Connections and Influences Among Topics of
Learning How to Program

Yorah Bosse
University of Sao Paulo (USP)
Sao Paulo, Brazil
yorah@ime.usp.br

Abstract—This Full Paper of Innovative Practice research
shows results that could help to avoid some challenges faced
by those who seek to learn how to program. To help improve
learning, educators need a deep understanding of the obstacles
students must overcome; otherwise, teaching strategies will be
uncertain. Moreover, a shallow understanding of topics learned
in introductory programming courses can negatively influence
the learning of future topics. With the above motivation, we
conducted 16 semi-structured interviews with instructors who
teach introductory programming courses and we also collected
diaries kept by 110 students during their studies. The qualitative
analysis of these data revealed connections between the studied
contents such as dependencies. Our analysis shows that many
difficulties arise from the incorrect application of the knowledge
necessary in learning new content, usually because the student
has not learned earlier topics or learned them superficially. The
main contribution of this paper is a theory that describes the
connections among topics of learning how to program, showing
the influence that knowledge about one can have on others.

Index Terms—learning to program, novice learners, barriers
to learning, introductory programming, computational thinking

I. INTRODUCTION

Learners of programming around the world in introductory
courses inevitably run into frustrating hurdles [1]. One such
hurdle that causes frustration in courses is understanding topics
[2]-[8]. Although people learn to program in different ways,
such as with graphical programming blocks, text, or both
together [8]-[10], and for different reasons [11], few of
them consider it an easy task [3], [5]. This can be perceived
in failure and dropout rates, which reach about 28% among
undergraduate students [12]-[14].

“Programming is not an easy subject to be studied” [15]
and preparing new generations of professional and casual
developers is a big challenge. Even so, it is increasingly
necessary to extend programming literacy beyond computer
professionals [16]. Knowing how to program is useful in
people’s autonomy while developing new or adapting existing
applications used in their everyday life. In this context, it is
important to know the causes that lead students to perform
poorly when learning about programming [17] and understand

This study was financed in part by the Coordenac¢do de Aperfeicoamento
de Pessoal de Nivel Superior - Brazil (CAPES) - Finance Code 001 and the
first author is supported by UFMS - University of Mato Grosso do Sul to
develop her thesis. This work was also funded by FAPESP, through grant
2015/24331-1.

978-1-7281-1746-1/19/$31.00 ©2019 IEEE

David F Redmiles
University of California (UCI)
Irvine, USA
redmiles @ics.uci.edu

Marco Gerosa
Northern Arizona University (NAU)
Flagstaf, USA
marco.gerosa@nau.edu

the difficulties faced by them as to avoid frustration, failures,
and dropouts, thus helping them to achieve their goal.

Even with a great deal of diverse research in this area,
many problems still hold forth and thus we still need to gain a
deeper understanding of the challenges faced by students and
instructors in teaching/learning programming. In this paper, we
contribute with a theory that describes the connections among
topics of learning how to program, showing the inuence that
knowledge about one can have on others. Understanding those
connections is important because students may have difficulty
learning new topics if they do not understand well earlier
topics. A better knowledge about these connections can give
course coordinators and instructors the opportunity to change
the way of teaching.

Our theory is grounded on two data sources: the first
comprises semi-structured interviews with 16 instructors that
have experience teaching introductory programming course
(CS1) and the second comprises diaries maintained by 110
students when taking CS1. To guide us throughout the study,
we focused on the following research question: What is the
influence that the misunderstanding of one topic has on the
others?

II. RELATED WORK

We focused our literature review on: pedagogical issues,
difficulties learning topics and syntax errors, and general
difficulties faced by students and abilities necessary to learn
to program, as you can see below.

Pedagogical issues: Computer Programming Education is
massive [18] and a lot of studies have being developed to
improve programming learning. Pedagogical understanding is
important for this improvement, and it is important to give
the focus not only on teachers [18], but on students and
their process of learning [19]. For that, many studies use
constructivism, a well-known learning theory [20]. When
working with this learning theory, the focus is more on
learning and experiences of the students [20]. Still according
to Vann Gorp and Grissom [20], “constructivist classrooms
are often viewed as problem-solving environments manifested
through three C’s: context, construction, and collaboration.
Some examples of the use of the constructivism theory are
the Contributing Student Pedagogy, where students are en-
couraged to contribute to the learning of others and to value

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on May 17,2022 at 02:26:40 UTC from IEEE Xplore. Restrictions apply.

the contributions of others” [21] and the study of Effective
Pedagogy for CS1 Laboratories [22].

Difficulties learning topics and syntax errors: Some
topics covered in CS1 are considered difficult to understand by
many novice programmers, such as pointers and abstract data
types [23], [24]. Results of studies showed that concepts like
repetition, recursion, lists, pointers, passing parameters, ab-
stract data types, and the use of libraries are the most difficult
programming concepts [23], [25]. In addition, Sevella and Lee
[25] show that students confuse ‘For’ and ‘“While’ concepts in
C and find it difficult to use functions; variables; selection
structures, such as writing conditional statements and nested
selections. They found no difficulty in understanding lists.
However, for the instructors responding to the questionnaire by
Piteira and Costa [24], lists are among the most difficult topic,
aside from pointers, structured data types, error handling,
and parameters. Regarding syntax, Tan and colleagues [17]
show that learning programming language syntax is one of the
problems faced by students, and Hristova and colleagues [6]
report difficulties related to the wrong use of ‘=" vs ‘==", ‘&&’
vs ‘&’, ‘||” vs ‘|’, different amounts of opening and closing
parentheses, brackets and quotation marks, wrong separators
in ‘For’ loops, and so on.

General difficulties faced by students and abilities nec-
essary to learn to program: According to some instructors, a
constant and intense amount of study is necessary [7]. Another
obstacle is that many students overestimate their understanding
and do not always see their difficulties [2], [S], [16]. For
example, they do not perceive their difficulties understanding
issues related to the execution of a program [2] and what
happens in the computer memory during this execution [4].
Often the problem is not in learning the concept and its syntax,
but rather in appropriately applying it in a program [2], [3].
Students can learn very well, for example, about pointers, but
still fail to use them appropriately [2]. The lack of experience
of students can also contribute to the difficulties that appear
[31, [23]. Other skills cited as necessary for learn to program
are computational thinking [26] and the ability to find errors
in code [27]. Finding errors in one’s own code is also one of
the difficulties while learning programming cited by Tan and
colleagues [17], as well as designing a program to solve some
task. Finally, problems arise from behavior in class, such as
lack of participation or hesitation to ask questions, and lack
of English proficiency [23].

The results reported in the literature mention difficult topics.
Better understanding of these topics is very important and we
aimed to understand how these difficulties arise. Interviewing
instructors and asking students to keep study diaries, we
saw difficulties with topics arising during the study of other
topics. We modeled the relationships between the topics,
where the connections arose. In the next section, we discuss
these findings, comparing with some results presented in the
literature.

2nd step of
Data collection (2015) Iststep of analysis (GT)
analysis (GT’
Diaries All diaries Open Axial
; I : 1 Theory
(34 students) ; coding) coding
& T T
\o‘a‘d
Interviews 3 10 interviews Open
(16 instructors) coding
4
. r ™\
[Diaries | Al diaries
(76 students))

Related
Work

[iata collection (2016}

Fig. 1. Research method.

TABLE I
INSTRUCTORS’ DATA.

Professor ID Years of Experience Gender
Pl -P3 More than 40 years 1 Fand 2 M
P4 - PS5 31 to 40 years 2M
P6 - P7 21 to 30 years 2M
P8 - P12 11 to 20 years 2Fand 3 M

P13 - P16 1 to 10 years 4 M

I1I. RESEARCH DESIGN

We conducted semi-structured interviews with 16 instructors
and asked students to maintain diaries during their studies for
the course. Fig. 1 shows an overview of our methodology,
which is detailed below.

A. Data Collection

This study is motivated by a previous study conducted at
the University of Sao Paulo (Brazil) from 2010 to 2014 based
on data about approximately 18,500 students from various
majors who enrolled in 29 CS1 [14]. The results showed that
approximately 30% of these registrations resulted in failures
and dropouts. This percentage corroborates results obtained by
Bennedsen and Caspersen [12], [13].

In the present study, we chose to further investigate these
courses and topic-related issues. We conducted interviews with
instructors to delve into particulars, focusing on the topics
to gain a perspective of the students’ learning experiences
and instructors’ teaching experiences [28]. Sixteen instructors
from the Computer Science Department at the University
of Sao Paulo (USP) were selected for interviews. The De-
partment of Computer Science at USP had more than 260
undergraduates, 304 postgraduates and about 40 teachers who
worked with classes in this and other departments. About
30 instructors from the department had taught this course
at least once. The first 6 instructors interviewed were those
who were teaching introductory programming for six classes
whose students were keeping diaries about the difficulties
in learning how to program. The other 10 were randomly
selected. If necessary, more instructors would be selected, but
the analysis showed that the data were repeating, indicating
that this number of interviews was enough. Each instructor was
identified with an ID comprising a P, followed by a number
from 1 to 16. Table I shows the number of years of experience
as a professor and gender of each of them.

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on May 17,2022 at 02:26:40 UTC from IEEE Xplore. Restrictions apply.

TABLE II
STUDENTS’ DATA.

Age Total % TACB Total %
Not inform 1 1% 0 81 74%
15-24 84 76% 1 17 15%
25 - 34 17 15% 2 6 5%
35-44 6 5% 3 4 4%
45 - 54 1 1% 4 1 1%
55 - 64 1 1% 5 1 1%

The interviews began with a very general question: ‘In your
view, what are the difficulties faced by students in CS1?’
The instructor was then guided to talk about the following
introductory subjects: variables, assignment command, input
and output commands, arithmetic expressions, relational (<,
>, =, ..) and logical (and, or not) expressions, selection
structures (if...else), repetition structures (while, for, ...), string
manipulation, uni- and bi-dimensional arrays, structured data,
functions, and pointers. The subjects were selected by ana-
lyzing the university’s CS1 program and then compared with
the contents covered in the published papers of the area,
confirming our selection. Most of the interviews took about
half an hour, but some lasted for up to an hour. All interviews
were recorded and transcribed for further analysis.

We arranged for students to keep diaries during their
studies, keeping us informed about their difficulties as they
emerged. We collected data from 6 different classes in 2015
(34 students) and for 6 different classes in 2016 (76 students),
from at least 7 distinct departments, yielding a total of 110
student diaries. The classes had on average 53 students, the
smallest of which had 29 and the largest 76. All participating
students signed a consent giving us permission to read and
use the diary data while maintaining their anonymity. The
diaries were arranged in shared documents at Google Docs.
We asked the students to include code snippets, especially
the wrong ones, the approach used to fix the errors, and the
doubts they had about learning the topics. To clarify possible
misunderstandings about the text written by the students and to
encourage them to maintain their diaries, the researchers some-
times posted questions in the diaries. We also asked that the
diaries be kept during the whole duration of the introductory
programming course, however some students stopped filling
in the diary before the course ended. Each student was also
identified with an ID, composed by a S, followed by a number
from 1 to 110. TABLE II show the total and percentage of
students by age range and the number of times they attended
the course before (TACB).

B. Data Analysis

For the analysis of the data, we used Grounded Theory (GT)
techniques, as described by Strauss and Corbin [29]. During
the analysis, concepts, categories, and subcategories emerged.
According to Corbin and Strauss [30], “the procedures of
grounded theory are designed to develop a well-integrated set
of concepts that provide a thorough theoretical explanation of
social phenomena under study.” The groupings of these con-

cepts into a higher degree of abstraction are called categories
[29]. For the analysis, three basic types of coding from the GT
are used: open, axial, and selective. Open coding is the process
of breaking data down; in axial coding “categories are related
to their subcategories, and the relationships tested against
data,” and in the last one, selective coding, the categories are
unified around a core category [30].

The data were read and analyzed, and relevant informa-
tion was marked with a tag, thus characterizing a concept.
Grouping these concepts, 8 categories from interviews and
10 from diaries emerged. Some of them appear in both,
for example ‘Difficulties with the Topics.” This category has
the following seventeen subcategories: Logical Reasoning,
Variable, Input/Output, Pseudocode, Expression, Repetition
Structure, Selection Structure, Thinking of a Solution, Find
Errors, Computer, Programming Language Syntax, Function,
Array, X-Dimensional Array, Pointer, String, and Library.

The next step was axial coding. All text marked with codes
were read again to identify connections among the subcate-
gories. Connections were created whenever knowledge about
one topic became necessary to develop knowledge in another.
Fig. 2 to Fig. 12 show these connections. During the axial
coding, the subcategories were reorganized. Two subcategories
were disregarded: Pseudocode and Library. Since both were
cited only once in the data, and they were not linked to any
other subcategory. Moreover, the subcategory Exercise was
created to separate a subject cited in many other subcategories.
The last step was analyzing the connections, understanding
what they reveal, and comparing the results with related work
found in the literature.

IV. FINDINGS

The aim of this study is to discover connections among pro-
gramming topics to identify relationships between them that
are necessary to develop programming skill. We believe that a
shallow learning of one topic may generate consequences for
others. Studying the ‘Difficulties with the Topics’ category, we
discovered connections among the topics (subcategories). Each
connection indicates that a topic requires another one to aid in
the understanding and use of it. All connections are grounded
on comments of difficulties in learning how to program, made
in the diaries or interviews. In the following, we describe these
connections per topic, ordered by the topic most necessary to
learn others to the less.

Programming Language Syntax (PLS): C (using Dev-
C++ or Code::Blocks, as IDEs) and Python (using IDLE)
were the programming languages that were being taught and
several references to PLS were made when other topics such as
variables and repetition structure were the focus (Fig. 2). This
may indicate the importance of offering a solid background
on programming language. The difficulty starts with the IDE
used, as said P14: “getting used to the tool we chose for the
semester involves a lot of work and demands a lot of energy,”
and S72(C), emphasizing syntax aspects of the language:
“I would like to understand better why they put ‘# include
<stdio.h>", ‘int main ()’ with two parentheses if we then open

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on May 17,2022 at 02:26:40 UTC from IEEE Xplore. Restrictions apply.

Strings

) 4
Repetition
= —— 'l, \'.'.-
- || p— L] —. &

Selection

Structure

Fig. 2. The relationship between Programming Language Syntax (PLS) and
topics that need this knowledge of the syntax.

braces, why they chose ‘\n’ as a command to skip line and why
they chose to put the letter f’ in ‘printf’ and ‘scanf’.” Syntax
errors were the issues frequently commented on by students
and instructors: “...people face problems with syntax...” - P7.
There were issues with PLS related to Repetition Structure
(RS) and Functions (Func), such as forgetfulness or miss-
ing of braces, “I made a mistake with the position of the
braces in ‘while’..., it makes a lot of difference...” - S41(C).
Another common error is with indentation, “...the biggest
difficulty is related to the indentation of the ‘if’and ‘else’
statements...” - S22, working with Selection Structure (SS) in
Python. According to P10, working with Array in C “brings
several misunderstandings that have to do with the language,”
and for P12, working with x-Dimensional Array (xDArray)
“begins to turn into a confusion of indexes and having to
think about what is a row, what is a column ... they need
to understand that in fact it is not exactly an x-Dimensional
Array as we are accustomed, but it is an array of arrays [about
how the xDArray is represented in the languages].” Some
instructors avoid explaining Pointer and String when teaching
programming with C because the syntax of the language
greatly hinders learning.Moreover, students also have difficulty
to Find Error (FE) in the code they developed and most of
the time the messages that the compiler gives do not help to
identify them.

Variable (Var): Students show difficulties learning about
variables and applying the knowledge in practice, such as:
knowing when it is necessary to create a variable; how to use
it, i.e., they confuse name, data, and type of the variable; how
much data the variable stores at the same time; among others.
Issues about variables were cited in eight other topics when
they were being commented on by participants in this study
(Fig. 3). Expressions (Expr) are one of them. Students showed
that very basic issues about variable were misunderstood, as
we can see in the comment made by S3: “‘count = count +
1’ What’s that? What’s the goal of that? Is it adding one

Fig. 3. Diagram showing in which topics the difficulties appear due to lack
of knowledge of Variable.

to the total amount?” Moreover, doubts about types were
strongly cited when they explained about division results.
When working with RS, they highlighted mainly questions
about initialization, when and how to change the value by
increment or decrement, and difficulty to understand what
value was saved in the variable. Working with SS, Array, and
Func, doubts about types and their use emerged, like “... I had
some difficulties mainly because it involved char and arrays”
- S34 and “The idea [that with a] variable you are passing a
value and it will be used inside [the function] as a variable” -
P12. Trying to understand about Pointer, “they [the students]
always wanted to get back to using simple variables, to keep
everything fixed, everything constant ...”, showing us that there
is a confusion between the two topics. Using xDArray, for the
students, the variables used to control the positions could not
change roles, i.e., if the variable was created to indicate rows,
it could never be used to indicate columns, and vice-versa,
as occurs in the multiplication of x-dimensional arrays, for
example.

Thinking of a Solution (TS): many students have diffi-
culties to develop a solution to solve tasks, independent of
language. They frequently understand the theory, or believe
they do, but do not know how to apply the knowledge in
practice (Fig. 4). An example of this is what P10 explained
about Var: “[the student] uses ten variables where they need
three. And there are so many unnecessary variables that he
gets confused.” Working with SS, S3 wrote: “I had difficulty
understanding the use of If, Else.” Working with Array, S61
exposed that she/he was not sure “whether it’s necessary to use
the concept of array.” Sometimes, the students complete the
exercises only with help from somebody, as S30 explained
when working with RS: “/when] ‘While’ was introduced, 1
had difficulty working with the last list [of exercises], I was
able to do it with the help of a classmate, even though during
class I felt that I had understood perfectly how it worked.”
Another difficulty faced by students was FE in the solution,

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on May 17,2022 at 02:26:40 UTC from IEEE Xplore. Restrictions apply.

[ERROR

. 1
gy — | |
-
Repetition

2\ 2P

Thinking of
a Solution

Selection
Structure

Fig. 4. Diagram showing in which topics the difficulties appear due to lack
of skill in Thinking of a Solution.

S34 stated that she/he changed the solution and that anyway
she/he still had not understood what was wrong. And the last
one that included comments on developmental difficulties was
the topic xDArray, “Although I drew, talked about how they
should look at it, there were some [students] who could not
produce algorithms, working with the xDArray” - P7.

Logical Reasoning (LR): This topic is considered one of
the most important for learning programming, as confirmed by
P15: “I believe that the first point is logical reasoning” and P12
- “logical reasoning is maybe more important than each topic
of the course.” Many reports show the lack of this skill, as
said by instructor P11 - “Any simple algorithm is very hard in
their head because they do not have [it] [...] it is a completely
different way of thinking from what they are accustomed to”
and confirmed by students with many comments, such as: “/
have a hard time turning a problem, often simple to solve with
paper and pen, into a program” - S19 and “I had difficulties
in the logic of assembling the algorithm ... ” - S1. Instructors
work in classes to improve this skill: “The focus of the classes
is usually the exercise of algorithms, to develop students’
ability to think of solutions” - S71 but even so the students
continue to have difficulty to TS to develop code, “my ability
to pick up the theory and apply it to the exercises on my own
is negligible,” showing the necessity to work hard to improve
logical reasoning in students (Fig. 5). With the topics RS and
Func, students have difficulty to realize the correct order of
actions and commands to achieve their aims, “One difficulty
I feel is how to order actions, for example: should I finish
all the functions and then test if it worked out, or is it better
to test before, but how to do it? Since I do not know how to
test without the program actually written” - S2. Another topic
that required LR is xDArray, where students did not know
what to do, as commented by S50: “I spent all day trying to
make the third EP (homework) after studying a lot about x-
Dimensional arrays, but I only managed to spend more than
six hours staring at the monitor feeling my brain fry without

Logical
Reasoning

Fig. 5.
topics.

Diagram showing the connection of Logical Reasoning with other

o o

Fig. 6. Diagram showing in which topics the difficulties appear due to lack
of knowledge of Array.

knowing how to start doing what the EP asked for”

Array: Some difficulties faced by students working with ar-
rays are manipulation of indexes and lack of prior knowledge,
such as in math, “If the person [student] does not have the
concept of array and x-Dimensional Array, it becomes difficult
to understand ...” - P5. Two other topics needed knowledge
of array to be learned (Fig. 6). The first was xDArray, “X-
Dimensional Arrays start to turn into a maze of indexes and
having to think of what is a row, what is a column... they have
to understand that in fact it is not exactly an x-dimensional
array like we are used to but a vector of vectors, which is
something that is a bit difficult as well” - P12, and the other
one was String, such as commented by P15 - “Difficulties
using strings, ...when I look at a string I have the characters,
each occupying a position, seeing a string as if it were an
array with a limit and an end marker, in the case of the C
language.”

Pointer: For P9, when teaching pointers, “the trouble starts
to get bigger,” and some instructors avoid explaining this topic
because of the difficulty that students have in understanding it.
Students do not like it, as shown by the outbreak of S42 when
working with Func: “I hate functions... passing parameters by
reference...welcome to the hell of pointers! * ** ** && * &
* /! Ugh.” And another topic that required pointer knowledge
was Array (Fig. 7). Understanding an array as a pointer is
important when passing an array to a function, for example.

Expression (Expr): SS and RS are the two topics that
needed the knowledge of Expression to be learned (Fig. 8).
For both SS and RS, it is necessary to develop the condition

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on May 17,2022 at 02:26:40 UTC from IEEE Xplore. Restrictions apply.

—_

Fig. 7. Diagram showing in which topics the difficulties appear due to lack
of knowledge of Pointer.

Fig. 8. Diagram showing in which topics the difficulties appear due to lack
of knowledge of Expression.

that controls the structure. In this task, the use of expressions
is necessary and, according to P11, “...there is one thing that
exists in natural language and that normally does not exist in
programming languages, it is something like x > 3 and < 5’
and in computing I cannot write it like this, I have to write ‘x
> 3 and x < 5°, so they write it wrong, they write ‘x > 3 and
< 57 and S24 confirmed showing that she / he tried to write
the condition in that way: “If a > b > c:” (Python).

Repetition Structure (RS): Creating the stopping condi-
tion, manipulating the control variable and understanding and
creating nested repetitions are only some of the problems faced
by students learning repetition structures. If the students do not
learn this topic correctly, they could also have problems with
xDArray (Fig. 9), which uses nested repetitions for manipula-
tion, as commented by P13 - “I do not see problems in them
seeing or understanding array or x-dimensional array, I see
problems in manipulating them. Using a nested repetition, for
example?”

Input/Output (I0): This topic was required to learn and
work with RS (Fig. 10). Students had problems to define what
data were needed to work in the program and how to get them.
To work with the data, the students did not know if it would
be necessary to use the input command to insert the data in
the program. Another issue about input/output command was
that some students thought that the users could see the results
without showing them using the output command. And finally,
the students had difficulty setting the correct position of the
input / output commands in the code: “Python is printing the
whole sequence, instead of just printing the final output, what
do you suggest for me to solve that? [asking the researcher]”’
- S22.

Exercise: the description of the exercises needs to be well

. I

|
Repetition
Structure

Fig. 9. Diagram showing in which topics the difficulties appear due to lack
of knowledge of Repetition Structure.

— *

Input /
Dutput

Fig. 10. Diagram showing in which topics the difficulties appear due to lack
of knowledge of Input and Output Functions.

Fig. 11. The relationship between Exercise and Thinking of a Solution.

written. The topic was required by TS (Fig. 11). To use the
theory to develop the code, it is necessary that the student
can understand correctly what the task is: “I tried to read the
EP [homework], but I could understand absolutely nothing of
what it was asking for” - S25.

Device Operation: P8 believes that “the difficulty is in
understanding how the computer solves the problems that are
very trivial to them and they come up with ways of solving
them that they already know, that they are used to, and cannot
think as the machine thinks. Not ‘thinks’, solves. So that is
the great difficulty”. This topic was required by TS because
“knowing how things work inside the computer is very useful
because from this you can do schematics that help you think
better about the situation and how to proceed to reach a
response program” - S35 (Fig. 12).

X-Dimensional Array (xDArray), Function (Func), Find
Errors (FE), Selection Structure (SS), and String: Although
these five topics are not necessary to aid in the learning of
others, they are topics that require a lot of prior knowledge
so that the student can learn them. As an example, students
can Find Error only if they have the knowledge of the topic
Programming Language Syntax. Another example is learning
to develop and use functions, which uses prior knowledge of
variables, pointers, and so on.

The results showed the connections between topics needed
to learn how to program. These connections show the exis-
tence of prerequisites between them. Many difficulties were
presented in the literature, as seen in the Related Work section.
In analyzing the data, we found that many of the reports
about the difficulties were not related to the topic being
studied, but rather to a lack of knowledge of other topics. This
illustrates the importance of knowing these connections well
and knowing what knowledge is necessary so that something

Device
Oparation

Fig. 12. The relationship between Device Operation and Thinking of a
Solution.

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on May 17,2022 at 02:26:40 UTC from IEEE Xplore. Restrictions apply.

new can be learned.

V. DISCUSSION

Our theory shows and catalogs the relationships between
topics that are necessary to develop programming skills. To
illustrate, let us take Repetition Structures (loop), “While’ and
‘For’, as an example. To learn or teach Repetition Structure,
it is necessary to have knowledge about other topics, such
as expressions to build the stopping condition and maybe to
change the value of the control variable, which means it is
also necessary to know about variables, attribution, etc.

We can perceive how essential this interconnection is when
our participants comment about difficulties regarding topics
that is not the focus at the moment. Students and instructors
highlight the importance of knowledge about Variables, for
example, and this is one of the topics considered difficult
by Sevella and Lee [25]. Function, another topic cited by
them, is also connected to Variables, as well as repetition, list
(array), pointer and passing parameters (Function), all cited as
the most difficult topics by Mhashi and Alakeel [23]. Also, the
influence of one topic in the understanding of other topics may
be seen in some sentences like these: “The problem was in the
second ‘FOR’...” - S18 - showing the necessity of knowledge
of Repetition Structure while working with xDArray, and “/
could not do it, it gave an error about the variable when
using the pointers” - S41 while she/he was learning function,
showing the importance of the knowledge of pointers to this
subject.

These and other topics need to be used in practice, and for
that there are three important Topics: Thinking of a Solution,
Programming Language Syntax and Logical Reasoning. Al-
though applying the topic needs the programming language,
and consequently knowledge of its syntax, to develop the
programs, these two topics are not directly linked in the graph.
However, most of the topics are linked to both. Also, to apply
the topic in practice, it is also necessary that logical reasoning
is developed for this area of application, thus enabling ideas on
how to proceed to reach the goal, as confirmed by Garner and
colleagues [7]. For Thinking of a Solution in practice, beyond
Logical Reasoning, two other topics were required. The first
was Exercise, where the importance of a good description
was highlighted. Without understanding and knowing what
the task is, it is unlikely that it will be solved. About the
importance of good and clear exercises was also discussed by
Giraffa and Moura [31] and Gomes and colleagues [3]. The
second was Device Operation, also cited by Milne and Rowe
[4], emphasizing the importance of knowing how it works in
general. And the last topic directly connected with PLS and
TC is Find Error, a topic also cited by Gomes and Mendes
[27]. Finding syntax errors and the errors in the use of topics
were often brought up as difficult issues by both students and
instructors.

A. Threats to Validity

The interviews were conducted with instructors from a
single department (Computer Science) but who teach in dif-

ferent schools (Physics, Chemistry, Engineering etc.) of the
University; consequently, the diaries from students are also
from these various faculties. This may raise some doubts as
to the veracity of the results in other contexts. Would the
results be the same if the data were collected at another
university, with other technologies being used and cultural
aspects that differ from those in the environment where the
data were collected? To answer these issues, some parallel
studies could be taken, such as a survey could be created
to confirm the results obtained, which should be applied in
different universities located in different regions, preferably in
different countries and continents. Our study did not take into
account the potential cognitive effects of asking students to
keep a diary during their participation in the course, perhaps
this may have caused some bias in the results obtained.

VI. CONCLUSION

Learning to program is not an easy task and this paper goes
a step ahead in understanding why. In this paper, we show
a discussion about the importance of learning deeply each
topic because of the interconnections among them. Our view
is grounded in 16 interviews made with instructors and 110
diaries filled by students during their studies.

This study showed that misunderstanding one topic may be
caused by the difficulty that appears in another. This can lead
us to evaluate the importance of paying attention to teaching-
learning of each topic, distributing the time and attention
given, so that they can be worked out avoiding as soon as
possible that difficulties are propagated between them.

We contribute with a theory that describes the connections
among topics of learning how to program. These connections
show the importance of keeping attention in the sequence of
topics taught in class. A poorly taught or learned topic can
create difficulties in learning others. Better knowledge about
these connections can give course coordinators and instructors
the opportunity to change the way of teaching, helping students
to avoid some of the difficulties faced on learning how to
program.

ACKNOWLEDGMENT

We thank all the instructors in our study for their time to
receive us to talk about teaching programming. We also thank
the students that filled the diaries, providing a rich material
for our research.

REFERENCES

[1] L. Drosos, P. J. Guo, and C. Parnin, “Happyface: Identifying and
predicting frustrating obstacles for learning programming at scale,”
in 2017 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), pp. 171-179, 1IEEE, 2017.

[2] K. Ala-Mutka, “Problems in learning and teaching programming-a
literature study for developing visualizations in the codewitz-minerva
project,” Codewitz needs analysis, vol. 20, 2004.

[3] A. Gomes and A. Mendes, “A teacher’s view about introductory
programming teaching and learning: Difficulties, strategies and mo-
tivations,” in 2014 IEEE Frontiers in Education Conference (FIE)
Proceedings, pp. 1-8, IEEE, 2014.

[4] 1. Milne and G. Rowe, “Difficulties in learning and teaching pro-
grammingviews of students and tutors,” Education and Information
technologies, vol. 7, no. 1, pp. 55-66, 2002.

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on May 17,2022 at 02:26:40 UTC from IEEE Xplore. Restrictions apply.

[3]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

T. Jenkins, “On the difficulty of learning to program,” in Proceedings
of the 3rd Annual Conference of the LTSN Centre for Information and
Computer Sciences, vol. 4, pp. 53-58, Citeseer, 2002.

M. Hristova, A. Misra, M. Rutter, and R. Mercuri, “Identifying and
correcting java programming errors for introductory computer science
students,” ACM SIGCSE Bulletin, vol. 35, no. 1, pp. 153-156, 2003.
S. Garner, P. Haden, and A. Robins, “My program is correct but it
doesn’t run: a preliminary investigation of novice programmers’ prob-
lems,” in Proceedings of the 7th Australasian conference on Computing
education-Volume 42, pp. 173-180, Australian Computer Society, Inc.,
2005.

D. Weintrop, “Blocks, text, and the space between: The role of repre-
sentations in novice programming environments,” in 2015 IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC),
pp. 301-302, IEEE, 2015.

M. J. Lee, “Gidget: An online debugging game for learning and
engagement in computing education,” in 2014 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), pp. 193—
194, IEEE, 2014.

M. Ichinco and C. Kelleher, “Towards block code examples that help
young novices notice critical elements,” in 2017 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), pp. 335—
336, IEEE, 2017.

I. Bergstrom and A. F. Blackwell, “The practices of programming,”
in 2016 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), pp. 190-198, IEEE, 2016.

J. Bennedsen and M. E. Caspersen, “Failure rates in introductory
programming,” AcM SIGcSE Bulletin, vol. 39, no. 2, pp. 32-36, 2007.
J. Bennedsen and M. E. Caspersen, “Failure rates in introductory
programming: 12 years later,” ACM Inroads, vol. 10, no. 2, pp. 30-36,
2019.

Y. Bosse and M. A. Gerosa, “Why is programming so difficult to learn?:
Patterns of difficulties related to programming learning mid-stage,” ACM
SIGSOFT Software Engineering Notes, vol. 41, no. 6, pp. 1-6, 2017.
E. Lahtinen, K. Ala-Mutka, and H.-M. Jarvinen, “A study of the
difficulties of novice programmers,” Acm Sigcse Bulletin, vol. 37, no. 3,
pp. 14-18, 2005.

G. Fischer and E. Giaccardi, “Meta-design: A framework for the future
of end-user development,” in End user development, pp. 427-457,
Springer, 2006.

P-H. Tan, C.-Y. Ting, and S.-W. Ling, “Learning difficulties in pro-
gramming courses: undergraduates’ perspective and perception,” in 2009
International Conference on Computer Technology and Development,
vol. 1, pp. 4246, IEEE, 2009.

C. Jiménez and J. Villalobos, “Learning/teaching a computer program-
ming course,” Analysis of State-ofthe-Art Solutions for Personalised
Learning Support, p. 3, 2010.

F. Alonso, G. L. Gémez, J. M. Font, and D. Manrique, “Learner satisfac-
tion when applying an instructional model in e-learning-an experimental
study.,” in CSEDU (1), pp. 141-146, 2010.

M. J. Van Gorp and S. Grissom, “An empirical evaluation of using
constructive classroom activities to teach introductory programming,”
Computer Science Education, vol. 11, no. 3, pp. 247-260, 2001.

J. Hamer, Q. Cutts, J. Jackova, A. Luxton-Reilly, R. McCartney, H. Pur-
chase, C. Riedesel, M. Saeli, K. Sanders, and J. Sheard, “Contributing
student pedagogy,” ACM SIGCSE Bulletin, vol. 40, no. 4, pp. 194-212,
2008.

J. Lang, G. C. Nugent, A. Samal, and L.-K. Soh, “Implementing csl
with embedded instructional research design in laboratories,” IEEE
Transactions on Education, vol. 49, no. 1, pp. 157-165, 2006.

M. M. Mhashi and A. Alakeel, “Difficulties facing students in learning
computer programming skills at tabuk university,” in Proceedings of the
12th International Conference on Education and Educational Technol-
ogy (EDU13), Iwate, Japan, pp. 15-24, 2013.

M. Piteira and C. Costa, “Learning computer programming: study
of difficulties in learning programming,” in Proceedings of the 2013
International Conference on Information Systems and Design of Com-
munication, pp. 75-80, ACM, 2013.

P. K. Sevella, Y. Lee, and J. Yang, Determining the barriers faced by
novice programmers. PhD thesis, Texas A & M University-Kingsville,
2013.

J. M. Wing, “Computational thinking,” Communications of the ACM,
vol. 49, no. 3, pp. 33-35, 2006.

(27]

(28]
[29]

(30]

(31]

A. Gomes and A. J. Mendes, “Learning to program-difficulties and
solutions,” in International Conference on Engineering Education—
ICEE, vol. 2007, 2007.

J. W. Creswell and J. D. Creswell, Research design: Qualitative,
quantitative, and mixed methods approaches. Sage publications, 2017.
A. Strauss and J. Corbin, “Basics of qualitative research: Techniques
and procedures for developing grounded theory 2015; 4.”

J. M. Corbin and A. Strauss, “Grounded theory research: Procedures,
canons, and evaluative criteria,” Qualitative sociology, vol. 13, no. 1,
pp. 3-21, 1990.

M. M. Giraffa and M. da costa Mora, “Evasdo na disciplina de
algoritmo e programagio: um estudo a partir dos fatores intervenientes
na perspectiva do aluno,” in Congresos CLABES, 2013.

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on May 17,2022 at 02:26:40 UTC from IEEE Xplore. Restrictions apply.

