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Abstract—In recent years, service-oriented systems are becom-
ing increasingly complex, with growing size and heterogeneity.
Developing and deploying such large-scale systems present several
challenges, such as reliability, reproducibility, handling failures
on infrastructure, scaling deployment time as composition size
grows, coordinating deployment among multiple organizations,
dependency management, and supporting requirements of adapt-
able systems. However, many organizations still rely on manual
deployment processes, which imposes difficulties in overcoming
such challenges. In this paper, we propose a flexible and extensible
middleware solution that addresses the challenges present in the
large-scale deployment of service compositions. The CHOReOS
Enactment Engine is a robust middleware infrastructure to
automate the deployment of large-scale service compositions. We
describe the middleware architecture and implementation and
then present experimental results demonstrating the feasibility
of our approach.

I. INTRODUCTION

Researchers and developers have been conceiving novel
middleware systems for next-generation distributed applica-
tions on the Future Internet [1]. These novel middleware
solutions must support systems composed of a very large
number of distributed services, running on platforms hosted
on a variety of mobile and cloud-based infrastructures. In this
Future Internet scenario, distributed, decentralized business
processes are implemented by interacting services provided
by multiple participating organizations in a structure known
as choreography.

Service choreographies are composition models where the
knowledge about the control flow is distributed among the
participants. Each service acts autonomously, holding the
knowledge of when to execute its operations and with whom
to interact [2]. This “control-flow distribution” is present
in cross-organizational compositions where each organization
defines its own business flow. Choreographies were designed,
for example, to automate processes in a futuristic airport
scenario [3], supporting interactions among a high number
of actors1, including passengers, airline companies, airport
authority, etc.

This paper addresses the challenges encountered when
deploying a large number of services, which can happen either
in the case of a few compositions with a large number of
services or in the case of a large number of compositions with a

1Heathrow [http://www.heathrowairport.com] in London, for example, deals
with more than 80 airlines, 190,000 passengers per day (peaks of 230,000),
6,000 employees, 1,000 take-offs and landings per day, and 40 catering
services.

few services. The deployment process starts after the software
is developed, packaged, and published, and finishes when the
service is running [4].

The airport scenario mentioned before involves a large
number of services within a single composition. On the other
hand, a large suite of automated tests for a small service
choreography is a good example of running a large number
of services compositions.

When running a suite of automated acceptance tests, the
following properties are desirable: (1) tests run in parallel,
each one in an isolated environment, so a large number of
tests is executed in a small amount of time, and (2) setting
up the test environment is easily reproducible, so tests can
be executed frequently, enabling continuous integration and
continuous delivery [5].

The large number of services to be deployed and the high
level of distribution worsen the already existing difficulties
present in any deployment process. The challenges in such
large-scale deployment of service compositions are the fol-
lowing:

• Process: Manual deployment is time-consuming and
error-prone [6]. Deployment must include automated
environment and service provisioning, turning deploy-
ment into a quick, safe, and reproducible process [5].

• Third-party faults: Components of distributed large-
scale systems must expect and handle faults of third-
party components [7], [8], [9]. Even if the probability
of a failure in each component is small, the large
number of components and interactions increases the
likelihood of failures somewhere in the system [9].

• Scalability: The effective use of concurrency is a key
to provide good scalability in the deployment process.
However, the power of concurrency is seldom lever-
aged in commonly used ad-hoc deployment scripts.
It is, thus, desirable to hide the complexity of con-
currency from deployers in an effective middleware
layer.

• Heterogeneity: Although web services emerged to
reduce heterogeneity problems among systems and or-
ganizations, nowadays there are multiple mechanisms
to implement the concept of services, including SOAP,
REST, and others. Therefore, supporting heterogeneity
is still important to service-based systems.

• Multiple organizations: Multiple partners in a single
business process not only increases the heterogeneity
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problem, but also presents challenges to deployment
coordination, as services of multiple organizations
must be bound together, i.e., they need to discover
dynamically the location of their dependencies.

• Adaptability: To accommodate dynamic changes in
the execution environment, in usage patterns, and
in business requirements, modern systems must be
self-adaptive [10]. Therefore, the deployment process
should consider the requirements of self-adaptive sys-
tems, accommodating their needs and being itself
adaptive to support the continuous change of business
requirements and maintain quality of service.

These challenges could be handled with ad-hoc solutions
tailored to specific applications. However, this approach leads
to low reuse within a single organization and across partners,
yielding a very large cost for development and maintenance. A
middleware-supported solution can address the common prob-
lems of deploying compositions, providing sophisticated and
well-tested mechanisms. By using such middleware, deployers
can write less and simpler code and contributors interested in
the deployment problem can work together in a single code
base to strengthen a common infrastructure.

The CHOReOS Enactment Engine (EE) is a novel, extensi-
ble, open source middleware system, developed in the context
of the CHOReOS project2, that provides a fully automated
deployment process for service compositions. The Enactment
Engine offers developers access to service deployment using
the Platform as a Service (PaaS) model [11], relying on an
Infrastructure as a Service (IaaS) [11] provider to support
the virtualized target environment. In the cloud PaaS model,
application developers do not need to care about the virtualized
infrastructure and can focus on application development. The
relationship between the cloud models and our proposed
architecture is depicted in Fig. 1.
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Fig. 1. Enactment Engine and cloud computing models.

Unlike current PaaS solutions, our EE is designed to
support service compositions rather than web applications. Our
solution extends past research on deployment of distributed
component-based systems, including new mechanisms to sup-
port the dynamism of current environments by considering the
new requirements of cloud deployment and large-scale service
compositions.

II. RELATED WORK

The use of procedural languages (via scripts) is a flexible
method to configure and deploy applications. Tools such as
TakTuk [12] and Chef3 provide scripting languages that can

2http://choreos.eu
3http://www.opscode.com/chef

be used to configure each node and deploy, build, and test
applications on individual nodes. Nevertheless, learning a new
scripting language is an additional burden to deployers. Declar-
ative languages can describe the application to be deployed in
terms of its components and how they are structured [13],
[14]. But even declarative languages for general deployment
(i.e. not restricted to specific application classes), like Puppet4,
are hard to use since they require the specification of all the
deployment details.

Our Enactment Engine was designed to deploy service
compositions described as business processes and uses a no-
tation based on a declarative language. Using the EE deploy-
ment specification is simpler than using general deployment
specifications, such as Chef or Puppet, since our deployment
specification presents only the necessary elements for deploy-
ing service compositions, abstracting underlying details, such
as the middleware hosting the services.

Quéma et al. [15] conducted an empirical study about
the performance and scalability of the deployment process of
component-based applications. They propose a decentralized,
fault-tolerant mechanism that deploys the application using a
hierarchical approach based on the application’s architecture.
This approach enabled an asynchronous and parallel execution
of the components that define the application. However, their
hierarchical approach can only be applied to business processes
whose communications can be modeled as trees. The EE does
not impose such restriction.

One of the first large-scale platforms to support total
control of the software stack (including the operating system)
was Grid’5000 [16]. Its Kadeploy OS provisioning system [16],
[17] has been designed to help system administrators to install
and manage clusters and to provide users a flexible way
to deploy their own operating systems on nodes for their
experimentation needs. The EE achieves a similar result but
in the more dynamic and heterogenous cloud environment by
using the information about the application being deployed,
the automatically-generated scripts, and the underlying IaaS
platform.

The OASIS Topology and Orchestration Specification for
Cloud Applications (TOSCA [18]) and Canonical’s Juju5 are
industrial solutions for the problem of configuring and deploy-
ing services. Both systems implement the same underlying
method, defining an abstraction for the services (TOSCA
“service templates” and Juju “charms”) that specifies how they
are deployed, bound to other services, and how to scale them.
In these systems, lower-level implementation artifacts are still
necessary. This method can be viewed as more portable, but it
imposes an additional burden to the developer. With the EE,
the underlying execution environment is totally abstracted.

An application created using a cloud PaaS model can be
deployed more easily, since all the underlying details about
deployment, resource provisioning, automatic load balancing,
monitoring, etc. are in the responsibility of the platform
provider. Several cloud computing providers offer access to
their resources using a PaaS model, such as Amazon Web
Services (AWS) Elastic Beanstalk, Google AppEngine, and

4http://puppetlabs.com/
5http://juju.ubuntu.com/
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Microsoft Azure. A problem with the use of a PaaS model
is that the application becomes dependent on the tools and
libraries provided by the chosen cloud computing provider.
This dependence might lead to vendor lock-in and may become
a problem if the developer decides to change its cloud vendor.
The EE solves this problem by not imposing a programming
model and by relying on an extensible architecture to support
new programming technologies and new cloud platforms.

Other open source frameworks also aim to solve this
dependence problem. Cloud Foundry6 provides an open source
PaaS framework that can be deployed on a variety of cloud
computing platforms and that manages any type of cloud
services. However, that platform is targeted to simple web
applications. The EE supports the execution of applications
described as business processes. This feature is related to
two commercial solutions: Amazon Simple Workflow Service7

and Force.com Visual Process Manager8; both offer a simple
coordination mechanism to the execution of each activity of a
business process, i.e., an orchestrator.

III. THE CHOREOS ENACTMENT ENGINE

In this section, we present the main ideas and the ar-
chitecture used by the EE to deploy decentralized service
compositions on large-scale platforms.

A. Architecture

The major components encountered in the Enactment
Engine execution environment (depicted in Fig. 2) are the
following.
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Fig. 2. CHOReOS Enactment Engine execution environment.

• Infrastructure provider creates and destroys virtual
machines (also called nodes) in a cloud computing
environment. Currently, there is support for both Ama-
zon EC2 and OpenStack as infrastructure providers.

• Configuration agent is installed by the EE in each
cloud node. It manages and runs scripts that imple-
ment the process of configuring operating systems,

6http://www.cloudfoundry.org
7http://aws.amazon.com/swf
8http://www.salesforce.com/platform/process

installing required middleware, and finally deploying
the services. Chef-Solo9 is our configuration agent.

• EE client is a script, written by deployers, that
specifies the choreography deployment and invokes
the EE to trigger the deployment process. Deployer
is the human operator responsible for the deployment
process.

• Enactment Engine deploys choreography services
according to the specification sent by the client.

The deployment process performed by the EE, depicted in
Fig. 3, encompasses the following steps: (1) Client request:
receives the specification of the service composition to be
deployed. (2) Node selection: selects one or more cloud nodes
where each service will be deployed, creating new nodes if
necessary and accommodating service non-functional require-
ments. (3) Scripts generation: dynamically creates scripts for
environment configuration and service launching. (4) Nodes
update: executes the scripts on the selected nodes, so services
and their dependencies are installed and launched. (5) Service
binding: injects addresses of service dependencies (other par-
ticipant services in the composition). (6) Response to client:
sends the response to the client, informing which services were
deployed, in which nodes, and their service URIs, enabling
runtime monitoring.
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Fig. 3. Deployment process performed by the Enactment Engine.

Optionally, the EE can deploy a monitoring infrastructure,
by deploying a monitoring agent (Ganglia10) on each node.

B. Automating the deployment process

It is imperative to make service deployment a fully au-
tomated process [7] to ensure testability, flexibility, and re-
liability. Deploying large-scale distributed systems is a time-
consuming and error-prone activity [6]; the deployment pro-
cess in complex systems must be automated[5]. In the Future
Internet large-scale scenario that motivates this study, one can

9http://docs.opscode.com/chef solo.html
10http://ganglia.sourceforge.net
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expect that service compositions will grow in complexity and
scale. Thus, a scalable and resilient deployment service will
be a crucial element in this context.

The EE enables deployment automation by providing a
RESTful API that receives the declarative description of the
service composition to be deployed and returns information
describing the deployment outcome. The use of a declarative
description of composition have been used previously in the
context of component-based system deployment [19], [13].

The description must provide all the necessary information
to deploy the composition, including, for each service, where
the service package can be downloaded from and the type of
the package (e.g., WAR, JAR). It may also specify existing
third-party services that are already available on the Internet
and should be bound to the choreography dynamically. The
deployer can choose to write the specification directly in
XML format or using simple Java objects. In both cases,
the choreography description must adhere to the data model
presented in Fig. 4.

Fig. 4. Data model defining choreography specification.

Each service can consume operations from other services
in the composition. Thus, the deployment process must bind
the services, so they know how to invoke each other. When
using the EE, each consumer service must implement an
operation called setInvocationAddress that receives
dependency endpoints. Service dependencies are also declared
on the composition specification, so the EE can properly inject
dependencies [20] on dependent services in a way similar to
the one proposed by Magee and Kramer [13].

On the one hand, the current trend in large-scale system
deployment is the use of elastic resources provided by cloud
computing. Virtualized resources provided by the cloud lever-
ages the automation of the deployment process [5]. Since the
creation of a whole new environment can be automated by VM
provisioning, each new deployment can easily create a clean
environment where the deployed system will run, leveraging
reproducibility and environment isolation.

On the other hand, using cloud resources brings addi-
tional challenges, since it is necessary to take into account
the dynamic nature of the cloud [21]. Different from the

scenarios studied in earlier works on component-based systems
deployment [19], [13], the target nodes are more dynamic and
it is not possible to know their IP addresses when writing
the composition specification. The service binding must be
performed at runtime (via setInvocationAddress), and
the node allocation policy must be more flexible, i.e., a service
must not be allocated to a static IP before its VM is running.

C. Handling cloud infrastructure failures

Distributed large-scale systems must expect and handle
third-party component faults [7], [8], [9]. An example of a
typical failure in a cloud environment involves VM provi-
sioning. When a new node is requested to the infrastructure
provider, there is a chance that the provisioning will fail.
Moreover, some nodes may take much longer than average to
be operational. Other steps that may fail during the deployment
process are SSH connections and the execution of scripts on
cloud nodes.

Fig. 5 shows the observed distribution of node creation
time when concurrently creating 100 nodes on the Amazon
cloud (repeated 10 times). We count the time since the creation
request until the machine is able to accept SSH connections.
We observed a failure rate of 0.6% when concurrently creating
100 nodes. It is interesting to note that the creation time has
a stable median, but that larger creation times are expected
when creating a large amount of nodes. In our observations,
failures and long provisioning times affected up to 7% of node
creation requests.
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Fig. 5. Observed EC2 instances creation times.

A simple approach adopted by the EE to handle external
failures was encapsulating the logic of invoking external sys-
tems in a class, called Invoker, and using it in a disciplined
way throughout the system. For each kind of task (e.g., file
transferring), our Invoker is configured with the following
parameters: a task, which is a routine that will invoke an
external system, a quantity of trials to perform the task, a
timeout for each trial, and an interval between trials.

The EE adopts a particular strategy to handle failures
during the creation of new VMs. When a request arrives, the
EE tries to create a new node. If the creation fails, or takes
too long, an already created node is retrieved from a reservoir
of idle nodes. This strategy avoids waiting again for another
node creation. The initial reservoir capacity is defined by
configuration and it is refilled every time a node is requested.
If the pool size is decreased and reaches a given threshold, the
capacity is increased, trying to avoid a future situation with an
empty reservoir when an extra node is requested.

The reservoir approach imposes an extra cost to keep more
VMs running (in an idle state). However, this problem is
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treated in the EE by a distributed management algorithm in
each node: if the node is idle for N−1 minutes, where N is a
threshold of time that implies additional cost, the node sends
to the EE a message requesting its destruction. Thus, after a
time of inactivity in the EE, the reservoir eventually becomes
empty, and it will be filled again only if new requests arrive.

Another important practice related to fault tolerance is
graceful degradation [7], [22]. In our context, graceful degra-
dation means that if a service cannot be properly deployed,
it is not acceptable to halt the entire deployment process.
With the EE, if some service is not properly deployed, the
deployment process continues, and the EE response details the
problems encountered during deployment, enabling recovery
actions. Nonetheless, it is important to point out that graceful
degradation responsibility must be shared with service imple-
mentation, since each service must know how to behave in the
absence of some of its dependencies.

A possible recovery action enabled by the EE after a de-
ployment with failures is simply one more client request for the
composition deployment. In such situation, the EE will deploy
only the missing services. This is possible thanks to the idem-
potent design and implementation of the deployment operation.
Idempotence is an important property of network available
operations. Its guarantee is specified in REST APIs [23] and,
in the deployment context, it is a key feature of Chef scripts11.

D. Scalability

When deploying a large amount of services in a distributed
environment, it is not desirable to perform the deployment of
each service sequentially. Since the deployment of different
services are independent tasks, deploying them concurrently
drastically increases scalability.

We say an architecture is perfectly scalable if it continues
to yield the same performance per resource, albeit used on a
larger problem size, as the number of resources increases [24].
In the deployment context, it means that, ideally, the deploy-
ment time should remain constant when there is a proportional
increase on the number of services to be deployed and on
the number of available nodes. The number of services to
be deployed increases in two situations: 1) when deploying
larger compositions and 2) when deploying a larger number
of compositions simultaneously.

Concurrent programming is hard and error prone and, in
general, scripting tools do not provide good support for con-
currency. Without proper failure handing (see Section III-C),
customized scripts can also impact scalability. Therefore,
handling concurrency and fault handling in the middleware
layer are important steps towards facilitating the effective
implementation of a scalable deployment process.

E. Extensibility

Many current PaaS solutions are known for limiting tech-
nical choices in the application architecture. The EE eases
such problem by handling technological heterogeneity and
customization needs offering the following extension points:

11http://docs.opscode.com/chef why.html

• Service type: service binding in technologies other
than SOAP (e.g., REST) requires new conventions
to the setInvocationAddress operation, which
can be accomplished by implementing the Con-
textSender interface.

• Package type: users may add support for a new
package type by writing a Chef cookbook template.
JARs and WARs are packages already supported.

• Infrastructure provider: new cloud infrastructures can
be supported by implementing the CloudProvider in-
terface. To ease its implementation, EE uses jclouds12,
an open source library with portable abstractions for
many cloud providers. We already support Amazon
EC2 and Openstack.

• Node selection policy: by implementing the Node-
Selection interface it is possible to build a new
dynamic node selection policy, having access to non-
functional service requirements to be considered on
the algorithm. A few policies are currently available,
including limited round robin, which first creates a
predefined number of nodes, and then selects nodes
in a round-robin fashion for each deployed service.

This flexibility provided by the EE helps to overcome
the current limitations of PaaS solutions that restrict the
technological choices of application developers, such as the
IaaS provider and the application programming language.

F. Supporting cross-organizational compositions

A service composition may encompass services belonging
to multiple organizations. The EE has two main mechanisms to
cope with this situation. The first uses a service specification
attribute to define under which “cloud account” the service
will be deployed (and billed).

The second mechanism is used when an organization
performs the deployment of a composition encompassing both
services belonging to the organization itself and also existing
third-party services. This situation can be modeled in the
composition specification, so the EE will deploy only the
services belonging to the organization and bind them to the
existing third-party services.

G. Coping with adaptability

The EE supports the development of self-adaptive composi-
tions by providing the following features: service composition
updates, service migrations, service replications, and monitor-
ing infrastructure deployment.

Service replication associated with load balancing, in par-
ticular, is a common strategy to provide system scalability [21].
The monitoring infrastructure consists of Ganglia probes de-
ployed by the EE on target nodes to collect virtual machine
metrics such as CPU, memory consumption, etc. These fea-
tures make the EE a suitable option for researching service
composition self-adaptation. They ease the implementation
of adaptive systems by letting researchers be more focused
on high level adaptation problems instead of highly specific
deployment details.

12http://jclouds.apache.org
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IV. DEPLOYMENT WITH EE VERSUS ad-hoc DEPLOYMENT

Middleware-based solutions for deployment automation
brings several benefits over ad-hoc approaches. To better
understand such benefits from the deployer point of view, we
investigated how the CHOReOS Enactment Engine improves
the deployment process by providing a middleware-supported
solution.

We conducted an evaluation by developing an ad-hoc
solution dedicated to the deployment of a single choreography.
The “Airport choreography” is an example provided by Airport
domain experts [3] containing 15 services. We also deployed
the same choreography using the EE. Both solutions are
publicly available online13. Comparisons with other middle-
ware solutions were not performed since, to the best of our
knowledge, the EE is the first comprehensive middleware
solution for choreography deployment on the cloud.

To deploy the Airport choreography with the EE, we wrote
the choreography specification and a program to invoke the
EE, launching the deployment. The choreography specification
was assembled with simple Java objects consisting of 162
lines, with 11 lines of code per service on average, in 40
minutes. The deployment launch program uses the EE Java
API and has only 22 lines of code. After this code was written,
deploying the choreography over three nodes with EE took
only 4 minutes.

The development of the ad-hoc solution required nine hours
from one developer. Plus, 60 additional minutes were needed
(by the same developer) to actually execute the deployment,
distributing the 15 services over three different nodes. This
solution required the writing of 100 LoC of shell scripts, 220
LoC of Java, and 85 LoC of Ruby (for Chef).

The execution of the ad-hoc solution has several steps,
including some manual ones. For each target node, the de-
ployer must log into it, install git, checkout the cookbooks,
execute the install_chef script, edit some configuration
files defining which services will be deployed on the node,
and run chef-solo. After deploying the services, the deployer
must edit the IP tokens within the bind_services script,
and finally execute the bind_services script. This ad-hoc
solution has several drawbacks:

• It requires three different technologies: shell script,
Java, and Chef. Command line expertise was also nec-
essary. It suggests that a large set of skills is required
from the developer of deployment solutions. Some
of those skills, such as using Chef or understanding
SOAP, are known not to be easy to learn.

• For each target node, the deployer must perform time-
consuming and error-prone manual steps, like editing
configuration files. Missing commas or mistyping ser-
vice names are likely to happen. More automation
would be provided by using more advanced deploy-
ment tools, such as Capistrano14, but it would be one
more skill to learn.

• There is very little concurrency in the process. With
the provided scripts, the deployer could somehow

13http://ccsl.ime.usp.br/EnactmentEngine#source – v2014-07
14http://www.capistranorb.com/

Fig. 6. The topology of the compositions used in the experiments.

enhance parallelism by using tools like Byobu15 to
enter the same command in multiple machines. But
this requires yet another deployer’s skill and it is a
very limited way to scale the process.

In this example, we used a service composition with only
15 services. Using large-scale compositions would increase
much more the complexity of the ad-hoc solution. To reach a
complete solution in the ad-hoc approach, an extra develop-
ment effort would be required to implement features already
provided by the EE, such as third-party failure handling, com-
position update, dynamic node allocation policies, concurrent
deployment, etc. In addition, to produce the ad-hoc solution
we used some code already available in the EE. Deployers
would have to code them from scratch.

We recognize that this assessment has its limitations, since
results depend strongly on the deployer’s technical skills.
Conducting a rigorous software engineering experiment with
several developers assuming the deployer’s role would bring
stronger evidence. However, we believe that the assessment
described here is enough for expanding our understanding of
the value added by a middleware-supported solution such as
the EE.

V. PERFORMANCE AND SCALABILITY ANALYSIS

It is expected from a middleware-supported solution for
automated deployment the ability of executing the deployment
process with acceptable performance and scalability, especially
in scenarios with a large number of services to be deployed.
Therefore, we conducted experiments to evaluate the perfor-
mance and scalability of the proposed EE in terms of its
capability to deploy a significant number of compositions in a
real-world cloud computing platform.

Our experiments use a synthetic workload modeled based
on a common pattern found on many business processes: a
main service that uses other sub-services (potentially provided
by different organizations) to deliver its result. These services
are modeled using a fork-join service composition. This work-
load is depicted in Fig. 6.

Initially, we conducted a multi-variable analysis of the
EE performance by deploying service compositions in the
following scenarios: 1) a small set of small compositions; 2)
a small set of larger compositions; 3) a larger set of small
composition; 4) a larger ratio of services per node. Table I
quantifies each scenario.

In our experiments, the node allocation policy was the “lim-
ited round robin”. The idle node reservoir size was five, and

15http://byobu.co/
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TABLE I. DEPLOYMENT SCENARIOS.

Scenario Compositions Size Nodes Services/Nodes
1 10 10 9 11 or 12
2 10 100 90 11 or 12
3 100 10 90 11 or 12
4 10 10 5 20

TABLE II. EXPERIMENTAL RESULTS.

Scenario Time Successful Successful
(s) compositions services

1 467.9 ± 34.8 10.0 ± 0 100.0 ± 0 (100%)
2 1477.1 ± 130.0 9.3 ± 0.3 999.3 ± 0.4 (99.9%)
3 1455.2 ± 159.1 98.9 ± 0.8 998.5 ± 1.3 (99.9%)
4 585.2 ± 38.1 10.0 ± 0.1 100.0 ± 0.1 (100%)

the node creation timeout was 300 seconds. We used Amazon
EC2 as the cloud computing service and the VMs were EC2
small instances (1.7 GiB of RAM and one vCPU equivalent
to 1.0–1.2 GHz), running Ubuntu GNU/Linux 12.04. The EE
was executed on a machine with 8 GB of RAM, an Intel Core
i7 CPU with 2.7 GHz and Linux kernel 3.6.7. The EE version
used, and raw data collected from the experiments are available
online13, for reproducibility purposes.

Table II presents, for each scenario, the time necessary
to deploy all compositions plus the time to invoke them to
make sure they were correctly deployed. Each scenario was
executed 30 times and their averages are presented with a
95% confidence interval. The table also shows how many
compositions and services were successfully deployed.

The results show that the EE scales well in terms of
the number of services being deployed. In scenarios 2 and
3, when the number of services was increased by 10 times,
the deployed time increased only 3 times approximately. This
time increment was caused mainly by the fact that the higher
the number of services, the higher the likelihood of a fault
triggering the re-execution of some routine.

The results also show that when the number of services per
node was doubled (scenario 4), the deployment time increased
nearly 25% (comparing with the first scenario). Part of this
overhead was caused by the increase of the number of Chef
scripts that must be executed (sequentially) on the nodes.

During our experiments, we observed that, thanks to the
EE fault tolerance mechanisms, the amount of failures was
low: all the services were successfully deployed in more than
75% of the executions. By a failure, we mean that one service
was not properly deployed. In scenario 1 we got no failures,
whereas in scenario 4 we had only one failure. In scenario
2, the worst situation had 3 failures out of 1,000 services. In
scenario 3, we got one execution with 20 failures, but it was
an exceptional event, since the second worst situation had only
3 failures.

Finally, we observed that 80% of the executions did not use
the node reservoir. When used, there was a maximum of six
uses but, most of the time, there was only one use. We also ob-
served that the deployment time was not significantly affected
when the failures on the cloud environment occurred, because
new nodes were immediately retrieved from the reservoir.

We also conducted experiments to evaluate the performance
and scalability of the EE in terms of its capability to deploy
a large number of services in a single composition. These
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Fig. 7. Average deployment times for increasingly larger compositions.

experiments were conducted in 5 scenarios by varying the
deployed composition size and the number of used target
nodes, while fixing 20 deployed services per node. Each
scenario was executed 10 times.

The composition topology used was the same as before
(Fig. 6) and the environment used to run the EE was a
virtual machine (8 GiB of RAM and 4 vCPUs) hosted in
our University infrastructure. The created nodes were Amazon
EC2 small instances and node creation timeout was set to 250
seconds. The average deployment times with 95% confidence
intervals are shown in Fig. 7.

These results show a good scalability in terms of deployed
services. After increasing 9 times the number of deployed
services, the deployment time increased only 3.5 times. In
absolute numbers, each increase in 400 deployed services
was responsible for increasing the deployment time from
180 to 460 seconds. As in the previous experiment, part of
deployment time increase can be explained by the higher
occurrences of failures in large-scale scenarios. Concerning
service deployment failures, the worst executions of each
scenario had 1, 1, 2, 2 and 4 services not successfully deployed
out of 200, 600, 1000, 1400 and 1800 services, respectively.
This can be considered a very low failure rate. Moreover, the
failed services could be easily deployed after the client simply
trigger again the deployment operation (EE would not redeploy
the already deployed services).

We performed also a final experiment to asses the EE fail-
ure handling mechanisms (Fig. 8). Enabling the invoker and the
reservoir, a deployment of 100 services in 10 nodes succeeded
in the 10 performed executions. But when disabling them,
the deployment succeeded completely only in 3 executions. In
other executions we got 10 or 30 failed services. The failures
were multiple of 10 because they were caused by failures on
EC2 node provisioning (each node should host 10 services).

VI. CONCLUSION AND FUTURE WORK

Sophisticated distributed applications of the Future Internet
will be composed of a large number of highly-distributed
services executing on heterogeneous mobile- and cloud-based
environments, interacting at runtime with millions of users.
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Fig. 8. Assessing the EE failure handling mechanisms.

To enable the easy deployment and execution of such complex
service compositions, flexible, robust, and adaptive middleware
systems will need to be devised. In this paper, we introduced
a novel middleware supporting the adaptive enactment of
complex service compositions on the cloud. This middleware
highly facilitates the deployment, on the cloud, not only of
large-scale service choreographies but also of large quantities
of service compositions. It also provides runtime support for
monitoring and adaptation of the compositions.

Experimental results demonstrate that the proposed ar-
chitecture is feasible and that acceptable performance and
scalability can be obtained. One lesson learned about achieving
scalability in large-scale systems is that scalability is not
obtained by a single special architectural decision, but rather
by a set of several small design and implementation decisions,
such as the ones we list in Section III.

Our solution also encourage other researchers to take ad-
vantage of our flexible architecture and open source software13

to perform empirical evaluation of service-based systems. The
EE, for example, can facilitate research about QoS-based
adaptation of service compositions on different infrastructure
providers, since researchers can implement new node alloca-
tion policies for the Enactment Engine very easily. Developers
of middleware systems targeting large-scale environments can
also benefit by studying our design and implementation deci-
sions.

Ongoing and future work include (1) improving failure
handling algorithms, making them more adaptive by learning
from the environment how often each kind of failure occurs,
and (2) improving the current support for cross-organizational
composition deployment by automatically federating multiple
EE instances.
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[15] V. Quéma, R. Balter, L. Bellissard, D. Féliot, A. Freyssinet, and
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