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Abstract The appropriate selection of DBMSs (Database Management Sys-
tems) is relevant for the success of modern software applications. Relational
DBMSs are popular for structured data management, while non-relational sys-
tems, such as NoSQL databases, have gained traction for handling unstruc-
tured data and scaling in dynamic environments. These varying DBMS charac-
teristics have led to an increasing trend of combining multiple systems within
a single application to meet diverse requirements. However, existing work does
not analyze whether DBMS are replaced or used together in a broad scope.
This paper presents an empirical study on DBMS usage across 362 popular
open-source Java projects hosted on GitHub. Our analysis focuses on the most
widely adopted DBMSs, both relational and non-relational, as ranked by the
DB-Engines website. By examining DBMS integration patterns, stability, and
migration trends, we aim to uncover insights into the factors driving DBMS
choices in real-world applications. We investigated DBMS popularity, usage
stability, migration patterns, synergy among DBMS, and the role of Object-
Relational Mappers (ORMs) in DBMS interactions. We applied heuristics to
detect DBMS presence, tracked usage trends over time, and analyzed the coex-
istence and replacement of different systems. We also examined ORM frame-
works to understand their impact on DBMS management and query-building
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practices. Our findings reveal that MySQL and PostgreSQL are the most pop-
ular DBMSs, although some projects replace them with other DBMSs. While
certain popular DBMSs (e.g., Redis, MongoDB) usually stay in the project
after they are introduced (and therefore their adoption is stable), others (e.g.,
HyperSQL) are frequently replaced as project requirements evolve. We also
observed patterns of polyglot persistence, where multiple DBMSs coexist to
handle varied data types. Notably, Informix is a relational DBMS designed to
handle real-time data processing and is always used with other DBMSs. Addi-
tionally, we identified ORM usage trends that facilitate database interactions
and mitigate migration complexities. These insights contribute to a broader
understanding of DBMS adoption, providing valuable guidance for developers
and architects in selecting and managing database infrastructure over time.

Keywords DBMS - Relational Database - Non-relational DBMS - Java -
Mining Software Repositories

1 Introduction

The growth and complexity of data generated by modern applications have re-
sulted in the development of numerous database management solutions. How-
ever, selecting the most appropriate Database Management System (DBMS)
for a given project is increasingly challenging due to the diversity of available
systems, each optimized for different use cases (Gessert et all, 2017). With
applications having diverse and evolving requirements, no single DBMS can
adequately serve all needs (Cattell, 2011), leading developers to often com-
bine multiple DBMSs to meet various demands for reliability, scalability, and
performance.

Understanding how DBMSs are adopted, replaced, or used in tandem over
time is necessary for making informed decisions about database infrastruc-
ture. Relational DBMSs, known for their reliability, stability, and support,
continue to be widely used, but non-relational DBMSs (e.g., NoSQL) have
gained prominence for handling unstructured data, such as key-value, column-
oriented, document-based, or graph-based information, in scalable environ-
ments (Cattell, 2011)). This variety of systems enables developers to tailor
solutions to specific project needs, often leading to the coexistence of different
DBMSs within a single application (Cattell, 2011; Sahatqija et al., 2018).

Moreover, as applications evolve, their database requirements change in
response to shifts in project scope, growth, and performance demands. It is,
therefore, important to understand the dynamics of DBMS usage across the
history of projects, as this can reveal important trends in how databases are
adopted, maintained, and eventually replaced (Gessert et al., 2017). For ex-
ample, a simple DBMS might suffice early in a project’s lifecycle, but as the
project scales or new features are introduced, more robust or specialized sys-
tems may be required (Cattell, 2011)). In some cases, multiple DBMSs may
need to coexist within a single application to handle different types of data or
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workloads (Sahatgija et al), 2018). These transitions are not always straight-
forward, and an appropriate selection or migration to a specific DBMS can
significantly impact a project’s success.

Object-Relational Mapping (ORM) frameworks facilitate the interaction
between the application and the DBMS. ORMs abstract the differences be-
tween object-oriented programming languages and relational databases, help-
ing developers manage complex data structures with fewer lines of code and
minimizing the friction when databases are updated or replaced. This not
only simplifies the development process but also ensures that changes in the
database layer are seamlessly propagated to the application layer, and vice
versa, reducing the likelihood of errors and improving maintainability (Keith
et al., 2018; Kleppmann, 2017). As such, understanding how applications in-
teract with DBMS through ORM frameworks helps anticipate the impact of
eventual DBMS changes.

Previous research has explored various aspects of DBMS adoption to better
understand its role in real-world applications. For instance, Lyu et al| (2017)
investigated DBMS usage in Android apps, identifying eight prominent sys-
tems, including SQLite, Oracle, and MongoDB, and noting that 40.8% of the
apps did not use any DBMS at all. Other studies have examined the relation-
ship between application code and database schema over time (Qiu et all, 2013;
Goeminne et al., 2014; Linares-Vésquez et all. 2015), while some (Scherzinger
and Sidortschuck, 2020; Dimolikas et al., 2020; Vassiliadis, 2021) have focused
specifically on the evolution of database schemas throughout a project’s his-
tory. Additionally, research by Goeminne and Mens (2015), [Yan et al, (2017),
and Yang et al) (2018) addressed the performance, scalability, and replace-
ment of ORM frameworks. While these studies provide valuable insights into
specific contexts — such as mobile apps, web applications, or schema evolution
— they tend to be limited in scope, concentrating on narrow subsets of DBMS
usage or specific environments.

This research aims to comprehensively understand how DBMSs are utilized
in practice across various software projects. Considering that the adoption of
DBMS may change over time, we analyzed the usage of DBMSs in 362 popular
open-source projects developed in Java and hosted on GitHub. Our focus was
on the 50 most widely adopted DBMSs, as ranked by the DB-Engines website
(DB-Engines, 2022), encompassing relational and non-relational data models.
Through this examination, we sought to provide a detailed analysis of how
DBMSs are integrated into applications, offering insights into their popular-
ity, long-term stability, migration patterns, synergies among DBMS, and how
applications interact with them. To guide this investigation, we formulated
five research questions that progressively build on one another, each delving
into a different facet of DBMS usage in real-world software development.

This study begins by addressing which DBMSs are the most popular
across open-source software projects (RQ1). To answer this, we devel-
oped a set of heuristics (see Section J@) to identify the presence of specific
DBMSs within the source code of each project in our corpus. By counting
their occurrences, we could rank the DBMSs based on their frequency of use,
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offering a comprehensive view of which systems dominate the landscape. Fol-
lowing this, we investigated the stability of DBMS usage throughout
the projects’ history (RQ2). While RQ1 provided a snapshot, RQ2 delves
into longitudinal data, tracking how DBMS usage persists or fluctuates over
time. In cases where stability is disrupted, we extended our analysis to explore
the migration patterns of DBMSs (RQ3). Using sequential pattern min-
ing, we uncovered recurring sequences in which certain DBMSs are replaced
by others, either simultaneously (at the same commit) or over a defined small
transition period (a window of 100 commits).

In some cases, however, rather than being replaced, DBMSs coexist. To un-
derstand these instances, we examined which DBMSs tend to have more
synergy during the project history (RQ4). By employing association rules,
a data mining technique, we uncovered patterns of coexistence where multiple
DBMSs are used in tandem within the same project, revealing polyglot per-
sistence (Fowler, 2011). Finally, after gaining a deeper understanding of the
adoption of DBMSs in the projects, we investigated in detail how applica-
tions interact with these DBMSs, both via Object-Relational Mapping
(ORM) and through direct SQL queries (RQ5). Given the variety of Object-
Relational Mappers (ORMs) available, we analyzed each project’s source code
to identify the ORMs in use, assess how many database-related files exist, and
determine whether queries are built using query builders or raw SQL strings.

We found that MySQL and PostgreSQL are the most popular relational
DBMSs (RQ1, RQ2) and the most popular overall, currently used in 55.9% and
46% of our corpus, respectively. Although around 10% of the projects removed
them at certain points in their history, both MySQL and PostgreSQL main-
tained or increased in popularity over time, as they replaced other DBMSs in
13.1% and 23.5% of the projects that used them. We also observed relational
DBMSs that lost popularity, such as HyperSQL, which was removed from
23.5% of the projects and only replaced other DBMSs in 13.6% of the projects
(RQ3). This trend was further confirmed in the synergy analysis (RQ4), which
revealed that HyperSQL was often combined with other DBMSs, like MySQL
and MS SQL Server, early in projects. However, towards the end of the project
history, as analyzed by our methodology, MySQL, PostgreSQL, H2, and Oracle
were more frequently found together, becoming the most common combina-
tions of DBMSs we found. The synergy analysis also revealed that Informix is
used as a complementary DBMS, as it is always combined with other DBMSs,
likely due to its capabilities in handling real-time data processing. In the non-
relational category, Redis and MongoDB emerged as the most popular and
stable, with relatively few replacements, indicating greater stability in their
adoption. Redis is currently used by 39.6% of our corpus, replacing other
DBMSs in 24.4% of the projects that used it and being replaced by other
DBMSs in 7.8%, while MongoDB currently appears in 22.8% of the corpus,
replacing DBMSs in 27.5% and being replaced in 7.8% of the projects that
used it. Additionally, our analysis of ORM usage (RQ5) revealed that ORM
frameworks are typically used in a small percentage of files, with EclipseLink
requiring the fewest files to adopt it in a project.
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Our findings offer several implications for software engineers, educators,
and DBMS vendors. For software engineers, the insights on DBMS popular-
ity, stability, and synergy within specific application domains can aid in select-
ing DBMSs with more learning resources, robust communities, and minimized
migration risks. Similarly, our results on ORM usage suggest that engineers
may benefit from assessing the implementation effort required for each ORM
solution, opting for simpler options based on project needs and constraints.
Educators, meanwhile, could leverage these trends to align curricula with prac-
tices, preparing students to work with multiple DBMSs and ORM tools, as
well as to navigate data migration tasks effectively. Lastly, DBMS vendors
may use this information to enhance the interoperability of their products
with other popular DBMSs and ORM frameworks, thereby broadening their
applicability across diverse software ecosystems.

The remainder of this paper is organized as follows. Section E details the
corpus selection, while Section B presents the research methodology. Section
describes our findings, which are discussed in Section fJ. Section [ discusses the
threats to the validity of our study. Section [f] discusses related work. Finally,
Section § concludes our work and discusses some future work.

2 Materials

To answer our research questions, we need three different corpora: first, we
need a set of representative Java Open Source projects to serve as our main
research subject; second, we need a set of DBMS that we would try to find
in those projects (RQ1, RQ2, RQ3, RQ4); and third, we need a set of ORM
that we would also try to find in those projects (RQ5). This section describes
these three corpora. We start by describing the DBMS (Section @) and the
ORM corpus (Section @) Finally, Section describes how we selected the
projects of our corpus.

2.1 Database Corpus

As our DBMS corpora, we selected 50 popular DBMSs listed in the February
2022 DB-Engines ranking (DB-Engines, 2022), which ranks DBMSs according
to their popularity. The list covers the top 13% of the 383 DBMS listed in DB-
Engines on that date. The reason we do not use the complete list is twofold.
First, we had to carefully understand how to use each of the DBMSs in this
list in Java projects. This is because we cannot search the projects for their
usage if we do not know how they are used. Second, we believe the percentage
of DBMS we chose is representative enough of the most popular DBMS. To
produce the ranking, DB-Engines measures the popularity of a DBMS on
the Web by using several criterial: the number of search results on Google
and Bing; frequency of searches in Google Trends; the frequency of technical

I https://db-engines.com/en/ranking_definition
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discussions about the systems in Stack Overflow and DBA Stack Exchange;
the number of job offers that mention that system in Indeed and Simply Hired;
the number of profiles in which the system is mentioned in LinkedIn; and the
number of posts on X (formerly Twitter) in which the system is mentioned. The
popularity is then calculated by standardizing and averaging the individual
parameters. According to DB-Engines, the obtained values only make sense
when comparing two or more systems. If System A has a higher score than
System B, then A is more popular than B.

For each system, DB-Engines provides a classification such as Relational,
Key-Value, Search Engine, etc.). Some systems have more than one classifi-
cation — for example, Oracle is classified as relational and multi-model, while
SQLite is classified only as Relational. Whenever a system has multiple clas-
sifications, we use the first one as our classification criteria. We used this
classification to guarantee that we keep in our analysis only systems that are
classified as DBMS (relational or non-relational). Thus, search engines such as
ElasticSearch, Splunk, and Apache SolIR were discarded. We then looked at
the remaining top 50 DBMS and their descriptions on their websites. Based
on their descriptions, we discarded the ones that were data warehouses (such
as Apache Hive and Google BigQuery), processing systems (such as Amazon
Aurora and Presto), cache systems (such as EhCache), monitoring systems
(such as Prometheus), and the ones that did not offer support for Java (such
as dBASE). This resulted in the discarding of 10 DBMS in total. Note that
we did not analyze the complete DB-Engines list — we analyzed just the top
DBMS to guarantee we would have 50 popular DBMS in total.

From this list, we took the first 25 Relational DBMS and the first 25
non-Relational DBMS, to ensure a balanced analysis. Six of the DBMS were
classified only as Multi-Model: Virtuoso, Dynamo-DB, Microsoft Azure Cos-
mos DB, MarkLogic, Ignite, and ArangoBD. For those cases, we looked at the
specific models they support. Whenever they were listed as Relational and
something else, we counted it on both categories. This occurred with Ignite
and Virtuoso. The other four were classified as purely Non-Relational since
the Relational Model did not appear among the models they support.

Four DBMSs on our list of 50 (CockroachDB, MariaDB, Microsoft Azure
SQL Database, and Sybase Adaptive Server Enterprise) are highly compatible
with other systems: CockroachDB is compatible with PostgreSQL, MariaDB
with MySQL, Microsoft Azure SQL Database with MS SQL Server, and Sybase
Adaptive Server Enterprise is compatible with SAP Adaptive Server. Notably,
Sybase and SAP Adaptive Server were merged following SAP’s acquisition of
Sybase in 2010, which integrated their DBMS offerings. This compatibility
means that using any of these pairs of DBMSs in Java projects requires the
same connection strings, imports, and drivers, which makes it hard to correctly
identify which one is being used by a given project (Section @ explains exactly
how we use this info to search for the DBMS in the source code of the projects
in our corpus). Consequently, we decided to merge the following pairs in our
analysis: CockroachDB with PostgreSQL, MariaDB with MySQL, Microsoft
Azure SQL Database with MS SQL Server, and SAP Adaptive Server with
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Sybase. However, since Sybase was not on our original list of 50 popular DBMS,
its synergy with SAP Adaptive Server does not impact the size of our database
corpus. Since we counted the remaining ones as three DBMSs instead of six,
we added three more relational DBMSs so that we ended up with a list of
exactly 25 relational DBMSs in our analysis. The complete list is available at
https://tinyurl.com/y25cm6eb.

2.2 ORM Corpus

ORMs are widely used by developers due to the simplicity of the conceptual
abstraction that they provide between the source code and the database system
(Johnson, 2005). Java provides a standard API for ORMs, which is called the
Java Persistence API (JPA). JPA is an official specification that describes
a generic interface between any application_and an ORM. There are manﬁ/
implementations of JPA, such as Hibernatel, OpenJPAH and EclipseLink®.
These implementations share similar designs and functionalities, although they
have implementation-specific differences.

A survey (JRebel, 2020) published in 2020 shows that 86% of Java devel-
opers use the Spring framework, and 51% use persistence technologies like Hi-
bernate, OpenJPA, or EclipseLink. In our work, we selected the most popular
frameworks according to JRebel (2020): HibernateE, JPA, MyBatisE, SpringH,
EclipseLinkE, jOOQH, and JdbcMapperE.

2.3 Project Corpus

Our goal was to select popular open-source applications written in Java. We
focused on a single programming language because our method for determining
a project’s DBMS usage depended on searching for language-specific database-
related constructs within the project’s source code. The choice for Java comes
from its popularity. At the time of writing of this paper, it was the third most
popular programming language according to the TIOBE indexH.

Projects Selection. We used the GitHub GraphQL API (v4) to search for
all public repositories that were not forks of other repositories, had at least
1,000 stars, were not archived, and received at least one push in the last three
months. According to Kalliamvakou et al| (2014), avoiding forks is important

https://hibernate.org/
https://openjpa.apache.org/documentation.html
https://www.eclipse.org/eclipselink/
https://mybatis.org/mybatis-3/index.html
https://spring.io/

https://www.jooq.org/
https://github.com/moparisthebest/JdbcMapper
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to guarantee that the corpus contains only one repository per project. Since we
are aware of some forks that are much more successful than the original forked
projects, we checked our initial sample for forked projects that met our selec-
tion criteria and found none. Besides that, restricting the number of stars to
at least 1,000 indicates that our corpus contains relevant and popular reposi-
tories (Borges and Tulio Valente, 2018). Finally, avoiding archived repositories
or repositories that did not receive pushes in the last three months ensures a
certain degree of activity in all repositories of our corpus. We did not filter out
mirror repositories as our analyses do not focus on GitHub-specific features.
Thus, replicas of external repositories stored in GitHub are welcome. This
search was performed on March 27, 2021, and returned 21,149 repositories.

Afterward, we analyzed the metadata of these 21,149 repositories to per-
form additional filters on the number of contributors (10 or more) and the
number of commits (1,000 or more). Filtering out repositories with less than
ten contributors aims at avoiding personal or coursework projects in our cor-
pus (Kalliamvakou et al), 2014). Moreover, restricting the number of commits
to 1,000 or more is an attempt to remove immature or short-term projects
from our corpus. After applying these filters, our corpus was reduced to 6,708
repositories. GitHub classifies these 6,708 repositories as using ten different
primary programming languages. We used this information to filter projects
written in Java, which is the focus of this paper. This resulted in a corpus with
633 repositories.

Since the search was conducted in 2021, we updated the corpus before doing
the analysis presented in this paper. The update was performed in September
2024. We removed projects that were inactive in the previous 90 days, that had
been moved to other repositories outside GitHub, or that had been archived or
deprecated since our first search in 2021. We also removed duplicated projects
and projects that changed the main programming language to something other
than Java. This resulted in the discarding of 185 projects.

We then proceeded to remove the ones that were listed as database engines
on the DB Engines website (11 projects). Examples of excluded projects due
to that reason are Presto and HBase. The reason for that exclusion is the fact
that we are looking to find out how open-source projects use databases, so
inspecting the source code of a DBMS itself would introduce bias. For the same
reason, we removed projects that correspond to the ORMs we investigated on
RQ5 (9 projects). This resulted in a corpus of 428 projects.

We then manually inspected the projects. For each project, four authors
examined the GitHub repository and the project web page (when available) to
answer two questions: (i) Is this repository documented in English? (ii) Does
this repository contain a software project? The answers to these questions
were discussed between two authors and inspected and revised by two other
authors. The first question aimed to guarantee that the authors could under-
stand the documentation of the projects. The second question aimed to refine
the primary programming language’s automatic filter, removing projects that
were merely documentation (for instance, projects that contain snippets of
Java code to solve a set of problems). After answering these two initial ques-
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Fig. 1 Example of the main line of development in blue, assuming that the main branch is
the default branch.

Table 1 Characteristics of the selected projects for our corpus.

contributors stargazers forks commits
min 16 1,041 119 1,014
max 3,532 88,213 40,308 821,332
mean 263 7,280 2,133 8,642
std 365 10,512 3,754 43,634
25% 83 2,107 578 2,080
50% 148 3,539 1,006 3,641
75% 276 6,883 2,040 6,618

tions and dismissing those projects that are not documented in English and
not software projects, our corpus was reduced to 390 repositories, which we
cloned (in September 2024).

After cloning the projects, we applied an additional filter to include only
commits from the default branch. This branch is the one displayed when visit-
ing the repository on GitHub and is checked out by default when the project is
cloned. Since the default branch may include merge commits and our evolution-
based research questions require a linear history, we traversed the branch using
only the first parent of each merge commit. For instance, Figure [|| illustrates
a project with three branches. Assuming the main branch is the default, we
would traverse through the first parent of each merge commit, selecting all
commits highlighted in blue. These commits collectively represent the project’s
main line of development and are used for answering RQ2, RQ3, and RQ4.
We then proceeded to discard 28 projects that did not contain at least 1,000
commits in the main line of development. Consequently, our final corpus is
composed of 362 projects, which we used to answer our research ﬁuestions
(Section B). The complete list is available at our GitHub repository=.

Table [ll presents descriptive statistics for the characteristics of the projects
selected for our corpus. For example, the “commits” column provides an overview
of the number of commits that belong to the main line of development. As of
September 2024, the project with the fewest commits has 1,014, while the one
with the most has 821,332 commits. On average, projects have 8,642 commits,
demonstrating significant development activity in the projects. Table [l also

10 https://tinyurl.com/mr2t77st
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shows statistics for the number of contributors, stargazers, and forks of the
projects on our corpus.

Projects Categorization. From the original non-filtered set of 633 projects, we
took a large sample of 317 projects and manually categorized them by their
application domains, since this was required to answer RQ1. This categoriza-
tion was conducted by two of the authors working together, using open coding.
We identified 19 main domains in this sample: Artificial Intelligence, Automa-
tion, Collaboration, Cryptocurrency, Data Management, Enterprise Resource
Planning, File Management, Finances, Game, High-Performance Computing,
Infrastructure Management, Media, Monitoring, Network, Personal Manage-
ment, Program Analysis, Security, and Software Development, and Other.

A smaller random sample of 30 of those projects was then given to Chat-
GPT 4-o (without the categories). The prompt we used was “We need to
categorize Java Open-Source projects according to the following categories:
[list of our 19 categories]. Could you please provide the categorization for the
following projects? [list of the URLSs of the 30 sample projects].” We then com-
pared the categories provided by ChatGPT with the ones made by the authors
and measured the agreement using Cohen’s Kappa (McHugh, 2012). For six
projects, ChatGPT indicated two categories instead of one. For those cases,
we considered the suggestion to be consistent with the one produced by the
authors whenever there was an intersection between the categories indicated
by ChatGPT and the ones indicated by the authors. Whenever there was a
disagreement, we carefully checked the classification, and in a few cases, we
agreed with ChatGPT and changed the original classification accordingly. The
final Cohen’s Kappa is 92.6%, which is considered an “almost perfect” agree-
ment (McHugh, 2012). We thus proceeded to use ChatGPT to categorize the
remaining of our corpus. Every time it suggested more than one category,
we manually checked the project and chose the one we considered the most
appropriate.

Table B shows examples of projects of each of the domains and also the num-
ber of projects classified in each of the domains. For example, the bitcoin-wallet
project is classified in the cryptocurrency domain®=. The NewPipe project, on
the other hand, belongs to the Media domain. Its description is: “A libre
lightweight streaming front-end for Android®4.” The complete list is available
in our repository=d.

3 Methods

This section describes the research questions and the process we used to an-
swer them. Section resents our research questions. Section explains
the method. Sections , , , and describe the heuristics we used to

11 http://www.github.com/bitcoin-wallet/bitcoin-wallet
12 https://github.com/TeamNewPipe/NewPipe
13 https://tinyurl.com/mr2t77st
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Table 2 Samples of selected projects for our corpus and their domains, as well as the
numbers of projects classified in each domain.

Domain # of Projects Example

Software Development 93  apache/netbeans

Data Management 69  liquibase/liquibase
Infrastructure Management 33 apache/zookeeper

Program Analysis 25 pmd/pmd

Security 21  i2p/i2p.i2p

Automation 18  SeleniumHQ/selenium
Network 16  google/nomulus

Game 16  jMonkeyEngine/jmonkeyengine
Monitoring 12 apache/skywalking

Media 11  TeamNewPipe/NewPipe
Enterprise Resource Planning 9 kiegroup/jbpm

Personal Management 8 Automattic/simplenote-android
Artificial Intelligence 7  kermitt2/grobid

Collaboration 7  igniterealtime/Openfire

File Management 5 JabRef/jabref

Cryptocurrency 5 bitcoin-wallet /bitcoin-wallet
High Performance Computing 3  real-logic/agrona

Other 3  fossasia/pslab-android
Finances 1 killbill/killbill

answer our research questions. Section @ describes how we identify migra-
tion patterns to answer RQ3. Finally, Section presents the infrastructure
we built to run our analysis.

3.1 Research Questions

To guide our work, we investigate five research questions that look at different
aspects of DBMS usage in Java Open Source projects.

RQ1: Which DBMS are the most popular across software projects?
In this question, we identify which DBMSs are most commonly adopted b
the projects in our corpus. We conceived a set of heuristics (see Section @
to identify each of the selected DBMSs in the source code of the projects in
our corpus. Then, we counted their occurrences in the projects and ranked the
most used DBMSs.

RQ2: How stable are the DBMSs during the projects’ history? This
question examines the stability of DBMS usage, which refers to the process of
a DBMS remaining in continuous use throughout the project’s history. While
in RQ1, we look at a single snapshot of each project, in RQ2, we look for traces
of DBMS occurrence in previous versions of each project.

RQ3: Which DBMSs are frequently replaced by others? In this ques-
tion, we investigate DBMS migration patterns. We used sequential patterns
mining, a data mining technique that finds patterns of sequential events over
time. According to Agarwal (R013), this technique allows mining the set of
frequent sub-sequences in a sequence or in a set of sequences. Using this tech-
nique, we aim to identify which DBMSs are commonly replaced by others
simultaneously or in sequential time intervals.

RQ4: Which DBMSs are often used together? This question identifies
the synergy between different DBMSs in the projects’ history. We used associ-
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ation rules, a data mining technique that detects correlations among frequent
item sets. According to Agarwal (2013), this technique generates frequent item
sets, from which strong association rules in the form of A — B are defined. The
analysis of associations enables the discovery of correlation rules, presenting
statistical correlations between sets A and B. With this technique, we could
detect DBMSs that are frequently adopted together.

RQ5: How do the applications interact with these DBMS? Just like
with database systems, a variety of ORMs are available for use. To understand
the interaction between the software and the database systems, we analyzed
the source code of each project of our corpus to extract information about
the ORM they use and find out which ones are most frequently used. We
also investigate how many database-related files exist in each project and how
queries are performed, i.e., using builders or pure SQL in a string.

3.2 Research Method Overview

To answer our research questions, we first conceived heuristics based on regular
expressions for detecting which DBMSs are adopted by each project (Section
@3, which ORMs are used by each project (Section @), which files are af-
fected (Section B.5), and how queries are performed (Section B.). We also
built an infrastructure to automatically clone the projects, run the heuristics
over each project, and populate a database with the obtained outputs (Section

).

For RQ1 and RQ5, we run the heuristics over the last version on the main
line of development of each project. However, since some of our research ques-
tions (RQ2, RQ3, and RQ4) require an analysis of the history of the projects,
we split each project into equal-sized slices in terms of commits on the main
line of development. We then analyzed each of the slices of each project, looking
for changes on added, kept, and removed DBMSs. In practice, we determined
the total number of commits that belong to the main line of development and
divided them into segments of 100 commits each. Therefore, the first slice does
not correspond to the initial commit of the project but to the 100t/ commit
of the project’s main line of development history. Note that the last slice does
not necessarily correspond to the project’s last commit on the collection date.
This may occur when the number of commits is not divisible by 100. In this
case, we ignore some of the last commits to split the project history into slices
of the same size. Also, the last slice may not reflect the end of the project since
the history of the projects continued after we updated our data in Septem-
ber 2024. As an example, consider the Skywalking repository. Its main line of
development contains 8,009 commits, as shown in Figure . When we slice it
using slices of size 100, we get 80 slices (the last 9 commits are ignored). Each
slice corresponds to 1.25% of the project’s history and is represented by its
last commit, which is a snapshot of the repository at 1.25%, 2.50%, 3.75%, ...,
and 100% of the project history.
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Fig. 2 Slicing of the Skywalking repository commits’ history on the main line of develop-
ment.

Choosing the slice size is not an easy task. If it is too small, we may
completely miss the presence of a DBMS. For example, if a DBMS was included
in the project on commit z, and later removed on commit y, (y > z), but both
x and y are within the limits of a single slice, we will completely miss it,
leading to false negatives. Ideally, we could set the slice size to correspond to
a single commit (that is, use 1 as the slice size). However, this would have two
consequences. First, we would process lots of commits that bring no changes
related to the use of DBMS. Second, the processing times of our analysis would
significantly increase. Our heuristics take 9 seconds to execute on each slice, on
averagetd. Taking the sum of the commits of all of the 362 projects (3,128,740
commits on the main line of development) and the average time to analyze each
slice (9s), we conclude that we would take 325 days to run our heuristics over
the complete history of all projects of our corpus in case we used 1 commit per
slice. After that, we would still need to run the mining and carefully analyze
the results. As a compromise between lowering the false negatives and being
able to run our analysis in a reasonable time frame, in this article, we chose to
use slices of 100 commits. This means our smallest project has 10 slices, and
our largest project has 8,143 slices. This way, although we know that some
false negatives may occur with short-living DBMS, we can still capture the
governing patterns that include DBMS that existed in the project for at least
10% of the project history (considering the smallest project on our corpus).
Furthermore, by discarding DBMSs that were introduced in one commit and
removed just afterward, we are removing short-term tests or experimentations,
which does not mean that the DB was "used” in the project.

After defining the method for slicing the history of the projects, we ran-
domly selected five projects to manually validate the heuristics (see Section )
we used to automatically detect the DBMSs used by the projects. For this val-
idation, each project was sliced into 10 slices. On each of these slices for each
of the five projects, we used the heuristics to automatically detect the DBMSs
and stored the results in the database we created for our analysis. Once we
confirmed that the detection occurred properly (see Section @ on how the
validation was made) in our five projects sample, we ran the heuristics in our
corpus to answer the research questions RQ1 and RQ2.

14 We used a Ryzen 7735HS with 16GB RAM GDDRS5, 512GB SSD nvme 4.0 to measure
the performance of our analysis on a sample project.
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Using these results, we then generated a dataset suitable for the data min-
ing tools used to answer the research questions RQ3 and RQ4 through associ-
ation rules and sequential patterns. We first used the MLExtend library from
Raschka (2018) to generate the association rules and the SPMF library from
Fournier-Viger et al. (2016) to generate the sequential patterns. MLExtend has
about 4.3k stars on GitHub, demonstrating popularity in the community. As
for the SPMF repository, since it is not public, we cannot consider it in terms
of stars, but we found around 1,000 research papers that cited or adopted
the SPMF library®. Also, both libraries’ authors are active researchers in the
scientific community, having many papers published in the Data Mining and
Machine Learning fields.

Aiming to validate the observed patterns and run complementary analy-
ses, we developed a Pattern Counter tool™. Besides counting patterns from
sequence lists, the tool generates support, confidence, and lift measures. We
used this tool extensively to filter the results obtained with association rules
and sequential patterns and to validate them (see Section @)

Finally, aiming to understand the reasons for DBMS adoption and/or mi-
gration, we conduct a qualitative analysis using 10 randomly selected projects
of our corpus. For those projects, we contrast our findings with commit mes-
sages, issues, pull requests, and the project’s documentation. The results are
reported in Section @

3.3 Database Heuristics

Our heuristics are a set of regular expressions that we use to search the source
code of our corpus using git grep. To build them, we analyzed the official
documentation of the top 50 DBMSs (selected as described in Section ),
looking for information about how they are accessed by Java programs. In
conducting this careful analysis, our goal was to answer four questions: (i)
What imports are required to use these DBMSs? (ii) Which drivers are needed?
(iii) How is the connection established? (iv) Which libraries are needed? With
the answer to each of these questions, we built a set of regular expressions to
search for each DBMS in our corpus. Table B shows examples of the heuristics
we built by using these answers for two DBMSs: Oracle and Cassandra. Similar
expressions were built for the other DBMSs in our database corpus.

The first question aims to identify the required imports for using these
DBMSs. Each DBMS has specific classes that must be imported to enable
their usage in Java projects. This question allowed us to identify most non-
relational DBMSs. For instance, Cassandra requires the statement import
com.datastax, so we use this to build a regular expression in our heuristic
for Cassandra. The expression we built looks for the word import followed by
one or more white spaces, followed by com.datastax, as shown in row 5 of

15 https://www.philippe-fournier-viger.com/spmf/index.php?link=citations.php
16 https://patterncounter.readthedocs.io/en/latest/
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Table 3 Examples of heuristics that indicate the adoption of the Cassandra and Oracle
DBMSs.

Import -
Driver oracle\.jdbc\.driver\.OracleDriver
Oracle oracle\.jdbc\.OracleDriver
Connection jdbc:oracle
Libraries ojdbc
com.oracle
Import import\s{1,}com)\.datastax
Driver Ta-zA-Z]\ /“\_#]0-9]CassandraConnector{a-zA-Z]\ /7\ _#]0-9]
Cassandra | Connection -
Libraries <\s*artifactId\s*>\s¥cassandra
com).datastax)\.oss

Table E However, several relational DBMSs utilize Java Database Connectiv-
ity (JDBC), which means a generic import is used for most DBMSs of this
type. For instance, Oracle, MySQL, and MS SQL Server are relational DBMSs
that utilize JDBC. Therefore, we disregarded the import strings heuristic for
relational DBMSs that used generic imports to avoid false positives, thus the
empty row 1 of Table E

The second question aims to identify how the project loads the driver to
access each DBMS. The answer to this question gives us clues we use to search
the source code. For example, for the Oracle DBMS, we built a regular expres-
sion that matches the following search strings: oracle.jdbc.OracleDriver
and oracle. jdbc.driver.OracleDriver.

The third question aims to identify which connection string is used to
connect to the DBMS. Each DBMS has its connection string, but in Java,
relational DBMSs have certain features in common. Thus, when building our
regular expression, we need to make sure we use patterns that are not sub-
strings of others. For example, for the Oracle DBMS, instead of searching for
jdbc:, which would be common to several relational DBMS, we search for
jdbc:oracle.

Finally, the fourth question aims to identify a DBMS usage by looking
for the libraries declared in the Maven descriptor. For example, we use the
following search strings for the Oracle DBMS in our heuristic to find Oracle
database usage: ojdbc and com.oracle.

We also discovered that some heuristics were common to multi-model
DBMSs. For example, both the relational and the non-relational versions of
the Virtuoso DBMS use the same libraries heuristics. Since we found 2 multi-
model DBMSs that act as both relational and non-relational DBMSs (Ignite
and Virtuoso), we separated the heuristics that are common to both models
and combined them with the model-specific heuristics to define which of the
models was used by each project that adopts such DBMSs. Thus, each of these
two DBMSs has two sets of heuristics, one to identify its use as a relational
DBMS and another for its use as a non-relational DBMS.

We consider a given project to adopt a certain DBMS when at least one
of the regular expressions of its respective heuristics produces one or more
hits on the project’s source code. Going back to the Oracle example, if we
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find the string referring to its driver, oracle. jdbc.driver.OracleDriver or
oracle.jdbc.0OracleDriver, or the connection string, jdbc:oracle, or the
strings referring to the libraries (ojdbc or com.oracle), we assume that Oracle
is used in that project. The selected DBMS list with the respective heuristics
is available in our replication package at our companion website®.

Validation. We manually validated the heuristics for the top 10 DBMSs on a
sample of five randomly selected projects of our corpus: Activiti, Che, Sky-
walking, Storm, and Pinpoint. The validation was conducted in 2022, and at
that time, both the Che and the Pinpoint projects satisfied the criteria to be
in our corpus. In the update we made in 2024, Che changed its main pro-
gramming language, and Pinpoint did not receive pushes in the three months
prior to our corpus update in September 2024, so they were discarded from our
current corpus. Moreover, since the top 10 DBMSs included MySQL and Post-
greSQL, we conducted their analysis in conjunction with their sibling DBMSs
(MySQL/MariaDB and PostgreSQL/CockroachDB), as previously explained.

For the validation, we analyzed the documentation of each project to deter-
mine which DBMSs they support. Then, we ran our heuristics and compared
the DBMSs we identified with the ones used by the projects according to
their documentation. Whenever we detected problems that were caused by
our heuristics, we updated them to improve their precision and reflected those
changes in the other heuristics as well (the ones that were not subjected to
manual validation). For instance, we found situations where generic strings,
such as DatabaseClient, CosmoClient, and MongoClient, were present in the
results. Although these examples could indicate the connection methods of
different DBMSs, the application developer might have created a method or
variable containing these strings as substrings. To mitigate this issue and focus
specifically on identifying how the connection is made, we applied filters at the
beginning and end of the search strings.

For the projects that mention JDBC connection support, we faced a chal-
lenge since this type of connection can be used generically without explicitly
specifying the DBMSs. However, our heuristics are designed to be specific for
each DBMS, allowing us to identify clues even when the documentation men-
tions a generic JDBC connection. Therefore, when we found a clue associated
with a DBMS that was not specified in the documentation but is considered
a possibility due to its usage of the JDBC mechanism, we considered it a suc-
cessful identification. This means that despite the project mentioning a generic
connection that could potentially obscure the specific DBMS being used, our
DBMS-specific heuristics uncovered the clue associated with the DBMS.

Table {l compares the results obtained by our heuristics and those found
manually in the projects’ documentation. Each cell (r, ¢) in this table contains
an H when the DBMS on row r was found by our heuristics for the project at
column ¢, and a D when the DBMS on row r is specifically mentioned in the
project’s documentation. Also, a cell contains a d when the DBMS of row r
may or may not be used for the project on column c. This happens when the

17 https://tinyurl.com/y25cm6e5
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Table 4 Comparison between the results found by our Heuristics (H) and the project’s
documentation (D or d). Cells in red indicate false positives.

Activiti Che Skywalking Storm Pinpoint

Oracle d H Hd d HD
MySQL/MariaDB d H HD Hd HD
MS SQL Server d Hd d HD
PostgreSQL/CockroachDB d HD Hd d HD
MongoDB H Hd HD HD

IBM DB2 d d d
Redis H Hd HD HD

SQLite d d d

MS Access d d d
Cassandra Hd HD HD

project documentation mentions the possibility of utilizing other DBMSs not
explicitly mentioned. As an example, when the project mentions the possibility
of using a JDBC connection mechanism commonly used by relational DBMSs,
we assume the project is able to use any relational DBMS and thus mark the
ones we found as d.

Cells marked with HD or Hd means the DBMS was found by our heuris-
tics and was mentioned, specifically or as a possibility, in the project doc-
umentation, characterizing the true positives. Cells marked with a single d
are not considered false negatives since d are possibilities instead of obliga-
tions. Lastly, cells with a red H represent false positives since our heuristics
detected the corresponding DBMS, but it was not mentioned in the project’s
documentation.

For example, the Activiti Project documentation mentions Oracle, MySQL,
MS SQL Server, PostgreSQL, IBM DB2, and H2 as examples of supported
DBMSs, with H2 being the default option. It also states the support for Java
Database Connectivity (JDBC), indicating that relational DBMSs are poten-
tial options for this project. Therefore, the fact that our heuristics did not
find signs of usage of one of the eight relational DBMSs we used in our vali-
dation step was not considered a false negative. In the case of the Skywalking
project, its documentation cites MySQL and H2 as existing implementations,
and it mentions the user may “implement [their] own.” Thus, we considered
that this project allows the implementation of other DBMSs, and thus the
heuristic results are correct — the heuristics found DBMSs that are not ex-
plicitly mentioned by the project’s documentation, but we understand they
are valid possibilities. Storm’s documentation mentions the integration with
JDBC, Cassandra, Redis, and MongoDB. Therefore, we considered relational
DBMSs as possible options, and the results obtained by our heuristics were
considered correct. All the DBMSs mentioned in the documentation for the
Pinpoint project were found by our heuristics. Finally, for the Che project,
we found evidence of Oracle, MySQL/MariaDB, PostgreSQL/CockrouchDB,
MongoDB, and Redis. Given that PostgreSQL is the only DBMS mentioned
in the project’s documentation, the results indicate evidence that the other
DBMSs diverged, so we considered them false positives.
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As shown in Table H, we found evidence of the adoption of 23 DBMSs in
the 5 projects, with only 4 false positives. This corresponds to a precision of
82.6% with 100% recall. Therefore, we consider our heuristics adequate.

3.4 ORM Heuristics

To implement the ORM detection heuristics, we analyzed the ORMs’ offi-
cial documentation looking for information regarding their usage in the Java
programming language. We used this knowledge to build regular expressions,
just as we did with the DBMS heuristics. Each ORM has its specific usage
method. However, every ORM that implements JPA requires four main steps:
(i) explicitly include a dependency through the dependency manager or by
downloading and adding a library or package into the project, (ii) create a
configuration file, (iii) define entities or create mappings, and (iv) implement
queries. Given these four steps, we developed regular expressions to search for
words, classes, tags, annotations, and imports that indicate the usage of the
ORMs in our project corpus.

The first step (i) includes all required libraries in the project. For this,
developers can add a jar file or use a dependency manager (Maven, for exam-
ple) and add the dependency in the pom.zml file. Each ORM has its own set
of dependencies. For example, to use Hibernate, the dependency contains the
string: <groupId> org.hibernate. When building our regular expressions, we
have mapped different ways to include libraries for ORM in Java projects.

The second step (ii) concerns the configuration file of the ORM. This file
contains settings for an embedded database or object-relational mapping. As
each ORM has its tags, the name of the tag, and the name of the file, we used
this information to design our search heuristics. For example, to use Hibernate,
the configuration file contains the string: <\hibernate-configuration\>

The third step (iii) identifies how to catalog project entities. An entity
represents a set of information about a given system concept. Every entity
has attributes, which are the information that references the entity (Keith
and Schincariol, 2006). Each ORM has its own way of declaring entities. For
example, some classes contain the annotation @Entity to use JPA. Hibernate
uses the mapping metadata to determine how to load and store objects of
the persistent class. For this, the tag: <hibernate-mapping> is used. We have
mapped all these different ways of defining entities to generate the heuristics
we used to search our project corpus.

Finally, the fourth step (iv) considers how each ORM handles queries.
Each ORM has its own way of declaring queries. To use MyBatis, for exam-
ple, the query statements can be defined in XML as <select>, <insert> or
<update>, or as Annotations in Java files as @Select, @Insert, or @Update.
So, we mapped these different ways to use it.

Table gshows the heuristics we defined for the Spring ORM framework
as an example. The complete set of heuristics is available at our companion
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Table 5 Examples of heuristics that indicate the adoption of the Spring ORM.

Build <\s*groupld\s*>\s*org.springframework.boot
Import import\s{1,}org\.springframework\.data\.repository
QSpringBootApplication

Configuration www\.springframework\.org/schema/
QQuery
Queries @QueryHint

@NamedEntityGraph

Table 6 Comparison between the ORMs found by our Heuristics (H), the “pom.xml” file
(P), the project’s configuration file (C), and the project‘s entities (E).

Activiti Che Skywalking Storm  Pinpoint

Hibernate HPC HC
MyBatis HPCE PC H HPCE
Spring HPC HPC HC HPC
jooQ H
JDBCMapper
EclipseLink

website@. These heuristics help us search for footsteps left in the source code
that indicate the presence of a given ORM.

Validation. Similarly to what we did for the DBMSs heuristics, we conducted a
manual validation for the ORM heuristics using the same 5 randomly selected
projects. Table | compares the results obtained by our heuristics and those
found manually in the projects’ source code. Each cell (r, ¢) in this table
contains an H when the ORM on row r was found by our heuristics for the
project at column ¢, a P when the ORM on row r is mentioned in the project’s
“pom.xml” files, a C when the ORM on row r is mentioned in the project’s
configuration files, and E when it is mentioned in an entity declaration in
the source code. Cells marked with HPCE, HPC, or HC means the ORM
was found by our heuristics and was mentioned in the project source code,
characterizing the true positives. The cell marked with a red PC represents a
false negative since our heuristics did not detect an ORM that was mentioned
in the project configuration files. Lastly, cells with a red H represent false
positives since our heuristics detected the corresponding ORM, but it was not
mentioned in the project’s files. As shown in Table [, we found evidence of
the use of 11 ORMs in the five projects, with only two false positives. This
corresponds to a precision of 80% with 88.88% recall.

3.5 Files Needed to Use ORM

After applying our ORM heuristics, we identified the files that were related
to the use of ORM. We called these files as DB-code. Next, we grouped the
files by their type. We call Java DB-Code the files of type “java”, and XML
DB-Code the files of type “xml”. We perform this segmentation to evaluate

18 https://tinyurl.com/3f8kp763
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the number of files needed to configure an ORM (XML DB-Code) and the
number of files needed to use an ORM (Java DB-Code).

Using fan-in Henry and Kafura ([1981)), we discovered which files depend on
or use the Java DB-Code files. We call this second group of files Dependencies.
Fan-in refers to the number of local flows into a file plus the number of data
structures from which the file retrieves information. In the context of this
paper, fan-in refers to the maximum number of files related to a Java DB-
Code file. We calculated this number using the imported classes as a reference
— we searched for the class name of each Java DB-code file. For example, if
the file JpaHelper.java is returned when we use our search heuristics (thus, it
is a Java DB-code file), we look for its class name using a regular expression
(\sl[.,dI7)JpaHelper(\s|[.,(11$) to find files that use this file. Finally,
we define TotalDB as the percentage of the total sum of the necessary files:
(Java and XML) DB-Code and Dependencies Code.

3.6 Heuristics on How Queries are Performed

Even when an ORM framework is in place, applications frequently need to
run queries in the DBMS. The ORM framework automatically runs queries to
build objects for the application or to save object changes into the database.
However, global operations would suffer from performance bottlenecks if the
ORM framework needs to materialize all the involved objects, as is the case
in the well-known N+1 Select problem ([Turkish Technology, 2024). To solve
this problem, developers bypass the automatic query mechanism of the ORM
and use pure SQL as strings, or query builders instead. For instance, running
a SQL query to inform the mean salary of hundreds of thousands of gov-
ernment employees is way faster than materializing all objects that represent
government, employees to calculate the mean salary.

Using pure SQL in a Java program simply requires JDBC. There is no
need to add imports or libraries besides those of JDBC. Although using SQL
to query relational databases has many advantages, there are still a few disad-
vantages. When dealing with pure SQL, there are always issues with escaping
characters within literal strings, for example, spaces in the right place and
parentheses matching up. Moreover, even after the code is debugged and thor-
oughly tested, it is often still very fragile. The slightest changes may throw
things out of balance and require another round of testing and tweaking. A key
aspect to consider here is that SQL queries as strings are treated as strings
by the IDEs during compilation and demand external lint tools for syntax
checking.

SqlBuilder OpenHMS (2021) is a library that aims to solve the problems
of creating and generating SQL queries in Java programs. The library wraps
SQL into Java objects that follow the builder pattern (Gamma et al., 1994).
This strategy reduces the use of standard SQL inside strings.

In our work, we search our corpus to find out how queries to the database
are performed. To build the heuristics for that (again, a set of regular expres-



Adoption of DBMSs Throughout the History of OSS 21

sions that we run using git grep), we analyzed the official documentation of
the seven ORMs, looking for information on how to use pure SQL and Builder
in the Java language. We looked for and analyzed the two possibilities of us-
age: (i) What is needed to use the Builder? (ii) What is needed to use pure
SQL?

Question (i) is aimed at guaranteeing that we understand what is required
to use Builders in the seven ORMs. Each ORM has its specific way of use, so
we searched for words, tags, and imports that were unique and referred to the
use of those Builders within the application.

To use the Builder, the developer must include the required libraries in
the project. For this, the developers can add a jar file or use a dependency
manager (Maven) and add the dependency in the pom.zml file. Each ORM
has its own dependencies. For example, to use JDBC the dependency contains
the string: <artifactId>JdbcQueryBuilder, and thus our regular expression
that matches this string is <\s*artifactId\s*>\s*JdbcQueryBuilder. We
mapped all these ways to include libraries for Builders in Java projects. The
second requirement is to import the Builder in Java classes. Because of that,
we search for classes that have some Builder import, as in the following ex-
ample that uses the MyBatis framework: import org.mybatis. The regular
expression we use to match this is <\s*artifactId\s*>\s*mybatis.

Question (ii) is aimed at guaranteeing that we understand what is required
to use pure SQL. Each type of SQL has its structure and its particularities, so
we searched for words that were unique and referred to the use of those types of
SQL queries within the application. For example, to find a SELECT query, we
used the following regular expressions: select\s{1,}.*from\s{1,}.*. This
expression matches any complete SQL search structure, regardless of the source
tables or the where clause. This heuristics is case insensitive. In the table avail-
able at our companion website?d, we provide a list of SQL/Builders heuristics
we adopted in our searches.

We manually validated the heuristics for the Builders and SQL on a sample
of five randomly selected projects of our corpus (the same we use for the other
two types of heuristics). We tried to identify unmapped libraries. For that, we
searched for classes that did some kind of data manipulation, using terms like
insert, update, and delete. For the Activiti and Pinpoint projects, no evidence
of unmapped Builder was found. The Che project uses the Javax library. Javax
is a JPA library, so we made sure to update our JPA ORM heuristics (Section

) to include it. The Skywalking project uses IoTDB. In its documentation,
we found the following: “Apache IoTDB (Database for Internet of Things) is
an IoT native database that offers different ways to interact with the server,
to insert and query data.” In the case of the IoTDB, we decided not to include
it in our heuristics, as it is not a Builder library. The Storm project uses the
Storm/Trident integration for the JDBC library. As the library is project-
specific, we also decided not to include it in our heuristics.

19 http://tinyurl.com/3acawe3k
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Table 7 Validation of the Query and Builder Heuristics.

Activiti Sky Strom Che Pinpoint
SQL H H H H H
Builder H H

Validation. We conducted a manual validation for the Builder and SQL heuris-
tics using the same five randomly selected projects we used to validate the
Database and ORM heuristics. Table [] compares the results obtained by our
heuristics with those identified manually in the projects’ source code. Each cell
(r, ¢) in this table contains an H if the Builder/SQL in row r was detected by
our heuristics for the project in column ¢ and confirmed as a true positive after
manually checking the source code and configuration files. A red H represents
false positives. We had no false negatives. We found evidence of SQL usage in
all projects, with one false positive in a single project. For Builders, we found
evidence of their use in two projects, with no false negatives or false positives.
This corresponds to a precision of 87.7% and a recall of 100%.

3.7 Migration Patterns

When examining two DBMSs X and Y, we can identify a potential migration
pattern (RQ3) when we look at different slices in the history of the same
project. This replacement occurs when DBMS X exists in a specific slice, then
in a subsequent slice, X does not exist, but instead, DBMS Y appears, and
Y is kept in a subsequent slice. We can formalize this replacement using the
following rule:

X — YInXOut —Y

where X and Y represent the DBMS, the suffix j, represents the DBMS was
added, the o, suffix represents the DBMS was removed, the absence of p,
and oy represents the permanence of the DBMS, and — separates the slices.
For instance, consider the sequential pattern below. This notation signifies
that PostgreSQL was present in a particular slice, and in a subsequent slice,
PostgreSQL was replaced by Oracle, which was kept in a subsequent slice.

PostgreSQL — Oracley, PostgreSQLoy: — Oracle

Another way to perceive a DBMS replacement is when DBMS X exists
in a specific slice, then in a subsequent slice, DBMS Y enters, and in a later
slice, DBMS X is removed, while DBMS Y is kept. The following equation
formalizes this situation:

X =Y — XowY

As an example, consider the sequence below. This indicates that Oracle
was present in a particular slice, PostgreSQL entered in a subsequent slice,
and in a following slice, Oracle was removed while PostgreSQL remained.
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Oracle — PostgreSQLy, — Oraclepys PostgreSQL

This formulation allows us to capture and analyze the replacement patterns
among DBMSs over time. By identifying such replacements, we gain insights
into the dynamics of DBMSs’ usage and their transitions within the dataset.

3.8 Infrastructure

Most steps of our research were automatized to reduce error-prone and time-
consuming manual executions and to increase the reproducibility and au-
ditability of the results. We first implemented a series of scripts and Jupyter
notebooks for collecting, filtering, and analyzing projects’ metadata from Git-
Hub, as described in Section R.3. Then, we implemented a script to automat-
ically clone the repositories of our corpus.

The execution of each heuristic over the projects in our corpus was also
automatized. The script we implemented first checks the existing heuristics and
decides whether a new execution is necessary. This step populates a relational
DBMS with information about the projects, the heuristics, and the execution
of each heuristic for each project. Finally, we implemented a web application
that allows us to manually validate the results. This application shows the
pending matches and, for each match, the output generated by git grep.
This application allows us to analyze the results and confirm whether they are
valid. This app was especially useful in the heuristics building and validation
phases.

To identify migration patterns (RQ3), we used sequential pattern mining
techniques. We adopted the Prefixspan algorithm, the most popular pattern-
growth algorithm for sequential pattern mining (Han et al., 2001). Specifically,
we used the implementation provided by the SPMF library. Given our objective
of discovering subsequences in sequential datasets (Fournier-Viger et al., 2017),
we considered this algorithm as the most suitable choice. We aimed to identify
the DBMS that was most frequently replaced over time, treating each project
as a sequence composed of n items, where n is the number of slices of that
project, defined as explained in Section B.2. Each item represents a slice of the
project history, indicating the DBMSs that were added, kept, or removed from
the project. Consequently, by combining the sequence records from all projects,
we created a sequential dataset that served as the input for the PrefixSpan
algorithm. We also established three flags, namely Init, In, and Out, to indicate
the addition or removal of a DBMS. The rules we used to generate the input
file are defined as follows:

— The existence of an Init flag indicates that the DBMS occurs in that project
since its first slice. For example, to denote that Oracle appears in the first
slice of a given project, we add Oracleyy ;.

— The existence of an In flag indicates the first occurrence of the DBMS in
any slice other than the first. For example, if the first appearance of SQLite
in a given project occurs in its third slide, we add SQLitery,.
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Does the DBMS exist Does the DBMS exist
in the cument slice?  Is it the first slice? in the previous slice ?

Identify the A Yes No SA No Add the
DBMS J ‘In” flag

Does the DBMS Does more DBMS
existin the exist to identify?

previous slice ?

Add the
“Init” flag

Fig. 3 Activity Diagram for identifying the DBMSs in a given project slice.

— The existence of the DBMS in the previous slice and in the current slice
indicates it was kept from one slice to the other. We denote this by using the
name of the DBMS. For example, if MariaDB was present in the third slice
of a given project and also appears in the fourth slide, we add MariaBD.

— The existence of an Out flag indicates the DBMS was removed from the
project in that slice. For example, if Redis was present in the fifth slice of
a given project but was not found in the sixth slice, we add Redisoq;-

Figure B shows an activity diagram illustrating how we identify if a given
DBMS was added, kept, or removed in a given slice, as explained above. We
emphasize that this activity diagram describes only part of the process imple-
mented by our script that generates the data entry file required by SPMF. As
an example, consider the Zendesk/Maxwell project and assume it was sliced
into 10 equal-sized slices (in reality, this project was sliced into 37 slices of size
100, since it has 3790 commits — we use 10 slices here for didactic purposes).
For this project, the flags would be as shown below.

MySQLzpi: — MySQL — MySQL — MySQL — MySQL — MySQL —
Redisy, MySQL — Redis MySQL — Redis MySQL — Redisp,: MySQL

In this notation, slices are separated by an arrow (—). In this example,
MySQL was present in the first slice (MySQLyy;:) and was kept as the only
DBMS until the sixth slice (MySQL). In the seventh slice, Redis appears for
the first time (Redisy, ), and MySQL is kept (MySQL). In the eighth and ninth
slices, Redis and MySQL are still present (Redis MySQL). Finally, in the last
slice, Redis was removed (Redisp,:) while MySQL was kept (MySQL).

For our analysis, we also needed to count the occurrences of a given DBMS
in a sequence, allowing for both the validation of the mined results and the
execution of additional analyses. For that, we have developed a tool called
Pattern Countertd. Pattern Counter allows counting patterns in a sequence of

20 https://patterncounter.readthedocs.io/en /latest/
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items using rules and variables. The tool uses the same input file we gener-
ated to work with the SPMF library. In addition, Pattern Counter provides
filtering capabilities, allowing data extraction through various combinations
of parameters.

Finally, to mine association rules, we adopted the Apriori algorithm, a pop-
ular algorithm for extracting frequent item sets, proposed by |Agrawal et al.
(1994) in 1994 and implemented by the MLExtend library. We then use it to
find the synergy between the DBMSs, i.e., which DBMSs are used together in
the history of a given project (RQ4). This algorithm requires a dataset that in-
dicates all items (i.e., DBMSs in our case) that are present in each transaction
(i.e., a project in our case). Consequently, we created three datasets containing
the results of the heuristics discovered at three stages of the projects’ history
(beginning, middle, and end) to capture the evolving DBMS adoption in the
projects over time. To achieve this, we developed Python scripts for building
and pre-processing datasets, using scripts from the Pandas library for the pre-
processing. Afterward, we applied this algorithm to each dataset to generate
the correlations between DBMSs.

The complete experimental package, containing the data and scripts used
in this research and the reproducibility instructions, are available at https:
//gems-uff.github.io/db-mining.

4 Results

In this section, we report the results according to our research questions. We
also present the results of a qualitative analysis in Section {.7.

4.1 (RQ1) Which DBMS are the most popular across software projects?

In order to answer RQ1, we divided our investigation into three aspects:
DBMS, Database Models, and Project Domains.

DBMS. Figure H shows our findings regarding the DBMS aspect. We found
that Java projects use 46 different DBMSs. Among the DBMSs, two of them
are multi-model, and one uses both models. Since we consider them to be
different in our analysis, we found evidence of the use of 47 different DBMS.
However, out of the 362 projects that belong to our corpus, we found evidence
of DBMS usage in just 202. We observed that, in our corpus, MySQL is the
most popular DBMS. MySQL is present in 113 of the 202 projects in which we
found evidence of DBMS usage, representing 55.9% of the projects with DBMS.
According to the DB-engine (DB-Engines, 2022) ranking (as of October 2024),
MySQL is the second most popular DBMS. PostgreSQL comes in second place
in our corpus. It is present in 93 projects (46.0%). H2 comes in third, present
in 90 projects (44.6%). Oracle comes next, appearing in 40.6% (82 projects) of


https://gems-uff.github.io/db-mining
https://gems-uff.github.io/db-mining
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Fig. 4 Most popular DBMSs in our corpus, classified by data model.

the projects. Finally, in fifth place, Redis was discovered in 39.6% (80) of the
projects. It is the only non-relational database found among the top 5 DBMSs
of our corpus. In the DB-Engines ranking, Oracle, MySQL, PostgreSQL, and
Redis (in this order) are among the top-10 DBMSs in terms of popularity.
The discrepancy in our findings is H2, which appears in 49*" place in the DB-
Engines ranking, but in second place in our results. However, this is natural
since DB-Engines is not specific for DBMSs that are used in Java, and also
because the ranking does not reflect use but popularity instead.

Aerospike, Impala, and Microsoft Azure Table Storage appeared in just
one project each. Out of the 50 DBMSs we analyzed, Interbase, FileMaker,
and Virtuoso-SQL showed no evidence of being used. Another important fact
is that 160 projects showed no evidence of the use of any of the 50 DBMS we
searched for in our corpus. To verify that this result was correct, we reviewed
the official documentation of ten randomly selected projects, Lottie-Android,
FXGL, PDFBox, POI, Antlr4, Rocketmq, Curator, Struts, Kafka, and Jenkins,
and concluded that they really do not use a DBMS.

Models. To investigate the Models aspect, we grouped our findings by database
model (relational and non-relational). FiguregH shows the occurrences of rela-
tional and non-relational DBMSs in our project corpus. Using our database
heuristics to search the project corpus, we found evidence of the use of 22 of
the 25 relational databases (88.0%) we searched for.
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Fig. 5 DBMS by the top 5 application domains: Software Development, Data Management,
Infrastructure Management, Program Analysis and Security.

For non-relational databases, the DBMSs for which we found more usage
evidence were Redis (in 80 projects) and Mongo DB (in 46 projects). Using
our database heuristics to search the project corpus, we found evidence of the
use of all of the 25 non-relational databases we searched for (100%). Given
that we found evidence of DBMS usage in 202 projects, we observed that
the adopted DBMSs are distributed as follows: 166 projects used relational
DBMSs (82.2%), 138 projects used non-relational DBMSs (68.3%), and eight
projects used multi-model DBMS (Ignite and Virtuoso — 4.0%). Thus, from this
perspective, relational DBMSs are more popular than non-relational DBMSs
in our corpus. We also found a non-negligible intersection of 103 projects where
both models are adopted (51.0%).

Domains. To identify if there is a relation between database systems and
project domains, we linked the DBMS discovered for each project and its do-
main. The results for the five most popular domains in our corpus are shown in
Figure B We observe that the most used DBMSs among the top-5 domains are
MySQL, PostgreSQL, H2, Oracle, and Redis, following the pattern described
above in DBMS analysis. We can see in Figure f| that the number of projects
in the top 5 domains per DBMS has a long tail, i.e., there is a large number of
DBMSs that are rarely used and a small number of DBMSs with high usage
rates by the projects in the top 5 domains. Projects in the Software Devel-



28 Camila A. Paiva et al.

opment domain use 35 different DBMS. The most used are MySQL, Redis,
Oracle, H2, and PostgreSQL. Most of these databases share some features,
such as SQL support and in-memory capabilities. MySQL, Oracle, H2, and
PostgreSQL are relational databases, while Redis is a key-value store. These
DBMS vary in terms of scalability and persistence, reflecting the diverse needs
of software development projects.

RQ1: Which DBMS are the most popular across software projects?

Answer: Relational DBMSs are more popular in our corpus than Non-Relational
DBMSs. We found evidence of usage of all the 25 non-relational DBMSs we searched
for against only 22 of the 25 relational DBMSs we searched for. MySQL is the most
popular relational DBMS in our corpus. It is the most used DBMS in the Software De-
velopment, Data Management, and Infrastructure Management domains. As for non-
relational DBMS, the most used is Redis. It is also the most used non-relational DBMS
in the Data Management, Software Development, and Infrastructure Management do-
mains, indicating that both MySQL and Redis are frequently employed within the same
domains.

4.2 (RQ2) How stable are the DBMSs during the projects’ history?

In this question, we investigate the stability of a DBMS throughout the projects’
history, considering the established heuristics. It is important to highlight that
we consider that a project adopted a DBMS if it appeared in any segment of
the project’s history, even if it was no longer present in the final segment.

Figure [ presents the most popular DBMSs in the projects of our corpus,
considering the historical analysis performed across all equal-sized slices in
terms of the commits of each project. As described in Section B.3, we applied
52 sets of heuristics for the 50 surveyed DBMSs since some are multi-model.
We found evidence of the adoption of 46 DBMSs in 234 of the 362 projects in
our corpus. Compared to the results we obtained for RQ1 (in which we look
only at the last version of each project), we note a larger number of projects
with evidence of DBMS usage (234 for RQ2 versus 202 for RQ1). This means
that 32 projects in our corpus stopped using a DBMS at some point or switched
to one that is not on our list of 50 DBMSs. We intend to further investigate
this matter in future work.

The top positions are occupied by MySQL, which appears in 137 projects,
followed by H2, appearing in 114 projects. PostgreSQL came in third, present
in 102 projects, then Oracle in 94 projects, and Redis in 90 projects. Thus,
MySQL was present in about 58.5% of projects that use a DBMS, H2 occurred
in about 48.7%, PostgreSQL in about 43.6%, Oracle was present in about
40.2%, and Redis in about 38.5% of these projects. The top-5 DBMS are the
same when we compare the results with the ones in RQ1, however, there is a
change of position between H2 and PostgreSQL.
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Fig. 6 Most Popular DBMSs in the history of Java projects.

As can be noted, following the same results as RQ1, the relational model
is the most commonly used (85.0% of the projects that use a DBMS, use a
relational DBMS). Still, the non-relational (NoSQL) model is also present. We
also found evidence of Ignite being adopted by 3.8% of the projects in both
categories: one project uses it just as a relational database, and six projects
use it as a non-relational database, and two projects use it as a multi-model
database.

We also observed that MySQL, PostgreSQL, and Oracle are among the
most used DBMSs in the DB-Engines ranking (IDB—EnginesL lZOQQI), even con-
sidering the different contexts between this ranking and our research. On the
other hand, H2 (Hypersonic 2) is our second most adopted DBMS and oc-
cupies the 49;, position in this ranking (as of October 2024). The fact that
H2 is among the top-2 DBMSs in our study mﬁht have happened due to the
simplicity of integration of H2 in Java projects&.

Given the 46 DBMSs found, we observed that the adopted DBMSs are
distributed as follows: 22 relational DBMSs, 25 non-relational DBMSs, and
one multi-model DBMS (Ignite) that appears in both categories. This infor-
mation reinforces the increasing trend of adoption of non-relational models
among Java projects. According to IDavoudian et al) ( 018|), non-relational
DBMSs are not designed to replace relational DBMSs but as a solution to the
gaps regarding the need for scalability and availability that certain distributed
applications require.

21 http://www.h2database.com/html/history.html
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Fig. 7 Adoption of DBMS in the history of the projects, clustered by their data model.

The Venn Diagram shown in Figure H shows the number of projects classi-
fied by the type of data model they adopt. Out of the 234 projects in which we
found evidence of the use of DBMSs, 69 adopt only the relational model, and
35 adopt only the non-relational model. However, we found an intersection
where both models are adopted (130 projects). Thus, 55.6% of these projects
adopt both data models, while 44.4% use only one of the models. The under-
standing that both models can complement each other is reflected in about
half of the projects that use a DBMS in our corpus.

We did not find evidence of usage of three of the 50 DBMSs that we
searched for: Virtuoso-SQL, Interbase, and FileMaker. This is the same result
that we found for RQ1. Interbase and Virtuoso are not very popular DBMSs,
which may explain their absence in our findings. In fact, in the DB-Engines
ranking (DB-Engines, 2022), they appear at the 76! and 72"¢ positions, re-
spectively. Note that they were included in our analysis among the 50 popular
DBMSs since lots of DBMSs that are listed before them in the ranking were
discarded due to several reasons, as explained in Section PR.1. Regarding the
absence of FileMaker, we have not identified any explanation from the avail-
able data, as it is a well-established Database Management System, holding
the 20" position in the aforementioned ranking. We believe the absence of a
free version is the key to understanding its absence in our corpus since license
costs can be a deterrent for OSS projects.

We also analyzed the adoption of DBMSs in the history of the projects,
clustering the projects by their domains and the DBMSs by their data model.
Figure § presents the results. The intention of this analysis was to discover
which data models are used the most in the various project domains of our
corpus. We found 40 projects from the Data Management domain using both
relational and non-relational DBMSs, whereas 13 projects used only relational
DBMSs and 6 used only non-relational DBMSs. The Data Management do-
main showed the highest adoption of using both models together.

Combining DBMS models (see Section P.1|) surpass relational and non-
relational models in the Data Management, Infrastructure Management, Se-
curity, Automation, Monitoring, Enterprise Resource Planning, Network, Col-
laboration, and File Management domains. Thus, out of the 19 domains in
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Fig. 8 Distribution of DBMS models by project domains, when considering the history of
the projects.

our corpus, the combination of models in DBMSs is predominant in 11, corre-
sponding to 57.9% of the domains. This discovery reinforces the trend of using
more than one distinct data model and that they can complement each other
(bahatqija et al.‘, bOld). For instance, all projects from the Personal Manage-
ment and Finances domains use only multi-model DBMSs. We also observed
that no domain used only one DBMS model. Additionally, the three projects
in the High-Performance Computing domain showed no indication of database
usage.

RQ2: How stable are the DBMSs during the projects’ history?

Answer: MySQL, H2, and PostgreSQL are among the three most used relational
DBMSs, while Redis and MongoDB are the most used non-relational DBMSs. Half of
the projects adopted both relational and non-relational databases. This co-occurrence
of models was especially prevalent in projects of the Data Management domain.
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Fig. 9 Distribution of DBMS insertions and removals in the projects. The removal percent-
ages are calculated over the total number of insertions for each DBMS.

4.3 (RQ3) Which DBMSs are frequently replaced by others?

In this question, we look for migration patterns between DBMSs and quantify
the frequency they occur throughout the projects’ history.

Figure g presents the frequency of DBMSs being inserted or removed across
the history of the projects. These numbers were calculated as follows. For each
DBMS A, we iterate through each slice of each project to count how many
times A was inserted or removed. During the slice iteration, when a DBMS A
is found in one of the slices, we count it as the first insertion in the project.
Then, we check the subsequent slices to see if A is present there. If not, we
consider that A was removed from the project for the first time. We continue
checking the subsequent slices, and if A is found again, we update the insertion
count to indicate that it was inserted twice. The process continues until we
find the total number of insertions and removals per project. Then, we combine
these numbers to analyze how many projects had 1, 2, 3, or 4 insertions of A
and how many projects had 1, 2, or 3 removals of A throughout their histories.
No projects in our corpus had more than 4 insertions or more than 3 removals.
Finally, we also count how many projects inserted A once and never removed
it afterward.

To illustrate, remember that MySQL was found at some point in the his-
tory of 137 projects (see RQ2). This means that MySQL was inserted at least
once in all of them. After the initial insertion, 41 projects removed the DBMS
(29.9% of the projects that used MySQL). After the removal, 20 projects in-
serted MySQL for the second time, and then, 4 projects removed it again,
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leading to MySQL being present in the last slice of 112 projects. Note, how-
ever, that MySQL appears in the last commit of 113 projects (see RQ1). It
occurs because MySQL was inserted into a project between the last slice and
the last commit. Considering that MySQL was inserted twice for 20 projects,
117 out of the 137 projects that adopted MySQL inserted it exactly once. Out
of these 117 projects that inserted MySQL once, 96 projects never removed it.

The removals happened for the majority of DBMSs we surveyed. Some-
times, more than once for the same project, with Oracle being removed 3 times
and inserted 4 times in a single project, for instance. However, some DBMS
were never removed once adopted by a project: ClickHouse (11 projects), Mi-
crosoft AzureCosmosDB (7 projects), Singlestore (4 projects), Kdb (3 projects),
GoogleCloudFilestore (3 projects), Riak_ KV (2 projects), SAPSQLAnywhere
(2 projects), Ignite_Sql (2 projects), Microsoft AzureTableStorage (1 project),
and Impala (1 project).

As one of our goals was to understand the frequency of DBMS replace-
ments, the significant amount of removals we found had created the expecta-
tion that substitutions are frequent. To investigate this, we utilized sequential
patterns mining (Fournier-Viger et al., 2017). Each project in which we found
a DBMS was transformed into a sequence, and each item in the sequence cor-
responds to a slice in the project’s history. Thus, we have 234 sequences, and
the size of each sequence varies depending on the number of slices of each
specific project. The sequences were coded according to the patterns defined
in Section B.7. After generating the patterns, we filtered out those that met
the established patterns to characterize the replacements, as discussed in Sec-
tion B.7.

In total, we found 296 replacement patterns across 67 projects. These pat-
terns breakdown as follows: 89 replacement patterns among relational DBMSs
(30.1% of the replacement patterns) across 44 projects (65.7% of the projects
with DBMS replacements), 66 replacement patterns among non-relational
DBMSs (22.3%) across 21 projects (31.3%), and 141 replacement patterns
involving both models (47.6%) across 43 projects (64.2%). Thus, in 35.8% of
the projects with replacements, the replacements only occur between DBMSs
that follow the same data model. This may mean that data integrity is the
relevant criterion when choosing a replacement. Replacements among non-
relational DBMSs occur in only 12.5% of these cases. This indicates that the
substitution between non-relational DBMSs is rarer, possibly because they
provide different data types (graph, key-value, document, etc.), so replacing
them is not an easy task. Finally, in 50.0% of the patterns, the replacements
occur among distinct data models such as Cassandra replacing PostgreSQL in
3 projects. This may indicate that the project’s needs or data storage require-
ments have changed significantly in a given moment of the project’s history,
prompting a migration to a different data model. It may also suggest a growing
trend toward adopting more diverse data models. This may occur due to some
new desirable property that the DBMS in use could not provide, as reported
by Gessert et al) (2017).
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Table 8 DBMS replacement patterns.

Pattern Support
Cassandra — PostgreSQLj,, — Cassandraop,: PostgreSQL
Cassandra — MS SQL Serverj,, — Cassandrap,: MS SQL Server
Couchbase — PostgreSQL,, — Couchbasep,+ PostgreSQL
HBase — HyperSQLj, — HBaseop,: HyperSQL

HBase — H2;,, — HBasep,+ H2

HBase — MS SQL Servery,, — HBaseop.: MS SQL Server

HBase — Redisy, — HBaseopu: Redis

Hazelcast — HyperSQLy,, — Hazelcasto,: HyperSQL

HyperSQL — Redisy, — HyperSQLo4t+ Redis

HyperSQL — PostgreSQL;, — HyperSQLo,: PostgreSQL
HyperSQL — MySQLj,, — HyperSQLo4+ MySQL

HyperSQL — MongoDBj,, — HyperSQLow+ MongoDB
HyperSQL — H2;,, — HyperSQLo,: H2

MySQL — Redis;, — MySQL0o.: Redis

Oracle - MySQLj, — Oracleo,t+ MySQL

PostgreSQL — Oracler,, PostgreSQLo,: — Oracle

SQLite — H27,, — SQLitep,+ H2

SQLite — MS SQL Serverr,, — SQLitep,+ MS SQL Server

QO | Lol Lol Lo Lo U1 T 00f OO W WO | | W W

Table E shows 18 sequential patterns that indicate DBMS replacements
that occurred in three or more projects (Support > 3). We opted for this
support threshold to remove incidental patterns that occurred only once or
twice in our corpus. An example is the pattern PostgreSQL — Oracler,
PostgreSQ Loyt — Oracle with Support = 3. This indicates that three projects
used PostgreSQL, then in a later slice started using Oracle and stopped using
PostgreSQL, maintaining Oracle in a later slice. The pattern HyperSQL —
Redisy, — HyperSQLo,: Redis with support = 8 indicates that eight projects
replaced HyperSQL by Redis. These two examples present replacement pat-
terns whose changes occur in different ways. In the first example, the usage
of Oracle started at the same time that PostgreSQL left. In the second ex-
ample, Redis enters at a given moment, and at a later time when HyperSQL
leaves, Redis is maintained. Although the patterns shown in Table § confirmed
the existence of replacements, they do not indicate that a specific substitu-
tion occurred frequently—since each pattern demonstrates that DBMSs were
replaced in at least 3 and at most 8 projects (Support = {3, 4, 5, 8}).

As depicted in Table B, some DBMSs are replaced by several others, with
frequent patterns indicating that a DBMS A was replaced by a specific DBMS
B in multiple projects. To further investigate the replacements, for each re-
placed DBMS A, we count the total number of replacer DBMSs B, and the
total number of projects where A was replaced. We display the results in Ta-
ble d. Our replacement counts consider the number of DBMSs that appeared at
the same time or after a given DBMS was dropped on a given project. For ex-
ample, HyperSQL was replaced by 18 different DBMSs in 19 projects. In eight
of those projects, Redis figures among the replacers. In the opposite direction,
we did not find a pattern indicating HyperSQL replacing Redis. Similar to
HyperSQL, HBase was replaced by 18 DBMSs. However, these replacements
occurred in only 5 projects, and, in four of those projects, HyperSQL figures
among HBase replacers.
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In some situations, we did not find frequent patterns. For instance, MySQL
was replaced by 13 different DBMSs in 13 projects, but the replacements did
no share a common replacer DBMS, overall. The only MySQL replacement
pattern that occurred frequently enough (Support > 3) to appear in Table
was its replacement by Redis, with no replacements in the opposite direction.
Given these results and the expectations generated by the significant amount
of removals (Figure E), we observe that substitutions between DBMSs are not
frequent but do occur.

In summary, we have identified that HyperSQL is the DBMS mostly sus-
ceptible to replacements during the projects’ history, since it is replaced in 19
different projects. Additionally, we observed that most replaced DBMSs have
experienced more than one replacement in certain projects. This means that
when a DBMS is removed, it may be replaced by more than one alternative
DBMS, either in the same slice or in later slices of the project history. For
example, in the Apache/Camel project, we discovered 14 distinct patterns of

Table 9 Occurrences of DBMSs replacements and count of projects where other DBMSs
replaced them.

Replaced DBMS # Replacer DBMSs # Projects % Projects
Couchbase 13 3 33.3%
SAP Adaptive Server 10 4 33.3%
Informix 9 5 33.3%
CouchDB 5 1 33.3%
Ingres 8 2 28.6%
Ignite-NoSql 10 2 25.0%
Realm 4 1 25.0%
HyperSQL 18 19 23.5%
Firebird 4 3 21.4%
HBase 18 5 20.8%
Hazelcast 8 7 20.6%
SQLite 15 8 20.0%
Teradata 10 2 18.2%
SapHana 4 2 18.2%
Neod; 4 3 17.6%
IBM DB2 8 7 17.1%
MS SQL Server 13 11 16.4%
Cassandra 14 5 16.1%
MS Access 5 2 15.4%
Influx DB 1 1 14.3%
Firebase Realtime 2 1 12.5%
Google Cloud Datastore 12 5 11.6%
Snowflake 1 1 11.1%
PostgreSQL 14 11 10.8%
H2 14 12 10.5%
MySQL 13 13 9.5%
PostGIS 1 1 9.1%
Oracle 11 8 8.5%
MongoDB 5 4 7.8%
Redis 6 7 7.8%
MarkLogic 3 1 7.7%
DynamoDB 5 1 3.0%
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Table 10 Occurrences of DBMS substitutes and count of projects where they replaced other
DBMSs.

Replacer DBMS # Replaced DBMSs # Projects % Projects
Microsoft Azure CosmosDB 7 4 57.1%
SAP SQL Anywhere 2 1 50.0%
Influx DB 5 3 42.9%
ArangoDB 2 2 40.0%
Etcd 11 3 37.5%
Cassandra 18 11 35.5%
Couchbase 4 3 33.3%
GoogleCloudFirestore 2 1 33.3%
Neodj 12 5 29.4%
Ingres 3 2 28.6%
MS SQL Server 18 19 28.4%
MongoDB 15 14 27.5%
PostGIS 5 3 27.3%
HBase 11 6 25.0%
Ignite-NoSql 2 2 25.0%
Redis 15 22 24.4%
PostgreSQL 17 24 23.5%
MarkLogic 5 3 23.1%
Oracle 17 19 20.2%
DynamoDB 10 6 18.2%
ClickHouse 5 2 18.2%
Teradata 2 2 18.2%
H2 15 19 16.7%
Hazelcast 10 5 14.7%
Google Cloud Datastore 9 6 14.0%
HyperSQL 11 11 13.6%
Informix 4 2 13.3%
MySQL 13 18 13.1%
Firebase Realtime 2 1 12.5%
IBM DB2 7 5 12.2%
Snowflake 3 1 11.1%
SapHana 1 1 9.1%
SAP Adaptive Server 2 1 8.3%
SQLite 3 3 7.5%

HBase substitutions for different DBMSs: ArangoDB, Cassandra, Couchbase,
Eted, H2, HyperSQL, Ignite-NoSql, Influx DB, MS SQL Server, Microsoft
Azure CosmosDB, MySQL, PostGIS, PostgreSQL, and Redis.

Conversely, Table @ presents the DBMSs that replaced others. This analy-
sis aimed to find out which DBMSs are mostly used as replacements, regardless
of which DBMS they replaced. Some DBMSs replaced many distinct DBMSs.
For instance, MS SQL Server and Cassandra replaced, each, 18 distinct DBMSs
in 19 and 11 projects, respectively. However, from the viewpoint of the num-
ber of projects where the replacement occurred, the DBMSs most chosen to
replace others with are Redis (which replaced 15 DBMSs in 22 projects) and
PostgreSQL (which replaced 17 DBMSs in 24 projects).

The tendency for non-relational DBMSs to be used as replacements is also
relevant. Figures [LJ and [11], extracted from the DB-Engines website, present
this trend by showing the evolution in the popularity of relational (Figure @)
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Fig. 10 Relational DBMSs trend. Source: DB-Engines.

and non-relational (Figure EI) DBMSs from 2014 to 2024 (note the logarithmic
scale). Although a certain stability is observed in the popularity of relational
DBMSs, the growth of non-relational DBMSs is notable. This trend reinforces
some of Cattel’s predictions (k Zatteld, IZO_HI) that NoSQL DBMSs would not be
a “passing fad” due to their simplicity, flexibility, and scalability. He predicted
that developers would accept these advantages to the detriment of ACID trans-
actions (ACID transactions are those that guarantee Atomicity, Consistency,
Isolation, and Durability (Elmasri and Navathe, 2010) — relaxing consistency
may lead to faster transactions, with the penalty that users may see old ver-
sions of the data at given points in time). Thus, this growing preference for
non-relational solutions can be related to the business’s need to deal with fast
lookup or more complex querying capabilities that require a greater volume
of data (bessert et al., 2017), such as textual searches or choosing a standard
for exchanging data.

Comparing Tables H and E, we observe that both HyperSQL and HBase
were replaced by other 18 DBMSs and replaced other 11 DBMSs, indicating a
decrease in their adoption. On the other hand, Etcd (a distributed key-value
DBMS) was not replaced but substituted 11 DBMSs, suggesting a significant
increase in its usage among the projects. This way, we can perceive which
DBMSs tend to be discontinued and which tend to be most selected to replace
others.

Nevertheless, despite discovering evidence of DBMS substitutions and some
DBMSs being more prone to being replaced than others, we did not observe
frequent patterns of a specific DBMS A always being substituted by DBMS
B. The growing co-occurrence among DBMSs, as we will show in Section 4.4,
may influence the situation, making migrations from one DBMS to another
unnecessary. This further supports the notion that DBMSs can complement
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Fig. 11 Non-relational DBMSs trend. Source: DB-Engines.

each other, and the projects are utilizing multiple DBMSs to meet their specific
needs.

RQ3: Which DBMSs are frequently replaced by others?

Answer: Our results reveal 18 patterns of DBMS replacements in projects. The most
frequent involves HyperSQL. It was replaced in 8 projects by Redis, 7 projects by
PostgreSQL, and 6 projects by MySQL. Overall, in 52.4% of the cases, the replacements
occurred between DBMSs that have the same model. The remaining 47.6% of the
replacements involve both data models. In a more comprehensive analysis, considering
only the replaced DBMS, including the patterns that occurred in only 1 project,
we found HyperSQL and HBase among the most susceptible to be replaced — each
were replaced by 18 DBMSs in 19 and 5 projects, respectively.. Also, considering just
the number of projects, we found Redis and PostgreSQL among the most used as a
replacement.

4.4 (RQ4) Which DBMSs are often used together?

In this research question, we explored the synergy between the DBMSs. For
this analysis, we adopted association rules to extract patterns that indicate
the existence of concomitant use of DBMSs in our corpus. To perform our
historical analysis, we took snapshots from the beginning, middle, and end of
the projects’ history and compared the results obtained in these three moments
(slices). We mined the three slices by applying the Apriori algorithm and
generated a heat map to represent the correlations between the DBMS in each
slice, as shown in Figures @, , and [14. We used a minimum frequency of
five projects (minimum support of 5), which means we only considered the
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Fig. 12 Correlation of the most frequent DBMSs at the beginning of the projects’ history.

correlations that occurred in at least five projects to characterize a pattern.
Note that in all of the heat maps, the upper diagonals of the heat maps were
eliminated due to redundancy. In addition, the blank cells in the lower diagonal
have a frequency below five projects.

Figureq@ presents an overview of the synergy between 10 DBMSs early
in the projects’ history (corresponding to the slice that contains the first 100
commits of the projects, as explained in Sectio ). Among the most used
DBMSs, we found MySQL and PostgreSQL in 21 projects, HyperSQL and
MySQL in 20, and MySQL and H2 in 17. Notice that these are the same
DBMSs most used individually, as we discussed in Section #.2. This demon-
strates that certain DBMS combinations are preferred choices for developers
and are widely adopted in various projects. Several factors can be attributed
to the popularity of these combinations, such as complementary features pro-
vided by these DBMSs, performance characteristics, integration facility, and
even developer familiarity. Thus, using these DBMSs together can provide
more accurate solutions satisfying diverse requirements in different projects.
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Fig. 13 Correlation of the most frequent DBMSs in the middle of the projects’ history.

All of the 10 DBMSs for which we found synergies at the beginning of
the projects’ history are relational. No combinations involving non-relational
DBMSs were observed in the projects, demonstrating that in the initial phase,
the combinations between relational DBMSs are more commonly used than
non-relational DBMSs. A possible explanation is the age of the projects and
the fact that non-relational DBMSs have gained popularity recently.

Halfway through the history of the projects, the amount of combined use
of DBMSs more than doubled when compared to the beginning. At this point,
we found synergies among 23 DBMSs, as shown in Figure [L3. This means that
the projects employed more DBMSs together as they matured, pointing to a
practice of polyglot persistence, where multiple databases are used to meet
the distinct needs of a project (IRoy—Hubara et al.‘, }2022‘). This increase may
be related to the more complex database needs arising as projects undergo
significant changes during their history. Despite the increase in the variety of
DBMS combinations, the most frequent combinations remain similar to those
observed at the beginning of the projects’ history. MySQL and PostgreSQL,
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Fig. 14 Correlation of the most frequent DBMSs at the end of the projects’ history.

MySQL and H2, and MySQL and Oracle remain among the most used com-
binations, significantly increasing to 68, 54, and 48 projects, respectively. On
the other hand, MySQL and HyperSQL, which was the second most popu-
lar combination at the beginning of the projects’ history, are now not among
the most popular combinations (although 44 projects use them together in the
middle of the projects’ history). We also highlight the increase in the frequency
of combinations involving MS SQL Server and the emergence of combinations
involving Cassandra and Redis on 18 projects. These may reflect the search
for more customized solutions to the projects’ database needs as they mature.

Moreover, there are 9 combinations of non-relational and relational DBMS,
indicating that non-relational DBMSs are gaining force as complementary al-
ternatives to relational DBMSs in various project scenarios. Examples include
the combined use of Redis and PostgreSQL in 24 projects, MongoDB and H2
in 22 projects, and Cassandra and MySQL in 19 projects. However, despite
the fact that we observed more combinations involving the two models and the
emergence of combinations of non-relational DBMSs, the combinations involv-
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ing only relational DBMSs remain predominant in this phase of the projects’
history.

According to Figure @7 the synergy between DBMSs increases at the end
of the project history. However, the growth rate from the beginning to the
middle (from 10 DBMSs to 23 DBMSs) is significantly higher than that from
the middle to the end (from 23 DBMSs to 31 DBMSs). This demonstrates that
until the middle, there is a wider exploration to meet the projects’ demands.
However, towards the end of the project history, the growth of the number of
new DBMS combinations decreases, perhaps due to identifying more efficient
and effective DBMS combinations leading to a more controlled growth.

MySQL, PostgreSQL, Oracle, and H2 remain among the most frequent
combinations throughout the projects’ history. Although HyperSQL lost its
position to Redis, the combinations involving this DBMS remain popular in
various projects. Interestingly, combinations involving Redis became more fre-
quent among projects (at this stage, we found combinations of Redis with 22
different DBMSs), indicating its increasing popularity and synergy at the end
of the projects’ history. According to Cattell (2011), Redis is a single-node
key-value storage DBMS suitable for applications that search objects by a sin-
gle attribute. Thus, this increase in popularity may mean it is being used for
simple data manipulation.

Combinations involving non-relational DBMSs—such as MongoDB, Dy-
namoDB, and Google Cloud Datastore—become more frequent from the mid-
dle to the end of the analyzed project histories. The growth in the use of
non-relational DBMSs is also reflected in combinations among the two mod-
els (for instance, MongoDB with IBM DB2 in 11 projects, DynamoDB with
HBase in 8 projects, and Cassandra with HBase in 7 projects) and combina-
tions containing only non-relational DBMSs, such as Redis with MongoDB
in 27 projects, and Redis with Cassandra in 19 projects. These findings reaf-
firm an increasing trend of joint use of non-relational DBMSs in the projects’
advanced stages.

Overall, these analyses indicate that the choice of DBMS combinations
evolves over the projects’ history, with certain DBMSs gaining popularity
while others see fluctuations in their usage patterns. Non-relational DBMSs, in
particular, became more prevalent in combinations as the projects progressed,
possibly due to their advantages in handling certain data types and workloads.

It is worth noting two points here. First, the projects have different time-
lines, so the first slice of one project may comprise commits from 2010, while
the first slice of a more recent project may comprise commits from 2024. Thus,
the synergies we identified here are not related to specific versions of a DBMS
since different projects may use the same combinations of DBMSs at different
points in time (and thus, use different versions of those DBMSs). Second, since
we use slice sizes of 100 commits, different projects have different numbers of
slices. Thus, our analysis in Figure [L3 may use slice 10 for a project that has
20 slices, and slice 40 for a project that has 81 slices. The same goes for Figure

— it uses slice 20 for a project that has 20 slices, and slice 81 for a project
that has 81 slices.
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Table 11 Top 10 rules with highest lifts in the first slice of the projects’ history. MS SQL
stands for MS SQL Server, DB2 stands for IBM DB2, Postg. stands for PostgreSQL, Access
stands for MS Access, and HSQL stands for HyperSQL.

Sup Sup Sup Conf Conf Lift
A B (A) (B) (A—»B) (A—B) (B—A) Diff (A—B)
MS SQL DB2 9 10 5 0.55 0.50 0.05 12.88
MS SQL  SQLite 9 12 5 0.55 0.41 0.14 10.74
DB2 Oracle 10 20 9 0.90 0.45 045 10.44
Informix  Postg. 5 23 5 1.0 0.21  0.79 10.08
Access Oracle 7 20 6 0.85 0.30  0.55 9.94
MS SQL  Oracle 9 20 7 0.77 0.35  0.42 9.02
MS SQL  Postg. 9 23 8 0.88 0.34 0.54 8.96
DB2 Postg. 10 23 8 0.80 0.34 0.46 8.06
DB2 HSQL 10 32 10 1.0 0.31  0.69 7.25
Informix  HSQL 5 32 5 1.0 0.15 0.85 7.25

We further analyzed whether using a particular DBMS increases the chance
of using another one. To do this, we filtered the rules with the highest lift
values for the three moments in the project history, as shown in Tables [L1], [L2,
and @ As shown in Table @, the rule MS SQL Server — IBM DB2 has the
highest lift we found early in the project history (12.88). This means that using
MS SQL Server increases by 12.88 times the chance of using IBM DB2. The
rule’s confidence is 55% (Conf(A—B) = 0.55) when we have MS SQL Server
as antecedent and IBM DB2 as consequent, and about 50% (Conf(B—A) =
0.50) the other way around. The slight difference of 5% (Diff = 0.05) between
the confidences shows that this rule has no majority direction. Thus, when
MS SQL Server is used, there is a high chance of using IBM DB2 and vice
versa. The next rule with a lift of 10.74 is MS SQL Server — SQLite with 55%
confidence (Conf(A—B) = 0.55) in this direction and 41% (Conf(B—A) in the
opposite direction. The 14% difference (Diff = 0.14) between the confidence
measures indicates is small. Thus, when MS SQL Server is employed, there is
a significant likelihood of SQLite being used in conjunction, and vice versa.

A few rules present significant differences, despite having low lifts: Informix
— PostgreSQL with diff 0.79 and Informix — HyperSQL with diff 0.85. This
demonstrates that these DBMSs have a strong dependency relationship, mean-
ing that Informix has a higher chance of being adopted when other DBMSs
are adopted. This indicates that Informix is not typically the initial choice for
projects. Instead, it is combined with PostgreSQL and HyperSQL, suggest-
ing Informix is a suitable add-on for these DBMSs, leading to their combined
adoption.

the top 10 rules (Table nearly doubled when compared to the lift values of
the top 10 rules (Table [L1]) identified at the beginning of the project’s history.
The increased lift suggests that specific DBMS correlations become stronger,
indicating possible dependencies or synergies between them as the projects
mature. For example, the rule SapHana — Firebird has a lift of 20.53 and 71%
confidence in this direction (Conf(A—B) = 0.71), and 62% confidence in the

We noticed that dur% the middle of the projects’ history, the lift values of
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Table 12 Top 10 rules with highest lifts in the middle of the project history. Inf. stands for
Informix, Couch. stands for CouchBase, SAP A. stands for SAP Adaptive Server, and Tera.
stands for Teradata.

Sup Sup Sup Conf Conf Lift
A B (A) (B) (A—B) (A—B) (B—A) Diff (A—B)
SapHana  Firebird 7 8 5 0.71 0.62  0.09 20.53
Firebird Inf. 8 10 7 0.87 0.70 0.17 20.12
Neodj Couch. 8 8 5 0.62 0.62  0.00 17.97
SapHana  Inf. 7 10 5 0.71 0.50 0.21 16.43
SapHana  SAP A. 7 10 5 0.71 0.50 0.21 16.43
Firebird SAP A. 8 10 5 0.62 0.50 0.12 14.37
Tera. Inf. 8 10 5 0.62 0.50 0.12 14.37
SAP A. Inf. 10 10 6 0.60 0.60  0.00 13.80
Firebird SQLite 8 22 7 0.87 0.31 0.56 9.14
SapHana  SQLite 7 22 6 0.85 0.27  0.58 8.96

Table 13 Top 10 rules with highest lifts in the last slice of the projects’ history. Access
stands for MS Access, Cas. stands for Cassandra, Cosmos stands for Microsoft Azure Cos-
mosDB, Hazel stands for Hazelcast, Influx stands for InfluxBD, Inf. stands for Informix,
and SAP A. stands for SAP Adaptive Server.

Sup Sup Sup Conf Conf Lift
A B (A) (B) (A—B) (A—B) (B—A) Diff (A—B)
Ingres Firebird 5 11 5 1.00 0.45 0.55 21.00
SAP A. Inf. 8 10 6 0.75 0.60 0.15 17.32
Access Inf. 7 10 5 0.71 0.50 0.21 16.50
Inf. Firebird 10 11 7 0.70 0.63  0.07 14.70
Teradata  Inf. 8 10 5 0.62 0.50 0.12 14.43
SAP A. Firebird 8 11 5 0.62 0.45 0.17 13.12
SapHana  Inf. 9 10 5 0.55 0.50 0.05 12.83
Influx Cas. 6 22 6 1.00 0.27 0.73 10.50
Teradata SAP A. 8 14 5 0.62 0.35  0.27 10.31
Cosmos Hazel. 7 17 5 0.71 0.29 0.42 9.70

opposite direction (Conf(B—A) = 0.62). Due to the small difference between
the two confidences (Diff = 0.09), we cannot perceive a majority direction in
this rule. This indicates a strong correlation between both DBMSs, meaning
that when SapHana is chosen as a database, Firebird will likely be used in the
same project, and the reciprocal is true.

Another interesting pattern we found is that adopting Neo4J increases the
chance of adopting CouchBase by almost 18 times. A relevant aspect is the
zero difference (Diff = 0.00) in confidence for both directions of this rule (Neo4j
— CouchBase), which indicates they always appear together in the middle of
the history of our projects.

Finally, in Table [L3, we present the top 10 rules with the highest lifts found
at the end of the projects’ history. We observe that lifts remain high towards
the end of the projects’ history, demonstrating strong co-occurrences in the
adoption of different DBMSs. At this stage, we discovered two rules with 100%
confidence: Ingres — Firebird, and InfluxDB — Cassandra. Therefore, when
the first of these DBMSs is chosen (antecedent), it highly influences the choice
of the other (consequent). The rule with the highest lift is one of them (In-
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gres — Firebird). It has 100% confidence and a lift of 21, meaning that the
use of Ingres increases the likelihood of the use of Firebird by 21 times. In
contrast, the confidences of the rule InfluxBD — Cassandra have a signifi-
cant difference (Diff = 0.73), indicating a strong dependency of InfluxDB on
Cassandra. This means that in 6 out of 22 of the cases where InfluxDB was
adopted, Cassandra was also adopted, and in all of the cases (6 out of 6) where
InfluxDB was adopted, Cassandra was adopted. The adoption of InfluxDB in-
creases the likelihood of the adoption of Cassandra by about 10 times. Informix
also appears to be used as a complementary DBMS, as it is always combined
with other DBMSs, as already mentioned. According to Informix’s documen-
tation®d it is a fast and scalable database server that manages traditional
relational, object-relational, and dimensional databases. The IBM documen-
tation®d suggests that Informix is likely used as a complementary DBMS due
to its strengths in handling unstructured and IoT data, efficient OLTP per-
formance, and compatibility across various platforms. These characteristics
make it well-suited for integration with other DBMSs in hybrid environments,
where it can support specialized functions, such as real-time data processing
or transactional workloads, alongside more conventional database systems.

We also noted a fluctuation in the lift values and confidence measures of
some rules throughout the different stages of the project history. For example,
the rule MS SQL Server — SQLite appears with a lift of 10.74 and confidences
of 55% (Conf(A—B) = 0.55) and 50% (Conf(B—A) = 0.50) at the beginning
of the project history. In the middle, the lift decreases to 2.80, and the A — B
confidence decreases to 26%. In the end, the lift decreases slightly to 2.46, and
the A — B’s confidence decreases at 12%. As opposed to that, the rule SAP
Adaptive Server — Informix, discovered in the middle of the project history,
initially has a lift of 13.80 with 60% (Conf(A—B) and (Conf(B—A) = 0.60)
confidences, and the lift increases to 17.32, with confidences 75% (Conf(A—B)
= 0.75) and 60%(Conf(B—A) = 0.60) at the end. This fluctuation in lift val-
ues and confidence measures indicates that the associations and dependencies
between certain DBMS combinations are not static and may vary during the
project history. Various factors might have influenced these variations, such as
changes in project requirements, technological advancements, or shifts in the
development team’s preferences. Despite the decrease in the initial lift values,
the highlighted rules continue to represent significant associations between
the aforementioned DBMS combinations. Thus, although the strength of the
relationships may change, there is still some level of dependency or associa-
tion between certain DBMSs that may become more or less prevalent as the
projects mature.

We also observe that, in the early stage of the projects’ history, the us-
age of a relational DBMS combined with another relational DBMS was more
frequent. As observed in Table @, all of the DBMSs involved in the 10 most
frequent rules are relational. However, this situation changes from the middle

22 https://www.ibm.com/products/informix
23 https://www.ibm.com/docs/en/informix-servers/12.10?topic=overview-getting-started
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to the end of the project history, with non-relational DBMSs present in some
of the top 10 rules highlighted in Tables @ and @ However, it is important
to consider that even among primarily relational DBMSs, there might have
been cases where a secondary model of one of the DBMSs is non-relational.
For instance, Sap Adaptive Server and IBM DB2 are primarily relational but
support non-relational data models. Sap Adaptive Server also supports the
Spatial Store data types, while IBM DB2 supports the Document Store, RDF
Store, and Spatial Store types. This may suggest that the joint utilization of
these DBMSs might be driven by the need for a specific data type not sup-
ported by the other DBMS, or to complement certain capabilities that one of
the DBMSs lacks.

Although not shown in Table @, in the last slice of the projects’ his-
tory we also found the expected co-occurrence between PostGIS and Post-
greSQL. Since PostGIS is a spatial DBMS extension of PostgreSQL, it trans-
forms PostgreSQL into a spatial DBMS by adding support for three features:
spatial types, spatial indexes, and spatial functions®2. The rule with PostGIS
— PostgreSQL, whose confidences are 100% and 10% demonstrates a strong
dependency of PostGIS on PostgreSQL. In fact, in 100% of the cases where
PostGIS was used, PostgreSQL was also used, while in only 10% of cases where
PostgreSQL was used, PostGIS was also used. Furthermore, using PostGIS
increases the chance of using PostgreSQL by 2.4 times. Considering that Post-
GIS depends on PostgreSQL to work, this 100% confidence is expected. This
information suggests that the projects that require spatial database function-
ality will probably adopt PostGIS and PostgreSQL together, reinforcing the
idea that the co-occurrence between DBMSs is intended to meet the specific
demands of the projects.

RQ4: Which DBMSs are often used together?

Answer: We found co-occurrences involving 10 DBMSs at the beginning of the
projects’ history, prevailing the combinations among relational DBMSs: MySQL and
PostgreSQL, HyperSQL and MySQL, and MySQL and H2. In the middle of the project
history, the number of DBMSs that appear in co-occurrence increases to 23. Nine
of them include non-relational DMBSs, such as Redis and MySQL, MongoDB and
H2, and Cassandra and MySQL. The combined usage of PostgreSQL and MySQL,
and MySQL and H2 get even more popular in the middle of the projects’ history.
At the end of the projects’ history, the number of DBMSs used in combination with
others increased to 31 DBMSs, with MySQL with PostgreSQL and MySQL with H2
among the most popular relational combinations. Our analysis also revealed that using
some DBMSs increases the chance of adopting another in parallel. This is the case for
MS SQL Server and IBM DB2 at the beginning of the project history, SapHana and
Firebird in the middle, and Ingres and Firebird towards the end of the projects’ history.

24 https://postgis.net/
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Fig. 15 Distribution of ORM usage in our corpus.

4.5 (RQ5) How do applications interact with the DBMS?

We split RQ5 findings into three aspects: ORM, Database-Related Files, and
Queries.

ORM. Figure @ shows our findings for the ORM aspect. Out of the 362
projects that belong to our corpus, we found evidence of ORMs usage in 241.
Note that this number is higher than the number of projects for which we
found evidence of DBMS usage (202 projects). This may indicate that there
are projects that use some DBMSs that do not belong to the 50 popular
DBMSs we searched for.

MyBatis is the most popular ORM in our corpus. It is present in 192
(79.7%) projects. Hibernate is the second in the ranking, corresponding to
50.6% of projects. Next, we have Spring, which was found in 26.6% of the
projects, occupying the third place, and EclipseLink, which appears in 7.5%
of the projects, in fourth place. jOOQ appears in fifth place in the ranking,
corresponding to 4.2% of projects. Lastly, our heuristics did not find signs of
usage of the JdbcMapper in any of the projects of our corpus.

We also analyzed the relative number of ORM files in each project by using
the following formula for each project:

ORMFiles
Projectpijes

In this formula, Projectp;.s refers to the total number of files of the spe-
cific project, and ORMpjs corresponds to the number of files related to a
specific ORM found by our search in a specific project. This measures how
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Fig. 16 Distribution of the percentage of ORM files by ORM (the outliers are not shown
due to readability reasons).

pervasive the ORM is in the application source code. We then use a boxplot
to analyze the distribution of the results (Figure @) Note that JPA is present
in Figure [1g, but not in Figure [L5. Although JPA is not a framework, we
have included it in our research. JPA is a specification that other frameworks
implement. Evaluating the results more deeply, we found that projects with
evidence of using JPA sometimes have evidence of using more than one ORM.
This makes it difficult to identify which ORM is implementing JPA. Thus, we
chose not to merge the results and count JPA files separately.

The median of the percentage of files related to the ORMs EclipseLink,
Hibernate, MyBatis, Spring, JOOQ, and JPA are close and vary from 0.10%
to0 0.29%. The high variation we encountered means that JPA and JOOQ are
more verbose than the others. Note that the design of the projects that use
these ORMs in our corpus may also have influenced these results.

Database-related Files. For the Database-related Files aspect, we analyzed
the relative number of files. To do this, we performed a calculation:

TypeFiles

x 100
Projectpies

where Projectpies refers to the total number of files of the specific project,
and Type ;s corresponds to the sum of files found by our searches in a specific
project of a given T'ype among Java DB-Code files, XML DB-Code files, or
dependencies.

Figure @ shows the distribution of the percentage of files related to ORM
categorized by file type found in our corpus. For the DB-Code files that are
of the “xml” type, the median is 0.17%. When comparing the results of Java
DB-Code files and XML DB-Code files, we obtained a lower result for XML
DB-Code files, as not all ORM frameworks require implementation in XML
files.
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Fig. 17 Distribution of the percentage of files categorized by file type, namely: XML DB-
Code, Java DB-code, Dependencies Code, and Total DB (the outliers are not shown due to
readability reasons).

We also analyzed the distribution of the quantities found For DB-Code files
that are of the “java” type. For this file type, the median is 0.21%, which is very
low, meaning that, in general, a very small portion of the projects are related
to database access functions. Of course, this also depends on the project’s
purpose. In fact, the biggest outlier we found (the BroadleafCommerce project)
has 14.20% of DB-Code files (the outliers are not shown in Figure due
to readability reasons). The project contains approximately 3880 files, and a
significant portion of them are related to databases. This is expected since this
is a tool focused on database usage.

For the dependencies files (files that depend on or use Java DB-Code files),
the median is equal to 0.81%, which is four times higher than the one we
found for the DB-Code files. For this group of files, we found much more
variation than we did for the DB-Code files and XML-Code files. This is mainly
influenced by the application design.

Finally, when we measure everything together, the large variation we found
for the dependency files is reflected in our findings for the Total-DB files. The
median in this case is 0.80%.

Queries We analyzed the source code of each project of our corpus to extract
information about how queries are performed. In other words, we investigated
whether the projects write SQL statements directly in the code or use Builders
to generate SQL statements. Figure @ shows that we found 256 projects that
use only SQL, while Builders are used in 105 projects. Note that almost all
projects that use Builder also use SQL. Only one project, Classgraph, uses
only Builders. This result is interesting when we contrast it to the results we
obtained for RQ1. There, we found evidence of DBMS usage in 202 projects,
while here, we found 256 projects that use SQL. This means that 54 projects
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Fig. 18 Use of Builders and SQL as query alternatives in our corpus.

use relational DBMSs that are not in the list of 25 relational DBMSs we
searched for.

When we analyzed the number of files that contained SQL queries per
project, we found projects with values that vary between 0 and 8,269, with
an average of 123.2 files per project and a standard deviation of 653.9. For
the Builder files, we find projects with values between 0 and 389 files, with an
average of 51.5 files.

RQ5: How do applications interact with the DBMS?

Answer: MyBatis is the most popular ORM in our corpus, followed by Hibernate and
Spring. We can observe that projects that use EclipseLink, Hibernate, and MyBatis
need fewer database-related files in practice than projects that use other ORMs. The
average of files related to ORM found per project was 4.95%. SQL is more used than
Query Builders to query the DBMS.

4.6 Results Summary

Table @ presents the main results and findings for each research question,
structured according to relevant aspects. The complete list is available at our
companion website=d.

4.7 Qualitative Analysis

Identifying the reasons for the inclusion, removal, and substitution of tech-
nologies is a highly complex task. Some projects are over 20 years old, and
software architectures have evolved significantly over the past two decades
to address scalability, flexibility, and deployment needs. Early architectures

25 https://tinyurl.com/2nyt757h
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Table 14 Main results and findings for each RQ.

RQ1: Which DBMS are the most popular across software projects?

— Relational DBMSs were used in 82.2% of the projects, non-relational DBMSs in 68.3%,
and multi-model DBMSs in 4.0%.

— We found that 103 projects (51.0%) adopt both relational and non-relational models.

— MySQL is used in 55.9% of the projects that use DBMS, followed by PostgreSQL (46.0%)
and H2 (44.6%).

— MySQL is the most used DBMS in the Software Development, Data Management, and
Infrastructure Management domains.

— MySQL and Redis are frequently employed within the same domains.

RQ2: How stable are the DBMSs during the projects’ history?

— 32 projects in our corpus stopped using a DBMS or switched to one not included in our
list of 50 DBMSs.

— Removals happened for the majority of the DBMSs we surveyed.

— Some DBMSs were never removed once adopted, such as ClickHouse, Microsoft Azure
Cosmos DB, and SingleStore.

— Of the projects using MySQL, 41 (29.9%) removed it initially, 20 reintroduced it, and 4
removed it again, leaving MySQL in 112 projects in the final analysis.

RQ3: Which DBMSs are frequently replaced by others?

— We found 296 replacement patterns in total across 67 projects.

— In 5.8% of the projects with replacements, the replacements only occur between DBMSs
that follow the same data model.

— In 50.0% of the patterns, the replacements occur among distinct data models.

— HyperSQL is the DBMS mostly susceptible to replacements during the projects’ history
since it has been replaced in 19 different projects.

RQ4: Which DBMSs are often used together?

— At the start of the projects, we observed co-occurrences involving 10 DBMSs, with the
most common combinations being MySQL and PostgreSQL, HyperSQL and MySQL, and
MySQL and H2.

— Halfway through the history of the projects, the amount of combined use of DBMSs more
than doubled when compared to the beginning.

— MySQL and PostgreSQL, MySQL and H2, and MySQL and Oracle remain among the
most used combinations in the middle of the project’s history.

— MySQL, PostgreSQL, Oracle, and H2 remain among the most frequent DBMS combina-
tions until the end of the projects’ history.

RQ5: How do the applications interact with these DBMS?

— MyBatis is the most popular ORM, appearing in 79.6% of projects. Hibernate ranks
second, and is present in 50.6% of projects, followed by Spring, found in 26.5% of the
projects.

— The median of the percentage of files related to the ORMs EclipseLink, Hibernate, My-
Batis, Spring, JOOQ), and JPA are close and vary from 0.10% to 0.29%.

— JPA and JOOQ are more verbose than the others.

— The median of database-related files is 0.80%.

— Almost all projects that use Builder also use SQL.

were typically monolithic, bundling all components into a single deployable
unit. Additionally, many projects have migrated repositories, and commits of-
ten lack clear objectives for changes, complicating the understanding of these
modifications.
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To complement our investigation, we conducted a qualitative analysis us-
ing ten randomly selected projects from our corpus: Activiti, Bisq, CAS, Com-
maFeed, JMeter, ModelDB, Nifi, Ngrinder, SpotBugs, and Zeppelin. The goal
was to validate our findings and understand the reasons behind the addition,
removal, or migration of specific DBMS in each project. For the validation, we
analyzed the GitHub repositories of each project to investigate the motivations
for these changes.

We conducted a keyword search for each project from the sample using
GitHub’s Code Search feature. We search for the specific names of DBMSs
we identified in RQ1 and RQ2 for that specific project, as well as the terms
Database and DB. For example, in the project ModelDB, we identified the
usage of H2, SQLite, MongoDB, PostgreSQL, MySQL, and MS SQL Server.
As mentioned in Section @, our heuristics do not differentiate the usage of
MySQL and MariaDB, and PostgreSQL and CockroachDB. Anytime one of
these DBMS is detected, we also search for its sibling. Thus, for the Mod-
elDB project, we searched for the keywords H2, MariaDB, Maria, MySQL,
PostgreSQL, Postgre, CockroachDB, Cockroach, MongoDB, Mongo, MS SQL
Server, MSSQLServer, MSSQL, SQLServer, Microsoft Azure SQL Database,
Microsoft Azure, Azure SQL Database, Database, and DB. We analyzed the
obtained results in the following categories: code, issues, pull requests, discus-
sions, and commits. Two authors carried out the search, and the results were
discussed and reviewed by both authors. A third author then validated the
findings to ensure there was no bias in the search process.

Table @ shows a snippet of the DBMS usage patterns we found for each
project. The complete list is available at our companion website&2. In our web-
site, the patterns marked in green correspond to those for which supporting
evidence was identified through our qualitative analysis, such as commits, is-
sues, and pull requests, which demonstrate the existence of the pattern or the
occurrence of related events (e.g., addition and removal) in sequence. The pat-
terns displayed on our website also include those for which no evidence was
found in the project, as determined by our qualitative analysis. The patterns
may not have been found due to several factors. In our qualitative analysis,
we specifically searched for the exact names of DBMSs. Therefore, commits,
issues, and pull requests that do not align with these patterns would not be
returned. Furthermore, some projects may have migrated to a different version
control system over time, as they are older projects, which could also impact
the availability and retrieval of historical data. Our analysis revealed several
key influential factors for DBMS migrations, including maturity, stability, li-
censing, maintainability, performance, and modularity. We discuss the results
in the following.

In the Activiti project, Hazelcast was initially used as a distributed cache,
which was later replaced by HyperSQL (pull request #330), confirming a re-
placement rule we found in our analysis. Activiti also adopted HyperSQL as
its embedded and testing database, favoring it over H2 due to HyperSQL’s

26 https://tinyurl.com/5dbvdkju
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Table 15 DBMS usage patterns for the projects in our sample. MySQL stands for MySQL
or MariaDB, PostgreSQL stands for PostgreSQL or CockroachDB, SQL Server stands for MS
SQL Server or Microsoft Azure SQL Database, Filestore stands for Google Cloud Filestore,
and Datastore stands for Google Cloud Datastore.

Project DBMS Replacement Patterns
Hazelcast — HyperSQLy,, — Hazelcasto,+ HyperSQL
Activiti HyperSQL — PostgreSQL,, — HyperSQLo.:+ PostgreSQL

Couchbase — H2j,, — Couchbasep,;: H2

Couchbase — Cassandray,, — Couchbasep,: Cassandra
CAS Couchbase — InfluxDBj,, — Couchbasep,: InfluxDB
Couchbase — SQL Serverr,, — Couchbasep,: SQL Server
Couchbase — Filestorer,, Couchbasep,: — Filestore
PostgreSQL — Hazelcasty,, — PostgreSQLo,: Hazelcast

CommaFeed Redis — H2;,, — Redisp.: H2

JMeter MySQL — PostgreSQL7, MySQLo4+ — PostgreSQL
PostgreSQL — H2j,, — PostgreSQLo.+ H2
SQLite — MongoDBy,, — SQLitepy,+ MongoDB

ModelDB SQLite — MySQL1» SQLiteow: — MySQL
SQLite — SQL Serverr, SQLiteo,: — SQL Server
Ngrinder SQLite — H2r,, — SQLiteo,:+ H2

Cassandra — PostgreSQL, — Cassandraop,: PostgreSQL
Cassandra — Hazelcast,, — Cassandrap,: Hazelcast
Couchbase — Hazelcast;,, — Couchbasep.:+ Hazelcast

Nifi Couchbase — PostgreSQL, — Couchbasep,:+ PostgreSQL
Ignite NoSql — PostgreSQL;, — Ignite NoSqlp,: PostgreSQL
Ignite NoSql — Hazelcastr, — Ignite NoSqlo.+ Hazelcast
PostgreSQL — Cassandray, — PostgreSQLo.+ Cassandra
PostgreSQL — Couchbaser,, — PostgreSQLo.+ Couchbase

SpotBugs Datastore — Oracler,, — Oraclep,: Datastore
Ignite NoSql — Neo4jr, — Ignite NoSqloyt Neodj
Zeppelin SQL Server — Redisy, SQL Servero.: — Redis

MySQL — Redisr, MySQLow: — Redis

reputation for stability and maturity within Java environments (pull request
#478). Eventually, HyperSQL was replaced by PostgreSQL as a test DBMS,
as documented in issue #1368 of the project, though no specific reasons for
this switch from HyperSQL to PostgreSQL were identified in the project doc-
umentation.

The CAS project has integrated various databases and modules to meet
specific functional needs. The project’s README page specifically mentions
Cassandra, Memcached, Apache Ignite, MongoDB, Redis, and DynamoDb. We
also found evidence of the use of H2 (commit 403eb56), Cassandra (pull re-
quest #2650), InfluxDB (pull request #4092), Hazelcast (pull request #1054),
MS SQL Server (commit p15a7dc), and Filestore (commit ffe979c). However,
no explicit reason for the use of these DBMSs was found. Since CAS is an
authentication service, the support of many different DBMSs is expected.
Couchbase’s removal was likely driven by reliability issues related to errors
like Could not store and OperationTimeOut, especially with concurrent access
(pull request #371).


https://github.com/Activiti/Activiti/pull/478
https://github.com/Activiti/Activiti/issues/1368
https://github.com/apereo/cas/commit/403eb56
https://github.com/apereo/cas/pull/2650
https://github.com/apereo/cas/pull/4092
https://github.com/apereo/cas/pull/1054
https://github.com/apereo/cas/commit/b15a7dc
https://github.com/apereo/cas/commit/ffe979c
https://github.com/apereo/cas/pull/371

54 Camila A. Paiva et al.

The CommakFeed project adopted Redis for caching. It was later removed
since the need for caching ceased to exist in the project (commit 0446944).
Our heuristics found evidence of the use of PostgreSQL and MySQL, but they
did not appear in our replacement rules because they were present since the
beginning of the project and were never replaced. The README of the project
explicitly mentions support for four DBMSs: H2, PostgreSQL, MySQL, and
MariaDB. We also found evidence of the use of MS SQL Server (issue #396).
In this case, the replacement rule we found for H2 replacing Redis seems to be
a coincidence, since H2 was not introduced with the specific aim of replacing
Redis. While Redis was, in fact, removed, H2, in this case, was introduced as
a default DBMS to be used in small instances. Although H2 is also suitable
for larger instances, the project supports other databases like PostgreSQL,
MySQL, and MariaDB for more robust use cases.

For the JMeter project, we identified that MySQL (in this specific case,
MariaDB) was replaced by PostgreSQL. This change occurred in Slice 3, in
August 2002. At that time, the project did not use GitHub as its version
control system — instead, it used SVN. We went to the original SVN repository,
but could not find that specific version there. The developers kept there only
a later version from 2011. We searched for keywords in both repositories.
While we did find evidence of usage of both MariaBD (issue #5104) and
PostgreSQL (commit 4fe05e3), we found no documented reasons for the switch
to PostgreSQL.

The VertaAl ModelDB project has implemented several changes regard-
ing database support. It removed PostgreSQL (pull request #3485), migrated
from SQLite to MongoDB due to issues related to fast recovery from fails
(issue #221), and worked on making the system compatible with MySQL (is-
sue #274), MariaDB (pull request #2729), and MS SQL Server (pull request
#2265). These adjustments highlight the evolution of ModelDB to better align
with production environments, including improved compatibility with a range
of database systems.

In the NGrinder project, Hazelcast (commit c3aef8c) was introduced as
a solution for sharing data among clusters, reducing the load on the cen-
tral database. Previously, Ehcache was used for distributed caching and data
sharing between clustered controllers. The primary goal of this change was to
improve data management efficiency in distributed environments by offloading
repetitive read-and-write operations from the central database and distribut-
ing them through Hazelcast (pull request #365). This shift focuses on scal-
ability and performance in environments with multiple controllers. However,
we did not detect this migration since Ehcache is not on the list of DBMSs
we searched for. In addition to the introduction of Hazelcast, we identified the
removal of SQLite (commit £€950267), which occurred on Oct 20, 2012, due to
its lack of support for altering columns.

In Apache NiFi, we found several removals. Support to Cassandra was re-
moved in anticipation of a new implementation with updated drivers (commit
d9bce8b). Couchbase (issue #NIFI-13150) was removed due to being outdated
and unmaintained. Apache Ignite (issue #NIFI-11582) support was phased out
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due to outdated dependencies and configuration challenges. For PostgreSQL
(issue #NIFI-9845), older versions were dropped, while PostgreSQL 14 is now
supported. Hazelcast (issue #NIFI-7549) was added to enhance distributed
caching. We notice that in this project, most of the replacement patterns we
found are, in fact, the removal of old versions and additions of new versions of
a DBMS. We found 37 replacement patterns, but lots of them fit the pattern
remove DBMS A, add DBMS B, and then another rule adds DBMS A back
and removes DBMS C. We believe that in such cases, this simply indicates
the code was updated to support a new version of DBMS A. The addition of
DBMS B and the removal of DBMS C' (which we also find in other rules) is
probably the real replacement in this case.

In SpotBugs, we found evidence of Oracle being used on several files, as
well as evidence of usage of GoogleCloudDatastore (commit ff9a199), but we
found no documentation of the reason for the migration to Oracle.

Apache Zeppelin is a web-based notebook for data analytics. Support for
Redis (pull request #1497) was introduced in Apache Zeppelin to enhance
functionality for notebook users working with Redis-stored data. The Zep-
pelin project has undergone notable changes in its database support over time.
Key developments include the removal of MySQL and MS SQL Server (pull
request #211) drivers due to licensing conflicts, and the upgrade of the H2
database to improve security (pull request #4284). Furthermore, the project
removed Ignite (commit 6c¢f0252) and added support for Neo4j (pull request
#1582), emphasizing a shift towards more adaptable and secure database so-
lutions. These changes reflect ongoing adjustments to improve performance,
compatibility, and compliance with licensing standards.

One of the most significant drivers behind the switch from MySQL to
MariaDB relates to licensing issues. While MySQL operates under a GPL
license with an open-source exception, concerns over the potential risks of
audits and compliance led to the adoption of MariaDB, which is distributed
under the LGPL license. The LGPL license is perceived as more permissive
and reduces legal and compliance-related risks in production environments.
We identified that the switch was mentioned due to the license in the Zeppelin
project. The switch also occurred in the ModelBD project. However, since our
heuristics do not differentiate MySQL from MariaDB, we do not detect these
migrations.

For the Bisq project, our heuristics did not find evidence of the use of a
DBMS. Our search in the repository code and issues also did not uncover any
evidence of DBMS usage, so this is a true negative.

In summary, our qualitative analysis of several cases shows that the decision
to remove or replace a DBMS was directly tied to the specific needs of each
project. Our findings indicate that the choice of DBMS in software projects
is influenced by a combination of factors, including licensing, performance,
scalability, and maintainability.


https://issues.apache.org/jira/browse/NIFI-9845
https://issues.apache.org/jira/browse/NIFI-7549
https://github.com/spotbugs/spotbugs/commit/ff9a199
https://github.com/apache/zeppelin/pull/1497
https://github.com/apache/zeppelin/pull/211
https://github.com/apache/zeppelin/pull/4284
https://github.com/apache/zeppelin/commit/6cf0252
https://github.com/apache/zeppelin/pull/1582

56 Camila A. Paiva et al.

5 Discussion

This section discusses the practical implications of our work for different stake-
holders.

Software Engineers. One key takeaway for software engineer practitioners re-
gards the understanding of DBMS usage and stability. Popular DBMSs (RQ1)
tend to have more learning resources and a larger community of users asking
and answering questions, which makes the process of adopting the DBMS eas-
ier. DBMSs that have been in use for a long time (RQ2) or are more stable—
replaced less frequently—(RQ3) should also be considered. For example, in
Figure {, we see that HyperSQL is a popular choice. However, frequent migra-
tion patterns, as described in RQ3 (Section @), show that HyperSQL is often
replaced by other DBMSs (Table B), which means it may not be a good choice
after all. By selecting a DBMS with a strong history of stability, engineers can
avoid costly migrations in the later stages of their projects.

Additionally, knowing which DBMSs are commonly used together, as out-
lined in RQ4 (Section @), can assist engineers in streamlining database inte-
gration processes, particularly in complex systems that may require multiple
data models. For instance, our study reveals that combinations of DBMSs,
such as Redis and MySQL, are often used together at different points in the
project history, informing engineers on potential pairing options. Finally, un-
derstanding which DBMSs are more commonly used in specific domains allows
for adopting those that are likely more suited to the characteristics of the data.
We also found that the use of ORM is concentrated in a small percentage of
files (RQ5). Hence, software engineers can use this information to estimate the
effort and choose simpler ORM solutions.

Educators. Educators can leverage our findings to adjust their curricula and
align with industry trends. For example, Figure Y lists the most frequently
used DBMSs, such as MySQL, PostgreSQL, H2, Oracle, and Redis, which
would be important for students to learn to ensure their skills are applicable
in the industry (Section @ (RQ1)). On top of that, the same considerations
we made for Software Engineers are valid. The more widely used a DBMS is,
the more learning resources and applications are usually available.

In a more general sense, the rise of non-relational DBMSs (especially in
domains like software development and infrastructure management) suggests
that educators should put a stronger emphasis on NoSQL in their curricula.
Traditional database courses often focus heavily on relational models, but
given the findings in RQ1, RQ2, and RQ4, courses should expand to include
a balanced introduction to the different types of DBMSs, particularly NoSQL
systems like Redis, Cassandra, and MongoDB.

In a general sense, database courses often teach about the usage of DBMSs
in isolation, indicating which type of DMBS suits better specific situations.
However, we found that different DBMSs are often used together and may be
able to tackle a broader set of situations. With this information, educators
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can adapt their courses to present the possibilities and show how to integrate
multi-model databases to cover a broader spectrum of solutions.

Finally, RQ3 highlights the frequent occurrence of DBMS migrations, em-
phasizing the need for educators to prepare students for managing transitions
and replacements. Educators could include hands-on projects that simulate
database migrations and highlight practical scenarios from the study, such as
the replacement of SQLite with H2.

Researchers. Researchers can benefit from the insights provided in this paper.
Understanding the distribution of DBMSs (RQ1 and RQ2) allows researchers
to focus their efforts on studying those that will have the most significant
impact. Moreover, the methodology defined in this study can be reused in
other contexts, offering a valuable framework for further research.

This work also raises a set of questions that researchers can investigate in
future work. Since the use of ORMs is concentrated in specific files (RQ5),
there is an opportunity to investigate how ORM files are organized within
projects, such as whether a consistent architecture like MVC is used or if other
design patterns emerge. There is also room to research the reasons why projects
switch DBMSs (RQ3) — whether due to technical challenges, policy changes, or
social factors. Researchers can explore why certain DBMSs dominate specific
domains (RQ1), the reasons behind particular combinations of DBMSs (RQ4),
and the impact of switching DBMSs on project costs and outcomes (RQ3).
More specifically, it would be interesting to understand how DBMS adoption
impacts project success and sustainability metrics, such as code complexity,
maintenance overhead, number of new contributors, or long-term stability.

While the present study focuses on open-source projects, researchers could
explore how DBMS trends are reflected in widely adopted technologies like
AI/ML, blockchain, and IoT. These domains may have unique database needs
that differ from traditional software domains, and the adoption trends in these
spaces could provide further insights into the future of DBMS technology.

DBMS Vendors. This paper provides valuable insights into market dynamics,
which can benefit DBMS vendors. Identifying that their DBMSs are being
replaced by others over time (RQ3) can prompt them to investigate the un-
derlying issues and take corrective actions to reverse this trend and increase
customer retention.

Additionally, vendors can benefit by developing migration tools that facili-
tate transitions from the more widely used DBMSs to their own offerings. Still,
the common co-use of multiple DBMSs (RQ4) may provide opportunities for
vendors to improve interoperability with other popular systems. For instance,
ensuring seamless integration with widely used DBMSs such as Redis and
MySQL could offer a competitive advantage by simplifying implementation
for engineers working with diverse technology stacks.
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6 Threats to Validity

As with any empirical work, our study has limitations due to design decisions
and the nature of this research. In this section, we discuss the threats to the
validity of our study.

External. Our corpus may not be representative of all Java open-source projects
that are popular, mature, and active. We only considered open-source projects
hosted on GitHub. Moreover, we avoided toy projects and inactive projects by
filtering out projects with less than 1,000 stars, no pushes in the last 3 months
(relative to September 2024), more than 10 contributors, and more than 1,000
commits in the main line of development. Despite these efforts, our filtering
process might not cover all relevant projects, potentially limiting the general-
izability of the results.

We used the DB-Engines ranking and the JRebel survey to select DBMSs
and ORMs, respectively. Popular Java-specific DBMSs and ORMs might have
been omitted from our analysis since we did not use Java popularity as a
criterion. This threatens the generalizability of our findings to other tools or
contexts.

Internal. Although we inspected the list of projects in our corpus to exclude
irrelevant ones (e.g., toy projects, ORMs, or databases), there is a risk of
misclassified projects in our corpus. Even though the analysis was conducted
by two authors and revised by two others, this could affect the accuracy of our
conclusions, as systematic errors may have influenced the corpus selection.

In the analysis of DBMS co-occurrence, the presence of multiple DBMSs in
a project’s repository may not necessarily indicate that they are used together.
This could mean that the project was designed to support multiple DBMSs,
where users can choose one at installation time. A deeper source code analysis
would be needed to confirm actual co-usage, which could lead to incorrect
conclusions about DBMS synergy across projects.

Construct. The domain of each project was determined with the aid of Chat-
GPT. Although we achieved a high Cohen’s Kappa, there may be misclassified
projects in our dataset. To diminish this threat, a large portion of our corpus
was also manually classified. Since we conducted some analysis based on this
classification, the results might change if the projects are misclassified.

The heuristics we designed to detect DBMS connections and ORM usage
may not capture all possible patterns, leading to false positives or negatives.
Although we validated the heuristics on a subset of projects, the accuracy
of our results might still be affected by undetected errors, threatening the
validity of our conclusions. The effect of using incorrect heuristics would be
the presence of false positives (when we detect something erroneously) and
false negatives (when we don’t detect a DBMS or ORM that is, in fact, used
in the project) in our results.
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We divided each project’s history into slices of 100 commits. Although this
decision accommodates different project sizes, it might not accurately reflect
the complete timeline of DBMS usage and migrations. We acknowledge that
from one snapshot to the other, DBMSs may have been added, replaced, or
removed more than once. As a side effect, we may not have a complete record
of DBMS usage and migrations in our analysis (false negatives). However,
using a fixed number of slices instead of a fixed slice size may lead to projects
with very large slices, which would increase the chances of false negatives in
our analysis. In summary, using a different slice size may impact the results we
obtained. The smaller the slice size, the less chances of false negatives. Ideally,
one should analyze every commit in the projects’ histories, but this would be
unfeasible since it would require lots of processing time.

Our heuristics do not differentiate MySQL from MariaDB, PostgreSQL
from CockroachDB, MS SQL Server from Microsoft Azure SQL Database,
and Sybase Adaptive Server Enterprise from SAP Adaptive Server. Due to
that fact, we do not detect possible migrations involving these pairs of DBMS.
This is evidenced in our qualitative analysis (Section @), where we detected
migrations from MySQL to MariaDB that were not captured by our heuristics.

The 50 popular DBMS of DB-Engines and the JRebel-based ORM selec-
tions might not perfectly represent the DBMSs and ORMs most relevant to
Java projects, which could affect how well our operational definitions reflect
the actual constructs of “Java DBMS usage” and “ORM adoption” in the field.
The lack of Java popularity as a criterion introduces a potential mismatch be-
tween the theoretical construct and its operational definition in our study.
However, using a pre-compiled list of Java DBMSs (or Java ORM) would pos-
sibly hide new insights, such as finding usage of a DBMS that is possibly out
of the list (if such a list existed). We believe the results of our analysis can be
used to build such a list.

The segmentation of each project’s history into slices of 100 commits does
not represent equivalent time periods across projects of different ages, which
may introduce bias in interpreting temporal trends. This threatens the con-
struct validity of our study since trends over time may be misrepresented.
Future analysis might delve deeper into the temporal dimensions of the evo-
lution of the DBMSs to more accurately capture the progression and nuances
of DBMS usage over time.

Conclusion. To ensure the effectiveness of our heuristics, we performed a val-
idation step with five projects by manually inspecting their websites, looking
for false positives and negatives. However, the limited sample size for valida-
tion may reduce the confidence in our statistical conclusions. To mitigate this
threat, we made several adjustments in how we built our heuristics based on
those results and reflected them in the remaining heuristics to guarantee a
high level of precision and recall for the analyzed DBMSs and ORMs.
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7 Related Work

Undoubtedly, the work of Lyu et al| (2017) is the most similar to ours, since
they search for database usage in a corpus of projects. In their work, they
studied Android apps to find out how mobile apps use local DBMSs. Lo-
cal DBMSs are those that are installed directly on mobile devices. To con-
duct this research, they used a corpus composed of 1,000 apps on the Google
Play app store, sampled from 34 categories. They found that Android apps
use eleven different DBMSs: SQLite, Oracle, Realm, Couchbase, MongoDB,
SnappyDB, LevelDB, Waze, InterBase, UltraLite, and UnQLite. To discover
which database each project used, they used Soot to analyze the bytecode and
searched for database API package names (e.g., android.database.sglite). They
found that a large portion of the apps (40.8%) do not use any DBMS. For
those that use local DBMSs, SQLite is the most common (93.1%). Interest-
ingly, Oracle appears next with 4.6%. While they focus on Android mobile
apps, our focus is on a broader corpus of open-source Java applications. Be-
sides, their focus is on a single snapshot of the project, while in our work, we
also analyze the history of DBMS usage in our corpus: how the usage trends
evolve and which DBMS is replaced during the projects’ history.

Few studies focus on inspecting applications to gain knowledge related to
how DBMSs are used in practice — which ORMs are used, and how queries
are performed (Goeminne and Mens, 2015; Linares-Vasquez et al), 2015; Lyu
et al), 2017; Yan et al., 2017; Yang et al., R018). After finding out that the
most popular DBMS in mobile Android apps is SQLite, Lyu et al. (2017)
focused on apps that use SQLite to investigate issues such as how queries are
performed, misuse of the database access APIs that could lead to SQL injection
attacks, and performance issues related to using database transactions in loops.
Linares-Vésquez et al. (2015) studied 3,113 Java projects from GitHub to
understand how they document database usage. The query they performed
to select the projects included only projects that used JDBC to access the
database. They also surveyed 147 developers of such projects. They concluded
that most database access methods (77%) are not documented.

The works of Goeminne and Mens (2015); Yan et al, (2017); Yang et al.
(2018) specifically focus on ORM and how the DBMS is accessed by the appli-
cations. Goeminne and Mens (2015) studied 3,707 Java projects from GitHub
to find out how they use database frameworks to access relational databases.
To determine the usage of a framework, they looked at the imports and configu-
ration files. Their analysis focuses on five database frameworks (JDBC, Spring,
JPA, Vaadin-GWT, and Hibernate). For those, they studied the frameworks’
co-occurrence and survival rates. Although JDBC does not provide abstrac-
tions of the database schema since it is not an ORM framework, it is the
most used framework (it appears in 2,271 projects of their corpus). While
they focus on whether certain database frameworks co-occur frequently, and
whether some database frameworks get replaced over time by others, they do
not perform that same kind of analysis for the DBMSs. Thus, their work is
complementary to ours.
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Since ORM frameworks such as Hibernate, SQLAlchemy, and others hide
query generation and execution, they may become the reason for database
performance degradation in applications that deal with large amounts of data
and require quick response times. In that context, Yang et al| (2018) extend
their previous work ([Yan et al), 2017) to find performance anti-patterns in
real-world web applications that use ORM. They profile the latest version of
twelve open-source web applications and study their bug-tracking systems.
Then, they classified the causes of inefficiency into three categories: ORM
API misuses, database design, and application design. About half of these
performance problems were due to ORM API misuses. In total, they found nine
anti-patterns that affect the performance of web applications. To show their
importance, they applied corrections to the performance issues and obtained
median speed-ups of 2x (with a maximum of 39x). Although they study ORM,
the focus of their study is completely different from ours.

We also analyzed the literature that studies coevolution of DBMS, some
looking at schema evolution, some looking at code and schema coevolution
(Qiu et all, 2013; Goeminne et alf, 2014; Scherzinger and Sidortschuck, 2020;
Dimolikas et al., 2020; Vassiliadis, 2021)). Each of these works brings a different
contribution regarding both the methods they applied and the findings about
the influence of source code changes in DBMS changes and vice versa. However,
none of them study which DBMSs are used throughout the projects’ history.

Qiu et al| (2013) conducted an empirical study on ten applications using
popular DBMSs to understand the coevolution between database schemas and
the source code of these applications. To this end, they analyze the entire
history of these changes over time, concluding that schemes often evolve and
involve many changes. These changes lead to the need to co-evolve the source
code. Furthermore, they observed that each atomic schema change generates
modifications in 10 to 100 source lines. Regarding a valid database revision,
the number of changed source lines grows exponentially from about 100 to
1,000, reaffirming the influence of evolving database schemas on the source
code of applications.

Goeminne et al.| (2014) conducted a study to analyze coevolution between
source code and related activities in a large, data-intensive open-source system,
the OSCAR application repository&d. They concluded that there is a strong
coevolution between source code file changes and database-related file changes.
However, the changes in the database technology used over the project’s life-
time do not significantly impact the source code’s evolution. They also ob-
served that all contributors changed the source code and the database-related
files, indicating that responsibilities were not distinctly separated between the
different contributors.

Scherzinger and Sidortschuck (2020) analyzed the coevolution of NoSQL
DBMS schemas by investigating entity class declarations in the commit history
of ten projects. These projects were selected from a pool of 1,200 open-source
Java projects hosted on GitHub, specifically focusing on those with the largest

27 https://github.com/scoophealth/oscar
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Table 16 Comparative analysis between related work and this study. We abbreviate the
Related Work names due to space constraints: (Q)iu et al. (13), (G)oeminne et al. (14),
(G)Goeminne et al. (15), (L)inares-Vésquez et al. (15), (L)yu et al. (17), (Y)ang et al.
(18), (S)cherzinger and Sidortschuck (20), (D)imolikas et al. (20), (V)assiliadis (21) and
(M)aximino et al. (2024), this work.

Analysis
DBMS adoption
Relational DBMS
Non-relational DBMS
DBMS interaction (ORM)
Historical analysis
Coevolution
DBMS schemas
Size of corpus (>=100)

HNN AKX N X Q13
HKNN SN KX S K Gl4
N NN s K e k5
N X KN XX K| L1
NN I NN 7 i g
XN KX K| Y18
TN NN KN XA S20
KN NN KX KN K D20
NN NS A Y
AH NSNS SN 8N M24

DBMS schemas. By tracking the growth of the schemas and the nature of
their changes over these projects’ history, they found that denormalization,
a technique used to improve query performance in NoSQL databases, was
common in these schemas. They also found evidence of evolutionary changes
in all the analyzed projects. Moreover, they noted that the turnover rate in
these schemas is higher than in studies dealing with the evolution of relational
schemas.

Dimolikas et al| (2020) conducted a study on the evolution of DMBS
schema tables, with a focus on the foreign key structures of the related ta-
bles. They performed historical analysis on six relational schemas to extract
information about table births, table deaths, intra-table updates, and their for-
eign key relationships. Then, they introduced a concise taxonomy of topolog-
ical graph patterns through their analysis to characterize table relationships.
They discovered that the topological complexity hierarchy significantly influ-
ences the tables’ behavior during evolution. Therefore, evolutionary behavior
depends on this hierarchy.

Vassiliadis (2021)) conducted a historical analysis on relational DBMS sche-
mas across 195 open-source projects to understand how these schemas evolve.
They analyzed the frequency of the changes in the project’s commit history
and identified schema families with similar evolution characteristics. They used
this to define schema evolution patterns as well as evolution measures. Given
this, they discovered that schema evolution is absent in most projects, except
those with active schema maintenance profiles, refuting the belief that schema
evolution is extensive.

Table E shows a comparison of the related work. We include our work
(M24) in the table as a comparison reference. The most similar work to ours
is that of Lyu et al| (2017). It is the only one that investigates which DBMSs
are adopted in a set of projects, and the only one (besides ours) that consid-
ers both data models (relational and non-relational) in their work. Their
target, however, is much more specific than ours — they study the adoption of
DBMSs in mobile Android apps while we investigate a broader set of open-
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source Java projects. Also, they focus on a set of 11 DBMSs while we search
for usage clues of 50 DBMSs in the source code of our corpus. While in their
context, the most popular DBMS is SQLite (which is natural, since SQLite is
light and adequate for mobile apps), in our case, the most popular DBMS is
MySQL.

Besides our work, three other study DBMS usage through ORM (Goeminne
and Mens, 2015; Linares-Vésquez et al,, 2015; Yang et all, 2018). Two of them
focus on a single ORM framework: JDBC (Linares-Vésquez et al), 2015) and
Rails (Yan et al., 2017; Yang et al., 2018). Goeminne and Mens (2015) exam-
ines a larger set of frameworks (19), but found evidence of wide usage of only
5, including JDBC. In our work, we consider JDBC to be a database access
library instead of an ORM framework, and this is why JDBC is not included
in our ORM analysis. Our results differ from their findings. While the most
popular ORM framework (not including JDBC) in their corpus was Spring, in
our case, it was MyBatis. It is worth noting that their corpus is larger than
ours (13,307 Java projects) and was obtained using a start set proposed by Al
lamanis and Sutton (2013) and excluding the projects that were not available
in March 2015. Their corpus selection process did not consider any constraint
(e.g., start, number of commits, contributors, etc.) except for the projects not
being forks. Thus, their corpus probably contains many small, non-popular,
and personal projects, which may explain the different results we obtained in
our analysis. Besides, their work has been conducted almost a decade ago.

Most of the related work performs a historical investigation to study the
coevolution of source code changes with DBMS changes (Qiu et al., 2013;
Goeminne et al., 2014; Scherzinger and Sidortschuck, 2020; Dimolikas et alJ,
2020; Vassiliadis, 2021), and in that sense, they are complementary to our
study. Differently from them, we look at the coevolution by detecting DBMS
replacement patterns. The remaining study that performs historical analysis
(Goeminne and Mens, 2015) focuses on ORM. The authors use a different
technique: statistical survival analysis. It is not clear, however, how the death
events (finding out when a framework stopped being used) were detected.

Differently from our work, a set of works analyzes changes on the database
schema (Qiu et all, 2013; Goeminne et al|, 2014; Lyu et al., 2017; Scherzinger
and Sidortschuck, 2020; Dimolikas et al), 2020; Vassiliadis, 2021)). In that sense,
they are complementary to our study.

Finally, only four works, besides ours, analyze a corpus size of more than
100 projects. Goeminne and Mens (2015) investigates 13,307 Java projects, but
the selection criteria of the corpus was very open. This means it may contain
toys and personal projects. Linares-Vasquez et al. (2015) use a corpus of 3,113
projects, but their focus is completely different from ours: they investigate
database documentation on the source code. Lyu et al. (2017) investigates
1,000 mobile apps, which have a different nature than the more general projects
we consider in our corpus. Finally, Vassiliadis (2021) study database schema
evolution on a corpus of 195 projects. All other studies use a corpus of twelve
or fewer projects (12, 10, 10, 6, and 1, exactly). When we consider that we
look at the history of the projects in several snapshots (slices), we go from a
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corpus of 362 projects to a corpus of 37,964 snapshots (or project versions),
which, when compared to what is used in most the literature we discuss here,
we consider to be significant. Note that from the works that conduct historical
analysis only Goeminne and Mens (2015); Vassiliadis (2021)) and this work
use a corpus larger than 100 projects. The corpus used by [Vassiliadis (2021)
is smaller than ours, and Goeminne and Mens (2015) does not clarify if they
analyze every version of the projects on their corpus.

8 Conclusion

This paper presented a comprehensive investigation of the adoption of DBMSs
over a corpus of 362 Open-Source Java projects. First, we investigate DBMS
adoption and usage using the latest snapshot of each project in our cor-
pus. Then, we conducted a historical analysis, considering the history of the
projects. To do so, we sliced the project history into slices of 100 commits and
applied heuristics to indicate the presence of each DBMS in each slice. This
information was processed to analyze the stability, migration patterns, and
synergy between DBMSs.

We could observe that MySQL, H2, and PostgreSQL are among the three
most used relational DBMSs, while Redis and MongoDB are the most used
non-relational DBMSs. Half of the projects adopted both relational and non-
relational databases. This co-occurrence of models was especially prevalent in
projects of the Data Management domain.

The concomitant use of DBMSs grows as the projects mature. In the first
slice of the project, we observed pair combinations of 10 DBMSs, prevailing
combinations among relational DBMSs (e.g., MySQL and PostgreSQL in 21
projects, HyperSQL and MySQL in 20, and MySQL and H2 in 17). In the
middle of the project history, we observed combinations of 23 DBMSs. At this
point, we start to see combinations of relational and non-relational DBMSs
(e.g., Redis and PostgreSQL appear in 24 projects, MongoDB and H2 in 22
projects, and Cassandra and MySQL in 19 projects). In the last slice of the
project history, the number of DBMS pair combinations increased to 31. At
that point, combinations with MySQL and PostgreSQL were still popular, but
combinations involving Redis became more frequent.

Additionally, we discovered 296 patterns that indicate that DBMSs were
replaced in projects, but only 18 of these patterns occur in more than three
projects. The most frequent replacement occurred in only eight projects, with
HyperSQL being replaced by Redis. HyperSQL and HBase were also the
DBMSs that underwent the most replacements: each was replaced by 18 DBMSs
in 19 and 5 projects, respectively. Redis was the DBMS that replaced Hyper-
SQL the most. HyperSQL was the DBMS that replaced HBase the most. Fur-
thermore, 52.4% of the replacements occur between DBMSs of the same model,
of which only 12.5% is non-relational. We observed that, although DBMS re-
placements are not so frequent, they occur. We suppose the low frequency in
the DBMS replacements may be directly related to the current tendency to
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use more than one DBMS together. According to Sahatqija et al) (2018), one
possible explanation is that non-relational DBMSs were not created to substi-
tute the relational ones but to complement them. This diminishes the need to
migrate from one DBMS to another since two DBMSs of distinct models can
be used concurrently.

Our findings offer strategic insights for organizations considering migra-
tion between DBMSs—understanding the prevalent frequencies and patterns
of DBMS adoption can significantly inform such decisions. For professionals
aspiring to specialize in the area, understanding how DBMSs are adopted can
shape their educational and career paths. Educational institutions and train-
ing programs can utilize our results to refine their curriculum, emphasizing
the most extensively adopted DBMSs and prevalent migration scenarios. Fi-
nally, our findings can guide projects seeking to enhance their integration and
compatibility options, as well as DBMS tool developers, directing their efforts
to align with what happens in practice.

We envision some interesting future work. One of them is confirming whether
two DBMSs are, in fact, used together by investigating which entities are
stored in each DBMS. Using more than one DBMS in a given project may
mean the project can work with several DBMSs, but the user chooses a single
one at installation time. To make sure more than one DBMS is used, we would
need a deeper analysis of the source code. Another interesting study would be
to find out why certain DBMSs are used together through qualitative analysis,
for instance, by conducting interviews with the developers of the projects.

We also plan to extend our analysis to explore the different characteristics
of the DBMSs. For example, we can investigate the correlation between the
scale of projects and the type of database management systems (DBMS) they
utilize (e.g., proprietary versus open source) or analyze the popularity trends
of lightweight versus heavy DBMSs across different project categories and
their respective use cases. Finally, we plan to extend this analysis to other
programming languages and specific domains to determine how they influence
the DBMS choice.
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