
How to choose a task? Mismatches in perspectives of newcomers
and existing contributors

Fabio Santos
Northern Arizona University

fabio_santos@nau.edu

Bianca Trinkenreich
Northern Arizona University
bianca_trinkenreich@nau.edu

João Felipe Pimentel
Northern Arizona University

joao.pimentel@nau.edu,

Igor Wiese
Universidade Tecnolóogica Federal do

Paraná
igor@utfpr.edu.br

Igor Steinmacher
Northern Arizona University
Igor.Steinmacher@nau.edu

Anita Sarma
Oregon State University

anita.sarma@oregonstate.edu

Marco A Gerosa
Northern Arizona University
Marco.Gerosa@nau.edu

ABSTRACT
[Background] Selecting an appropriate task is challenging for
Open Source Software (OSS) project newcomers and a variety of
strategies can help them in this process. [Aims] In this research, we
compare the perspective of maintainers, newcomers, and existing
contributors about the importance of strategies to support this pro-
cess. Our goal is to identify possible gulfs of expectations between
newcomers who are meant to be helped and contributors who have
to put e�ort into these strategies, which can create friction and
impede the usefulness of the strategies. [Method]We interviewed
maintainers (n=17) and applied inductive qualitative analysis to
derive a model of strategies meant to be adopted by newcomers and
communities. Next, we sent a questionnaire (n=64) to maintainers,
frequent contributors, and newcomers, asking them to rank these
strategies based on their importance. We used the Schulze method
to compare the di�erent rankings from the di�erent types of con-
tributors. [Results]Maintainers and contributors diverged in their
opinions about the relative importance of various strategies. The
results suggest that newcomers want a better contribution process
and more support to onboard, while maintainers expect to solve
questions using the available communication channels. [Conclu-
sions] The gaps in perspectives between newcomers and existing
contributors create a gulf of expectation. OSS communities can
leverage our results to prioritize the strategies considered the most
important by newcomers.

CCS CONCEPTS
• Software and its engineering→ Open source software.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ESEM’22, 2022, Helsinki, Finland
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

KEYWORDS
open source software, issue tracker, task management, newcomers,
social coding platform, strategies

ACM Reference Format:
Fabio Santos, Bianca Trinkenreich, João Felipe Pimentel, Igor Wiese, Igor
Steinmacher, Anita Sarma, and Marco A Gerosa. 2022. How to choose a
task? Mismatches in perspectives of newcomers and existing contributors.
In Proceedings of ESEM (ESEM’22). ACM, New York, NY, USA, 11 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Selecting an appropriate task to contribute is one of the most chal-
lenging but crucial steps for newcomers joining open source soft-
ware projects [25, 27–29, 37]. This is a known problem, and projects
employ various strategies to assist them in �nding starter tasks.
Existing work presents a compendium of such strategies [11, 17, 31].
For example, research has proposed labeling issues that signal new-
comer friendliness (e.g., starter task, newcomer task, good �rst
issue) [34] as an important strategy to aid newcomers in identify-
ing tasks they can undertake [1]. Others have proposedmechanisms
that aid newcomers in understanding the issue to be solved [18].
Most of these strategies are based on research on newcomer bar-
riers [29, 31] and contributors’ recommendations for overcoming
them.

A missing piece in our understanding of what newcomers need
is how newcomers’ perspectives �t in with those of existing contrib-
utors. A discrepancy between these two perspectives—newcomers
and existing contributors—can create a gulf of expectations. Such a
gulf, in turn, means that the projects’ strategies are less likely to
succeed, and newcomers continue to struggle.

Our goal in this paper is to investigate the di�erence in perspec-
tives of newcomers and existing contributors in (i) the strategies
newcomers use to choose a task and (ii) the strategies communities
need to employ to support newcomers. Exploring the di�erent per-
spectives can help OSS communities devise tailored strategies that
match newcomers’ needs.

We aim to answer the following research questions:
RQ1.What strategies help newcomers choose a task in OSS?

ar
X

iv
:s

ub
m

it/
43

78
47

0
 [c

s.S
E]

 2
9

Ju
n

20
22

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

ESEM’22, 2022, Helsinki, Finland Fabio Santos, Bianca Trinkenreich, João Felipe Nicolati Pimentel, Igor Wiese, Igor Steinmacher, Anita Sarma, Marco A Gerosa

RQ2. How do newcomers and existing contributors di�er in
their opinions of which strategies are important for newcomers?

We conducted a qualitative study based on interviews with main-
tainers (n=17) to identify strategies that people playing a maintainer
role consider important to assist newcomers. We focused on main-
tainers as they typically have knowledge and ownership of the
project, and strategies they propose have a higher likelihood of
being implemented. We then conducted a follow-up survey with
contributors, maintainers, and newcomers (n=64) to understand
to what extent di�erent stakeholders agreed on the importance of
these strategies.

Our results show that newcomers’ and other contributors’ per-
ceptions are aligned for some strategies. We also found situations in
which newcomers, frequent contributors, and maintainers di�er in
their thoughts about what newcomers need to select a task and start
contributing to an OSS project. For example, frequent contributors
and maintainers believed that “Understand the issue” would be the
most important strategy used by newcomers. Still, newcomers had
a di�erent perspective (“set up the environment” was ranked as the
most important). Regarding community strategies, newcomers and
frequent contributors agreed on the importance of good documen-
tation and project quality but di�ered widely about the importance
of improving newcomer onboarding and contribution processes.
Our results shed light on these discrepancies, and OSS communities
can leverage these results to re�ect on their onboarding strategies.

2 RELATEDWORK
Newcomers face a variety of barriers to start contributing to open-
source software, including social interaction problems, documen-
tation issues, lack of knowledge, lack of direction for how to con-
tribute, and high technical complexity [29]. One of those barriers is
related to choosing a task to start contributing to in an OSS repos-
itory [28]. Sometimes it is not clear if the contributor is able to
contribute to the issue reported [28, 29].

Recently, the literature proposed strategies like issue recommen-
dation, di�erent mitigation processes (addressing technical hurdles,
social hurdles, and toxic environment), maintainer empowerment,
issue labeling, and badges to aid newcomers. These strategies fo-
cus on communities [8, 9, 26, 36], contributors [30], or speci�c
niches [8]. They aim not only to assist newcomers in �nding a
task, but also to attract, retain, and keep newcomers engaged. Fig.
1 summarizes the strategies to aid newcomers identi�ed in the
literature.

Community strategies. Steinmacher et al. [27] explored the
social barriers and identi�ed possible mitigation strategies that
communities could employ to support newcomers, such as rec-
ommending mentors, providing automatic greetings, and o�ering
feedback on newcomers’ contributions. Later, Steinmacher et al.
[26] proposed 13 strategies to help newcomers �nd a task through
recommendations made by mentors. Among the strategies, they
indicate that communities should identify the complexity and skills
required for �nishing a task and sca�old newcomers’ skill acquisi-
tion.

Contributor strategies. Steinmacher et al. [30] devised 14 guide-
lines targeted at contributors and communities and divided these
guidelines into three groups: social (e.g., being proactive - from the

point of view of contributors), technical (e.g., documenting the code
structure - from the point of view of communities), and process
(e.g., �nding an easy task to start with - from the point of view of
contributors).

Project strategies. Guizani et al. [8] proposed a total of 48
strategies for projects. They focused on supporting the contribu-
tion in large OSS projects, and included a customized solution for
the Apache Software Foundation - ASF. Pham et al. [16] investi-
gated the contribution process with regard to the testing procedures
and proposed strategies to integrate newcomers into the testing
culture of the project, which includes lowering the barriers and
communicating the project’s culture.

Some studies advocate for employing supportive solutions as
strategies for aiding newcomers in choosing tasks. One approach
consists of creating a supportive environment to smoothly intro-
duce the newcomers to the social and technical skills related to a
project [18]. Other recent approaches aim to label issues to assist
in the selection of new issues [11–13, 17, 38]. For example, Santos
et al. [17] label issues according to the API domains of the project,
intending to let users choose issues related to their skill set. Other
researchers label issues as “good �rst issue” (GFI), with the goal
of providing newcomers with information about which issues are
easier for people who are new to the complexity of the project [11].
This type of labeling is encouraged by social coding platforms like
GitHub1, and practiced by several communities (e.g., LibreO�ce2,
KDE3, and Mozilla4).

While those strategies may help transpose the barriers, one ques-
tion remains: are these guidelines and solutions addressing the
problems in the way contributors expect? In this paper, we dive
into this question to �nd if there are mismatches between maintain-
ers’ and contributors’ perspectives regarding maintainers’ e�orts
and contributors’ strategies. Since the resources in projects are
�nite, prioritizing the communities’ strategies according to the im-
portance attributed by contributors may be important to optimize
the results, save time, and reduce e�orts.

3 METHOD
This section presents the design of our study, which included inter-
views and a survey5, as depicted in Fig. 2.

3.1 Stage 1: Interviews - Building the strategies
models

Our research goal was to understand the maintainers’ perspective
on (i) what strategies newcomers use to choose a task to work on;
and (ii) what strategies the community can take to help a newcomer
choose a task. Due to the complexity of the phenomenon under
study, we employed in-depth interviews.

3.1.1 Interviews Planning. We aimed to recruit project maintainers
to talk about task selection while they browsed through their issue
trackers. Therefore, we looked for active projects on GitHub and
1http://bit.ly/NewToOSS
2https://wiki.documentfoundation.org/Development/EasyHacks
3https://community.kde.org/KDE/Junior_Jobs
4https://wiki.mozilla.org/Good_�rst_bug
5The research protocol was approved by the institutional review board (IRB) of the
authors’ institution.

http://bit.ly/NewToOSS
https://wiki.documentfoundation.org/Development/EasyHacks
https://community.kde.org/KDE/Junior_Jobs
https://wiki.mozilla.org/Good_first_bug

How to choose a task? Mismatches in perspectives of newcomers and existing contributors ESEM’22, 2022, Helsinki, Finland

Figure 1: Previous strategies identi�ed in recent literature
[27] *1 [30] *2 [26] *3 [8] *4 [9] *5 [36] [11–13, 17, 38] *6, [40] *7

Figure 2: Research Method

with recent pull requests and issues. We went through the list of
popular projects and analyzed the projects’ metadata, including the
description, number of stars, number of forks, closed issues, pull
requests closed, number of contributors, number of commits, and
programming languages. Our goal was to select a set of diverse
projects in terms of languages, sizes, and domains. We selected 87
projects.

Then, we identi�ed the maintainers of these projects by ob-
serving the behavior of approving or rejecting pull requests, the
comments, and the auto-denominated role in their pro�les or in
the project repository. We selected 257 maintainers who had public
attract usernames or email addresses publicly available on their
pro�les. We invited and interviewed them in random order until

we could not �nd any new strategy related to our goals for three
consecutive interviews. We o�ered interviewees a 25-dollar gift
card as a token of appreciation. A consent letter was sent in ad-
vance along with a questionnaire to collect project and interviewee
demographic information.

We conducted two pilot interviews to validate the script and
time-box the interviews, ensuring that their duration would be
about 60 minutes. Two researchers evaluated the responses and
made minor adjustments to the instrument. The pilot interviews
were discarded.

Our �nal sample comprised 17 maintainers in OSS, responsi-
ble for validating changes and performing merges in 26 di�erent

ESEM’22, 2022, Helsinki, Finland Fabio Santos, Bianca Trinkenreich, João Felipe Nicolati Pimentel, Igor Wiese, Igor Steinmacher, Anita Sarma, Marco A Gerosa

projects. This number is in line with what is foreseen in the lit-
erature as a valid number to unveil the characteristics of a study
domain [2]. Table 1 presents their demographics.

3.1.2 Data Collection. We collected the data using semi-structured
interviews [22]. Three researchers experienced in qualitative studies
conducted the interviews using a videoconferencing tool (15) or
textual chat (2). We used a script (see Table 2) to guide the di�erent
areas of inquiry, while also listening for unanticipated information
during the �ow of the conversation.

The interviews revolved around the central question of “how do
newcomers choose an issue, and how can the community help?” We
approached this topic after establishing rapport with the intervie-
wee by asking about their contributions. Then, the researcher asked
the interviewees to open issues from their project and show how
they could be analyzed and what newcomers could do to choose
a task. We used the think-aloud technique while the interviewee
navigated the issue track system. Interviewees reported what strate-
gies contributors should use to choose a task and how to prepare
a project (usually using their own project as an example) to help
newcomers. Despite the pre-planned script, the interviewers took
advantage of the opportunities that emerged during their conduc-
tion, using the principle of �exibility to obtain extra data [22]. A
concluding part of the interview sought to obtain additional infor-
mation and pointers to other potential respondents (snowballing).
Two respondents were recruited using these leads.

With participant consent, we recorded all interviews. The �rst
author of this paper transcribed the interviews, which lasted be-
tween 45 and 65 minutes. We used O����.�� and listened to each

Table 1: Interview demographics (n=17) P* Prefer not to say

Participant
ID

Years of
Experience Gender 1st

contribution
Team member

since
P1 20 M 2004 2007
P2 8 M 2014 2014
P3 15 M 2016 2017
P4 8 W 2014 2014
P5 8 M 2014 2016
P6 15 M 2006 2018
P7 3 M 2018 2019
P8 10 M 2018 2018
P9 7 M 2016 2016
P10 10 P* 2015 2015
P11 3 M 2018 2020
P12 2 M 2018 2020
P13 7 M 2017 2020
P14 15 M 2005 2017
P15 4 M 2017 2017
P16 20 M 2008 2019
P17 8 W 2016 2020

Table 2: Interview Script (excluding demographic questions)

[RAPPORT]
Q1 - What are the last projects that you contributed/maintained?
Q2 - What are your areas of expertise?
Q3 - In these projects, how did you choose tasks that �t your expertise?
[SKILL TYPES]
Q4 - Look at the issue #XX. Suppose you are a newcomer: How can you choose a
task to contribute?
Can you, please, think aloud so that we know what you are thinking

recording, adjusting the corresponding transcriptions, mainly re-
garding technical terms and project names.

Our sample comprisedmaintainers across 26 di�erent OSS projects,
including Spark, Apache Cordova, Brain.js, Microsoft PowerToys,
Prisma, Azure Data Studio, ggplot2, Presto, bookdown, Godot En-
gine, Oppia, Jina.ai, Turn, and CASA. Some interviewees maintain
more than one project. These projects vary in terms of the number
of contributors (30 to 1,791 contributors), product domains (includ-
ing infrastructure and user-application projects), and types (backed
by foundations, communities, and companies). Table 1 presents the
demographics of our sample. Because of the terms of consent, we
cannot link each participant to their projects.

3.1.3 Data Analysis. We qualitatively analyzed the transcripts of
the interviews by inductively applying open coding in groups. We
built post-formed codes as the analysis progressed and associated
them with respective parts of the transcribed text. The codes re-
vealed strategies according to the participants’ perspectives, who
were identi�ed as P1 to P17.

After identifying the strategies, we grouped them into a set of
higher-level categories and produced two codebooks, one for new-
comers’ strategies to choose a task and another for the communities’
strategies to help newcomers �nd a suitable task 6. Three of the
authors met once a week for three weeks to discuss and validate
the results. The coding process was conducted using continuous
comparison [33] and negotiated agreement [6] as a group. In the
negotiated agreement process, the researchers discussed their ratio-
nale for categorizing each code until they reached a consensus [6].

3.1.4 Member Checking. After analyzing the strategies reported
in the interviews, we conducted member checking to evaluate the
validity of our interpretation and collect additional insights. We
contacted via email the four participants who had agreed to a follow-
up meeting (P2, P4, P14, and P16), sending them an editable visual
representation of the description of each strategy. Participants could
give feedback by email, annotating the visualization directly, or
through an online meeting. Participants P14 and P16 scheduled a
virtual meeting, whereas P2 and P4 gave their feedback over email.
The virtual meetings lasted about 15 minutes. During the call, we
explained the overall de�nitions of the �rst level of Fig. 4 and 5,
and asked for suggestions. The email had two questions: What do
you think about this model? Did we correctly place your view in
the model? The four participants (P2, P4, P14, and P16) veri�ed that
the strategies we had generated re�ected their views. We identi�ed
some misunderstandings related to some terms and updated our
model to make them clearer.

3.2 Stage 2: Survey - Understanding the relative
importance of the strategies

We conducted an online survey to obtain the perspectives of a vari-
ety of developers on the strategies identi�ed during the interview.

3.2.1 Survey Planning. In the survey, we present the newcomers’
strategies for choosing an issue and the strategies that communities
use to help them. We asked respondents to rank the relevance

6https://doi.org/10.5281/zenodo.6508776

Otter.ai
https://doi.org/10.5281/zenodo.6508776

How to choose a task? Mismatches in perspectives of newcomers and existing contributors ESEM’22, 2022, Helsinki, Finland

of each strategy. We also included demographic questions about
experience, age, gender identity, and country of residence.

We advertised the survey on social media and community blogs
(e.g., Linkedin, Twitter, Facebook, and others). We also sent direct
messages to OSS contributors and discussion lists. We o�ered the
participants a chance to enter a ra�e for US$25 gift cards to en-
courage participation.

3.2.2 Data Collection. The survey was available between October
8 and November 2, 2021. We received 209 non-blank responses
and �ltered out data to consider only valid responses. We analyzed
the attention check answers, time to complete the questionnaire,
equal/similar e-mail addresses, and inappropriate answers to the
open questions (e.g., “XXX,” “No,” “There is No,” “N”), resulting
in 64 valid responses. We present the demographics of the survey
participants in Fig. 3.

3.2.3 Data Analysis. We used the Schulze method to rank the
strategies and their association with groups from the demographic
data [19, 39].

Schulze Method. The Schulze method [19] is an election method
that computes a single ordered list of preferences (ranking of candi-
dates) from a set of votes, in which each vote represents an ordered
list of preferences on its own. That is, each voter selects all the
candidates that they prefer in order, ranking them, and the Schulze
method aggregates all the rankings into a single winning ranking,
or optionally an ordered list with or without ties. This method
is considered a Condorcet method. Hence, it prioritizes votes for
candidates who win the pairwise comparisons against each candi-
date in every head-to-head election scenario possible. This election
method has been used for elections and decision-making processes
by the Debian project, Ubuntu, Gentoo, the Wikimedia Foundation,
political parties, and others [20]. In our case, we combined the rank-
ings provided by the survey participants to �nd which strategies
have higher relative importance for each group.

Schulze Setup. The Schulze con�guration considers the ordered
preference of the factors each participant selected that de�ne the
relevance of the strategies. In our case, the strategies identi�ed in
the previous interview stage are the factors. We created the ballot
list by aggregating the number of times each ranking order was
chosen. We used the R package “votesys”[4] to compute the list of
the most voted strategies using the Schulze method.

See supplemental material 7 for the questionnaire, codebooks,
and sample answers.

4 RESULTS
In this section, we present the results of our investigation grouped
by research question.

4.1 RQ1: What strategies help newcomers
choose a task in OSS?

To answer this research question, we interviewed maintainers to
understand their perspectives on (i) what strategies a newcomer
uses to choose an open issue; and (ii) what strategies the OSS
communities can use to help newcomers choose tasks.
7https://doi.org/10.5281/zenodo.6508776

4.1.1 Newcomer strategies to choose a task. From the interviews,
we could identify 27 strategies that maintainers expect newcomers
to use to choose a task and grouped them into �ve categories, as
presented in Fig. 4. In the following, we present more details about
our �ndings, organized by strategy category.

Understand the issue. According to the maintainers, newcom-
ers should understand the issues beyond their titles. The speci�c
strategies under this category are presented in the �rst column of
Fig. 4. The main focus for newcomers is �nding signals to help them
match their skills with appropriate issues. In this sense, reading
through all the issues’ information (title, description, comments)
and checking issue labels, type (bug/feature), and keywords help
newcomers to �nd meaningful signals relevant to solving the issue
(e.g., class names, method names, component, library, etc.). For
example, one interviewee mentioned that if the newcomers want
to learn if the issue is interesting for them “that can be concluded
from reading the entirety of the proposal and reading the discussion
about it. And then the actual code �x is very simple” (P12).

Communicate with the community. Maintainers mentioned the
importance of communicating with the community as part of the
decision process. A newcomer who does not completely understand
an issue should contact to receive support from the community.
Speci�c strategies related to it include (i) posing questions to main-
tainers or other contributors and (ii) staying in touch with the
community to learn about the project and project roles. As P10
stated: “usually you can �gure out it [...] by talking to other contribu-
tors or peers”.

Understand the context. To choose a task, maintainers highlighted
that it is important for newcomers to know the context of the
problem. Newcomers need to capture details that may help them
to de�ne a solution. To do this, newcomers need to read and have
a high-level understanding of the codebase and the libraries used.
Furthermore, it is suggested that they understand aspects related to
the software architecture, like dependencies and con�guration �les.
Maintainers also reported that newcomers should attempt to foresee
the scope of the change. If newcomers are not able to understand
the context where the issue is, they will probably change more
code than necessary to solve the issue, increasing the chance of
introducing new bugs: “The point is, you should know what feature
we are working on.” (P13). Fig. 4 (third column) lists the strategies
related to understanding the context.

Set up the environment. To prepare a solution and submit a pull
request, �rst, the newcomer must identify the appropriate tools to
build the software locally. “Set up the environment” is a landscape
exploration task since the contribution guidelines documentation
is not always up-to-date or does not comprehend all possible op-
erating systems, library versions, and other details. It is also a
playground to understand con�guration �les and the project struc-
ture. Contributors need to try to set up the environment to check
their skills before proceeding. In addition, reproducing the error is
part of the process, as P5 witnessed: “looking at the debugger [...]
we can get clues of what’s happening. But for sure, we will want to
reproduce it.” (P5). The fourth column of Fig. 4 shows the strategies
under the Setup environment category.

https://doi.org/10.5281/zenodo.6508776

ESEM’22, 2022, Helsinki, Finland Fabio Santos, Bianca Trinkenreich, João Felipe Nicolati Pimentel, Igor Wiese, Igor Steinmacher, Anita Sarma, Marco A Gerosa

Figure 3: Personal characteristics of the survey respondents (n=64)

Understand
the issue

Read the issue
(title, description,

comments)
(P1,P8,P12,P16)

Check labels
(P1,P9,P12,P15)

Identify the issue
type (bug, feature)
(P2,P4,P7,P8,P16)

Find and search the
keywords

(P5,P7,P8,P13)

Identify similar
issues (P9)

Figure out what
the bug is (P16)

Communicate with
the community

Ask questions
(P1,P11,P12,

P14,P16)

Participate in
communication

channels
(like mailing list)

(P1,P8,P10)

Understand
the context

Understand what
needs to be done
(P2,P5,P13,P16)

Understand the code
(P4,P5,P8,P11,P12)

Identify the libraries
and dependencies
(P1,P2,P4,P5,P6,
P7,P9,P12,P17)

Understand the
architecture

(P12,P13,P14,P17)

Identify the
configuration files
(P2,P5,P6,P17)

Limit your analysis
to a code region

(P4,P7,P8)

Identify function chain
(P4,P7,P8,P12)

Understand the
application's general

objectives (P14)

Set up the
environment

Read the
documentation
(P7,P12,P17)

Identify the
required tools and
program language

(P1,P2,P3,P4,P5,P15)

Identify the version
(P5,P7)

Run the environment
(P2,P5,P6,P7,P8)

Reproduce the error
(P2,P5,P7,P8,P9,P11)

Understand what
needs to be changed

Identify the
debug tool

(P5,P7)

Debug
(P2,P4,P6,P8,P14)

Evaluate the inputs
(P4,P8,P12)

Change parameters
(P4,P7)

Realize what code
update is needed

(P4, P8)

Check the output
(P7,P8)

Figure 4: How newcomers choose their tasks (according to the maintainers).

Understand what needs to be changed. Once the newcomer has set
up the environment and realized the overall architecture and extent
of possible updates that need to be made, it is time to dig deeper
and identify application behavior by changing inputs and verifying
how outputs respond to changes. A debugging tool is really useful
here, because even having a general idea about the context, the
code can often be complicated. When the code is complex, the
contributors must analyze the values of the variables and run the
code step by step, also changing the values of the parameters of the
function. Maintainers claim that once newcomers have a general
understanding of the underlying logic, they will be con�dent about
the task. “... this exception is happening, because somebody added
this line. Okay, well, what happens if I remove this line? Does it work?
Does something else break? Where is this line used?” (P8).

4.1.2 Community strategies to facilitate task selection. In addition
to the strategies that newcomers are expected to take, we found
40 strategies that the communities take to help newcomers choose
their tasks. From these strategies, we derived seven categories of
strategies, as presented in Fig. 5.

Have good documentation. A way that the community can sup-
port newcomers is by providing appropriate documentation. It
is important, for example, to arrange guidelines that contain the
necessary information to help them understand the contribution
process, standards, and how to contact the community. In addition
to traditional documentation, providing tutorials to cover crucial
aspects related to project architecture and technology is also impor-
tant. Pointing newcomers to good examples to be followed (issues,
commit messages, etc.) is another point. Participant P2 pointed
out that “the minimum entry-level is just a knowledge of software
engineering. Python in this case, and then just following the tutorial,
so some patience basically to understand the documentation and so
on” (P2).

Have good communication. This strategy is fundamental to mak-
ing newcomers feel welcome and comfortable discussing problems
not covered by the documentation. Having channels speci�c for on-
boarding questions and asking for help when starting is something
that communities may put in place. One of our interviewees con-
�rmed the importance of the community showing good/appropriate
communication skills: “I see a lot on GitHub, big, big projects with

How to choose a task? Mismatches in perspectives of newcomers and existing contributors ESEM’22, 2022, Helsinki, Finland

Have good
documentation

Have a
contributor guide
(P1,P2,P3,P4,P6,

P11,P16,P17)

Create tutorials
(P3)

Have a convention
in the code base

(P2,P11,P14)

Provide relevant
links
(P11)

Have good
communication

Create
communication
channels (like
mailing lists)
(P3,P9,P16)

Give feedback
(P1,P13,P15)

Improve
project quality

Modularize
the code
(P3,P6)

Have unit tests
(P14)

Run static analysis
(P1,P2,P15,P17)

Make a code
inventory

(P3)

Create a
management

structure
(P13)

Improve
the process

Create a
contribution

process
(P11,P17)

Explain issue
with details
(P3,P7,P8,

P11,P13,P17)

Organize
the issues

Create templates
(P2,P5,P16)

Link similar issues
(P1,P3,P6,P8,P9,P12)

Split issues
(P1,P2,P9,P14,P16)

Provide the issue's
type (bug/feature)

(P2,P7,P8)

Link issues to
users impacted (P8)

Deduplicate issues
(P1)

Label
the issues

Label with skills
(P3,P11)

Label with
knowledge area

(P13)

Label with
components
(P1,P11,P13)

Label with
programming

languages (P3)

Label with
libraries or APIs

(P13)

Label for triage
(P16)

Label with size
(P13)

Label with
difficulty

(P9)

Label with the
documentation
point related to
the issue (P4)

Label with who
to contact

(P9)

Label with
first steps

(P9)

Label with the
expected outcome

(P9)

Label with context
(P16)

Label with targets
(team, community)

(P16)

Label with
helper text

(P16)

Support the
onboarding of

newcomers

Create a welcome
survey (P9,P11)

Look to the
contributor's

interests (P11)

Create an onboarding
committee (P11,P17)

Create a group of
mentors to work
with newcomers

(P1,P11,P14)

Suggest
contributors/issues

(P1,P9,P11,P14,P17)

Figure 5: Community strategies to help newcomers �nding a suitable issue.

tons of issues. And they take a lot of time to react to comments... And
I think that this engages a lot. I think that you have to give time for
people to �gure it out. But keeping them weeks or months without an
answer usually would be too much” (P13).

Improve project quality. Quality improvement aims to �nd easier
ways to �x and evolve the code. One strategy that helps is by having
the code organized clearly and explicitly in a modular way. This is
mentioned by P3, who said: “That is yet convenient here: the code
of <software name> is structured by module, and each module has
a folder.” This facilitates, among other things, locating the pieces
of code related to speci�c issues and features. Keeping the code
covered with unit tests and providing static analysis tools make it
convenient for newcomers to understand if their code is following
the standards.

Improve the process. Improving the process was mentioned by
participants both in terms of (i) creating a contribution process so
newcomers can “learn where they can contribute” (P1) by “going
through the o�cial onboarding process” (P11). At a more granular
level, the process of creating a task should guarantee that the pro-
ponent is going to (ii) explain the issue with details because “if the
domain knowledge is missing, it is a lot harder for someone to join in”
(P3). Besides explaining the issue, details can also include previous
solution attempts and results, so a contributor is aware of previous
strives and avoids rework (P8).

Organize the issues. Issue organization bene�ts the newcomers
and the overall team by helping the project prioritize and allocate
the right resources to the right issues. Regarding the issue itself, (i)
creating a template help to standardize details and guide the author
of an issue to �ll the expected data (P16). The template can include
(ii) a link to similar issues, which is a detail that can “inspire the
contributor” (P9) on how to solve the issue. The strategy to (iii)
split issues avoids driving newcomers away due to complexity. The
issue can have smaller sub-issues that can be taken by new people,
and subsequently added everything, so that we can close the issue
in the end (P9). When it comes to the issue tracker, (iv) providing
the issue’s type that could be used on a �lter helps newcomers
to reduce the number of choices from a long list if they would
prefer to work on a speci�c type of issue (e.g., feature request or
backtrack) (P7). Not only the type but knowing the (v) impacted
users can entice newcomers to pick a task by “knowing how many

people are facing this issue”. Although requiring a manual e�ort, (vi)
deduplicate issues (P1) is a strategy to avoid rework by having more
than one issue to the same task.

Label the issues. Labeling could be part of the issue organiza-
tion due to its straight relationship. In fact, labels can be a way
to provide the issue’s type, indicating whether they represent bug
reports, feature requests, or other types of tasks. However, due to
the great number of ways of labeling identi�ed by the interviewers,
we decided to create a category for the labels’ strategies. Our par-
ticipants mentioned they would like to have labels with “speci�c
skills would be required to solve the issue” (P11), for example, “skill:
documentation‘ or skill: ruby” (P3). Regarding the technical skills,
participants brought out the need to have labels with knowledge
area (P13), components (P1, P11, P13), programming language (P3),
and libraries or APIs (P13).

The status of the issue can be part of a label that shows if an issue
is still in triage or even under ongoing work by another contributor
(P16)—in that case, a newcomer can decide to join and collaborate.
Both size (P13) and di�culty level (P9) were mentioned in terms of
e�ort and complexity. As for assistance in understanding the issue,
P4 recommended having a label to the point of documentation
related to the issue, so newcomers can have a better picture of the
piece of software they will deal with. In case of questions, when
having “labels regarding who to contact if you need help with that
issue?” (P9), a newcomer can feel safe having someone to contact
with. When coming to action, a label with �rst steps and expected
outcomes (P9) can also be a helping hand to newcomers on the
pathway to solving the issue. P16 points to the necessity of labeling
the issues with the context of the project and indicating not only
the target (“if you don’t have context, you don’t need to know what
accessibility end is. But my team needs to know what that means.”),
but also including helper texts that describe the labels.

Support the onboarding of newcomers. Supporting the onboard-
ing can include identifying the newcomers’ characteristics and
potential. It can be done with a survey identifying their skills and
interests. An onboarding committee in charge of the integration
may de�ne the policies and goals. Knowing the newcomers’ po-
tential and interests, the community can recommend a mentor “to
make it easy for a certain person to contribute more” (P1). The mentor

ESEM’22, 2022, Helsinki, Finland Fabio Santos, Bianca Trinkenreich, João Felipe Nicolati Pimentel, Igor Wiese, Igor Steinmacher, Anita Sarma, Marco A Gerosa

may indicate some easy tasks as “�rst issues which will help [the
newcomer] to get familiarized with the code base” (P11).

4.2 RQ2: How do newcomers and existing
contributors di�er in their opinions of
which strategies are important for
newcomers?

To compare the relative importance of the strategies from the point
of view of di�erent stakeholders, we used the Schulze method [19]
to combine the rankings for (i) newcomers and (ii) community
strategies. In the following subsections, we present the rankings
and how they compare.

4.2.1 Mismatches in newcomers’ strategies. Figure 6 presents the
ranking of the preferences from the three groups: newcomers, fre-
quent contributors, and maintainers. The numbers in the �gure
represent the position of each strategy in the combined ranking (it
is possible to have ties).

Regarding strategies that newcomers are expected to use to
choose a task, frequent contributors and maintainers had very
similar values. However, while the Schulze method found a clear se-
quence of importance for frequent contributors, two ties occurred
for maintainers: “Set up the environment” and “Understand the
issue” tied in the �rst position; and “Communicate with the com-
munity” and “Understand the context” tied in the last position.

Newcomers also had similar rankings. However, they value “Set
up the environment” more than “Understand what needs to be
changed”. The former appears in the �rst position, while the latter—
which appears in the �rst position for frequent contributors and
maintainers—appears in the third position for newcomers. Finally,
the “Communicate with the community” was ranked in the penul-
timate position by all groups.

1

2

3

4

5

1

2

3

4

5

1 Understand the issue

1 Set up the environment

3 Understand the change

4 Communicate with community

4 Understand the context
Newcomers Frequent Maintainers

Figure 6: The relative importance of newcomer strategies

4.2.2 Mismatches in maintainers’ strategies. Fig. 7 presents the
combined rankings for maintainers’ strategies, according to each
stakeholder. Once again, the perspective of frequent contributors
and maintainers are similar, with one standout di�erence: “Support
the onboarding of newcomers”.

The “Improve project quality” strategy was ranked as the top-
ranked strategy for frequent contributors and maintainers. We
have almost an agreement since newcomers ranked it in second
place. The most important strategy according to the newcomers
was “have good documentation”, which is also tied as the second
most important strategy for frequent contributors and maintainers.
Newcomers and frequent contributors agree that “Label the issues”

is the least important strategy. Maintainers also agree with its low
importance, ranking it in the sixth position.

We also found some mismatches. For newcomers, “good com-
munication” is only the �fth strategy contrasting with the second
place for maintainers (tied with “good documentation”) and the
fourth for frequent contributors. Another mismatch regards the
category “improve the process.” It was ranked third according to
newcomers, but its ranking dropped signi�cantly for frequent con-
tributors and maintainers (sixth and �fth, respectively). Still, for
“Support the onboarding of newcomers,” while it was ranked last
for the maintainers, it was the third for newcomers and second for
frequent contributors. This is surprising since the intuition we had
was that maintainers should prioritize the onboarding process to
count on human resources to work on the issues.

1

2

3

3

5

5

7

1

2

2

4

5

6

7

1 Improve project quality

2 Good documentation

2 Good communication

4 Organize the issues

5 Improve the process

6 Label the issues

7 Onboarding of newcomers
Newcomers Frequent Maintainers

Figure 7: The relative importance of community strategies

5 DISCUSSION
Why does the convergence of relative importance matter?
An OSS project is a challenging environment composed of diverse
team members with a variety of experience levels and informal rela-
tions [24]. Within a dynamic organization, it is di�cult to identify
the competencies of each member, as people have di�erent styles of
development, are physically distant, and lack a structured working
relationship [24]. In this environment, knowing the community’s
interests and concerns and managing to converge them can help
better manage the project. For example, Steinmacher et al. [26]
report di�culties mentors face in assisting newcomers. Lack of
information from maintainers about newcomers denies assistance
and makes the prioritization of the onboarding process harder.

In our results, we found a high convergence between frequent
contributors and maintainers, both in terms of which strategies
newcomers use to choose a task and strategies communities can
use to support newcomers in choosing a task. However, newcomers
have di�erent interests and concerns. This discrepancy between
perspectives might create a gulf of expectations and misunderstand-
ings, making newcomers struggle, and maintainers mismanage the
project with ine�ective strategies.

Maintainers and contributors �ght the same battles from
di�erent perspectives. Although contributing to a project is an
overarching goal shared by everyone, maintainers and newcomers
have di�erent objectives. Maintainers are concerned with keeping
the project running smoothly, attending to their customers, and

How to choose a task? Mismatches in perspectives of newcomers and existing contributors ESEM’22, 2022, Helsinki, Finland

managing the workload. On the other hand, newcomers may be
looking for the bene�ts of the contribution to their career or the
project directly. Thus, easy access to technical tips through docu-
mentation and project quality veri�cation plays a special role when
looking for a task to start with.

A recent study about the shifts in motivation [7] con�rms the di-
versity of reasons that newcomers join and senior developers keep
contributing. The �rst group wants to learn and aims to improve
the career (indeed, the learning process may leverage the career–
extrinsic motivation [7]). Therefore they are thirsty for projects
with good documentation, whereas the experienced contributors
want quality over documentation and good communication chan-
nels to ask questions. They aim for altruism or ideology (intrinsic
motivations) [7]. Since regular contributors believe the onboarding
process is a priority, altruism might direct them to help newcomers.

A study for the Linux Kernel OSS project [41] shows the number
of �les and commits particularly grows in some modules, while the
�ow of joiners is stable or even drops. Also, the maintainers’ e�ort
increased with author churn [41]. This is particularly observed
in many OSS projects. As they cannot count on more newcomers
and face team churn, investing time in documentation and quality
seems to be aligned with our results.

Maintainers have a deep knowledge of their projects and the
ideology they implement. Therefore, the main important task is
to improve the project quality and understand the issue’s content.
As high-ranked o�cers, they know the battle�eld. On the other
hand, rookies carefully assess the environment before engaging in
a project. Therefore, the ability to set up the environment is crucial
to the �rst contribution.

The work of den Besten et al. [5] shows evidence that open-
source project allocation is in�uenced by code characteristics and
complexity. One may be able to assess the skills and the complexity
level of a task by looking into the documentation, �guring out how
to set up the environment, and identifying the complexity of the
change. Newcomers like to start with a speci�c kind of problem,
involving a less complex, contained, and low workload [34]. Sarma
et al. [18] proposed BugExchange: a tool to help newcomers �nd a
task while pointing to related documentation, recommend issues,
and communicate with near-peer mentors. The idea behind the tool
is to create a learning environment and to aid newcomers to climb
the issues’ complexity step by step.

As contributors mature and become frequent contributors, they
navigate project issues and �nd the resources they need. In fact,
the results showed a decrease in the priority of the "set up the
environment" strategy.

Multi-teamingneeds documentation and collaboration sup-
port. OSS projects usually are multi-teaming (i.e., projects whose
members work on multiple projects simultaneously). Therefore,
multi-teaming and OSS research have a common ground. Multi-
teaming research corroborates the idea brought by OSS communi-
ties. The plurality of members may leverage the knowledge inside
the project, but, on the other hand, it can hamper coordination and
fragment the team’s attention [10]. A proposed solution for multi-
teaming is the use of information systems to support collaboration
and a central repository (i.e., platforms like GitHub) for knowledge
modeling or speci�c tools like the dashboard proposed by Guizani
et al. [9]. The information systems may be seen as a document

repository and a collaboration platform to assist team members in
addressing the shared cognition problem by enabling information
�ow [10]. Since newcomers seek knowledge and tasks to which
to contribute, it meets our �ndings for good documentation and a
quality project. Maintainers, as project managers, must be aware
of contributors’ needs and prepare the project’s repository to meet
contributors’ expectations. Our �ndings suggest that maintainers
should invest in well-written documentation, a communication
channel for the team, and project quality improvement.

Leveraging related research is perhaps a good way to avoid rein-
venting the wheel. Multi-teaming research may borrow ideas to
address the team management encompassing strategies to integrate
newcomers, manage the quality, and prepare the project to use a
contribution process suitable to dynamic teams with high churn vol-
ume, di�culties of communications, �exible hierarchy, and diverse
levels of members commitment [10].

The paradox of choice. This paradox emphasizes the greater
the number of options we have, the less satisfaction we will derive
from our decisions [21]. When newcomers open an issue tracker
list and encounter many open issues, they can struggle to �nd
the most suitable task to contribute to and often give up. When
people do not have a strategy to elect viable choices, a decision
can become overwhelmed by the options, reducing the likelihood
of making a good choice and leading to frustration [21]. Strategic
thinking involves planning and thinking. Planning includes analysis
and procedures, whereas thinking involves synthesis—encouraging
intuitive, innovative, and creative thinking [32]. While the list of
issues will continue to exist and, in many cases, as a long list,
our results suggest strategic thinking to help a newcomer when
choosing a task to contribute. We provide suggestions for both
the newcomer (Section 4.1.1) and the community (Section 4.1.2) to
mitigate the paradox of choice in the issue tracker list.

Strategies used in practice or suggested by maintainers
are not well-documented in the literature. Despite the recent
literature covering several of the strategies that maintainers can
use to support newcomers, we are surprised that after many papers
about the topic, we still found other strategies. For example, as pre-
sented in related work (Section 2), GitHub projects employ many
labeling strategies, such as “Label with Components”.8 However,
we found other approaches. For example, labels for knowledge area,
expected outcome, and context were proposed by our interviewees.

We also found some new strategies to address the organization
of the issues. For example, it would be interesting to link the issues
with stakeholders whowould bene�t or be impacted (not developers
working on it). This would be valuable since the business unit or
customers interested in the solution of the issue would be explicit.

The importance of the newcomers’ strategy “Setup the environ-
ment” is probably due to the increasing complexity of recent appli-
cations and the plurality of the con�gurations. Since OSS projects
are not contained in a single company, con�guration management
(CM) is hard to pursue, creating additional challenges for this strat-
egy [15]. Future work can address speci�c strategies to handle this
complexity, focusing on CM for newcomers.

While the strategies proposed in the literature barely tackle
which strategies newcomers should use to communicate with the

8https://github.com/JabRef/jabref

https://github.com/JabRef/jabref

ESEM’22, 2022, Helsinki, Finland Fabio Santos, Bianca Trinkenreich, João Felipe Nicolati Pimentel, Igor Wiese, Igor Steinmacher, Anita Sarma, Marco A Gerosa

community, some communities’ strategies may help to increase the
con�dence of newcomers, such as acting with kindness and putting
e�ort to help newcomers feel part of the team and not afraid of the
community [30].

6 THREATS TO VALIDITY
There are some limitations related to our research results.

Generalizability. One can argue that a majority of our inter-
viewees identi�ed as men. Although it is a similar distribution to
typical OSS gender demographics [3, 23, 35], we could have found
new insights with a more diverse distribution of gender. The strate-
gies uncovered in our study are not meant to be exhaustive, and
further research into di�erent types of projects will likely uncover
other strategies. Furthermore, we acknowledge that our sample
may be biased in unknown ways, and our results are only valid for
our respondents. Additionally, the results presented in this paper
are related to Open Source communities. Thus, we do not expect
that the strategies found in our study will be directly applicable to
other software domains. Nevertheless, to allow replication of our
study, we carefully describe our research method steps.

Replicability in qualitative research is hard, since human be-
haviors, feelings, and perceptions change over time. Merriam [14]
suggests checking the consistency of the results and inferences.
Consistency refers to ensuring that the results consistently fol-
low the data and the data analysis can support all inferences. To
increase consistency, we performed data analysis in pairs, which
was consistently revised by two experienced researchers. We held
weekly meetings to discuss and adjust codes and categories until we
reached an agreement. We also performed member checking with
four participants, who con�rmed our interpretation with minor
changes. Moreover, we provide the codebook for traceability and
increase comprehensibility and repeatability.

Theoretical saturation. A potential limitation in qualitative
studies is not reaching theoretical saturation. The quality, rather
than the size, of the sample of participants is essential to increase
our con�dence in the results. In this study, we interviewed 17 par-
ticipants with di�erent perspectives and perceptions about the
studied phenomenon. Our participants were diverse in terms of the
number of years with OSS and roles. Further, these participants
represent 26 di�erent OSS projects of di�erent sizes. The number
of projects is higher than the number of interviewees, as some of
them contribute to more than one project in parallel. The number of
interviewed participants was adequate to uncover and understand
the core categories in a all-de�ned cultural domain or study of lived
experience [2]. While we cannot claim saturation, our population
has helped us uncover a consistent and comprehensive account of
the strategies.

Inappropriate participation. As described in Section 3.2.2, we
employed several �ltering and inspecting strategies to reduce the
possibility of fake data; however, it is not possible to claim that
our data is completely free of this threat. From the 12 answers
indicating no previous contributions only two respondents had no
coding experience but have informed projects they work (possible
as non-coder). Since non-coder contributions are also valuable, we
decided to include these answers. Some participants did not answer
the name/number of the projects they contributed as it was not

a mandatory answer. To verify the commitment and experience
we relied on the questions: How frequently do you contribute to
OSS projects? How many years contributing to OSS projects? How
many years of programming experience do you have?

7 CONCLUSION
We interviewed maintainers from diverse OSS projects and iden-
ti�ed 27 strategies (grouped in �ve categories) that a newcomer
uses to choose a task, and 40 strategies (grouped in seven cate-
gories) communities employ to help the newcomers. Following, we
surveyed maintainers, newcomers, and frequent contributors to
rank the newcomers’ and maintainers’ strategies. Using a Schulze
method, we ranked the relative importance of the strategies to elu-
cidate which ones are seen as more relevant for contributors in
di�erent roles (newcomers, frequent contributors, and maintainers),
highlighting how they diverge. We found maintainers and new-
comers diverge about the importance of the process of onboarding,
the improvement of the contribution process, and the team com-
munication. Overall, stakeholders agreed on the priority of project
quality, good documentation, correctly reading and understanding
the problem, and identifying what changes needs to be made.

Prior works proposed several guidelines, mitigation strategies,
and processes to overcome the initial barrier faced by the newcom-
ers. Our ranking might be used to prioritize the management e�ort
in OSS projects or support aid goals to improve the onboarding pro-
cess. Strategies that converge in serving the various stakeholders
can decrease existing gaps in perspectives, therefore, obviating the
problem of the expectation gulf.

Future work should reach maintainers to receive feedback about
how communities can adopt the strategies and how to automate
them. Additional research may also propose ways to improve pro-
ductivity in OSS communities by analyzing multi-team research
that possibly shares problems with OSS projects like team churn
and poor team coordination. Reusing mature strategies to create
robust contribution processes, collaborations, and support the in-
tegration of new team members seem to have liaison with the
challenges faced by the OSS communities. Additional research can
also uncover the sequence and prerequisites of the strategies. Fi-
nally, another interesting future work would be handling the choice
paradox by suggesting a step-by-step project-customized process
to be followed by newcomers to track progress and avoid getting
lost in selecting an issue.

ACKNOWLEDGMENTS
This work is partially supported by the National Science Founda-
tion under Grant numbers 1815486, 1815503, 1900903, and 1901031,
CNPq grant #313067/2020-1. We also thank the participants who
spent their time answering our interviews and survey.

This work is partially supported by CNPq/MCTI/FNDCT (grant
#408812/2021-4) and MCTIC/CGI/FAPESP (grant #2021/06662-1).

REFERENCES
[1] Sogol Balali, Umayal Annamalai, Hema Susmita Padala, Bianca Trinkenreich,

Marco A Gerosa, Igor Steinmacher, and Anita Sarma. 2020. Recommending tasks
to newcomers in oss projects: How do mentors handle it?. In Proceedings of the
16th International Symposium on Open Collaboration. ACM, Virtual Conference,
Spain, 1–14.

How to choose a task? Mismatches in perspectives of newcomers and existing contributors ESEM’22, 2022, Helsinki, Finland

[2] H Russell Bernard. 2017. Research methods in anthropology: Qualitative and
quantitative approaches. Rowman & Little�eld, Washington, DC.

[3] Bitergia. 2016. Gender-diversity Analysis of the Linux kernel Technical Con-
tributions. Accessed: 2020-10-16. https://blog.bitergia.com/2016/10/11/gender-
diversity-analysis-of-the-linux-kernel-technical-contributions.

[4] CRAN. 2018. CRAN Repository Policy. https://cran.r-project.org/web/packages/
votesys/index.html

[5] Matthijs den Besten, Jean-Michel Dalle, and Fabrice Galia. 2008. The allocation of
collaborative e�orts in open-source software. Information Economics and Policy
20, 4 (2008), 316–322.

[6] D Garrison, Martha Cleveland-Innes, Marguerite Koole, and James Kappelman.
2006. Revisiting methodological issues in transcript analysis: Negotiated coding
and reliability. The Internet and Higher Education 9, 1 (2006), 1–8.

[7] Marco Gerosa, Igor Wiese, Bianca Trinkenreich, Georg Link, Gregorio Robles,
Christoph Treude, Igor Steinmacher, and Anita Sarma. 2021. The shifting sands of
motivation: Revisiting what drives contributors in open source. In 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). IEEE, IEEE, Madrid,
Spain, 1046–1058.

[8] Mariam Guizani, Amreeta Chatterjee, Bianca Trinkenreich, Mary Evelyn May,
Geraldine J Noa-Guevara, Liam James Russell, Griselda G Cuevas Zambrano,
Daniel Izquierdo-Cortazar, Igor Steinmacher, Marco A Gerosa, et al. 2021. The
Long Road Ahead: Ongoing Challenges in Contributing to Large OSS Organiza-
tions and What to Do. Proceedings of the ACM on Human-Computer Interaction 5,
CSCW2 (2021), 1–30.

[9] Mariam Guizani, Thomas Zimmermann, Anita Sarma, and Denae Ford. 2022.
Attracting and Retaining OSS Contributors with a Maintainer Dashboard. CoRR
abs/2202.07740 (2022), 5.

[10] Pranav Gupta and Anita Williams Woolley. 2018. Productivity in an era of
multi-teaming: The role of information dashboards and shared cognition in team
performance. Proceedings of the ACM on Human-Computer Interaction 2, CSCW
(2018), 1–18.

[11] Yuekai Huang, Junjie Wang, SongWang, Zhe Liu, DandanWang, and Qing Wang.
2021. Characterizing and Predicting Good First Issues. In Proceedings of the
15th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM). ACM, Bari, Italy, 1–12.

[12] Maliheh Izadi, Kiana Akbari, and Abbas Heydarnoori. 2022. Predicting the
objective and priority of issue reports in software repositories. Empirical Software
Engineering 27, 2 (2022), 1–37.

[13] Rafael Kallis, Andrea Di Sorbo, Gerardo Canfora, and Sebastiano Panichella.
2019. Ticket tagger: Machine learning driven issue classi�cation. In 2019 IEEE
International Conference on Software Maintenance and Evolution (ICSME). IEEE,
IEEE, Cleveland, USA, 406–409.

[14] Sharan B Merriam and Elizabeth J Tisdell. 2015. Qualitative research: A guide to
design and implementation. John Wiley & Sons, Chichester, England.

[15] Stefan Meyer, Philip Healy, Theo Lynn, and John Morrison. 2013. Quality assur-
ance for open source software con�guration management. In 2013 15th Interna-
tional Symposium on Symbolic and Numeric Algorithms for Scienti�c Computing.
IEEE, IEEE Computer Society, Timisoara, Romania, 454–461.

[16] Raphael Pham, Leif Singer, Olga Liskin, Fernando Figueira Filho, and Kurt Schnei-
der. 2013. Creating a shared understanding of testing culture on a social coding
site. In 2013 35th International Conference on Software Engineering (ICSE). IEEE,
IEEE Computer Society, San Francisco, USA, 112–121.

[17] Fabio Santos, Igor Wiese, Bianca Trinkenreich, Igor Steinmacher, Anita Sarma,
and Marco A Gerosa. 2021. Can I Solve It? Identifying APIs Required to Complete
OSS Tasks. In 2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR). IEEE, IEEE, Madrid, Spain, 346–257.

[18] Anita Sarma, Marco Aurélio Gerosa, Igor Steinmacher, and Rafael Leano. 2016.
Training the future workforce through task curation in an OSS ecosystem. In Pro-
ceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering. ACM, Seattle, USA, 932–935.

[19] Markus Schulze. 2003. A new monotonic and clone-independent single-winner
election method. Voting matters 17, 1 (2003), 9–19.

[20] Markus Schulze. 2011. A new monotonic, clone-independent, reversal symmet-
ric, and condorcet-consistent single-winner election method. Social choice and
Welfare 36, 2 (2011), 267–303.

[21] Barry Schwartz. 2004. The paradox of choice: Why more is less. HarperPerennial,
New York, NY.

[22] Carolyn B. Seaman. 1999. Qualitative methods in empirical studies of software
engineering. IEEE Transactions on software engineering 25, 4 (1999), 557–572.

[23] F. Sharan. 2016. ASF Committer Diversity Survey. Accessed: 2020-10-
16. https://cwiki.apache.org/con�uence/display/COMDEV/ASF+Committer+
Diversity+Survey+-+2016.

[24] Marissa L Shu�er and Matthew A Cronin. 2019. The challenges of working with
“real” teams: Challenges, needs, and opportunities. , 211–218 pages.

[25] Christoph Stanik, Lloyd Montgomery, Daniel Martens, Davide Fucci, and Walid
Maalej. 2018. A Simple NLP-based Approach to Support Onboarding and Re-
tention in Open Source Communities. In 2018 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE, IEEE Computer Society,

Madrid, Spain, 172–182.
[26] Igor Steinmacher, Sogol Balali, Bianca Trinkenreich, Mariam Guizani, Daniel

Izquierdo-Cortazar, Griselda G Cuevas Zambrano, Marco Aurelio Gerosa, and
Anita Sarma. 2021. Being a Mentor in open source projects. Journal of Internet
Services and Applications 12, 1 (2021), 1–33.

[27] Igor Steinmacher, Tayana Conte, Marco Aurélio Gerosa, and David Redmiles.
2015. Social Barriers Faced by Newcomers Placing Their First Contribution
in Open Source Software Projects. In Proceedings of the 18th ACM conference
on Computer supported cooperative work & social computing. ACM, Vancouver,
Canada, 1379–1392.

[28] Igor Steinmacher, Tayana Uchôa Conte, and Marco Aurélio Gerosa. 2015. Under-
standing and supporting the choice of an appropriate task to start with in open
source software communities. In 2015 48th Hawaii International Conference on
System Sciences. IEEE, IEEE Computer Society, Kauai, USA, 5299–5308.

[29] Igor Steinmacher, Marco Aurelio Graciotto Silva, Marco Aurelio Gerosa, and
David F Redmiles. 2015. A systematic literature review on the barriers faced by
newcomers to open source software projects. Information and Software Technology
59 (2015), 67–85.

[30] Igor Steinmacher, Christoph Treude, and Marco Aurelio Gerosa. 2018. Let me in:
Guidelines for the successful onboarding of newcomers to open source projects.
IEEE Software 36, 4 (2018), 41–49.

[31] Igor Steinmacher, Igor Wiese, Ana Paula Chaves, and Marco Aurélio Gerosa.
2013. Why do newcomers abandon open source software projects?. In 2013 6th
International Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE). IEEE, IEEE Computer Society, San Francisco, USA, 25–32.

[32] Gail Steptoe-Warren, Douglas Howat, and Ian Hume. 2011. Strategic thinking
and decision making: literature review. Journal of Strategy and Management 4, 3
(2011), 238–250.

[33] Anselm Strauss and Juliet M. Corbin. 2007. Basics of Qualitative Research :
Techniques and Procedures for Developing Grounded Theory (3rd ed.). SAGE
Publications, Thousand Oaks, USA.

[34] Xin Tan, Minghui Zhou, and Zeyu Sun. 2020. A �rst look at good �rst issues
on github. In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
ACM, Virtual Event, USA, 398–409.

[35] Bianca Trinkenreich, Igor Wiese, Anita Sarma, Marco Gerosa, and Igor Stein-
macher. 2022. Women’s Participation in Open Source Software: A Survey of
the Literature. Transactions on Software Engineering and Methodology (TOSEM)
(2022), 35. https://doi.org/10.1145/3510460

[36] Asher Trockman, Shurui Zhou, Christian Kästner, and Bogdan Vasilescu. 2018.
Adding sparkle to social coding: an empirical study of repository badges in the
npm ecosystem. In Proceedings of the 40th International Conference on Software
Engineering. ACM, Gothenburg, Sweden, 511–522.

[37] Jianguo Wang and Anita Sarma. 2011. Which bug should I �x: helping new
developers onboard a new project. In Proceedings of the 4th InternationalWorkshop
on Cooperative and Human Aspects of Software Engineering. ACM, ACM, Waikiki,
Honolulu, USA, 76–79.

[38] Jun Wang, Xiaofang Zhang, and Lin Chen. 2021. How well do pre-trained contex-
tual language representations recommend labels for GitHub issues? Knowledge-
Based Systems 232 (2021), 107476. https://doi.org/10.1016/j.knosys.2021.107476

[39] Claes Wohlin and Aybüke Aurum. 2015. Towards a decision-making structure for
selecting a research design in empirical software engineering. Empirical Software
Engineering 20, 6 (2015), 1427–1455.

[40] Yang Zhang, Yiwen Wu, Tao Wang, and Huaimin Wang. 2020. iLinker: a novel
approach for issue knowledge acquisition in GitHub projects. World Wide Web
23, 3 (2020), 1589–1619.

[41] Minghui Zhou, Qingying Chen, Audris Mockus, and Fengguang Wu. 2017. On
the scalability of Linux kernel maintainers’ work. In Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering. ACM, Paderborn, Germany,
27–37.

View publication statsView publication stats

https://blog.bitergia.com/2016/10/11/gender-diversity-analysis-of-the-linux-kernel-technical-contributions
https://blog.bitergia.com/2016/10/11/gender-diversity-analysis-of-the-linux-kernel-technical-contributions
https://cran.r-project.org/web/packages/votesys/index.html
https://cran.r-project.org/web/packages/votesys/index.html
https://cwiki.apache.org/confluence/display/COMDEV/ASF+Committer+Diversity+Survey+-+2016
https://cwiki.apache.org/confluence/display/COMDEV/ASF+Committer+Diversity+Survey+-+2016
https://doi.org/10.1145/3510460
https://doi.org/10.1016/j.knosys.2021.107476
https://www.researchgate.net/publication/361599375

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Stage 1: Interviews - Building the strategies models
	3.2 Stage 2: Survey - Understanding the relative importance of the strategies

	4 Results
	4.1 RQ1: What strategies help newcomers choose a task in OSS?
	4.2 RQ2: How do newcomers and existing contributors differ in their opinions of which strategies are important for newcomers?

	5 Discussion
	6 Threats to Validity
	7 Conclusion
	Acknowledgments
	References

