efficiency and comprehensiveness of the review process.

Snowballing has emerged as a promising alternative or
complementary search strategy [3]. This methodology initiates
with a carefully selected seed set of articles, followed by
systematic forward and backward search strategies [3]. While
backward snowballing examines reference lists to uncover
additional evidence, forward snowballing identifies subsequent
citations of the relevant studies.

Snowballing has been shown to contribute to 51% of
included studies in systematic literature reviews [5]. Wohlin et
al. [6] and Felizardo et al. [7], [8] compared snowballing with a
database search strategy to update SLRs. They concluded that
the approaches are comparable on the basis of the papers they
found. However, snowballing is more efficient, reducing the
number of primary studies that need to be analyzed more than
five times. Recent research demonstrates that hybrid search
strategies—defined as the systematic integration of multiple
search approaches, such as combining database searches with
snowball sampling from pre-identified relevant articles, yield
superior results in identifying primary studies [2].

However, a fundamental challenge in snowballing is defin-
ing an optimal seed set. Few studies in the software engi-
neering literature explicitly address strategies for defining a
seed set in snowballing [1], [3]. Authors typically select seed
articles based on either high citation counts within the research
domain or keyword-based search results derived directly from
research questions and their synonyms [7], [9]–[12]. While
Wohlin [3] recommends heterogeneous seed sets that incorpo-
rate diversity in publishers, publication years, and authors, the
optimal composition and necessary diversity levels have not
yet been empirically investigated in the context of systematic
literature reviews. To bridge this knowledge gap, we examine
how specific diversity characteristics within seed sets impact
the effectiveness of snowballing. This study is guided by the
following research question:
How does the diversity of the seed set– considering publishers,



authors, and publication years –influence the effectiveness of
snowballing in systematic literature reviews?

To address this research question, we replicate existing
SLRs and evaluate snowballing performance using three met-
rics: recall, precision, and F-measure. We assess the diversity-
based approach’s ability to identify “all relevant studies”
(recall) and determine the proportion of relevant studies among
retrieved articles (precision). Since systematic literature re-
views cannot guarantee complete identification of all relevant
studies, we employ relative recall rather than true recall
(sensitivity), calculating it based on the sum of relevant and
unique studies identified in the original SLRs. The F-measure
provides a balanced assessment of the relationship between
recall and precision.

This research makes two primary contributions: (i) enhanc-
ing the understanding of snowballing methodology by provid-
ing empirical evidence on how seed set diversity characteristics
(authors, years, and publishers) influence search effectiveness,
thereby extending Wohlin’s guidelines [3]; and (ii) developing
an automated tool for diversity-based seed set recommendation
that operationalizes Wohlin’s guidelines [3], facilitating their
application in review processes.

II. RELATED WORK

Snowballing begins with selecting a seed set of studies,
typically identified through database searches. Next, backward
snowballing is performed by examining the reference lists of
the seed set to identify additional relevant studies. Backward
is followed by forward snowballing, which involves using
citation indexes, such as Google Scholar or Scopus, to find
newer studies that cite the seed set papers. Each newly
identified study is then assessed using predefined inclusion and
exclusion criteria. The process is iterative, meaning backward
and forward snowballing is repeated on newly included papers
until no new relevant studies emerge [3].

Snowballing has emerged as a powerful approach in sys-
tematic literature reviews, demonstrating its value both as
a complement to traditional database searches and as a
standalone search strategy, with numerous studies validating
its effectiveness [3], [4], [7], [8], [11], [13]. Badampudi et
al. [11] evaluated the effectiveness and reliability of snow-
balling (backward and forward) compared to the database
search. They found that the efficacy of both search strategies
is comparable, contingent on creating a suitable seed set.
Wohlin [3] established guidelines for snowballing as a search
strategy, suggesting that it could serve as an alternative to
searches in various databases, contributing to the retrieval
of a comprehensive and relevant set of studies for analysis.
Wohlin states that 5 to 10 initial studies are appropriate in
a seed set, as this set would lead to convergence in some
iterations. However, more research is needed to determine the
optimal number of studies needed to compose a seed set for
snowballing.

Felizardo et al. [7], [8] have investigated forward snow-
balling to update SLRs, concluding that it can effectively
find newer, relevant studies. In the same line, Wohlin [6]

recommended forward snowballing with Google Scholar and
leveraging the original review’s primary studies to compose
the seed set. Mourao et al. [4], [13] explored hybrid search
strategies that combine database searches and snowballing,
suggesting that a hybrid strategy may be an appropriate
alternative for searching for candidate studies in SLRs.

While several tools have been developed to support the
snowballing process [14]–[17], they lack comprehensive sup-
port for the complete process and, notably, fail to address
the critical aspect of diversity in seed set creation. Despite
snowballing’s growing recognition as a powerful strategy for
systematic literature reviews, there remains a significant gap in
research and tooling support for systematically incorporating
diversity in the initial seed set generation —- a factor that can
substantially influence the effectiveness of the overall review
process.

III. RESEARCH DESIGN

We performed the snowballing replication in five steps:
Step 1. We defined a systematic approach for constructing
a diverse seed set, as illustrated in Figure 1 and detailed in
Section IV. A supporting tool was implemented to facilitate
this step.
Step 2. We selected two systematic literature reviews (SLRs)
for replication (see Section V).
Step 3. We applied the approach described in Step 1 to
generate diversity-based seed sets for the selected SLRs (see
Section VI-A).
Step 4. We executed snowballing using the seed sets generated
in Step 3 (see Section VI-B).
Step 5. We evaluated snowballing effectiveness using relative
recall (RC), precision (P), and the F-measure. Relative recall
(RC) was computed as Inc Rep

Inc Rep∪Inc Ori , where Inc Rep is
the set of studies included after snowballing iterations, and
Inc Ori is the set of studies originally included in the repli-
cated SLR. Precision (P) was calculated as Inc Rep

Tot Rep , where
Tot Rep represents the total number of studies identified
through snowballing (including both included and excluded
studies). The F-measure, representing the harmonic mean
between precision and relative recall, was calculated using the
formula 2× P×RC

P+RC . Finally, we compared and discussed in detail
the performance of different search strategies in Section VI-C.

The research team conducting this study has experience
in this type of research. They have conducted several SLRs
and researched the SLR method, including applying and
experimenting with different snowballing approaches.

IV. DEFINITION OF AN APPROACH FOR CREATING A
DIVERSIFIED SEED SET

Our approach to constructing a diverse seed set involves
seven stages and an automated tool to support them. Ini-
tially, researchers extract keywords from the research question.
Then, the researchers add appropriate synonyms. The finalized
keywords and their synonyms are combined using logical
operators: synonyms are linked with OR, while distinct key-
words are joined using AND, forming a search string that the



researcher may further refine if needed (stage 1). Additional
filters, such as publication year, may also be applied depending
on the research objectives.

Next, a candidate seed search is performed considering
titles, abstracts, and keywords (stage 2). The researchers
manually excluded articles that do not meet the predefined
selection criteria of the original SLR, including publication
year. Specifically, papers published after the end date of the
replicated SLR’s search period were removed to ensure full
comparability between the original and replicated sets. The
remaining articles then undergo a two-stage labeling process.
In the first labeling stage, articles are categorized based on
three general criteria (GC1, GC2, GC3):
“GC1 – Keywords” – Articles whose titles contain at least
one keyword from the search string.
“GC2 – Synonym” – Articles containing at least one synonym
from the search string.
“GC3 – Most cited” – The five most-cited articles among the
results.

An individual article may meet one or more of these general
criteria simultaneously, resulting in multiple entries within the
candidate seed list. Duplicate entries are thus removed before
proceeding to the next labeling stage (stage 4, Figure 1), in
which three diversity criteria — DC1, DC2, and DC3, are
applied (Stage 5, Figure 1):
DC1 – Author: Author names are extracted from each ar-
ticle. When multiple articles share the same set of authors,
regardless of the order in which they appear, only one of them
is labeled as DC1. This criterion aims to promote authorial
diversity by avoiding the repeated inclusion of articles from
the same research team.
DC2 – Year: Articles published in a unique year, that is, a
publication year not shared by any other article in the set are
labeled as DC2. If multiple articles share the same publication
year, only the most cited article among them is marked as DC2.
DC3 – Venue: The same logic applied to DC2 also applies
here. Articles published in unique venues are labeled DC3.
When multiple articles originate from the same venue, only
the most cited article is labeled DC3.

Since individual articles may fulfill multiple diversity crite-
ria simultaneously, duplicate entries are consolidated after this
labeling stage (stage 6, Figure 1). Therefore, a single list is
created, adding multiple tags to the articles.

Finally, in stage 7 (Figure 1), the seed set is generated
through an incremental process. All articles labeled with the
three diversity criteria (DC1, DC2, and DC3) are initially
selected. If fewer than five such articles are available —
the recommended minimum number for a seed set [3] —
articles labeled with two diversity criteria are included next. If
necessary, articles with only one diversity criterion are added
until the set reaches the minimum required size.

To automate the diversity-based seed set recommendation
process described in Section III, we developed an open source
and online tool, available at https://seed-set-recommendation.
onrender.com/. This tool is designed to support systematic lit-
erature reviews by generating diverse seed sets and offers five

main functionalities: (a) keyword extraction; (b) generation
of search strings including synonyms; (c) visualization of the
search string; (d) retrieval of scientific articles from Scopus;
and (e) seed set recommendation based on diversity criteria.

V. SELECTED SLRS

This section presents the two systematic literature reviews
(SLRs) selected for the snowballing replication conducted
in this paper. The choice of SLRs aligns with the authors’
research expertise. Specifically, given that two authors have
significant experience in software testing, we selected an SLR
from that domain (SLR1). For the second review, we chose an
SLR focusing on industry-academia collaboration, reflecting
the specialization of another author and continuing the focus
of a previous replication study utilizing the same dataset. This
second review (SLR2) [2] is itself a replication of the original
SLR by Garousi et al. [18].

The following selection criteria (C) guided our identification
of suitable SLRs for replication: C1. The SLR was conducted
according to rigorous guidelines [1], [3].
C2. The primary search strategy employed was snowballing
(both backward and forward) [3].
C3. The process used to define the seed set was described.
C4. Keywords and their synonyms were explicitly described
in the review protocol. Even though the main method of the
SLR was snowballing, our strategy starts with the definition of
a search string, used to identify candidate studies to compose
the seed set.
C5. Details of the snowballing process were transparently
reported.
C6. The complete list of included studies was made publicly
available.

A. SLR 1: Software testing

To find a replication study addressing software testing, we
searched the Scopus digital library using the following string:
TITLE-ABS-KEY((“systematic literature review” OR “system-
atic review”) AND (snowballing) AND (“software testing”)).
We present the six (6) papers returned by the query and how
they satisfy the criteria in Table I.

As can be seen, only the paper number 4 satisfies all six (6)
criteria (Table I) [22]. The objective of the selected SLR [22]
was “ ...Investigate which techniques of software testing re-
ceive more attention when applying Knowledge Management
(KM), and identify the challenges faced due to the lack of KM
practices...”.

To identify studies of interest, the authors [22] used the
snowballing process [3], detailed as follows.

The snowballing process started with creating the seed
set, using database searches. A multi-stage screening process
was applied, starting with 2,774 papers, narrowing down
to 63 after title and abstract reviews, and then to 32 after
introduction/conclusion checks. Full-text analysis led to 16
candidates, which were further reviewed for relevance. Finally,
13 highly cited and well-referenced papers were selected as
seed.



Fig. 1. Composing a seed set considering general and diversity criteria.

TABLE I
CANDIDATE STUDIES FOR REPLICATION AND HOW THEY MATCH THE SELECTION CRITERIA.

ID Title C1 C2 C3 C4 C5 C6 Ref
Candidate studies on software testing

1 A systematic review of cost reduction techniques for mutation testing: preliminary
results

✓ × ✓ ✓ ✓ ✓ [19]

2 A systematic review of the use of the definition of done on agile software development
projects

✓ × ✓ ✓ ✓ ✓ [20]

3 Industrial applications of software defect prediction using machine learning: a business-
driven systematic literature review

✓ × ✓ ✓ ✓ ✓ [21]

4 Knowledge management in software testing: a systematic snowballing literature review ✓ ✓ ✓ ✓ ✓ ✓ [22]
5 On transforming model-based tests into code: a systematic literature review ✓ ✓ ✓ × ✓ ✓ [23]
6 Testing and verification of neural-network-based safety-critical control software: a

systematic literature review
✓ × ✓ ✓ ✓ ✓ [24]

Candidate studies on industry-academia collaboration
7 Successful combination of database search and snowballing for identification of primary

studies in systematic literature studies
✓ ✓ ✓ ✓ ✓ ✓ [2]

8 Successful Practices in Industry-Academy Collaboration in the Context of Software
Agility: A Systematic Literature Review

✓ × ✓ ✓ ✓ ✓ [25]

The authors performed five (5) iterations of snowballing.
To perform the forward citations, they employed Google
Scholar. In the end, 1,457 candidate studies were analyzed
(843 backward references and 614 forward citations), and 35
peer-reviewed studies (including the 13 seeds) passed the study
criteria and were included. Twelve (12) studies were selected
from backward references and 10 from forward citations.

B. SLR 2: Industry-academia collaboration

To identify a study suitable for replication that focuses
on industry-academia collaboration in SE, we conducted a
search in the Scopus digital library using the following query
string: TITLE-ABS-KEY ((“systematic literature review” OR
“systematic review”) AND (snowballing) AND (industry) AND
(academia) AND (collaboration) AND (“software engineer-

ing”)). We present the two (2) articles retrieved from the query
and explain how each meets the criteria outlined in Table I.

As shown in Table I, only the study 7 [2] fully satisfies all
six (6) criteria.

The purpose of the study by Wohlin et al. [2] was to
evaluate hybrid search strategies for SLRs. Therefore, the
original SLR aims “...Identify (a) the challenges to avoid risks
to collaboration by being aware of the challenges, (b) the
best practices to provide an inventory of practices (patterns)
allowing an informed choice of practices to use when planning
and conducting collaborative projects”.

To identify relevant studies, Wohlin et al. [2] followed the
snowballing process [3], as detailed below.

To construct the replicated seed set, the authors used the
following search and applied it to the Scopus digital library:



“industry AND academia AND collaboration AND software
AND engineering.” The search targeted articles from 2010–
2014, aligning with the original SLR time frame (conducted
in early 2015 and published in 2016). In total, nine studies
were selected as seed [26]. The seed set was determined
by searching Scopus and evaluating the resulting papers. In
total, 40 papers were found using Scopus; 15 papers met
the inclusion criteria and went into full-text reading, resulting
in nine (9) papers being selected. The authors identified in
total 1942 papers of interest. The publications came from the
start set, backward and forward snowballing, respectively: 40
papers from Scopus, 839 publications from BS (five rounds),
and 1063 papers from FS (five rounds). In total, 78 articles
were included in the full text assessment. It resulted in the
inclusion of 43 articles (9 from seed set, 18 from BS and
16 from FS). The remaining 35 articles were excluded after
reading their full text.

VI. REPLICATION STUDY

A. Seed set creation based on diversity

We applied the diversity-based process defined in Figure 1
to the selected SLRs to generate the diverse seed set.

Table II compares the original SLR seed set with the seed
set generated in this replication. Based on the selection criteria
of the original study, previously described in Section V-A,
we excluded the following studies from the seed set: S16,
S17, S18, S20, S21, S22, S23, and S24. S1, S3, S4, S6,
S7, S9, and S11 appear in both the original SLR and our
replication (labeled as “Both” in the last column). Studies S16
and S17 (both from 2009) were excluded because they were
published in the same year as another study already selected
(S9). Study S18 was excluded due to unavailability. Study
S19 was excluded because it is not among the five most cited
articles (GC3). Studies S20 and S21 were excluded because
they did not present relevant keywords or synonyms in their
titles (CG2). Studies S15 and S23 were discarded because they
share the same authors (Souza, E. F. et al.) as studies S6.
Moreover, S15 was published in the same year (2015) as S6.

Finally, study S24 was excluded because it was published in
the same local journal (TSE) as study S11. Studies S2, S5, S8,
S10, S12 and S13 are exclusive to the original SLR (marked
as “Original”), while S14 is unique to the replication (labeled
as “Replication”).

For seeds used only in the original SLR, the diversity
process did not suggest S5, S8, S10, S12, or S13 because
they are not indexed in Scopus. Although S2 is indexed in
Scopus, our diversity-based strategy did not recommend it.

Therefore, the final seed set consists of eight articles: S1,
S3, S4, S6, S7, S9, S11, and S14.

Table III shows the seed set of the original SLR2 from
Wohlin et al. [2] and the one created in this replication. The
original SLR2 seed set includes nine studies: S1 through S9.
Among these, only S1 is shared with the replication (denoted
“Both” in the last column). Four studies (S11, S13, S15, and
S18) were excluded from our replication because they did not

meet the inclusion criterion IC1. In contrast, the diversity-
based approach identified six unique studies not present in the
original (S10, S12, S14, S16, and S17). In total, the replication
seed set consists of six studies. In particular, S12, which is part
of the replication seed set, was included in the first round of
backward snowballing in the original study.

B. Snowballing iterations

In this section, we summarize the results of backward and
forward snowballing replication using the diversified seed sets
for SLR1 and SLR2.

1) SLR1: We conducted five iterations of backward and
forward snowballing, reviewing both references and citations.
Citation data was collected using Google Scholar, compiled in
a spreadsheet, and filtered by two authors with expertise in the
SLR1 topic. We applied the same inclusion criteria defined in
the original SLR. Article selection was done independently
of the original results and only compared to them after
completing all iterations. Table IV summarizes the outcomes
of the five iterations.
Iteration 1. We found 421 articles during the first iteration.
Eleven studies (out of 35 in the original study) met the in-
clusion criteria and were included. Nine came from backward
snowballing (BW1-–BW9) and two from forward snowballing
(FW1 and FW2).
Iteration 2. In the second iteration, we analyzed the 11 studies
identified previously (BW10–BW19 and FW3). We retrieved
548 articles and included 11 of them. The 11 matched studies
already included in the original SLR.
Iteration 3. We identified 470 studies in the third iteration and
included four studies (BW20–BW21 and FW4–FW5). One of
the backward snowballing studies, BW–N1 [27], was a “new”
inclusion that was not found in the original SLR.
Iteration 4. We retrieved 489 studies in the fourth iteration
and included only one study (BW22), which had already been
covered in the original SLR.
Iteration 5. We examined seven references and nine citations
during the fifth iteration. None met the inclusion criteria,
concluding the snowballing process.

In total, we included 37 studies in the replication: 28 identi-
fied from snowballing, nine (9) from the seed set (Table II). Of
these, 34 were also found in the original SLR. Three studies
(S14 [28] (seed), S19 [29] and BW-N1 [27]) were not part of
the original. One study (S13) included in the original was not
recovered in our replication.

2) SLR2: We performed six iterations of backward and
forward snowballing.

We extracted citations and references using the tool de-
scribed in [30]. We manually verified each reference by
checking the content of the cited papers and used Google
Scholar to double-check the citations and reduce bias. The
results of the six snowballing iterations for SLR2 are sum-
marized in Table IV. Detailed results are also available in the
supplementary materials.
Iteration 1. We analyzed 499 studies and included 8 that
matched the original SLR2: three (3) backward and five



TABLE II
SEED SET SLR1 – COMMON SEEDS OF THE ORIGINAL SLR1 AND THE DIVERSITY-FOCUSED STRATEGY SUGGESTIONS (S1, S3, S4, S6, S7, S9, S11).
EXCLUSIVE SEEDS OF ORIGINAL SLR1 (S2, S5, S8, S10, S12, S13). S14 IS A SEED ONLY FOR REPLICATION. UNIQUE REPLICATION STUDIES WERE
EXCLUDED FROM THE SEED SET BECAUSE THEY DID NOT MEET THE IC (S15, S16, S17, S18, S20, S21. S22, S23, S24) OR DURING THE DIVERSITY

STRATEGY (S15 AND S19).

ID Title Authors Year Venue Source
S1 A model of knowledge management system in man-

aging knowledge of software testing environment
R. Abdullah, and Z.D. Eri, and A.
M. Talib

2011 MySEC Both

S3 Investigation of knowledge management methods in
software testing process

Y. Liu, J. Wu, X. Liu, and G. Gu. 2009 ICITCS Both

S4 Knowledge management and software testing A. Desai, and S. Shah 2011 ICETAI Both
S6 Knowledge management initiatives in software test-

ing: A mapping study
E.F. de Souza, R.A. Falbo, and N.L.
Vijaykumar

2015 IST Both

S7 Observing software testing practice from the view-
point of organizations and knowledge management

O. Taipale, K. Karhu, and K.
Smolander

2007 ESEM Both

S9 Research and implementation of knowledge manage-
ment methods in software testing process

L. Xue-Mei, G. Guochang, L. Yong-
Po, and W. Ji

2009 CSCE Both

S11 The role of the tester’s knowledge in exploratory
software testing

J. Itkonen, M.V. Mäntylä, and C.
Lassenius

2013 TSE Both

S2 An architectural model for software testing lesson
learned systems

J. Andrade, J. Ares, M.A. Martı́nez,
J. Pazos, S. Rodrı́guez, J. Romera,
and S. Suárez

2013 IST Original

S5 Knowledge management approach in mobile soft-
ware system testing

O.K. Wei, and T.M. Ying 2007 IEEM Original

S8 Ontology-based testing platform for reusing X. Li, and W. Zhang 2012 ICICSE Original
S10 The role of experience in software testing practice A. Beer, and R. Ramler 2008 DSD/SEAA Original
S12 Using knowledge management to revise software-

testing processes
K. Nogeste, and D. H. Walker 2006 JWL Original

S13 A knowledge management approach for industrial
model-based testing

D. Koznov, V. Malinov, E. Sokhran-
sky, and M. Novikova

2009 ICKMIS Original

S14 Outsourcing and Knowledge Management in Soft-
ware Testing

K. Karhu, O. Taipale, K. Smolander 2007 EASE Replication

S15 Knowledge management applied to software testing:
A systematic mapping

E. F. Souza, R. Falbo, N. L. Vijayku-
mar

2013 SEKE Replication
[Exc.
Diversity]

S19 Technology for knowledge management in software
testing and its application

Y. P. Liu, L. Zou, M. Z. Jun, X. M.
Liu

2008 CIMS Replication
[Exc. GC3]

S16 How do scientists develop and use scientific soft-
ware?

J. E. Hannay, C. MacLeod, J. Singer,
H. P. Langtangen, D. Pfahl, G. Wil-
son

2009 ICSE Replication
[Exc.
Diversity]

S17 Insight knowledge in search-based software testing Arcuri A. 2009 GECCO Replication
[Exc.
Diversity]

S18 Software testing survey 2011: Knowledge objectives
implementation and results

M. Winter, K. Vosseberg, A. Spill-
ner, P. Haberl

2012 LNI Replication
[Exc. Not
available]

S20 Test-driven evaluation of Linked Data quality D. Kontokostas, P. Westphal, S.
Auer, S. Hellmann, J. Lehmann, R.
Cornelissen

2014 WWW Replication
[Exc. GC2]

S21 The role of replications in Empirical Software Engi-
neering

F. J. Shull, J. Carver, S. Vegas, N.
Juristo

2008 ESE Replication
[Exc. GC2]

S22 Transfer learning for cross-company software defect
prediction

Y. Ma, G. Luo, X. Zeng, A. Chen 2012 ISE Replication
[Exc. IC]

S23 Using the Findings of a Mapping Study to Conduct a
Research Project: A Case in Knowledge Management
in Software Testing

E. F. Souza, R. Falbo; N. L. Vijayku-
mar

2015 SEA Replication
[Exc.
Diversity]

S24 Predicting the location and number of faults in large
software systems

T. J. Ostrand, E. J. Weyuker, R. M.
Bell

2005 TSE Replication
[Exc.
Diversity]



TABLE III
SEED SET SLR2 – S1 IS A COMMON SEED OF THE ORIGINAL SLR2 AND SUGGESTED BY THE DIVERSITY-FOCUSED STRATEGY. S2–S9 ARE EXCLUSIVE
SEEDS OF THE ORIGINAL SLR2. FOUR STUDIES (S11, S13, S15 AND S18) WERE EXCLUDED FROM THE SEED SET BECAUSE THEY DID NOT MEET THE

INCLUSION CRITERIA OR DURING THE DIVERSITY STRATEGY.

ID Title Authors Year Venue Source
S1 Action research as a model for industry-academia

collaboration in the software engineering context
Petersen, K., Gencel, C., Asghari,
N., Baca, D., Betz, S.

2014 IWLICSE Both

S2 Lessons learned on applying design science for
bridging the collaboration gap between industry and
academia in empirical software engineering

Rodriguez, P., Kuvaja, P., Oivo, M. 2014 IWCESI Original

S3 Practical experiences in designing and conducting
empirical studies in industry-academia collaboration

Martinez-Fernandez, S., Marques, H. 2014 IWCESI Original

S4 The 4+1 view model of industry-academia collabo-
ration

Runeson, P., Minor, S. 2014 IWLICSE Original

S5 Get the cogs in synch-time horizon aspects of
industry-academia collaboration

Runeson, P., Minor, S., Svenér, J. 2014 IWLICSE Original

S6 Enablers and impediments for collaborative research
in software testing: An empirical exploration

Enoiu, E., Causevic, A. 2014 IWLICSE Original

S7 Foundations for long-term collaborative research Kanso, A., Monette, D. 2014 IWLICSE Original
S8 Empirical software engineering research with indus-

try: Top 10 challenges
Wohlin, C. 2013 IWCESI Original

S9 Agile collaborative research: Action principles for
industry-academia collaboration

Sandberg, A., Pareto, L., Arts, T. 2011 IEEE Soft-
ware

Original

S10 Understanding the link between information technol-
ogy capability and organizational agility: An empir-
ical examination

Lu Y. 2011 MIS Replication

S11 Trust in a specific technology: An investigation of its
components and measures

Mcknight D.H., Carter, M.,
Thatcher, J. B., Clay, P.F.

2011 TMIS Replication
[Exc. IC]

S12 It takes two to tango - An experience report on
industry - Academia collaboration

Runeson P. 2012 ICST Replication

S13 3-D object retrieval and recognition with hypergraph
analysis

Gao Y., Wang, M., Tao, D., ji, R.,
Dai, Q.

2012 TIP Replication
[Exc. IC]

S14 Opportunities and challenges for collaboration
industry-Academia via sponsored design competi-
tions

Rodriguez J., Choudhury, A. 2014 ICL Replication

S15 FeynRules 2.0 - A complete toolbox for tree-level
phenomenology

Alloul A., Christensen, N. D., De-
grande, C., Duhr, C., Fuks, B.

2014 CPC Replication
[Exc. IC]

S16 Industry-academia collaboration in software testing:
An overview of TAIC PART 2015

Alshahwan N., Felderer, M. Ramler,
R.

2015 ICSTW Replication

S17 Potential of community of practice in promoting
academia-industry collaboration: A case study

Pohjola I., Puusa, A., Iskanius, P. 2015 ICICKM Replication

S18 Experience based co-design and healthcare improve-
ment: Realizing participatory design in the public
sector

Donetto S., Pierri, P, Tsianakas, V.,
Robert, G.

2015 Design
Journal

Replication
[Exc. IC]

(5) forward snowballing. The eight (8) were identified from
snowballing in a single study.
Iteration 2. We recovered 368 studies and included 13: six
(6) backward and seven (7) forwards. Seven of the eight seed
studies used in this iteration led to at least one included study.
Iteration 3. We analyzed 1,145 studies and included 12: 2
backward and 10 forward. One study was responsible for nine
(9) of the 10 forward inclusions, while the remaining three (3)
were sourced from two other studies.
Iteration 4. We recovered 433 studies and included 7: 1
backward and 6 forward. Three of the 10 seed studies used in
this iteration accounted for all inclusions.
Iteration 5. We examined 261 studies and included only one
through the forward snowball.
Iteration 6. We analyzed 23 studies derived from the only
inclusion in iteration 5. None met the inclusion criteria, and

the process was concluded.
The original SLR2 included a total of 43 studies. As a result

of our approach, all 43 studies from the original SLR2 were
accounted for (42 through snowballing process and one study
was a common study from both seed sets), ensuring that they
were no losses in the included studies during this replication.
Furthermore, we recovered four new studies.

C. Main results

This section summarizes the results of our snowballing
replications for SLR1 and SLR2, comparing them against the
original reviews. We focus on three main metrics: precision,
relative recall, and the F-measure. Table V presents a side-
by-side comparison of the key characteristics and quantitative
results.



TABLE IV
SLR1 — A TOTAL OF 1944 STUDIES WERE ANALYZED (900 REFERENCES AND 1044 CITATIONS), FROM WHICH 28 WERE INCLUDED DURING THE FIVE

ITERATIONS OF SNOWBALLING REPLICATION. SLR2 — A TOTAL OF 2729 STUDIES (1139 REFERENCES AND 1590 CITATIONS) WERE ANALYZED, OF
WHICH 42 WERE INCLUDED DURING THE SIX ITERATIONS OF SNOWBALLING REPLICATION.

Backward Snowballing Forward Snowballing Total
Returned Included Returned Included Returned Included

Iteration SLR1 SLR2 SLR1 SLR2 SLR1 SLR2 SLR1 SLR2 SLR1 SLR2 SLR1 SLR2
Iteration 1 226 232 9 3 195 267 2 5 421 499 11 9
Iteration 2 288 88 10 6 260 280 1 7 548 368 11 13
Iteration 3 226 322 3 2 244 823 2 10 470 1145 5 12
Iteration 4 153 352 1 1 336 81 0 6 450 433 1 7
Iteration 5 7 124 0 0 9 137 0 1 16 261 0 1
Iteration 6 0 21 0 0 0 2 0 0 0 23 0 0
Total 900 1139 23 12 1044 1590 5 29 1944 2729 28 42

For SLR1, our replication achieved a relative recall of 0.974,
recovering nearly all studies included in the original SLR1. We
included 37 studies in total, 28 through snowballing and nine
(9) from the seed set (including one that was initially excluded
but later recovered). This exceeded the original SLR1, which
included 35 studies and had a relative recall of 0.921. The
precision in our replication was 0.019, an improvement over
the original 0.006, despite analyzing fewer total studies (1,962
vs. 6,289). Measure F increased significantly, from 0.0119 to
0.0372.

For SLR2, we achieved perfect recall. The 43 studies from
the original SLR2 [2] were recovered, and we identified four
additional relevant studies, bringing the total to 47. Although
the broader coverage slightly reduced precision (0.016), the
F-measure remained competitive at 0.0315, confirming the
effectiveness of the diversified seed set.

The answer to the RQ is that the diversity of the seed set
reduces the effort to apply snowballing with a low risk of
missing relevant studies. This approach led to fewer retrieved
articles to filter while maintaining or improving evidence
coverage compared to original studies.

VII. DISCUSSION

We chose to evaluate the creation of the diversity seed set
by performing two replications to have a point of reference.
In addition to the lessons learned and validity threats, some
aspects are essential to reflect on.
Defining keywords – Mendes et al. [31] affirm that Ph.D.
students often spearhead a significant portion of the conduction
of SLRs, exceeding 50%. One difficulty these novices face
on their first SLR face is related to the complexity of the
SLR process [32]. The conduction of SLR by novices without
expert and experienced researcher supervision can lead to
several potential pitfalls [33]. For example, elaborating search
strings requires knowledge of relevant keywords, databases,
and search processes, which can be overwhelming for begin-
ners. Therefore, the diversity strategy could also be considered
if the researcher is a novice. The novice can insert an RQ and
the strategy will suggest keywords. In our replication of SLR1,
the novice could primarily rely on the keywords knowledge
management” and software testing” and supplement them with
other keywords suggested by specialists in the review domain
added through the “OR” Boolean.

Effort to create the seed set – To create the original
seed set for SLR1, 4,832 articles were retrieved from the
Engineering Village, resulting in 13 selected seeds. In contrast,
using the diversity strategy proposed here, only 18 studies
were recovered, of which 8 were selected. This reduced the
screening effort by two orders of magnitude, from 4,832 to 18,
representing more 99% fewer articles to examine. Reducing
the number of retrieved articles reduces manual workload and
reduces the risk of human error. However, effort alone is
not a sufficient measure; recall and precision must also be
considered when evaluating seed set strategies.

As illustrated in Figure 2 (left) for SLR1, six studies were
exclusive to the original SLR (S2, S5, S8, S10, S12 and S13).
Five of these (S5, S8, S10, S12, and S13) were not returned by
Scopus in our replication. However, three of them (S2, S8, and
S10) were recovered during the first snowballing interaction.
S5 and S12 were recovered in the second iteration. Only S13
was not recovered.

For SLR2, shown in Figure 2 (right), only one study of
the original seed set (S1) overlapped with the diverse seed
set. Another original study (S12) was reached during the first
iteration of backward snowballing. All other studies, including
the rest of the original seeds, were recovered in the six
snowballing iterations. This confirms that no evidence from
the original SLR2 was lost, even with a smaller seed set built
from only 10 retrieved studies. These results suggest that the
diversity strategy significantly reduces effort while maintaining
high coverage.
Using SLR as a seed – Wohlin et al. [6] assert that “...Using
an SLR as a seed set and its primary studies is the most
cost-effective way to search for new evidence when updating
SLRs”. This approach is commonly justified by the typically
high relevance and frequency of the citation studies included
in SLRs. However, this strategy did not always yield the
expected results in our replication. For example, the study
BW3, “Knowledge management applied to software testing:
A systematic mapping” did not contribute to the identification
of any relevant new studies.

In replicating SLR1, we successfully recovered 34 of the
35 studies from the original review, resulting in a relative
recall of 0.974, and identified three additional relevant studies:
S14 [28] (used as seed), S19 [29] (included as relevant),



TABLE V
SUMMARY OF REPLICATION RESULTS COMPARED TO THE ORIGINAL SLRS.

Description SLR1 SLR2
Description Original Replication Original Replication
seed set creation String (Engineering Village) Diversity-process String (Scopus) Diversity-process
# articles analyzed to create the seed set 4832 18 40 10
# of seeds 13 8 9 6
Limited searches 2003—2015 2003—2015 until 2015 until 2015
Forward citations Google Scholar Google Scholar Google Scholar Semantic Scholar, Research-

Gate and Google Scholar
Snowballing iterations 5 5 5 6
References analyzed 843 900 899 1139
References included 12 23 18 12
Citations analyzed 614 1044 1352 1590
Citations included 13 5 16 29
# articles analyzed (snowballing) 6289 1962 2251 2729
# studies included 35 37 43 47
Precision 0.006 0.019 0.018 0.016
Relative Recall 0.921 0.974 0.953 1
(Relative) F-measure 0.0119 0.0372 0.0353 0.0315

Fig. 2. Timeline from seed selection to return of unused seeds in SLR1 (left) and SLR2 (right).

and BW–N1 [27]. For SLR2, we achieved complete recall
(100%), recovered all 43 studies from the original review,
and identified eight new candidate studies, five of which were
deemed relevant.

From an efficiency point of view, the replication of SLR1
required screening significantly fewer articles (1,944 compared
to 6,289 in the original) while improving precision from 0.006
to 0.019. This shows that the diversity-based approach can
reduce the workload of the reviewer while preserving, or
even enhancing, the comprehensiveness of the evidence base.
Although one study from the original SLR1 (S13) was not
recovered, the replication revealed three relevant studies that
were not present in the original, indicating that the original
review may have overlooked important evidence.

The additional studies provided meaningful contributions to
the field. S14 [28] investigated the intersection of software
testing outsourcing and knowledge management, highlighting
the need to integrate KM considerations into outsourcing deci-
sions. BW–N1 [27] presented an automated method for gener-
ating test cases based on a requirements ontology supported by
inference rules and genetic algorithms. Meanwhile, S19 [29]
examined the application of knowledge representation, knowl-
edge management models, and knowledge maps to support

knowledge management in software testing. Collectively, these
studies expand the scope of existing evidence and reinforce the
practical advantages of adopting a diversity-oriented approach
in systematic review methodologies.
Number of seeds – Further investigation is needed to deter-
mine the optimal size of the seed set. In our SLR1 replication,
we used eight seeds; one of them (S4) did not lead to any
relevant studies. For SLR2, we used seven seeds instead of
the nine in the original review. In particular, only one of
these seeds retrieved relevant studies in the first snowballing
iteration. These findings suggest that not all seeds contribute
equally and that effectiveness may depend more on seed
quality than quantity. Additional replications are needed to
better understand which factors, such as citation count, topical
coverage, or diversity criteria, most influence seed effective-
ness.
Author diversity – We start the snowballing with 22 authors
for SLR1 and 14 for SLR2. Of the 58 authors in the orig-
inal SLR1, 50 were not present in the initial seed set. For
example, seed S6 (authors: E.F. de Souza, R.A. Falbo, and
N.L. Vijaykumar; publication venue: Information and Software
Technology Journal (IST)) led to the identification of articles
BW3 and BW6. BW3 was co-authored by the same group,



while BW6 appeared in the same journal. Similarly, studies
BW9, FW3 and FW5, identified through seeds S11, BW3,
and BW14, share at least one author with the corresponding
seed, indicating a pattern of author continuity throughout the
snowballing process. For SLR2, among the 123 unique authors
identified in the original review, only two, Petersen, K. and
Runeson, P., were included in the seed sets used in both
the original and our replication. This highlights the breadth
of author diversity that emerged throughout the snowballing
process and demonstrates the effectiveness of the strategy in
expanding beyond the original seed set’s author base.
Year diversity – For SLR1, the seed set initially covered
the years 2007, 2009, 2011, 2013, and 2015. For SLR2, we
included studies published up to 2015, following the approach
of [2]. More recent studies tend to reflect ongoing research
trends and are particularly valuable when the objective is to
identify current or emerging evidence, such as when updating
an SLR [6]–[8]. In contrast, using older references can help
identify prior work and retrieve articles published in the same
historical context. Ultimately, the included studies spanned
from 2003 to 2015 for SLR1 and from 1999 to 2014 for SLR2.
Publication diversity – We started the snowballing covering
eight (8) publication venues for SLR1 (CSCE, EASE, ESEM,
ICETAI, ICITCS, IST, MySEC, TSE) and seven (7) for SLR2
(IWLICSE, MIS, ICST, TIP, ICL, ICSTW, ICICKM) and
finalize it with a range of 29 for SLR1 and 25 unique for
SLR2.
Stop decision – In addition to selecting appropriate seed
studies, another critical challenge in snowballing is determin-
ing when to stop the iterative process. This decision depends
on the researcher’s assessment of whether additional relevant
studies are still likely to be found. In our SLR1 replication,
the number of newly included studies decreased consistently
across iterations: 11 in the first, 11 in the second, 5 in the
third, and 1 in the fourth. Although the fourth iteration returned
only one new study, we conducted a fifth iteration to verify
that no further studies would be identified; this served as
our stopping criterion. The same rationale guided the fifth
iteration in our SLR2 replication. This conservative approach
ensures completeness and aligns with previous guidance that
recommends continuing iterations until no new relevant studies
are found [3].

Some lessons learned from our results are:
Number of seeds – Six (6) to eight (8) studies were ap-
propriate for replication, since they allow the convergence of
snowballing in five (5) or six (6) iterations.
Sample diversity – The diversity of seeds in terms of authors,
year, and publication venue was observed in the final set of
selected studies.
Effort to define seeds – For replication, using the diversity
strategy streamlined the process of defining seeds six times.
Snowballing tool support – Google Scholar supports forward
snowballing, although it does not allow automatic download of
citations. The tool proposed by [30] facilitated the conduction
of SLR2 replication by providing valuable support. However, a
manual assessment was required because the tool utilized data

from the ResearchGate and Semantic Scholar APIs instead of
Google Scholar due to limitations imposed by Google.
Threats to validity – The selection of a particular SLR
may be biased towards the seed set construction. However, the
choice of the SLRs was guided by a set of criteria directed
toward the SLR’s content and did not favor the diversity
strategy. The specific topic covered in the selected SLR was
not crucial as the objective was to evaluate snowballing rather
than synthesizing evidence from identified studies. However,
replication researchers needed to be comfortable with the
topic to ensure accurate inclusion or exclusion of articles.
Furthermore, there is a risk that individual selection becomes
biased. However, having two researchers perform independent
evaluations on all articles helped mitigate individual assessor
bias. Overall, the articles were judged according to the SLR’s
design and the predefined criteria used in the evaluation to
help minimize the validity threats to the conclusion.

Concerning internal validity, we minimized the risk of
missing essential studies by extracting citations with the help
of Google Scholar, which offers a feature known as citation
tracking. Researchers can see more recent articles that cite the
original by finding a known article within the database. More-
over, we strictly followed the guidelines for the conduct of
snowballs suggested by Wohlin [3]. The snowballing process is
not without challenges. It is based on the assumption that other
relevant studies are indexed in the same way as the seeds. This
assumption was proven accurate in our replication. However,
despite their high relevance to content, some studies may be
indexed outside of known academic bases or as gray literature.
We use Google Scholar to identify citations to mitigate this
obstacle since “...The use of a generic database is sufficient to
discover most of the studies...” [8].

We also recognize that one limitation of our study is that
the diversity-based strategy is based solely on studies indexed
in Scopus. As a result, potentially relevant studies not indexed
in this database were not included in the candidate pool,
which may have affected the completeness and coverage of
our selection process. Future work could incorporate additional
digital libraries, such as Web of Science, IEEE Xplore, and
ACM Digital Library, to enhance the studies’ diversity and
representativeness.

VIII. CONCLUSIONS

In light of our findings, the primary contribution of this
research is the exploration of a diversity-based strategy for
constructing snowballing seed sets. Besides presenting our
analysis, we provide a detailed replication to enable trans-
parency and reproducibility. We acknowledge that our results
are not definitive; rather, we encourage further studies explor-
ing diversity-based seed set construction in SLRs within soft-
ware engineering. Future research could validate or challenge
our findings through additional empirical studies combining
SLRs, diversity-driven seed sets, and snowballing methods, or
even formal experiments. Ultimately, these results serve as a
foundation for a deeper understanding and broader adoption
of diversity strategies in seed set construction.
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