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In Computer Supported Collaborative Learning (CSCL), one of the most important tasks for instructional
designers is to define scenarios that foster group learning. Such scenarios, defined as Units of Learning
(UoLs), comprise different components and are organized according to pedagogical approaches to orches-
trate group learning processes. Examples of UoL components are learning objects, student roles, student
characteristics (e.g., background, preferences, learning styles, etc.), instructional/learning goals, and activ-
ities, among others. Thus, the instructional design (ID) of a proper UoL for CSCL is a complex task that
requires practice and experience. This is particularly true when designing, developing, adapting, and cus-
tomizing UoLs, taking into consideration different instructional/learning goals and individual preferences
of students. This paper therefore proposes using a Hierarchical Task Network (HTN) planning approach to
automate and optimize the tasks of designers. To accomplish that, we define an initial CSCL scenario as
‘‘an ID task’’ and ‘‘a set of information related to students and the domain to be taught.’’ Then we propose
a model that formally describes ID for CSCL as HTN planning, where the initial CSCL scenario is adapted
and refined according to student needs. In this model, the ID strategies are defined as hierarchical tasks
and methods into a planning domain definition, and the initial CSCL scenario is defined as a planning
problem definition. To validate our approach, we develop a CSCL courseware generator that (i) helps
designers to set up an initial CSCL scenario; (ii) automatically generates a personalized UoL based on a
given initial scenario; and (iii) supports the adaptation of UoLs.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The design and orchestration of effective and well thought out
Collaborative Learning (CL) scenarios is a challenge that the Com-
puter Supported Collaborative Learning (CSCL) community has
faced for several decades (Dillenbourg, 2002; Kobbe et al., 2007).
The goal of creating a scenario in the context of group learning is
to properly structure the interactions among peers, thereby
increasing the learning gains of individuals. Such a scenario, de-
fined as a Unit of Learning (UoL), is a delimited piece of education
or training, such as a course, module, or lesson, in which the ele-
ments describing ‘‘what should to be taught’’ are structured
according to different pedagogical approaches to define ‘‘the way
in which participants (students and teachers) should interact.’’

Development, adaptation, and customization of UoLs for CSCL
requires careful instructional design (ID). Thus, some researchers
developed authoring tools that use diagrams of graphs (e.g., Cool
Modes (Pinkwart, 2003)) and CSCL Design Script Patterns (e.g.,
COLLAGE (Hernández-Leo et al., 2006), and CHOCOLATO (Isotani
et al., 2010)) to better support the ID. However, the authorship of
UoLs for CSCL with these tools is difficult if the goal is to develop,
adapt, or customize units taking into account the individual char-
acteristics of students. This is because the designer must decide
what activities should be defined, what groups of students should
be formed, what learning goals must be achieved, what roles must
be played, what tools and materials must be used, and so on.

For example, to develop a UoL in which four students acquire
knowledge about the mathematical concept ‘‘derivative’’ through
exercises, an instructional designer (in the analysis phase) identi-
fies what will occur in the CL scenario by setting instructional/
learning goals. In setting of these goals, the designer defines the
purpose of elements to be obtained as the desired stages of learn-
ing development (individual goals), skills, and attitudes to be
achieved when the run of UoL is finished. In this example, the de-
signer sets ‘‘the individual goals for all student as the acquisition of
knowledge about derivative at level restructuring’’, and ‘‘the
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acquisition of attitude positive interdependence’’ as the purpose of
UoL (instructional/learning goals).

Next, the designer (in the design phase) defines how the learn-
ers attain these goals through the group formation, the selection of
tools and learning materials for students, and the definition of
learning plans. In the group formation, the designer may want
two groups with two students or one group with four students.
This decision depends on the availability of the students, teacher
or the characteristics of individual students (e.g., stage of learning
development related to the concept ‘‘derivative’’). In the selection
of learning material, the designer performs finding the proper
exercise in external repositories (e.g., exercises that none of the
students have previously seen). To define the learning plans in
the CL scenario, the designer employs an authoring tool that uses
CSCL Design Script Patterns to decide how to apply any pattern
(e.g., COLLAGE or CHOCOLATO). For example, the designer applies
the ‘‘jigsaw’’ pattern if the selected exercise can be divided into
two parts and the students have experience in CL, the ‘‘pyramid’’
pattern if the selected exercise is difficult and the students don’t
have experience in CL, or the ‘‘distributed cognition’’ pattern if
the students have experience using the knowledge related to ‘‘der-
ivate’’ or they have cognitive skills. Alternatively, the designer can
decide to define the learning plan by employing an authoring tool
that uses diagrams of graphs (e.g., Cool Modes).

Finally, the designer (in the development phase) arranges the
concrete learning plans and develops all media and any supporting
documentation that will be used in the CL scenario. The designer
must define roles according to the ability of a student to perform
a role and the behavior the role a player performs. In this example,
if the designer decides to use the pattern ‘‘distributed cognition,’’
for a group with all students, he will set roles ‘‘instructor’’ and
‘‘learner’’, and he will define of transmission/reception messages
for each student. At this stage of the scenario it becomes clear what
learners should participate, what roles they play, what behavior
they perform, what learning materials they learn, and what educa-
tional benefits they are expected to acquire. Next, the designer will
develop learning environments to enable interaction among stu-
dents in the CL scenario. The learning environment is represented
as an arrangement of tools for the members of the group. In this
example, the designer can define an environment in which the stu-
dent with the role ‘‘learner’’ will use a tool ‘‘simulation’’ to partic-
ipate in the exercise, and the student with the role ‘‘instructor’’ will
use the tool ‘‘monitoring learning process.’’ The tool ‘‘making a re-
port paper’’ is set for all of the students, the tool ‘‘discussion chan-
nel’’ (like a chat system) is set for the student with the role
‘‘learner,’’ and the tool ‘‘monitoring discussion’’ is set for the stu-
dent with the role ‘‘instructor.’’

In Artificial Intelligence, the automated planning field studies
the automatic generation of action sequences, called plans. The
execution of plans leads to the satisfaction of certain goals. There-
fore, there is a direct relationship between ID and automated plan-
ning, in which plans are used to generate a UoL that defines an
individualized teaching–learning process for CSCL. In automated
planning, HTN planning is a technique that uses hierarchical tasks
and methods to represent domain-specific strategies. The methods
define multiple ways to deconstruct the tasks into sub-tasks until
getting a consistent and coherent plan. The ID of UoLs using CSCL
Design Script Patterns can be documented as hierarchical tasks
and methods. This knowledge focused on the rationale of the ID
process of elements to be included into UoLs.

In this paper, we present a model that formalizes the ID for CSCL
as a HTN planning approach. In the second section of the paper, we
present basic information about ID using CSCL Script Design Pat-
terns. In the third section, a brief description of HTN Planning is
summarized. In the fourth section, we present our approach as a
model that formalizes ID for CSCL as HTN planning. In the fifth sec-
tion, we present an example that shows the formulation of a
planning problem and its results. In the sixth section, we pres-
ent related works and compare them with the results obtained
by this research. Finally, we present conclusions and discuss future
work.
2. Instructional design using CSCL Script Design Patterns

CSCL represents a multidisciplinary paradigm within Technol-
ogy-Enhanced Learning, in which computers are employed to en-
hance various educational aspects of group learning (Stahl et al.,
2006). One of the main concerns for CSCL is how to improve social
interactions, an essential element of group learning. The goal in
this context is to increase the probability of reaching success in
CL scenarios by providing students with a set of instructions that
promote fruitful collaboration through learning activities. This set
of instructions is mediated by what is called a CSCL script.

To run CSCL scripts on online learning environment such as
Learning Management Systems (LMS) requires a designer to under-
stand the learning context and map this context to specific scripts.
This fact limits their broad applicability and imposes significant
time and cost efforts each time a new CSCL script is required.
Thus, the researchers Hernández-Leo, Pérez, and Dimitriadis
(2004), Hernández-Leo, Villasclaras-Fernández, Asensio-Pérez,
and Dimitriadis (2009) propose the use of CSCL Script Design
Patterns and IMS Learning Design (IMS-LD) specification to solve
these problems. In contrast to Learning Object Metadata, which
is used for delineating reusable chunks of learning materials, the
IMS-LD is focused on specifying the pedagogical approach to a
problem (IMS GLC, 2003; Koper and Olivier, 2004). Specifying the
type of pedagogical approach to a problem enables the computa-
tional representation and automatic interpretation of CSCL scripts.
To be able to run CSCL scripts in different LMSs, a UoL is repre-
sented in IMS Content Packaging (IMS-CP) specification as a pack-
age that must contain a manifest file and a collection of resources
(IMS GLC, 2004; Olivier and Tattersall, 2005). The manifest file
named ‘‘imsmanifest.xml’’ contains the description of CSCL Scripts
according to IMS-LD.

The IMS-LD specification is based on a social model, where the
components of a CSCL script are defined as roles and activities re-
lated to different environments. Each environment consists of a set
of learning objects (e.g., exercises, examples, software simulations)
and services (e.g., forums, chats) to be used during the activities. In
this sense, as discussed in the literature (Dillenbourg and Jermann,
2007; Hernández-Leo, 2007), the description of script mechanisms
uses a metaphor of play. Generally, a play consists of a sequence of
acts, in which activities are performed in parallel by different
player roles. Each act delineates the task distribution, group forma-
tion, and sequencing of activities as a set of role-parts elements.
When an act is completed, the transition from one act to another
serves as a synchronization point, ensuring that all participants
start the activities of an act simultaneously.
2.1. CSCL Script Design Patterns

CSCL Script Design Patterns are CSCL Scripts that provide solu-
tions to recurrent situations. These patterns capture the essence
of best (or good) educational practices when creating CSCL scripts
through a set of guidelines. The goal of guidelines provided by
these patterns refers to foster productive interactions for CSCL sce-
narios at different levels. With respect to this, Hernández-Leo,
Villasclaras-Fernández, Asensio-Pérez, and Dimitriadis (2009)
classify these patterns using the hierarchical structure shown in
Fig. 1. This structure includes: (i) patterns related to the CL flow,
called Collaborative Learning Flow Patterns (CLFPs), which tackle



Fig. 1. Hierarchical structure of CSCL script design patterns (Hernández-Leo, 2007).
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the definition of sequences of collaborative activities and grouping
policies; (ii) patterns related to the activity level for the design of
collaborative activities; (iii) patterns related to the resource level
to configure the resources, such as documents, and software tools;
and (iv) patterns related to configure roles or other CL mechanisms.

Patterns at different levels are complementary and require
interaction to be complete. They can relate to one another through
four different types of connections (Hernández-Leo, 2007). (1)
‘‘Completes’’ define the composition of patterns indicated by the
aggregation model. Patterns at higher levels need patterns at lower
levels for completeness, resources complete activities that, in turn,
complete CL flows. CLFPs can be combined in such a way that a
phase can be replaced with another CLFP. (2) ‘‘Complements’’ define
the concatenation of patterns. Some patterns at the same level can
complement each other. Two patterns related through this connec-
tion form parts of a larger whole. (3) ‘‘Is alternative to’’ define alter-
native solutions to the same situation. Alternative patterns are
interchangeable, but they cannot be used in a complementary
way. (4) ‘‘Specializes’’ define variations of identical patterns accord-
ing to ‘‘degrees of freedom.’’ These variations formulate their use in
different situations.

In this paper, we only use patterns related to CL flow level and
activity level. The CLFPs used to develop CSCL Script are called
macro-scripts, which delineate the organization of coarser-granu-
larity activities, including the description of groups, roles, and
flows of CL activities (e.g., Pyramid, and Jigsaw) (Dillenbourg & Jer-
mann, 2007). Patterns related to activity level are used to develop
micro-scripts, which provide detailed support within specific CL
activities through the description of communication process
among participants (e.g., Peer-tutoring and Discussion Group)
(Weinberger et al., 2005).
2.1.1. Instructional design of macro-scripts
According to Dillenbourg and Jermann (2007) and Kobbe et al.

(2007), the script mechanism of a macro- script is a linear structure
of phases that specify how participants should collaborate through
the definition of group activities. One group activity describes the
method of distribution of a task for one group. A task is a list of
learning sessions, in which each session is defined as a triple ‘‘in-
put, activity and output.’’ The input is a set of resources that will
be used by the group, the activity is a description of what will be
done, and the output is a set of resources that will be created by
the group during the learning session. A learning session is a unit
with specific learning goals, and represents the abstraction of an
activity whose specific communication model is not given
(Villasclaras-Fernández, Isotani, Hayashi, & Mizoguchi, 2009b).

The Fig. 2 shows the use of the ‘‘jigsaw’’ pattern to obtain a
macro-script that solves the problem of understanding a paper
comprised of two sections (excluding the summary, introduction,
and conclusion) by a group of four students (l1, l2, l3 and l4). This
pattern, as defined in (Hernández-Leo et al., 2006), proposes that in
order to solve a complex problem that can be divided into indepen-
dent sub-problems, the script mechanism is composed of three
phases ‘‘individual,’’ ‘‘expert,’’ and ‘‘jigsaw’’. In the individual
phase, each student studies or works in a learning session around
a particular sub-problem ‘‘individual study of section 1’’ (for l1 and
l3) or ‘‘individual study of section 2’’ (for l2 and l4). In the expert
phase, the students that study the same problem meet in a group
to exchange ideas until they become experts in the sub-problem.
In this way, the ‘‘expert group 1’’(formed by l1 and l3) performs
the learning session ‘‘discussion of section 1’’ and the ‘‘expert
group 2’’ (formed by l2 and l4) performs the learning session ‘‘dis-
cussion of section 2.’’ Finally, in the jigsaw phase, groups of stu-
dents meet to contribute their expertise to solve the entire
problem. Thus, in order to understand the paper, the ‘‘jigsaw group
1’’ (formed by l1 and l2) and ‘‘jigsaw group 2’’ (formed by l3 and l4)
perform two tasks composed of three learning sessions: ‘‘discus-
sion of section 1,’’ ‘‘discussion of section 2,’’ and ‘‘final discussion.’’
In the session ‘‘discussion of section 1’’ in the expert phase, the
group of students l1 and l3 perform the activity ‘‘discuss with
members that have read the same section to elaborate a sum-
mary,’’ where the input resources are the paper and one asynchro-
nous forum, and the output resource is a summary of section 1.
2.1.2. Instructional design of micro-scripts
The CL ontology developed by Isotani and Mizoguchi (2007) pro-

vides a conceptual framework for delineating the script mechanism
of a micro-script as a flow of interactions. Each interaction is repre-
sented as an IL Event. An IL event is an event that performs the
description of the teaching–learning process through a learning
event and an instructional event. These events include actors and ac-
tions. An actor can act as an instructor (learner doing an instructional
action) or as a learner (student doing a learning action). The relations
between a role and a flow of interactions are modeled as learning
strategies that explain why a student with role of instructor or lear-
ner is interacting with another student (Isotani & Mizoguchi, 2008).

Fig. 3 shows the micro-script obtained using the pattern ‘‘peer-
tutoring’’ on the learning session ‘‘discussion of section 1 for stu-
dent l1 and l2’’ defined in ‘‘jigsaw phase’’ (shown in Fig. 2). In



Fig. 2. Example of a macro-script obtained using the ‘‘jigsaw’’ pattern.

Fig. 3. Example of a micro-script obtained using the ‘‘peer-tutoring’’ pattern.
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the pattern ‘‘peer-tutoring,’’ the students who do not have ‘‘com-
plete’’ knowledge of the event content can play the role of ‘‘tutor’’
or ‘‘tutee.’’ The tutor must acquire more knowledge in order to
teach and organize his/her thoughts in an understandable manner,
and by being helped the tutee will acquire or construct his/her
knowledge as well. In this sense, the student l1 plays the tutor role
because he/she has more knowledge, while the student l2 play the
tutee role because he/she is less knowledgeable about ‘‘section 1.’’
The flow of interactions of micro-scripts begins with the ‘‘knowl-
edge transmission’’ and ends with ‘‘affirmative reaction.’’ Alterna-
tively, if the tutee has questions then the tutor and tutee
perform the interaction ‘‘request problem detail’’ in order to
address the problematic area. To solve the problematic area of
understanding, the tutor and tutee perform the interactions ‘‘dem-
onstrating how to solve a problem,’’ ‘‘monitoring,’’ and ‘‘notifying
how the learner is.’’ The interaction ‘‘notify how the learner is’’ is
modeled as an IL event composed by an instructional event ‘‘giving
information’’ and a learning event ‘‘receiving information.’’ Finally,
the action of the instruction event is ‘‘advising,’’ while the learning
object related to the learning event is ‘‘learner’s problem’’ as de-
fined in the environment.

2.2. Instructional design strategies

In this work, the ID process of UoLs using CSCL Script Design
Patterns is based on the instructional planning approach. This
approach has been proposed by Wasson (1996) and consists of
mapping out a global sequence of instructional goals and actions
that enables the system to provide consistency, coherence, and
continuity throughout an instructional session, and enables this
global sequence to then be interspersed with local goals generated
when instructional opportunities arise. Since the 1980s, various
Intelligent Tutoring Systems (ITSs) were developed using this ap-
proach (Peachey & McCalla, 1986;Ullrich, 2008; Van Marcke,
1998; Vassileva, 1998; Vrakas et al., 2007). All endorse a planning
approach to managing instructional interactions with the students
through a component that is responsible for determining ‘‘what to
do next at each point in an instructional interaction,’’ hence an ap-
proach that controls the system’s behavior.

An interaction in instructional planning is any form of interac-
tion between students and instructional materials, or computer-
mediated interaction between collaborating students or between
students and teachers(Wasson, 1996). In this sense, we define an
ID task as a goal or action that defines ‘‘what a designer must
do.’’ This task is an activity that must be performed for the creation
or configuration of the elements of UoL. The ID tasks are defined at
various levels of granularity, and the minimal activity that must be
performed is called the primitive ID task (or ID action). To obtain
local goals when opportunities arise, each non-primitive ID task
has a set of ID methods that describe ‘‘how to achieve’’ a task. An
ID method has an explicit description of guidelines ‘‘what explain
the rationale’’ for the creation or configuration of an element of
UoL using CSCL Script Design Patterns. This kind of formalization
makes it possible to describe alternative ways to achieve an ID
task.

Fig. 4 shows the representation of an ID Strategy related to the
ID task ‘‘create a macro-script.’’ In this model, the task has four
methods that define the creation of a macro-script using one CSCL
Script Design Pattern. Thus, the first method uses the CLFP ‘‘jigsaw’’
to create a macro-script according to IMS-LD specification.



Fig. 4. Example of ID Strategy related to the ‘‘create macro-script’’ ID task.
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In this model, the knowledge relates the ID using CSCL Script
Design Pattern and the IMS-LD specification is represented as a
set of ID strategies. Thus, we define six guidelines to perform the
conversion of this knowledge into HTN planning knowledge.
3. Hierarchical task network planning

In HTN planning, the generation of action sequences (called
plans) that leads to the satisfaction of certain goals by agents is
represented as sets of tasks (task network), and methods that
decompose non-primitive tasks into sub-tasks until reaching a le-
vel of primitive tasks which can be solved by operators (Garrido,
Onaindia, & Sapena, 2008; Ghallab, Nau, & Traverso, 2004). Our
courseware web service uses the HTN planner JShop2ip (Java
Simple Hierarchical Planner Order 2 for Instructional Planning), a ver-
sion of JShop2 (Nau et al., 2003) developed to support the instruc-
tional planning in an Adaptive and Intelligent Educational System
for CL and non-CL domains that others HTN planners cannot solve.

JShop2ip takes a ‘‘planning domain definition’’ and a ‘‘planning
problem definition’’ as inputs to solve a planning problem. The
planning domain definition is composed of operators, methods,
axioms (horn-clause-like statements for inferring conditions that
are not explicitly define in the problem planning definition), and
external functions (code calls to external procedure or software)
to represent the human expert knowledge as heuristic knowledge
in the form of decomposition methods. The planning problem def-
inition is composed of an initial state (represented as a set of log-
ical atoms that are assumed to be true at the time when the
planner will begin the planning process) and an initial task net-
work (a set of tasks to be performed) that describe the information
of scenario.

The JShop2ip formalism uses different kinds of terms as a num-
ber, a constant symbol, a variable symbol, a list term, or a call term
to represent the domain and problem definitions. A constant sym-
bol begins with a letter or an underline. A variable symbol begins
with a question mark ‘‘?’’. A list term is represented by the form
(t1 t2 . . . tn), where each ti is a term. A call term is represented
by the form (call f t1 t2 . . . tn) where f is a function that executes
an attach procedure and each ti is a term. The logical atoms are
represented as n-tuples (p t1 . . . tn) where each ti is a term.

Axioms are horn-clause-like statements for inferring conditions
that are not mentioned explicitly in the current state. An axiom is
represented by the form (:- a [n1] L1 . . . [nm] Lm) where ‘‘a’’ is the
axiom’s head represented by the logical atom, each Li is a logical
precondition, and each ni is a optional symbol referring to the
name of each Li. The axiom a is true if L1 is true, or if L1 is false
but L2 is true, or if all of L1, . . . Ln1 are false but Ln is true.

An operator represents a primitive task and has the form (:oper-

ator h pre del add), where: h is an atomic task (p v1 . . . vn) that be-
gins with an exclamation mark ‘‘!’’ in the symbol task p and each vi
is a term. ‘‘pre’’ is a logical expression; while ‘‘del’’ is a list of logic
atoms to be removed from the current state; and ‘‘add’’ is a list of
logical atoms to be added. A method has the form (:method h pre
[rel] t) where: ‘‘h’’ is an atomic task that represents a non-primitive
task as a expression of the form (p v1 . . . vn), in which ‘‘p’’ is a task
symbol and each vi is a term; ‘‘pre’’ is a logical precondition; ‘‘rel’’ is
an optional relative condition; and ‘‘t’’ is a list that defines the sub-
tasks into which ‘‘h’’ can be decomposed. A logical precondition is
either a logical expression or a first satisfier precondition repre-
sented by the form (:first L) where ‘‘L’’ is a logical expression, such
a precondition causes JShop2ip to consider only the first binding
that satisfies ‘‘L’’. A relative condition has the form (:relative a L),
where ‘‘a’’ is a numerical value that represents the value of appli-
cability to be increased or decreased, and ‘‘L’’ is a logical expres-
sion. Fig. 5(a) shows part of planning domain definition that
details the method ‘‘transport a package ?p with transport ?t from
location ?l1 to ?l2’’ (transport ?p ?t ?l1 ?l2) and the operator ‘‘move a
transport ?t from location ?l1 to ?l2’’ (!move ?t ?l1 ?l2).

Fig. 5(b) shows the HTN planning process for initial task ‘‘trans-
port a package p from location l1 to l2’’ (transport p t l1 l2), where the
initial task is decomposed into subtasks ‘‘dispatch t to l1’’ (dispatch t

l1), ‘‘load package p on t’’ (!load t p), ‘‘move t from l1 to l2’’ (!move t l1

l2), and ‘‘return t from l2’’ (return t l2). The task ‘‘dispatch t to l1’’ is
decomposed into subtasks ‘‘reserve t’’ (!reserve t) and ‘‘move t from
home to l1’’ (!move t home l1), and the task ‘‘return t from l2’’ is
decomposed into subtasks ‘‘unload package p from t’’ (!unload t p)
and ‘‘move t from l2 to home’’ (!move t l2 home). Thus, the solution
plan is (!reserve t), (!move t home l1), (!unload t p) and (!move t l2

home).
Because HTN planning enables the representation of human ex-

pert knowledge as hierarchical tasks and methods, it is a suitable
technique for representing ID strategies using CSCL Script Design
Patterns. In the next section, we will describe the guidelines to
make this representation and the proposed model to automated
ID for CSCL.
4. Instructional design for cscl as htn planning

Fig. 6 shows our approach to automated ID for CSCL as HTN
planning. This model is based upon the classical ITS model (Kaplan
and Rock, 1995; Woolf, 2010). Where the student model and the do-
main model are defined in external repositories, the pedagogical
model is defined in planning domain definition as ID strategies.
To start the ID, the designer (through an authoring tool) defines
the initial CSCL scenario as a planning problem definition, and
(optionally) can also define the information of ‘‘student model’’
and ‘‘domain model’’ in external repositories. During the planning
process, the HTN Planner uses a set of axioms (A) to make queries
in external repositories. Once the HTN planner has finished the
planning process, the actions of the plan are translated into UoLs
through a conversion component. Finally, the participants will run
these UoLs on any LMS, so the students are able to achieve the
instruction/learning goals.

The ID for CSCL faces several challenges that must be resolved
by HTN Planner ‘‘JShop2ip,’’ including: (a) the representation of rel-
ative conditions in the ID methods, (b) queries about the informa-
tion in external repositories, (c) the definition of a mechanism for
group formation, and (d) the definition of changes in the current
state of student model (stages of learning development).
4.1. Planning problem definition: the initial CSCL scenario

The planning problem definition has the form (defproblem ald-
problem ald-domain s0 (t0)), where the initial state s0 is a set of
logical atoms (a1 a2 . . . an) that represent information of student
model (e.g., CL experience, motivation) and of domain model
(e.g., difficult, context or prerequisite of an exercise). The initial
task t0 is an ID task which represents the element of UoL to be



Fig. 5. Example of HTN Planning for ‘‘transport a package p from location l1 to l2.’’.

Fig. 6. The automated ID model for CSCL as HTN planning.
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obtained, and the purpose and expected benefits of this element
(defined as a set of learning goals that can be achieved by students
after running this element in any LMS).
4.1.1. Initial state (s0): the student model and the domain model
The student and the domain models are based on Sicilia (2005),

Wilkinson (2001) and Melis, Faulhaber, Eichelmann, and Narciss
(2008), which define competence as the multidimensional charac-
teristics composed of skills, knowledge, and attitudes held by stu-
dents. The domain model is a set of instructional resources defined
into the competency structure or the knowledge structure. The stu-
dent model is a set of records that overlap the domain model. Thus,
in the initial state s0, each element ei is represented by a set of log-
ical atoms (class c ei), (property ei hasResource r), (property ei prop v),
and (relation ei rel ej), where ‘‘c’’ denotes the classification of ele-
ment, ‘‘r’’ is the resource associated with the element, ‘‘prop’’ is
property name, ‘‘v’’ is value of property, and ‘‘rel’’ specifies the rela-
tion between elements ‘‘ei’’ and ‘‘ej’’.

The competency structure CS = hS,A,C,RS,RAi is composed of skills
(S), attitudes (A), cognitive competencies (C), relations among skills
(RS), and relations among attitudes (RA). The skills s 2 S are consid-
ered ‘‘abilities that have been acquired by training.’’ Some skills are
of a generic nature like ‘‘discussion’’ or ‘‘negotiation,’’ but many
others refer to concrete knowledge elements, such as ‘‘solve prob-
lems,’’ ‘‘understand,’’ etc. Thus, a competency cognitive c 2 C that
defines the association between a skill (non-generic) s 2 S and a
knowledge element k is defined through logical atoms (class Com-

peteny c), (property c hasSkill s) and (property c hasKnowledge k). Final-
ly, the attitudes a 2 A are considered ‘‘a set of complex mental state
involving beliefs and feelings and values and dispositions to act in
certain ways.’’
Example 1. Fig. 7(a) shows the representation of a competency
structure, where the skills ‘‘remember’’ and ‘‘understand’’ are
extracted from categories in the cognitive domain of Bloom’s
Taxonomy (Fig. 7(b)). This example also shows the representation
of an attitude ‘‘positive interdependence’’ and a cognitive compe-
tence ‘‘apply the method of reduction to absurdity.’’

The knowledge structure KS = hK,P,Ri defines the information
contained in books, summaries, and web pages. This information
defines the domain model as knowledge elements (K), their prop-
erties (P), and the relations (R) among these elements. In this struc-
ture, we distinguish between the class element fundamental and
auxiliary. A fundamental element ki 2 K defined through a logic
atom (class Fundamental ki) is a central piece of information (e.g.,
concepts) that learners should learn during the learning process.
Examples of fundamental elements are theorems, proofs, and def-
initions. An auxiliary element kj 2 K represents additional informa-
tion about fundamental elements as well as examples, exercises,
and problems through an logic atom (class Auxiliary kj). Table 1
shows the properties of knowledge elements, their data types,
and their possible values. Finally, a relation r 2 R between two
knowledge elements can be a prerequisite (isRequiredBy), an aggre-
gation (isPartOf) or a variation (isVariantOf).

The relationships between a knowledge element ki 2 K of type
‘‘auxiliary’’ and a cognitive competency cj 2 C is defined through
a set of properties ‘‘prerequisites’’ (hasPrerequisite) and ‘‘learning
objectives’’ (hasLearningObjective). The prerequisites are the mini-
mum competency levels that the participants must have to take
advantage of an element, while the learning objectives are the
competency levels that will be achieved after use of this element.
Using the Learner’s Growth Model, a competency level cl is defined
as a stage of skill development and a stage of knowledge acquisi-
tion (Inaba et al., 2003; Isotani and Mizoguchi, 2007). Thus, we



Fig. 7. Competency structure that uses the cognitive domain of Bloom’s taxonomy to define non-generic skills.

Table 1
Properties of a knowledge elements, their data types, and their possible values.

Property (prop) Data types Possible values (v)

hasTitle String
hasResource Resource
hasContext Vocabulary training, higher-education, school, other
hasDifficult Vocabulary very-easy, easy, medium, difficult, very-difficult
hasLearningResourceType Vocabulary Auxiliary: explanation, introduction, remark, conclusion, interactivity, exercise, exploration, invitation, real-world-problem,

evidence, proof, demonstration, illustration, counter-example, example. Fundamental: law, theorem, law-of-nature,
definition, fact, process, policy, procedure

hasPrerequisite n-tuple
(c,cl)

c is a cognitive competence and cl is a competency level

hasLearningObjective n-tuple
(c,cl)

c is a cognitive competence and cl is a competency level
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defined 20 competency levels sxky, where x is a level of skill devel-
opment that can be (0) nothing, (1) rough cognitive, (2) explana-
tory cognitive, (3) associative, or (4) autonomous; and y is a level
of knowledge acquisition that can be (0) nothing, (1) accretion,
(2) tuning, or (3) restructuring.

Example 2. Fig. 9 shows the representation of knowledge struc-
tures shown in Fig. 8. This figure shows the representation of a
knowledge element of the type fundamental ‘‘method of reduction
to absurdity’’ (k3), and the representation of two knowledge
elements of type auxiliary ‘‘demonstrate, if the formula H is a
tautology’’ (k21a) and ‘‘demonstrate if the formula G0 is a tautology’’
(k21b).

The student model LM = hL,CR,HR,PRi is composed of learners (L),
competency records (CR), history records (HR), and preference re-
cords (PR). For a learner l 2 L, a competency record cr 2 CR defines
the general skills s 2 S and attitudes a 2 A possessed by the learner
through the logical atoms (property l hasSkill s) and (property l hasAt-

titude a). Also, a competency record cr 2 CR defines the current
stage of learning development in a competency c 2 C through log-
ical atoms (property l hasCompetencyLevel (c cl)). A history record
Fig. 8. Example of kno
hr 2 HR defines ‘‘what knowledge element k 2 K was used by a lear-
ner’’ through a logical atom (property l hasAlreadySeen k). A prefer-
ence record pr 2 PR defines the characteristics of a learner
through a logical atom (property l prop v), where the preferences
properties, their data types, and their possible values v are shown
in Table 2.

Example 3. The set of logical atoms L = (class Learner l1), (property

l1 hasAttitude pi), (property l1 hasCompetencyLevel (c3 s0k1)), (property

l1 hasAlreadySeen k11), (property l1 hasMotivation (c3 high)) in the
student model defines the information related to learner l1. Thus,
the learner l1 has the attitude ‘‘positive interdependence’’ (pi), and
the current stages of learning development ‘‘nothing and accre-
tion’’ (s0k1) in the competence ‘‘apply the method of reduction to
absurdity’’ (c3). The history record shows that the learner used the
‘‘exercise k11’’ and the preference records shows that the learner
has a ‘‘high’’ level of motivation to learn how to ‘‘apply the method
of reduction to absurdity’’ (c3).

4.1.2. Initial task (t0): the initial instructional design task
In the planning problem definition, the initial ID task t0 defines

the instructional goal as the element to be obtained and the
wledge structure.



Fig. 9. The knowledge structure representation in JShop2ip.

Table 2
The learners preferences, their data types, and their possible values.

Properties Data types Possible values (val)

hasPersonality Vocabulary introversion, extraversion, ambiversion
hasCLExperience Vocabulary very-low, low, medium, high, very-high
hasEducationalLevel Vocabulary training, higher-education, school, other
hasMotivation n-tuple: (c, cl) c is a cognitive competence and l is very-low, low, medium, high, or very-high
hasAnxiety n-tuple: (c, cl) c is a cognitive competence and l is very-low, low, medium, high, or very-high
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learner’s purpose and expected benefits through an expression of
form (t E [S A] G), where:

� ‘‘t’’ is a task symbol that defines the instructional goal as the ele-
ment to be obtained after the ID process. Table 3 shows a list of
task symbols and elements to be obtained.
� ‘‘E’’ is a list of learning goals (e1 . . . en) that defines the expected

benefits of the elements to be obtained. Each learning goal ei
defines the desired stage of learning development to be
achieved by each student of group gi 2 G, this learning goal is
an expression of the form (c cl), where ‘‘c’’ is a cognitive compe-
tence and ‘‘cl’’ is a competency level.
� ‘‘S’’ is an optional list of general skills (s1 . . . sm) to be acquired

by all students.
� ‘‘A’’ is an optional list of attitude (a1 . . . am) to be acquired by all

students.
� ‘‘G’’ is a list of groups (g1 . . . gn), where each gi is represented by

a list of students (l1 . . . lm).
Example 4. The initial ID task used to ‘‘create a macro-script
according to IMS-LD specification for four students (with identifi-
ers l1, l2, l3 and l4)’’ is represented through the initial task:
Table 3
Task symbols that can be used in the definition of initial ID tasks.

Task symbols

createLDFundamentalUoL
createLDScript
createLDCLScenario
t0 ¼ ðcreateLDScriptððc3 s2k3Þðc3 s4k3ÞÞðneÞðÞððl1 l2Þðl3 l4ÞÞÞ:
One purpose of this task is the acquisition of a non-generic skill

‘‘negotiation’’ (ne) by all students. Another purposes of the compe-
tence ‘‘apply the method of reduction to absurdity’’ (c3) is to
achieve the stages of learning development: ‘‘explanatory and
restructuring’’ by students l1 and l2, and ‘‘autonomous and restruc-
turing’’ by students l3 and l4.
4.2. Planning domain definition: instructional design strategies

The planning domain definition has the form (defdomain domain

(d1 d2 . . . dn)), where each item di is an operator, a method, or an
axiom. A representation of these elements in JSHOP2ip is based on
JSHOP2 (Nau et al., 2003), we restrict to provide the description of
features actually used in this paper. The JSHOP2 manual (Ilghami,
2006) describes the complete set of features.

The following section describes the representation of ID strate-
gies as hierarchical methods within the planning domain defini-
tion. This process represents these strategies through the six
guidelines detailed below. The guidelines show how these ID strat-
egies are extracted from CSCL Script Design Patterns and IMS-LD
specification.
Description

Create a UoL according to IMS-LD specification
Create a macro-script according to IMS-LD specification
Create a micro-script according to IMS-LD specification
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4.2.1. First guideline: mapping of instructional design tasks as
hierarchical tasks

The non-primitive ID tasks are represented as expressions (p
?goals ?groups) or (p ?skills ?attitudes ?goals ?groups), where ‘‘p’’ is a
symbol defined through the mapping function f: T ? P that associ-
ates each name of an ID task t 2 T with a task symbol p 2 P .

Example 5. The ID task used to ‘‘create an individual phase
according to IMS-LD’’ is represented as an expression (createLDIn-

dividualPhase ?goals ?groups), where ‘‘f’’ defines the association
between this task and a symbol createLDIndividualPhase.

A primitive ID task is represented as an operator in the domain
planning definition. Table 4 shows the set of operators used to rep-
resent ID tasks and their corresponding descriptions. The operators
that begin with two exclamation mark ‘‘!!’’ are used to define ac-
tions in the plan that will not be interpreted by conversion compo-
nent (called non-translate actions).

4.2.2. Second guideline: mapping between instructional design
strategies and IMS-LD elements

Each ID strategy has an associated hierarchical task of high-le-
vel to define the mapping between it and an element of IMS-LD
specification. This association is defined by the scheme shown in
the Fig. 10, in which the ID strategy ‘‘createTaskName’’ is mapped
out with an IMS-LD element tag that has the identifier ?id.

Table 5 shows the mapping between an ID strategy and an IMS-
LD element. This mapping is extracted from CSCL Script Design Pat-
terns related to CL flow level and activity level. In addition, we
added the modeling of patterns defined by Ullrich (2008). These
patterns formalize the descriptions of courses through the defini-
tion of structured sections. For example, the ‘‘discover’’ pattern
structures a course through sections ‘‘introduction,’’ ‘‘develop-
ment,’’ ‘‘practice,’’ and ‘‘show relations.’’

The operators (!startLDElement tag-ref ((ref ?id))) and (!endLDEle-

ment tag-ref) in the mapping between a ID strategy and an IMS-LD
element (shown in the Fig. 9) are optional – we can use both or none.
Each ID task of set InstructionalDesignTask1. . . InstructionalDesign-

Taskn can be an operator or any of basic ID task (detailed in Table 6).

Example 6. Fig. 11 shows the mapping between the ID strategy
used to ‘‘create a individual phase’’ (createIndividualPhase) and the
element act of IMS-LD specification. This strategy was extracted
from CLFPs ‘‘jigsaw’’ and ‘‘pyramid’’ and its mapping includes the
operator !!changeCLGrouping (line 4) to avoid group formation,
thereby forcing individual work in learning sessions.
Table 4
The primitive instructional design tasks as operators.

Operator Description

(!startLDElement ?tag ?params�(?t ?id

?goals ?groups))
Create a start tag with identifier ?id a
terms that defines the classification o
acquired by students ?groups

(!endLDElement ?tag ?id) Create an end tag for an element with
(!!changeIndGoals ?indGoals) Change individual learning goals for t
(!!changeCurrentLDElement

?elements)
Change the current IMS-LD element t

(!!changeLearningResourceType
?types)

Change the learning resource types to

(!!changeFundCompetency ?comp) Change the knowledge fundamental t
(!!changeCLGrouping (?t ?sgPs) Change informations about the group
(!addUserToRole ?user ?role) Assign a role to an user
(!removeUserFromRole ?user ?role) Remove an user from a role
(!addUserToGroup ?user ?group) Add an user to a group
(!removeUserFromGroup ?user ?group) Remove an user from a group
(!text ?types ?fparams ?sparams) Insert a plain-text, where ?types is a
(!insertElement ?e ?learners) Change the history record of learners,
(!insertResource ?r ?attribs) Create a tag ‘‘<resource>’’ for ?r with
To define changes in the current stage of learning development
of students (challenge ‘‘d’’ in ID for CSCL), we replace the operator
!startLDElement with the hierarchical task startLDElement! in the
scheme definition (shown in Fig. 9) that defines the mapping be-
tween an instructional design strategy and an IMS-LD element.
The hierarchical task startLDElement! detailed in Fig. 12 uses the
operator !!changeIndGoals (line 4) to change individual goals of stu-
dents in the current IMS-LD element ?id. In association with the
operator !endLDElement, the changes in the current stage of learn-
ing development of students are defined ‘‘how the substitution of
current competency levels of students by levels defined in each
individual goal.’’

Example 7. Suppose that the initial state s0 is (property l1

hasCompetencyLevel (c1 s1k0)), (property l3 hasCompetencyLevel (c1

s1k1)) and the initial task t0 is (createLDDiscussionSession ((c1 s1k2)

(c1 s1k1)) ((l1) (l3 l4))). Using the ID strategy shown in Fig. 13 that
defines the mapping between this strategy and the element
‘‘learning-activity, ’’ we obtain the plan P, where

P¼ðð!tartLDElement learning�activityððidentifier la�a23f�df23ÞÞ
ððDiscussion SessionÞla�a23f�df23ððc1Þs1k2Þððc1 s1k1ÞÞððl1Þðl3 l4ÞÞÞÞ
ð!!changeIndGoalsððl1ðc1s1k0s1k2ÞÞðl3ðc1 s1k1s1k1ÞÞðl4ðc1 s0k0s1k1ÞÞÞÞ
. . .

ð!endLDElement learning�activity la�a23f�df23ÞÞ

The result state sn to apply the plan P in s0 is (property l1 hasCompe-

tencyLevel (c1 s1k2)), (property l3 hasCompetencyLevel (c1 s1k1)), (prop-

erty l4 hasCompetencyLevel (c1 s1k1)).
4.2.3. Third guideline: representation of instructional design rules as
logical preconditions and relative conditions in hierarchical methods

The guidelines in each ID method that define the learner’s prop-
er selection is a set of conditions called ID rule. These rules explain
the rationale for their selection through evaluating the purpose
and expected benefits of each element according to CSCL Script De-
sign Patterns. The ID rules are represented as logical preconditions
and relative conditions in hierarchical methods using: general pur-
pose axioms; axioms for queries in domain to be taught and stu-
dent models; and ID axioms.

To solve the challenge ‘‘a’’ (in the ID for CSCL), a method (:meth-

od h pre [rel] t) in JSHOP2ip has a special type of condition, named
relative conditions [rel]. These conditions do not need to be satis-
fied in the process of planning as an logical precondition ‘‘pre’’.
nd parameters ?params according to IMS-LD. The variable symbol ?t is a list of
f element ?id, while the variable ?goals defines the expected benefits to be

identifier ?id according to IMS-LD
he students
o be obtained

be used in the definition of elements to be obtained

o be learn through modifying the competence
formation

list that defines the source of text
set the element ?e as already seen

attributes ?attribs according to IMS-CP



Table 5
The mapping between instructional design strategies and IMS-LD elements.

Task symbols Description (<tag>)

(0) Mapping using patterns related to pedagogical level
createLDFundamentalUoL Create a UoL as an element < learning-design>
createLDFundamentalScript Create a pedagogical scenario as an element < play>
createLDNamePhase Create a section in a scenario as an element < act>
createLDNameGroupActivity Create an association between learners and learning sessions as an element < role-part>
createLDNameSessions Create a set of learning sessions as an element < activity-structure>
createLDNameSession Create a learning session as an element < learning-activity > ou < unit-of-learning-ref>

(1) Mapping using patterns related to CL flow level
createLDNameScript Create a macro-script as an element < play>
createLDNamePhase Create a phase in a macro-script as an element < act>
createLDNameGroupActivity Create a group activity as an element < role-part>
createLDNameSessions Create a set of learning sessions as an element < activity-structure>
createLDNameSession Create a learning session as an element < learning-activity > or < unit-of-learning-ref>

(2) Mapping using patterns related to activity level
createLDNameCLScenario Create a micro-script as an element < play>
createLDNamePhase Create a phase in a micro-script as an element < act>
createLDNameStrategy Create a learning strategy as an element < role-part>
createLDNameInteractions Create a cyclical or directed interaction as an element < activity-structure>
createLDNameILEvent Create an IL event as an element < learning-activity>
createLDNameILEventDescription Create an action in IL event defined as an element < activity-description>

Fig. 10. The scheme of mapping between an instructional design strategy and an IMS-LD element.
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These conditions increase or decrease the preference on selection
of a method through the value of applicability. When more than
one method can be applied in an existing state, the value of appli-
cability defines the selection order of methods, so the first method
to be selected in the planning process is the one that has the high-
est value of applicability.

Example 8. The representation of ID rules associated with the ID
method that defines the creation of a macro-script using the CLFP
‘‘Jigsaw’’ is shown in Fig. 14. These rules evaluate ‘‘what the
problem to be solve can be divided into sub-problems’’ (lines 2–4)
and ‘‘what the number of students is enough to solve the sub-
problems’’ (lines 5–6). Within these rules, there are two relative
conditions that evaluate the CL experiences of students and the
values of elements that will be obtained. The preference on
selection is increased if ‘‘the majority of students have high level
of CL experience’’ (lines 9–11), and ‘‘one purpose is to promote the
positive interdependence’’ (lines 12–14).

To enable the reasoning about the informations of ‘‘student
model’’ and ‘‘domain model’’ contained in external repositories
(challenge ‘‘b’’ in the ID for CSCL), the axioms for queries in ‘‘stu-
dent model’’ and ‘‘domain model’’ use the following call terms:
(i) (call GetType ?e) to obtain the classifications of element ?e; (ii)
(call GetRelated ?e ?rel) to obtain a list of elements which are con-
nected to the element ?e by the relation ?rel; (iii) (call GetProperty-

Value ?e ?prop [?d]) to obtain the value of a property ?prop of element

?e that is optional related with ?d; and (iv) (call GetElements ?q) to
obtain a list of elements that fulfill the given mediator query ?q.
For example, the call term GetPropertyValue is used in the axiom
getPropertyValue shown in Fig. 15 to obtain the value of a property
firstly in the current state (line 2), and next in external repositories
(line 3). This axiom is used in the representation of ID rules shown
in the Fig. 13 to obtain an auxiliary element ?a related with the
competence ?c (line 3).

The mechanism of group formation is defined through the call
term (call GetCLGrouping ?indGoals) to solve the challenge ‘‘c’’ (in
the ID for CSCL). This call term is used only in ID strategies that
are mapped to an IMS-LD element ‘‘ < act > ’’, because the group
formation is defined only in this strategy through the definition
of elements ‘‘ < role-part > ’’. For example, the ID strategy used to
‘‘create a phase of practice with exercises’’ shown in Fig. 16 use
the call term GetCLGrouping (line 3) to obtain the groups in the
symbol variable ?clgrouping.

4.2.4. Fourth guideline: definition of mandatory and optional
instructional design tasks

In the definition of ID strategies for CSCL, there exist a number
of ID tasks that should be achieved if possible, but failing to do so
should not cause backtracking; these tasks are called optional ID
tasks. Other ID tasks are mandatory, and these are defined as hier-
archical tasks through the suffix ‘‘!’’. These ID tasks cause back-
tracking if no method can be applied in the current state.

Therefore, in the representation of the ID strategy, there is an
equivalent option task for all critical ID tasks. The scheme shown
in Fig. 17 is used to represent mandatory and optional tasks. The
first method encapsulates the mandatory ID task ‘‘createTaskName!’’



G.C. Challco et al. / Expert Systems with Applications 41 (2014) 3777–3798 3787
in an optional ID task ‘‘createTaskName.’’ The second method is used
to define a mandatory ID task, and in case this method cannot be
applied in the current state, the ‘‘fallback’’ method is applied.

Example 9. Fig. 18 shows the representation of mandatory and
optional ID tasks ‘‘create a description for IL event that show
solution’’ (createShowSolutionILEventDescription). The mandatory
task (lines 5–9) performs the search of descriptions by the query
axiom getElement, while the fall-back method (lines 11–15) per-
forms the creation of description through the call term (call

BuildElement . . .).
4.2.5. Fifth guideline: definition of repetitive task decomposition
method into instructional design strategies

In the representation of many of ID strategies as hierarchical
methods, some ID tasks are further delineated into a given number
of repetitive ID sub-tasks. This process is called repetitive task
decomposition method, and it uses a set of term list to determinate
the ID sub-tasks.

Example 10. Fig. 19 shows the definition of a repetitive task
decomposition method used to break down an ID task into sub-
tasks ‘‘create a individual group activity using the IMS-LD speci-
fication’’ (createLDIndividualGroupActivity). This hierarchical method
decomposes the task distributeIndGroupActivityByComps through two
list terms ?comps and ?groups, these terms are used to define the
variable symbols ?c and ?g.
4.2.6. Sixth guideline: definition of relationships among CSCL Script
Design Patterns

According to the relationship ‘‘completes’’ defined in the hierar-
chical structure of CSCL Script Design Patterns (shown in Fig. 1), a
CLFP can be completed by another CLFP or a pattern at activity le-
vel. This means that two macro-scripts can be combined through
the substitution of activity in one learning session by another
macro-script. It also means that one micro-script can be integrated
into another macro-script through substituting of an activity in one
learning session by one micro-script. In this sense, the relationship
‘‘completes’’ is defined in all ID strategies that are used to ‘‘create
an activity in any learning session’’ (createActivityName) through
the schema shown in Fig. 20. In this schema, the substitution is de-
fined in the mandatory ID task through the hierarchical task(create-

LDScriptCLScenario!). If the substitution fails then the fall-back

method defines the activity as an environment and a description.
The hierarchical task (createLDScriptCLScenario!) shown in

Fig. 21 defines the substitution of activity in one learning session.
First, this task attempts to create a macro-script using any CLFPs
through the mandatory task createLDScript! (lines 6–8). Next, if
the mandatory task fails and none of CLFPs can be applied, the sub-
stitution attempts to create a micro-script through the ID task cre-

ateLDCLScenario! (lines 13) that is defined in the fall-back method
(lines 11–13).
Table 6
The basic instructional design tasks used in the mapping between ID strategies and IMS-L

Basic task Description

(createLDTitle ?t ?goals [?e

?texts])
Create a label for an IMS-LD element using how
defines the source of text

(createLDItem ?e ?learners) Create an IMS-LD element < item > to insert th
domain model

(createLDInstructItem ?e

?learners)
Create an IMS-LD element < item > in an instru

(createLDLearningItem ?e

?learners)
Create an IMS-LD element < item > in a learnin
Example 11. Fig. 22 shows the definition of the relationship
‘‘completes’’ in the ID strategy used to ‘‘create an activity for the
discussion session.’’ This ID strategy was extracted from the
definition of the learning session in CLFPs ‘‘jigsaw’’ and ‘‘pyramid.’’

The relationships ‘‘is alternative to’’ and ‘‘specializes’’ are natu-
rally represented through the logical preconditions in methods
used to ‘‘create a macro-script using CLFPs’’ (createLDScript!) and
‘‘create a micro-script using patterns at activity level’’
(createLDCLScenario!).

Example 12. Fig. 23 shows the relationship ‘‘is alternative to’’
between two CLFPs. In the strategy used to ‘‘create a macro-script
using the jigsaw pattern’’ (lines 1–15), the logical preconditions
consist of the comparison of ‘‘the number of knowledge sub-
elements associated with the competence ?c’’ (?nSubs, lines 2–4)
and ‘‘the number of learners’’ (?nLearners, line 5). According this
pattern, the number of learners must be greater than double the
number of sub-elements, and the number of sub-elements must be
greater than 1 (line 6). According to ‘‘pyramid,’’ the logical
precondition used to ‘‘create a macro-script’’ (lines 17–30) using
this pattern consist of ‘‘the difficulty value of knowledge element
associated with the competence ?c, this value must be very-difficult’’
(lines 18–20) and ‘‘the number of learners ?nLearners must be
greater than 8’’ (line 21).

The relationship ‘‘complements’’ among CSCL Script Design Pat-
terns are not defined in the planning domain definition. In our ap-
proach, these relationships are defined manually through the
authoring tool. Thus, before performing the conversion of a plan
named ‘‘main’’ into UoLs, the instructional designer defines the
concatenation among CSCL script at the same level (macro-scripts
or micro-scripts) through the definition of a new planning problem
definition. After the planning process, the newly obtained plan
named ‘‘sub plan’’ is added into the ‘‘main’’ plan.

4.3. Conversion component: the translation of instructional design
actions into UoLs

Once the plan is obtained by the JShop2ip planner, the conver-
sion components performs their translation into files ‘‘imsmani-
fest.xml’’ that represent the CSCL scripts using the IMS-LD
specification. The manifest files are packaged into a set of ZIP pack-
ages with the necessary resources using the IMS-CP specification.
Thus, the function ‘‘convert(hi)’’ uses the plan p = (h1 h2 . . . hn)
to perform:

� the conversion of each action (!startLDElement tagname [((attrib1
v1) . . . (attribn vn))) into a start tag < imsld:tagname
attrib1 = ‘‘v1’’ . . . attribn = ‘‘vn’’>;
� the conversion of each action (!endLDElement tag [id]) into a end

tag </imsld:tag>;
� the conversion of each action (!text (t0 ... tn) (f0 ... fm1) (s0 . . .

sm2)) into a text t0. . .tn with substitution of {f0} . . . {fm1},
{s0} . . . {sm2} by terms t0 . . . tn, s0 . . . sm2; and
D elements.

parameters a list of elements ?e and a list of constant symbols ?texts. A list ?t

e resource related with the element ?e defined in the student model or the

ctional event for students ?learners

g event for students ?learners



Fig. 11. Mapping between the strategy ‘‘create individual phase’’ and the element ‘‘act’’.

Fig. 12. Task startLDElement! that creates a start tag and changes stages of learning development.

Fig. 13. Mapping between the strategy ‘‘create discussion session’’ and the element ‘‘learning-activity’’.

Fig. 14. The representation of instructional design rules into the method ‘‘create a macro-script using jigsaw’’.

Fig. 15. The axiom to get the value of an property in the current state and external repositories.

Fig. 16. The instructional design strategy used to ‘‘create a phase of practice with exercises’’.
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Fig. 17. The scheme for definition of mandatory and optional tasks.

Fig. 18. The mandatory and optional ID tasks ‘‘create an description for IL event that show solution’’.

Fig. 19. The decomposition method used to define the distribution of task createLDIndividualGroupActivity.

Fig. 20. The scheme to define the relationship ‘‘completes’’ among CSCL script design patterns.
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Fig. 21. The hierarchical methods associated with the task createLDScriptCLScenario!.

Fig. 22. The definition of relationship ‘‘competes’’ that is defined in the activity of learning session ‘‘discussion’’.
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� the conversion of each action (!insertResource id ((type t) (href h)))
into a IMS-CP element < imscp:resource identifier = ‘‘id’’
type = ‘‘t’’ identifier-ref = ‘‘h’’ />.
Example 13. The plan P and function convert(hi) shown below
define the generation of IMS-LD and IMS-CP elements shown in
Fig. 24.

P¼ðð!startLDElement playððidentifier play�29241d03�c533Þ ðisvisible trueÞÞÞ
. . .

ð!startLDElement actððidentifier act�ace2f2d3�d348ÞÞÞ
ð!startLDElement titleÞ
ð!text ðIndividual PhaseÞðÞðÞÞ
ð!endLDElement titleÞ
ð!startLDElement role�partÞ
ð!startLDElement role� ref ððref rp�84516a75�a565ÞÞÞ
ð!endLDElement role� refÞ
. . .

ð!endLDElement role�partÞ
ð!endLDElement actÞ
ð!endLDElementplayÞÞ
5. Research application

To evaluate the validity of our approach, we developed a CSCL
courseware generator employing the reference model detailed in
previous section. This courseware generator obtains personalized
UoLs for CSCL. These units are adapted from the students’
characteristics through of a set of plans of sections, plans of
practice sessions, plans of learning sessions, and plans of interac-
tions. The plans of sections are obtained through the sequencing
of learning goals, the selection of a pattern related to pedagogical le-
vel for each learning goal, and the definition of sections (e.g., intro-
duction, development, and practice) using this pattern. The plans
of practice sessions (for each practice section) are obtained
through the group formation, and the definition of a sequence of
practice sessions using this group formation. The plans of learning
sessions for each practice session are obtained through the selec-
tion of a proper auxiliary knowledge element, the selection of a
pattern related to CL flow level, and the definition of learning ses-
sions using this pattern. The plans of interactions for each learning
session are obtained through the selection of a pattern related to
activity level that define the communication model to be applied,
and the definition of directed and cyclical interactions as IL events
using this pattern.

We modeled four pattern related to pedagogical levels detailed
on the website http://www.ime.usp.br/~geiser/dissertacao/scenar-
ios/. We modeled three patterns related to CL flow level with four
strategies for learning session, eight strategies for group activity,
and ten strategies for phase detailed on the website http://www.i-
me.usp.br/~geiser/dissertacao/macrorroteiros/. We also modeled
six patterns related to activity level with twelve strategies for IL
event, sixteen strategies for cyclical and directed interactions, six
strategies for interactions patterns, nine strategies for learning
strategies, and ten strategies for instructional and learning roles
detailed on the website http://www.ime.usp.br/~geiser/disserta-
cao/microrroteiros/.

http://www.ime.usp.br/~geiser/dissertacao/scenarios/
http://www.ime.usp.br/~geiser/dissertacao/scenarios/
http://www.ime.usp.br/~geiser/dissertacao/macrorroteiros/
http://www.ime.usp.br/~geiser/dissertacao/macrorroteiros/
http://www.ime.usp.br/~geiser/dissertacao/microrroteiros/
http://www.ime.usp.br/~geiser/dissertacao/microrroteiros/


Fig. 23. Representation of relationship ‘‘is alternative to’’ between ‘‘jigsaw’’ and ‘‘pyramid’’ pattern.
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The CSCL courseware generator was developed as a Web Service
which will be used to support the instructional planning in an
Adaptive and Intelligent Educational System for CSCL (e.g., ITSs
and authoring tools). We developed an authoring tool of UoLs,
named ALD (Automated Learning Design). The ALD employs the ser-
vices provided by the courseware generator to obtain UoLs that are
adapted the students’ characteristics.

Fig. 25 shows the user interfaces that allow definition of an ini-
tial CL Scenario. Fig. 25(a) shows the definition of an initial ID task.
The editor uses a set of user interfaces shown in Fig. 25(b) to define
the information related to student model and domain model as a
set of forms. The file tree (on the left menu of the form used to
define an initial CL Scenario shown in Fig. 25(a) shows a set of ele-
ments that are obtained after the ID process.
5.1. Formulation of planning problem

Using the ALD tool, the domain model in the initial state s0 is
defined through a competency structure shown in Example 1,
and a knowledge structure shown in Example 2. The student model
in the initial state is defined through the information shown in
Fig. 26.
Fig. 24. The obtained IMS-LD and IMS-CP elements by plan P and function
convert(hi).
The initial ID task t0 is defined as ‘‘create of a UoL according to
IMS-LD specification’’ with a learning goal ‘‘apply the method of
reduction to absurdity’’ (c3) into ‘‘autonomous and restructuring’’
level and an attitude ‘‘positive interdependence’’ (pi) for eight stu-
dents (with identifier ‘‘l1, l2 . . ., l8’’) is represented as the hierarchi-
cal task:

t0 ¼ ðcreateLDFundamentalUoL ððc3 s4k3ÞÞðÞðpiÞ
� ððl1 l2 l3 l4 l5 l6 l7 l8ÞÞÞ:
5.2. Results of planning process

Using this formulation of the planning problem, we obtain the
results shown in Fig. 27 which consists of a plan of sections with
four acts ‘‘introduction,’’ ‘‘development,’’ ‘‘practice,’’ and ‘‘show
relations.’’ The section ‘‘introduction’’ consists of two sessions
‘‘show problem’’ (la-1) and ‘‘illustrate example’’ (la-2). The devel-
opment section consists of one session ‘‘show definition’’ (la-3).
The practice section consists of one session ‘‘solve exercises’’ (la-
4). The show relations section consists of one session ‘‘show con-
nections’’ (la-5).

The session ‘‘solve exercises’’ (la-4) in the section ‘‘practice’’ is
defined as a plan of practice sessions of three phases that enables
learners to achieve the cognitive competence c3 at level s4k3. In
the first phase (act 01), Group 2 (formed by learners l1 and l2) per-
forms the session la-6 to practice the competence c3 at level s4k3,
Group 3 (formed by learners l3 and l4) performs the session la-7 to
practice the competence c3 at level s4k2, and Group 4 (formed by
learners l5, l6, l7 and l8) performs the session la-8 to practice the
competence c3 at levels s3k1 and s3k2. In the second phase (act
02), Group 5 (formed by learners l1, l2, l3 and l4) performs the ses-
sion la-9 to practice the competence c3 at level s4k3, Group 6
(formed by learners l5 and l6) performs the session la-10 to prac-
tice the competence c3 at level s4k2, and Group 7 (formed by
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learners l7 and l8) performs session la-11 to practice the compe-
tence c3 at level s3k1. In the last phase (act 03), Group 8 (formed
by learners l1, l2, . . . and l8) performs the session la-12 to practice
the competence c3 at level s4k3.

The practice session ‘‘practice c3 at level s4k3’’ (la-12) is defined
as the selection of exercise k21 ‘‘demonstration of formula G,’’ and
the definition of a plan of learning sessions using the pattern ‘‘jig-
saw.’’ In the individual phase (act 01), Group 9 (formed by learners
l1, l2, l3 and l4) performs the session la-13 to solve the exercise
k21a, and Group 10 (formed by learners l5, l6, l7 and l8) performs
the session la-14 to solve the exercise k21b. In the expert phase
(act 02), Group 9 performs the learning session la-15 ‘‘specializa-
tion of exercise k21a,’’ and Group 10 performs the learning session
la-16 ‘‘specialization of exercise k21b.’’ In the jigsaw phase (act 03),
Group 11 (formed by l1, l2, . . . and l8) performs the learning session
la-17 ‘‘demonstration of formula G’’.

The learning session ‘‘demonstration of formula G’’ (la-17) is de-
fined as a plan of interactions using the pattern ‘‘distributed cogni-
tion.’’ This plan defines a micro-script through the definition of
roles ‘‘instructional full-participant’’ (for students l1, l2, l3 and l4)
and ‘‘learner full-participants’’ (for students l5, l6, l7 and l8). In
the cyclical interaction as-1, the plan defines two IL events la-18
and la-19. In the IL event la-18, the action ‘‘demonstration’’ is de-
fined for student with role ‘‘instructional full-participants,’’ and
the action ‘‘obs. demonstration’’ is defined for student with role
‘‘learner full-participants’’. In the IL event la-19, the action ‘‘req.
opinion’’ is defined for students with role ‘‘instructional full-partic-
ipants,’’ and the action ‘‘exp. opinion’’ is defined for student with
role ‘‘learner full-participants.’’

5.3. Other results of the planning process

Our approach enables the generation of UoLs that are adapted
to different inputs. The adaptations are obtained through setting
up information values in the student model.

5.3.1. Another section plan
If we change the competency levels of students l7 and l8 (at le-

vel s3k1), the plan of sections shown in Fig. 28 is obtained through
the application of the pattern ‘‘rehearse.’’ The plan of sections con-
sists of five sections: ‘‘develop,’’ ‘‘show connections,’’ ‘‘practice,’’
‘‘illustrate,’’ and ‘‘practice’’. Other patterns related to pedagogical
level that can be applied to the initial task t0 are ‘‘guided-tour’’
and ‘‘train.’’

5.3.2. Another practice session plan
Fig. 29 shows a plan of a practice session that is obtained

through the application of another way to form groups. In session
la-4 of scenario ‘‘discover’’ (shown in the Fig. 27), this grouping
consists of four practice phases that enables learners to achieve
the cognitive competence c3 at level s4k3.

In the first phase (act 01), Group 2 (formed by learners l1, l2, l3
and l4) performs the session la-6 to practice the competence c3 at
level s4k3 and s3k3 (by cog. flexibility); Group 3 (formed by learn-
ers l5, l6, l7 and l8) performs the session la-7 to practice the compe-
tence c3 at level s3k2 and s3k1 (by peer-tutoring); Group 4 (formed
by learners l3, l4, l5 and l6) performs the session la-8 to practice the
competence c3 at level s3k3 and s4k2 (by cog. apprenticeship), and
the session la-10 to practice the competence c3 at level s4k3 (by
distribute cognition); Group 5 (formed by learners l7 and l8) per-
forms the session la-9 to practice the competence c3 at level s3k2
(by anchored instruction); Group 6 (formed by learners l1, l2, l7
and l8) performs the session la-11 to practice the competence c3
at level s4k3 and s3k3 (by distributed cognition); and Group 7
(formed by student l1, l2, . . ., l8) performs the session la-12 to prac-
tice the competence c3 at level s4k3 (by distributed cognition).
This method of forming groups uses individual goals and learn-
ing theories, but there are many others ways to form groups (e.g.,
free group formation, controlled group formation or a grouping
tool), thus the figure shows others plans of learning sections
(p2a, p2b, . . .) that can be applied to session la-4 (CSCL script).

5.3.3. Another learning session plan
Changing the history and preference records of students l3, l5

and l7 to values shown in Fig. 30, we obtain the definition of learn-
ing session ‘‘practice c3 at level s4k3’’ (la-12) through the applica-
tion of the pattern ‘‘pyramid’’ in the plan of learning sessions p2a
(shown in Fig. 27). The result of the planning process consists of
three phases of ‘‘discussion.’’

In the first phase (act 01), Group 9 (formed by l1 and l2), Group
10 (formed by l3 and l4), Group 11 (formed by l5 and l6) and Group
12 (formed by l7 and l8) perform the solution of exercise k22 in the
learning sessions la-13, la-14, la-15 and la-16. In the second phase
(act 02), Group 13 (formed by l1, l2, l3 and l4) and Group 14
(formed by l5, l6, l7 and l8) perform the solution of exercise k22
in the learning sessions la-17 and la-19. In the third phase (act
03), Group 15 (formed by l1, . . ., and l8) performs the solution of
exercise k22 in the learning session la-19. Others CSCL scripts pat-
terns that can be applied to the learning session la-12 are ‘‘jigsaw’’
and ‘‘distributed cognition.’’ Because most learners have low levels
of CL experience and the selected exercise (k23) can not be divided,
the pattern ‘‘jigsaw’’ is used to define the content of session la-12.

5.3.4. Another plan of interactions
If we change the group information of learning session ‘‘demon-

strate G’’ (la-17) in the plan ‘‘p3a’’ defined through of pattern ‘‘jig-
saw’’ (shown in Fig. 26) to values that define the use of ‘‘cognitive
apprenticeship’’ as CL scenario, then, the result of planning process
(shown in Fig. 30) consists of one IL event (la-18) and three cyclical
interactions (as-1, as-2 and as-3) that define the learning process
as a ‘‘master’’ role for learners l5 and l6, and a ‘‘apprenticeship’’ role
for learners l1, l2, l3 and l4. To obtain this result, it is necessary to
add the atom (clscenario cog-apprenticeship ((master (l5 l6) apprentice-

ship (l1 l2 l3 l4)))) in the initial state s0.(See Fig. 31)

5.4. Technical evaluation of the research application

The results of the planning process shown in this section em-
ployed a dummy model that returned only values defined in the
initial state for queries in the student model and the domain mod-
el. In addition, all tests were performed with a pre-filled result of
group formation to ignore the time of group formation. This result
is pre-filled through of term call (GetCLGrouping . . .).

The test (results shown in Table 7) was performed by a standard
PC with 2.4 GHz Intel Pentium 4 CPU with 4 GB RAM using the ini-
tial task ‘‘createLDFundamental’’. This task is the most abstract that
involves all pattern related to pedagogical level (including of the
scenarios ‘‘discover,’’ ‘‘rehearse,’’ ‘‘guide-tour,’’ and ‘‘train’’). The
data was collected using 2, 4, 8, 16 and 32 learning goals, with
32, 64, 128 and 256 students. Each generation was repeated 10
times and the data was averaged.

Table 8 describes the number of actions that were defined by
the generation of UoLs using the initial task ‘‘createLDFundamental.’’
It shows the average size of the solution plan obtained by our ap-
proach, thus, a UoL for 2 learning goals and 32 students has 3528
actions that represents on average the ID of 352 elements (we con-
sidered the ID of an element to be obtained by ten ID actions). If the
average design time of each element is one minute, then the ID of
the UoL would require 352 min. These results show that our ap-
proach enables the generation of UoL for CSCL more quickly than
the manual method of ID.



Fig. 25. User interfaces in the authoring tool ALD that are used to define an initial CL Scenario. In (a) a designer can define the instructional tasks; and in (b) the designer can
define/check the domain and the student model.
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competence historic motivation competence historic motivation
id c2 c3 r21 r23 c2 c3 id c2 c3 r21 r23 c2 c3

l1 s0k3 s4k2 no no medium high l5 s0k3 s3k1 no yes low high

l2 s2k2 s4k2 no no medium high l6 s1k2 s3k1 no no high high

l3 s2k2 s3k2 no yes high high l7 s1k2 s3k0 no yes medium low

l4 s2k2 s3k2 no no low medium l8 s0k3 s3k0 no yes medium low

Fig. 26. The information of student model used in the application example.

Fig. 27. Result of the planning process.
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Fig. 28. The plan of sections obtained by the planning process with changes in competency levels.
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6. Related works

Since the first approach for integration of automated planning
in ITSs many researches employ different techniques to obtain
plans tailored to each student (Peachey and McCalla, 1986). For
example, the Generic Tutoring Environment (GTE) developed by
Van Marcke (1998) allows to declaratively define the pedagogical
model as a set of tasks and methods, and them use it for the plan-
ning process. The pedagogical model defined in GTE was evaluated
and utilized on different ITSs such as NOBIT (cerri1992nobile),
EPOS (Erol, 1990), Toska (1991) and DCG (Vassileva, 1998). Never-
theless, despite the large amount of modeled strategies with GTE,
none of them can be used in collaborative learning settings.

More recently, Ullrich (2008) has developed PAIGOS, a course
generator that uses the JShop2 to make the instructional planning
based on the representation of pedagogical model as HTN tasks and
methods. Despite some similarities with our approach, PAIGOS
does not contain strategies to support the creation of collaborative
learning-based instructional plans. Our representation of ID strat-
egies is based on collaborative learning theories that added more
complexity to the pedagogical model that needs to represent stu-
dents, their needs and the variety of interactions that can occur
during the learning process. Furthermore, in our approach, the
structure of concepts and its relationships with instructional re-
sources is represented as an ontological structure separating
Fig. 29. The plan of learning sessions o
knowledge elements (fundamental and complementary) from their
properties (prerequisites and objectives).

In order to facilitate the design and adaptation of online collab-
orative learning activities, Karakostas, Papamitsiou, and Demetria-
dis (2012) created two tools, referred to as FlexCoLab and PPR, that
support teachers in the process of developing flexible CSCL designs
by reusing and customizing adaptation patterns according to the
learning scenario. In a similar approach, Villasclaras-Fernández,
Hernández-Leo, Asensio-Pérez, and Dimitriadis (2013) developed
Web Collage, an online and extended version of Collage, a tool that
supports the use, reuse and adaptation of CSCL design patterns and
best practices to create effective learning scenarios. Both works
have successfully addressed the problems of supporting the pro-
cess of creating personalized well-though-out CSCL scenarios. Nev-
ertheless, they do not support the automation of such a process. To
do so, it is necessary to formalize the representation of these pat-
terns and practices. In this direction Palomino-Ramírez et al.
(2013) has proposed a formal representation of sequence of collab-
orative learning activities to orchestrate the execution of these
activities and the evocation of educational resources. Furthermore,
Rius, Conesa, García-Barriocanal, and Sicilia (2014) defined a meta-
model to unambiguously specify learning processes that helps to
create automatically partial implementations of learning processes
from the metamodel. Those approaches addressed the problem of
data flow management during the execution of CSCL activities
btained by other way of grouping.



Fig. 30. The plan of learning sessions obtained using pattern ‘‘pyramid’’.

Table 7
Required time (in seconds) of generation vs increasing amount of learning goals and
students.

Students/Learning goals 2 4 8 16 32

32 12,17 12,25 14,46 15,13 16,79
64 17,23 27,23 35,37 37,23 47,98
128 81,51 94,85 108,81 135,36 139,21
256 154,83 297,45 328,31 371,20 417,60
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and the automation of pre-defined (i.e., static) CSCL scenarios
(based on the metamodel), but they still do not support the auto-
matic design of personalized and flexible CSCL scenarios since
information about students’ needs and teachers preferences are
not taken into account. To address this challenge, in this work
we use a holistic approach to formalize the role of all the compo-
nents of a collaborative learning scenario. For example, learning
objects, student roles, student characteristics (e.g., background,
preferences, learning styles, etc.), instructional/learning goals,
and activities, teachers’ preferences, among others. Then, we pro-
pose a model to describe instructional design as hierarchical tasks
and methods into a planning domain definition. Finally, we created
an algorithm that uses the Hierarchical Task Network (HTN) plan-
ning approach to automate and optimize the authoring of a flexible
CSCL scenarios adapted to the needs of student and teachers and
the constraints of the learning environment.
7. Conclusion and future research

The design of flexible and personalized well thought out collab-
orative learning (CL) scenarios (i.e. UoLs) is a complex task due to
Fig. 31. The plan of learning sessions ob
the various variables that need to be considered during the design-
ing process. To address this challenge, we proposed an approach to
formally model ID using HTN planning techniques. We established
a set of guidelines that convert the knowledge of ID such as CSCL
scripts, design patters and best practices into HTN planning knowl-
edge. Thus, we can use the HTN planning knowledge as a pedagog-
ical model to create learning scenarios. We also formally describe
two independent models (i.e., student model and domain model)
to enable the personalization of UoLs based on students’ needs
and the learning objectives for a particular domain. To test our
approach we create an algorithm and different uses cases to
tained by cog-appenticeship pattern.



Table 8
Number of actions obtained by the generation of a UoL.

Student/Learning goals 2 4 8 16 32

32 3528 7240 14654 28486 56234
64 4237 8756 16458 33126 67128
128 5348 10248 20456 41245 80436
256 7796 14567 29678 61234 131146
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demonstrate its validity. The results show that our algorithm can
correctly use information form students (e.g., their characteristics,
preferences and needs), teachers (e.g., instructional goals, teaching
patters) and the resources available (e.g., learning objects) to create
personalized CL scenarios. Furthermore, to enable any LMSs to use
the output (scenario) of our algorithm we developed a conversion
component that translates a plan (i.e. automatic generated learning
scenario) into UoLs using the IMS-LD and IMS-CP specifications.
Thus, any LMSs that read IMS-LD and IMS-CP standards can benefit
from the results of this work. Finally, we also developed a CSCL
courseware generator as a Web service to be used in the develop-
ment of Adaptive and Intelligent Educational Systems to create
‘‘on-the-fly’’ personalized CL scenarios to help students to learn
in groups a particular content. We believe the results achieved in
this paper are step forwards to facilitate the inclusion of effective
CL activities in online intelligent learning environments.

In the future we will continue to refine four aspects of our re-
search. First, we are modeling other ID strategies extracted from
‘‘patterns related to resource level’’ and ‘‘patterns related to roles
and common CL mechanisms level.’’ Second, we are improving
the conversion component of the CSCL courseware generator to en-
able integration with LMSs, such as Moodle. Third, we are develop-
ing new features for the ALD tool to manage (e.g., create, edit,
update, and delete) the ID strategies. To develop these features in
the ALD tool, recent work by Hayashi, Bourdeau, and Mizoguchi
(2006) develops ‘‘an ontology of learning, instruction and instruc-
tional design’’ that is conceptually similar to hierarchical tasks
and methods proposed in this work. In this sense, we are working
to combine their complex ontology with our approach. Further-
more, we are developing an algorithm that automatically converts
a set of CSCL Script Design Pattern into HTN planning knowledge.
Fourth, we are developing a monitoring and evaluation component
to be added into our approach model. Since the run of UoLs that are
obtained through of ID for CSCL does not always proceed as
planned, it is necessary to monitor the run of UoLs, and perform
evaluation of expected results at each step. We are working to inte-
grate the methods and techniques recently proposed by Isotani
et al. (2013), Karakostas and Demetriadis (2011) and Villasclaras-
Fernández, Hernández-Leo, Asensio-Pérez, and Dimitriadis
(2009a) to identify and evaluate the impact of the run of UoLs. Fi-
nally, in future work, we will carry out experiments with real users
and scenarios to compare them with conventional methods of CSCL
design.
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