
Aniche and Gerosa Journal of the Brazilian Computer
Society (2015) 21:15
DOI 10.1186/s13173-015-0034-z

RESEARCH Open Access

Does test-driven development improve
class design? A qualitative study on
developers’ perceptions
Maurício Aniche* and Marco Aurélio Gerosa

Abstract

Background: Developers commonly affirm that writing unit tests improve internal quality of a software, besides a
more obvious effect on external quality. This is particularly common among Test-Driven Development (TDD)
pactitioners, who leverage the acting of writing tests to think about and improve class design. However, it is not clear
how this effect occurs.

Methods: This study investigates the developers’ perceptions on how the practice of TDD influences class design, by
means of a qualitative study with 25 participants from 6 different companies in Brazil. In this paper, we share their
opinions and experience.

Results: According to them, the practice of test-driven development does not drive directly the design, but gives
them a safe space to think, the opportunity to refactor constantly, and subtle feedback given by unit tests, are
responsible to improve the class design.

Conclusions: We suggest developers to experiment the practice of TDD, as its effects look positive to software
developers. As future work, tools may be developed to automatically warn developers about classes that have
testability problems, or even to suggest them to practice TDD in specific parts of the code.

Keywords: Unit testing; Test-driven development; Agile methodologies; Class design

Introduction
Writing automated unit tests is a popular practice in
software development. Many developers write automated
tests before the actual code is tested, as suggested by the
test-driven development (TDD) practice [1]. Scott Ambler
shows that 53 % of the respondents of a survey adopted
TDD [2]. Similar numbers can be found in the annual
surveys from Version One, which, in the 2012 version
[3], showed that 40 % of the respondent teams used the
practice.
Practitioners commonly argue that TDD helps software

design, improving internal code quality. For example, Kent
Beck [4], Robert Martin [5], Steve Freeman [6], and Dave
Astels [7], state in their books (without scientific evi-
dence) that the writing of unit tests in a TDD fashion

*Correspondence: aniche@ime.usp.br
University of São Paulo, Rua do Matão, 1010, São Paulo, Brazil

promotes significant improvement in class design, help-
ing developers to create simpler, more cohesive, and less
coupled classes. They even consider TDD as a class design
technique [8, 9].
Nevertheless, the way in which TDD actually guides

developers during class design is not yet clear. We
observed this phenomenon in a preliminary study with
TDD practitioners [10]. We interviewed ten practition-
ers and none of them could satisfactorily explain how
the practice guides them to better design, although they
agreed that it indeed improves design. Siniaalto and
Abrahamsson [11] also noticed that the effects of TDD
are not as direct as expected by most people. Most
studies reported in the scientific literature, discussed in
Section “Background”, evaluated whether the practice of
TDD or unit testing makes a difference in the code being
produced, but very few of them aimed to understand how
the practice makes that difference.

© 2015 Aniche and Gerosa. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13173-015-0034-z-x&domain=pdf
mailto: aniche@ime.usp.br
http://creativecommons.org/licenses/by/4.0/

Aniche and Gerosa Journal of the Brazilian Computer Society (2015) 21:15 Page 2 of 11

This study aims to investigate how the practice of test-
driven development influences class design from the point
of view of practitioners. As our research question is
related to a complex cognitive process (software design),
which is heavily influenced by context, we conducted
an essentially qualitative study. Professional developers
were invited to solve design problems practicing TDD.
Based on the gathered data and on semi-structured inter-
views, we collected their point of view of how the practice
influenced their class design decisions.

Background
Most studies investigating the effects of unit testing and
TDD on production code focused on external quality (e.g.,
bug proneness). Munir et al. [12], in a systematic review,
show that high rigor studies tend to show an improvement
in external quality, with a sense of less productivity. How-
ever, these studies only investigate a small set of variables.
Studies about internal code quality were inconclusive or
not evaluated. In this section, we present studies focus-
ing on the quality of the design and other aspects of
internal quality. It is worth to notice that many empir-
ical studies that evaluated the effects of unit testing in
class design relied on the TDD technique, as it empha-
sizes the writing of unit tests and their use to reflect upon
the design.
Janzen [13] showed that the algorithms complexity was

much smaller, and the code coverage was higher in the
code written using TDD. Another study by Janzen and
Saiedian [14], with three different groups of students, each
one using a different approach: TDD, test last, and no
tests, showed that the code produced using TDD made
better use of object-oriented concepts, and responsibil-
ities were better distributed into different classes, while
other teams produced a more procedural code. In addi-
tion, tested classes were 104 % less coupled than non-
tested classes, and methods were 43 %, on average, less
complex than the non-tested ones.
George and Williams [15] showed that, although TDD

can initially reduce the productivity of inexperienced
developers, 92 % of the developers in a qualitative analysis
thought that TDDhelped to improve code quality. Seventy
nine percent believed that the practice promotes a simpler
class design.
A study by Erdogmus et al. [16] with 24 undergraduate

students showed that TDD increased productivity. How-
ever, no difference in code quality was found. Langr [17],
however, showed that TDD increased code quality, facili-
tated maintenance, and helped to produce 33 %more tests
when compared to traditional approaches.
Dogsa and Batic [18] also found an improvement in

class design when using TDD. According to the authors,
the improvement was a consequence of the simplicity
TDD adds to the process. They also affirmed that the test

suites created during the practice favors constant code
refactoring.
Li [19] conducted a case study in which she collected the

perceptions of TDD practitioners about the benefits of the
practice. She interviewed five developers from software
companies in New Zealand. The results of the interviews
were analyzed and discussed in terms of code quality,
software quality, and programmer productivity. Regarding
code quality, Li concluded that TDD guides developers to
simpler and better-designed classes. In addition, the main
factors contributing to these benefits are the confidence
to refactor and modify the code, a higher code cover-
age, a deeper understanding of the requirements, a code
easier to understand, and the elevated satisfaction of the
developers.
TDD practitioners usually make use of other agile

practices, such as pair programming. This makes the
evaluation of the practice more difficult. Madeyski [20]
observed the results of groups practicing TDD, groups
practicing pair programming, and the combination of
them, and he was not able to show a significant dif-
ference between teams using TDD and teams using
pair programming in terms of class package dependency
management. However, when combining the results, he
found that TDD helps to manage dependencies at class
level.
Muller and Hagner [21] showed that TDD does not

result in better quality or productivity. Steinberg [22]
showed that code produced with TDD is more cohesive
and less coupled. Participants also reported that defects
were easier to fix.
There is also some work on test code best practices. In

his book, Meszaros [23] enumerates a few code smells.
As an example, he mentions a pattern called Obscure
Test, which is a test difficult to understand at a glance.
The Hard-To-Test Code, which is a code difficult to test,
according to him, may happen because of a highly cou-
pled code. He mentions that a possible solution to this
problem is to make use of stubs or mock objects. He
also proposes the Test Code Duplication pattern, which
is the same test code repeated many times. Meszaros
says it can happen because of clone code reuse but,
as we discussed, it can also happen because of a bad
abstraction in the production code. We reemphasize that
there is a strong connection between the quality of the
test code and the quality of the production code being
tested.

Discussion
Although some studies revealed that TDD positively influ-
ences software design and that developers are aware
of this effect, to the best of our knowledge, no study
focused on investigating how this influence actually
occurs. Josefsson [24], in his discussion about the need

Aniche and Gerosa Journal of the Brazilian Computer Society (2015) 21:15 Page 3 of 11

for an architectural phase and the effects of TDD in this
matter, came to the same conclusion. According to him,
studies about TDD in the current literature are very lim-
ited and, as a result, the effects of the practice in class
design cannot be properly explained. Besides, most of the
studies found were conducted with students in academic
settings. Given the complexities of software design, the
results may be different in profession settings, with experi-
enced developers. Janzen [25], in his Ph.D., perceived that
mature developers obtainmore benefits from the practice,
by writing simpler classes. Mature developers also tend
to choose TDD more often than less experienced ones,
who supposedly would receive greater benefits from the
guidance provided by the technique.
In addition, studies that analyze TDD from the class

design point of view do not come to clear explanations;
many of them affirm that the outcomes of teams that
practiced TDD were not so different from those teams
that do not practice it. Even Janzen’s Ph.D. thesis [25]
was inconclusive regarding the influence of the practice in
coupling and cohesion.
Another limitation of some studies is that many aspects

of class design are hard to evaluate quantitatively, such as
simplicity and evolvability. Many of them also have no sci-
entific rigor [26]. Developers’ point of view and qualitative
inspection of the code should also be taken into account.

Methods
Investigating a highly complex cognitive process, like soft-
ware design, involves many human factors and context-
dependent variables. Qualitative research aims to explore
and understand a phenomenon considering individual,
social, and environmental influences, providing a trade-
off between realism and control [27]. Data are usually
gathered from the point of view of the participants, and
the analysis is carried out inductively, from a very specific
to a general theme [28].
As discussed in Section “Background”, few studies eval-

uated the effects of TDD and its feedback on the qual-
ity of software design. Some of them found that the
practice improves class design, resulting in less cou-
pling, higher cohesion, and more simplicity. However,
none of them focused on understanding how the unit
tests produced during TDD sessions guide developers
through these improvements, which is the goal of this
study.
To achieve this goal, we conducted an essentially qual-

itative study with professional developers. We invited
participants to implement a set of pre-prepared exercises.
After that, we interviewed them about how the practice
influenced their class design decisions. Then, we ana-
lyzed their answers using coding techniques. This section
details the planning as well as the data analysis proce-
dures.

Research question
The main goal of this study was to understand the rela-
tion between the practice of TDD and the class design
decisions made by the developer. We raise the following
question:

RQ. What are the developers’ perceptions on the effects of
Test-Driven Development in class design?

Research design
Developers from different software development compa-
nies from Brazil were invited to take part in this study.
Before taking part in the study, all participants agreed
with the research procedures and signed a consent form.
Their profiles are discussed in sub-section Participants’
profile. They implemented two problems using Java in a
defined timeframe. The participants practiced TDD for
one problem and were oriented to do not write tests for
the other so they could later compare the two approaches.
The problems and the order of practicing or not TDD
were randomized to possibly reduce bias.
All participants worked on the exercises in their offices,

where they were able to use their own computer and
development IDE. We were there to explain the proce-
dures of the study and to answer questions. At the end
of the exercise, all participants filled out a survey, with
questions about the produced code, design decisions, and
challenges, and how (and if) TDD helped them. We saved
all implementations for further analysis. The survey is
available on the Internet1.
After that, we selected participants for interviewing.

The interviews were semi-structured. All questions were
open, giving the opportunity to the participants to speak
more deeply about the topic. We made specific questions
for each participant according to the code they produced
and their answers on the survey. Since many different
factors may influence the decisions made by a devel-
oper during class design, the questions were designed to
encourage participants to triangulate their answers and to
isolate the practice of TDD from other possible factors of
influence.
All interviews were recorded and transcribed. We also

took notes about participants’ reactions to specific ques-
tions. The interviews were conducted according to the
availability of the participants.

Participants’ profile
We invited developers from the Brazilian software devel-
opment industry to be part of this study. The only require-
ment was that the participant should already know how to
write unit tests and Java code.
All participants filled out a survey before the start of

the study. This survey had objective questions about their

Aniche and Gerosa Journal of the Brazilian Computer Society (2015) 21:15 Page 4 of 11

expertise and open questions in which participants could
describe their experiences in object-oriented systems,
Java, and TDD in a more detailed way.
We had 25 participants from 6 different companies. In

Fig. 1, we present the TDD experience among partici-
pants. Ten said they had been using TDD for no more
than a year, 13 had been practicing TDD for 1 to 3 years,
and one had been practicing TDD for 3 to 4 years. Only
one participant had never practiced TDD. This diversity
was an asset, as it was possible to gather information from
people with different levels of experience. Regardless of
their level of experience, all of them affirmed they tried to
practice their best TDD in the study.
The numbers were a little different regarding their expe-

rience in software development. In Fig. 2, we show the
distribution. Five of them had been developing software
for less than 2 years, 6 for the last 4 or 5 years, and 7
from 6 to 10 years. Sixteen of the participants worked
professionally with the Java language and 9 knew Java but
did not use it in their daily work. All of them knew JUnit,
and 16 used mock objects2 during their development
activities. Only three had never heard about mock objects.
When talking about object-orientation, in the open ques-
tion, most of the participants affirmed they had a good
experience.

The elevated number of participants who did not use
Java in their daily work is a consequence of a company that
uses PHP. However, we ensured that, although they did
not use Java frequently, they did not have troubles with the
language during the implementation of the exercises.

Proposed problems
We proposed four problems to be implemented by the
participants3. The goal was to simulate real and recur-
rent class design problems. They contained complicated
design problems that if solved naively would lead to
solutions with high coupling, low cohesion, and no
encapsulation.
To characterize class design quality, we used the well-

known SOLID principles, from Martin [29]. He enumer-
ated a few symptoms of problematic class design, also
known as class design smells. They are similar to code
smells but at a higher level.
Each principle is related to a good object-oriented prac-

tice. The Single Responsibility Principle (SRP) argues that
a class should have only one reason to change; in other
words, the class must be cohesive. The Open-Closed Prin-
ciple (OCP) states that a class should be open to extension,
but closed tomodification. The Liskov Substitutive Princi-
ple (LSP) is related to good use of class inheritance, which

Fig. 1 TDD experience among participants

Aniche and Gerosa Journal of the Brazilian Computer Society (2015) 21:15 Page 5 of 11

Fig. 2 Development experience among participants

may not be as simple as just having any base class and
extend it. The Interface Segregation Principle (ISP) states
that an interface should be as thin as possible, in order to
increase its reuse. Last, the Dependency Inversion Princi-
ple (DIP) argues that classed should always depend upon
more stable classes.
Martin also discusses smells a bad designmay present. A

rigid design is one hard to change, i.e., one change causes
a sequence of changes in other modules. Viscosity means
that a developer has more than just one way to make a
change; some of them, preserving the design, others not. A
fragile design is a design that breaks in many places when
changed; this one is highly related to a rigid design.
In Table 1, we present the relation of the exercises with

class design principles and smells. One can notice that
each exercise asks for a different solution in order to be

Table 1 Proposed exercises and class design smells

Exercise Design smell Violated SOLID principles

Exercise 1 Rigidity, needless complexity SRP, OCP

Exercise 2 Fragility, viscosity, immobility SRP, DIP, OCP

Exercise 3 Rigidity, fragility SRP

Exercise 4 Fragility, viscosity, immobility OCP, SRP, DIP

well implemented. In Exercise 1, for example, develop-
ers should be concerned about cohesion and extensibility
(SRP and OCP). A bad design implementation would be
rigid and complex. The table was built based on our
own implementation of the solution. On all of them, we
followed the five SOLID principles.
As said before, each participant received two out of the

four exercises to work on. In one of them, s/he made use
of TDD, and, in the other, s/he did not.
We explained to the participants that the exercises sim-

ulated real world problems and that they were supposed
to write code considering that it would be maintained by
another team. They were asked to implement the most
elegant and flexible solution they could in both exercises.
We encouraged them to think carefully about each solu-
tion, trying their best, regardless of the use or not of
TDD.

Results and discussion
In this section, we present and discuss the analysis and
interpretation of the qualitative data. We interviewed
14 developers. The participants were selected for the
interview according to their profiles, answers to the sur-
vey, and produced code. Participants were selected based
on the following criteria: (1) had in-depth answers in

Aniche and Gerosa Journal of the Brazilian Computer Society (2015) 21:15 Page 6 of 11

the questionnaire, (2) the participant stated that TDD
improved the design, but her code violated SOLID prin-
ciples (as described in Table 1), writing, for example,
a procedural code, or (3) the participant wrote a well
designed object-oriented code. We selected participants
until reaching data saturation4.
During the analysis, we repeated the coding and cat-

egorization processes [28] until we had only the most
important ones to discuss. In the following sub-sections,
we present each one of them. The participants, regard-
less of their experience in TDD or software development,
commented on similar points. As a result, we did not sep-
arate the discussion according to the levels of experience.

TDD does not drive to a better design by itself
Surprisingly, 13 out of the 14 participants affirmed that
the practice of TDD did not change their class design dur-
ing the execution of the exercises. The main justification
was that their experience and previous knowledge regard-
ing object-orientation and design principles guided them
during class design. They also affirmed that a developer
with no knowledge in object-oriented design would not
create a good class design just by practicing TDD or
writing unit tests.
The participants gave two good examples reinforcing

the point. One of them said that he made use of a design
pattern [30] he learned a few days before. Another par-
ticipant mentioned that his studies on SOLID principles
helped him during the exercises. The following transcrip-
tion was extracted from the interviews:

“It was even funny. I am reading the Design Patterns
(book), and it discusses polymorphism. My implementa-
tion was based on that because I’ve never done something
a like that before (...), here I rarely create new stuff, I just
maintain legacy code.”

The only participant who had never practiced TDD
before stated that he did not feel any improvement in the
class design when practicing the technique. Curiously, this
participant said that he considered TDD a design tech-
nique. It somehow indicates that the popularity of the
effects of TDD in class design is high. That opinion was
slightly different from that of experienced participants,
who affirmed that TDD was not only about design, but
also about testing.
However, different from the idea that TDD and unit

tests do not guide developers directly to a good class
design, all participants said that TDD has positive effects
on class design. Many of them mentioned the difficulty
of trying to stop using TDD or thinking about tests, what
can be one reason for not having significant difference in
terms of design quality in the code produced with and
without TDD:

“When you are about to implement something, you end
up thinking about the tests that you’ll do. It is hard to think
“write code without thinking about tests!”. As soon as you
get used to it, you just don’t know another way to write
code...”

According to them, TDD can help during class design
process, but in order to achieve that, the developer should
have certain experience in software development. Most
participants affirmed that their class designs were based
on their experiences and past learning processes. In their
opinion, the best option is to link the practice of TDD and
experience:

“The ideal is to put both things together [experience and
TDD] (...) I don’t believe that TDD by itself could make
things get better. There are many other concepts [that a
developer should know] to make things good.”
In addition, when asked about what TDD is, many par-

ticipants also reminded of the effects of the practice in
the external quality, and the safety it gives to developers
during refactoring:

“[TDD] I think it is has a big relation with code qual-
ity and regression tests. Two main advantages I have when
practicing: the code gets better and the regression tests
allow me to safely refactor.”

Baby steps and simplicity
TDD suggests developers to work in small (baby) steps;
one should define the smallest possible functionality, write
the simplest code that makes the test green, and do one
refactoring at a time [4]. The rationale is that the bigger
the step, the bigger the time a developer stays without
feedback. In addition, keeping class design simple is not
an easy task. TDD suggests that developers always write
the simplest code fulfilling the needs. They should only
evolve the class design if the requirement grows. A class
design decision can be more complicated than it looks
and, without a test to make it visible, a developer would
hardly notice the problem [9].
In the interviews, eight participants commented about

this. One of them mentioned that, when not writing tests,
a developer thinks about the class design at once, creating
a more complex structure than needed:

“Because without tests, we don’t think in small steps,
but in the whole solution, and we end up not noticing the
problems that may happen during the way.”

One of the participants clearly stated how he makes use
of baby steps, and how it helps him think better about his
class design:

“Because we start to think of the small and not the whole.
When I do TDD, I write a simple rule (...), and then I write

Aniche and Gerosa Journal of the Brazilian Computer Society (2015) 21:15 Page 7 of 11

the method. If the test passes, it passes! As you go step by
step, the architecture gets nice. (...) I used to think about the
whole (...). I think our brain works better when you think
small. If you think big, it is clear, at least for me, that you
will end up forgetting something. ”

This idea is aligned with the principle of avoiding big
design up-front. Developers keep their code the simplest
they can, evolving when needed [31].
Another participant mentioned the lack of focus faced

by developers when not practicing TDD.With a short goal
(which, in the case of TDD practitioners, is to make the
test pass), developers get focused on reaching it:

“Maybe we are not focused by nature. You see one thing
and you desire to fix that now (...)”

In fact, some studies also show that the effects of baby
steps can go further. In new projects, TDD practition-
ers affirm that they have a less need of debugging code
[13, 32]. The amount of source code written between two
tests tends to be small. When a test fails unexpectedly,
developers can just revert to the last stable version and
start over. Sometimes, this can be more productive than
the debug activity.

Refactoring confidence
Eleven participants affirmed that, during the process of
class design, changing minds is constant. After all, there
is still a small knowledge about the problem, and about
how the class should be built. This was the most men-
tioned point by the participants. According to them, an
intrinsic advantage of TDD is the generated test suite. It
allows developers to change their minds and refactor all
the class design safely. Confidence, according to them, is
an important factor when changing class design or even
implementation:

“It gives me the opportunity to learn along the way and
make things differently. (...). The test gives you confidence.”

A participant even mentioned a real experience, in
which TDD made the difference. According to him, he
changed his mind about the class design many times and
trusted the test suite to guarantee the expected behavior:

“I was developing a tool that works with code manip-
ulation, and I’ve done everything with TDD. I deleted
everything many times, I kept the tests and started a new
line of thinking. I thought practicing TDD helped me a lot
(...). And because of that, I just ran the tool in the end;
before that, I just validated it through the tests.”

Again, experience is a fundamental factor.When search-
ing for a better code during refactoring, developers again
make use of their knowledge:

“(...) if you do not know about single responsibility, cohe-
sion, coupling, I don’t think TDD will help. You need to
have it in mind to be able to refactor.”

A safe space to think
In an analogy done by one of the participants, tests are
like draft paper, in which they can try different approaches
and change their minds about it frequently. According to
them, when starting by the test, developers are, for the
first time, using their own class. It makes developers look
for a better and clearer way to invoke the class’ behaviors,
and facilitate its use:

“Tests help you on that. They are a draft for you to try to
model it the best way you can. If you had to model the class
only once, it is like if you have only one chance. Or if you
make it wrong, fixing it would give you a lot of work. The
idea of you having tests and thinking about them, it is like
if you have an empty draft sheet, in which you can put and
remove stuff because that stuff doesn’t even exist.”

We asked their reasons for not thinking on the class
design even when they were not practicing TDD or writ-
ing tests. According to them, when a developer does not
practice TDD, they get too focused on the code they are
writing, and thus, they end up not thinking about the class
design they were creating. They believe tests make them
think of how the class being created will interact with the
other classes and of the easiness of using it. The following
statements present the same point of view:

“I think the regular behavior of people is not to think
before doing something. Looks like the natural thing to do
would be to start writing the code (even because of the
internal pressure). (...) A few people think before starting.
With TDD, you are obligated to think, TDDmakes you stop
and think, design. It is not natural for me to think before
about doing something, but TDD makes me do it.”

“As I first think about what I am going to need for the
tests, I mean, I need this and that, the test makes me think
before starting to write the code. With the tests, I stop to
think about. Then I believe we can think better, we can
develop a better solution.”

One of the participants was even more precise in his
statement. According to him, developers that do not prac-
tice TDD, as they do not think about the class design they
are building, they end up not doing good use of OOP. TDD
forces developers to speed down, allowing them to think
better about what they are doing:

“In the heat of the moment, you start coupling, aggregat-
ing, inheriting, and you don’t think that it can cause you
a problem in the future. With TDD, you are forced to slow
down. It gives you time to think better about stuff.”

Aniche and Gerosa Journal of the Brazilian Computer Society (2015) 21:15 Page 8 of 11

Janzen and Saiedian [14] agrees with it. According to
him, the test is the first client of the class being developed.
Because of that, developers think more and make a better
decision about the class interface (decisions such as class’
names andmethods, return types, exceptions thrown, and
so on).

Rapid feedback
More than half of the participants also commented that
one difference they perceived when they practiced TDD
was the constant feedback. In traditional testing, the time
between the production code writing and test code writ-
ing is too long. When practicing TDD, developers are
forced to write the test first, and thus receive the feedback
a test can provide sooner.

“You would look at a test and say: “Is it ok? Is it not?”,
and do it again.”

One participant commented that, from the test, devel-
opers observe and criticize the code they are designing. As
the tests are done constantly, developers end up continu-
ously thinking about the code and its quality:

“When you write the test, you soon perceive what you
don’t like in it (...). You don’t perceive that until you start
using tests.”

Reducing the time between the code writing and test
writing also helps developers to create code that effec-
tively solves the problem. According to the participants, in
traditional testing, developers write too much code before
actually knowing if it works:

“[The test] is not only a specification; it should actually
work. So, as you really reduce the time between writing
software that works and testing it, you end up perceiving
whether that part works or not more quickly (...)”

The search for testability
Maybe the main reason for the practice of TDD help-
ing developers in their class design is the constant search
for testability. It is possible to infer that, when starting to
produce code by its test, the production code should be,
necessarily, testable.
When it is not easy to test a specific piece of code, devel-

opers understand it as a class design smell. When this
happens, developers usually try to refactor the code to
make it easier to test. A participant also affirmed that he
takes it as a rule; if it is hard to test, then the code may be
improved.
“I take it as a rule: every time [the test] is very complex, I

think we should stop and refactor because it certainly can
be simpler.”

Feathers [33] raised this point: the harder it is to write
the test, the higher the chance of a class design problem.

According to him, there is a strong synergy between a
highly testable class and a good class design; if developers
are looking for testability, they end up creating good class
design; if they are looking for good class design, they end
up writing testable code.
In the search for testability, developers are encouraged

to write an easily testable code. As Freeman [6] states,
testable code contains a few interesting characteristics,
such as the ease of invoking the expected behavior, the
non-need of complicated pre-conditions, and the explicit
declaration of all dependencies.
The participants went even further. During the inter-

views, many of them mentioned patterns that made (and
make) them think about possible design problems in the
class they build. As an example, they told us that when
they feel the need to write many different unit tests to
a single method, this may be a sign of a non-cohesive
method. They also said that when a developer feels the
need to write a big scenario for a single class or method,
it is possible to infer that this need emerges in classes
dealing with too many objects or containing too many
responsibilities, and thus, it is not cohesive. They also
mentioned how they detect coupling issues. According to
them, the abusive use of mocking objects indicates that
the class under testing has coupling issues. These small
patterns match with the cited Feathers’ opinion [33]; a
class that is hard to test probably has design issues.

Discussion
From the analysis, we were able to understand the point
of view of many developers about the effects of test-driven
development. We believe the findings are interesting to
the community, as it discusses many of the questions and
myths around the practice.
The first interesting myth contested by the participants

was the idea that the practice of TDD would drive devel-
opers towards a better design by itself. As they explained,
the previous experience and knowledge in good design
is what makes the difference; however, TDD helps devel-
opers by giving feedback by means of the unit tests that
they are writing constantly. As they also mentioned, the
search for testability also makes them rethink about the
class design many times during the day—if a class is not
easy to be tested, then they refactor it.
We agree with the rationale. In fact, when comparing to

test-last approaches, developers do not have the constant
feedback or the need to write testable code. They will have
the same feedback only at the end, when all the production
code is already written. Thatmay be too late (or expensive)
to make a big refactoring in the class design. This is what
we show in Fig. 3.
We also agree with the confidence when refactoring. As

TDD forces developers to write unit tests frequently, those
tests end up working as a safety net. Any broken change in

Aniche and Gerosa Journal of the Brazilian Computer Society (2015) 21:15 Page 9 of 11

Fig. 3 Difference between TDD approach and test-last approach

the code is quickly identified. This safety net makes devel-
opers more confident to try and experiment new design
changes—after all, if the changes break anything, tests will
warn developers about it. That is why they also believe the
tests are a safe space to think.

Therefore, we believe that is is not the practice by itself
that helps developers to improve their class design; but it is
the consequences of the constant act of writing a unit test,
make that class testable, and refactor the code, that drives
developers through a better design.

Threats to validity
In the following sub-sections, we discuss some possible
threats to the validity of this study and how we dealt with
them.

Construct validity
Exercises
The proposed exercises were small compared to real sys-
tems design tasks. However, all exercises contained local-
ized class design challenges and the participants were
oriented to come up with the most elegant and flexible
solution, considering that the produced code would be
maintained in the long term by other team. We refined
the exercises during the pilot studies and during its use
in other contexts. At the end of the implementation,
the participants answered a question about the similarity
between the exercises and real world problems. Most of
them affirmed that the problems found in the exercises
were very similar to the ones they deal with in the pro-
fessional development. A participant said ‘ ‘we frequently
face problems like that, in which we have trouble defining
the responsibilities of each class.”

Number of exercises per participant
In order to reduce bias, each developer should do four
exercises: two with TDD and two without TDD. However,
as we noticed in our pilot that four exercises would take
around 3 h for each developer, which would be too much
for the companies, we decided to reduce the experiment.

On the other hand, as this study is fundamentally quali-
tative, we do not think that doing more exercises would
change their mind about TDD.

TDD x unit testing
TDD emphasizes the progressive writing of unit tests and
the reflection upon the class design, leveraging the feed-
back the tests offer. Tests act as first clients to the classes’
API. Thus, it was not our objective to separate the effects
of unit testing from the ones of practicing TDD. Some
other aspects of the mechanics of TDD may also influ-
ence class design, even though they did not appear in our
interviews and analysis.

Internal validity
Recent effects of TDD in participants’ mind
Many participants use TDD in their daily work. This can
bias participants so they would not be able to analyze
the disadvantages of the practice. To reduce this bias,
participants implemented one exercise without TDD, so
both development practices were fresh in their minds.
However, participants familiar to TDD potentially may
think about the tests mentally, even when not using them.
To reduce this threat, we removed from the analysis
any statement mentioned by a participant with no clear
explanation. Also, as we were interested in the effects
of TDD, not only during the exercises, the participants
were incentivized to mention anything from their pro-
fessional experience. This way, we aimed to filter biased
personal opinions, not supported by concrete situations
and examples.

Researcher’s influence
Researchers are central in a qualitative research, which
rely on interpretative data. To reduce this bias, we
reviewed all the analyses in pairs, looking for unclear or
incorrect conclusions. We also conducted pilot studies
and refined the exercises iteratively to avoid bias.

Desirability bias
Desirability bias is related to the tendency of some partic-
ipants to reply questions in a way that would make them
accepted by the other members of the community [34].
Agile methods and TDD have a strong discourse. The
Brazilian agile community is still young, and it is common
to notice some developers repeating what the community
says without great experience or knowledge about the sub-
ject. To reduce this bias, we would eliminate participants
that replied questions superficially. In this study, only a
few answers were superficial (and were eliminated).

Participant selection for the interviews
We selected participants who gave in-depth answers in
the questionnaire, mentioned explicitly TDD, or produced
either a good or a bad solution for the exercises until

Aniche and Gerosa Journal of the Brazilian Computer Society (2015) 21:15 Page 10 of 11

reaching data saturation. We may have not considered
potentially interesting answers in the interviews from
people who produced a bad code (using and not using
TDD) and did not see value on the practice. However, we
included in the interviews developers who produced good
solutions regardless of the use of the practice—even those
who did not see value on the practice.

External validity
Selection of participants
In this qualitative study, generalization for the whole pop-
ulation was not our main goal, which was more related
to deeply understand how TDD help developers dur-
ing the class design process. Nevertheless, to avoid bias,
we selected professional developers from different com-
panies, backgrounds, and level of expertise in software
development and TDD. We interviewed participants until
reaching data saturation.

Localization
All developers and companies are located in Brazil. There
might be some specific characteristics we did not noticed.

Conclusions
Test-Driven Development is a well-known technique in
which developers write the test before the code. It is
said that the practice drives developers through a bet-
ter class design. In this study, we presented developers’
perceptions of how the practice of TDD may influence
classes design.

“Therefore, to answer the research question: What are
the developers’ perceptions on the effects of Test-Driven
Development in class design?”

Developers believe that the practice of test-driven devel-
opment helps them to improve their class design, as the
constant need of writing a unit test for each piece of
the software forces them to create testable classes. These
small feedbacks—is your test easy to be tested or not?—
makes them think and rethink about the class and improve
it. Also, as the number of tests grow, they act as a safety
net, allowing developers to refactor freely, and also try and
experiment different approaches to that code.

Based on that, we suggest developers to experiment the
practice of test-driven development, as its effects look
positive to software developers. As future work, tools
may be developed to automatically warn developers about
classes that have testability problems, or even to suggest
them to practice TDD in specific parts of the code.

Endnotes
1The survey can be found at https://gist.github.com/

mauricioaniche/5895261. Last access on April 10, 2014.

2Mock objects are objects created during a unit test.
They mock the behavior of another object. Usually, they
are used to isolate the unit test from other classes. More
information about it can be found on [35].

3The exercises can be found at https://gist.github.com/
mauricioaniche/5694865. Last access on April 10, 2014.

4Data saturation is a common term in grounded theory
and qualitative studies. It represents the phase of the
research in which no new data appears anymore, and
conclusions may be drawn.
Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
MAmet the developers, executed the experiment, participated in the data
analysis, and worked on the manuscript. MG participated in the data analysis,
and worked on the manuscript. Both authors read and approved the final
manuscript.

Acknowledgements
We thank the companies that participated in this study: Caelum, Bluesoft, Amil
e WebGoal (São Paulo and Poços de Caldas). We also thank the developers who
took part in this research independently. Marco Gerosa received funding from
CNPq and FAPESP. We also thank NAWEB-PRP-USP for supporting this research.

Received: 10 February 2015 Accepted: 17 August 2015

References
1. Beck K (2004) Extreme programming explained. 2° edn. Addison-Wesley

Professional, Boston, USA
2. Wambler S (2010) How agile are you? 2010 Survey Results. http://www.

ambysoft.com/surveys/howAgileAreYou2010.html. Último acesso em
28/10/2010

3. One V (2012) State of agile development survey results. http://www.
versionone.com/state_of_agile_development_survey/11/. Último acesso
em 29/02/2012

4. Beck K (2002) Test-driven development by example. 1° edn.
Addison-Wesley Professional, Boston, USA

5. Martin R (2006) Agile principles, patterns, and practices in C#. 1st edition.
Prentice Hall, Upper Saddle River

6. e Nat Pryce SF (2009) Growing object-oriented software, Guided by Tests.
1° edn. Addison-Wesley Professional, Boston, USA

7. Astels D (2003) Test-driven development: a practical guide. 2nd edition.
Prentice Hall

8. Janzen D, Saiedian H (2005) Test-driven development concepts,
taxonomy, and future direction. Computer 38(9):43–50.
doi:10.1109/MC.2005.314

9. Beck K (2001) Aim, fire. IEEE Softw 18:87–89. doi:10.1109/52.951502
10. Aniche MF, Ferreira TM, Gerosa MA (2011) What concerns beginner

test-driven development practitioners: a qualitative analysis of opinions
in an agile conference. 2nd Brazilian Workshop on Agile Methods

11. Siniaalto M, Abrahamsson P (2008) Does test-driven development
improve the program code? Alarming results from a comparative case
study. Balancing Agility Formalism Softw Eng 5082:143–156

12. Munir H, Moayyed M, Petersen K (2014) Considering rigor and relevance
when evaluating test driven development: a systematic review. Inf Softw
Technol 56(4):375–394

13. Janzen DS (2005) Software architecture improvement through test-driven
development. In: Companion to the 20th Annual ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and
Applications. OOPSLA ’05. ACM, New York, NY, USA. pp 240–241.
doi:10.1145/1094855.1094954. http://doi.acm.org/10.1145/1094855.
1094954

14. Janzen D, Saiedian H (2006) On the influence of test-driven development
on software design. In: Proceedings of the 19th Conference on Software
Engineering Education and Training (CSEET’06):141–148.
doi:10.1109/CSEET.2006.25

https://gist.github.com/mauricioaniche/5895261
https://gist.github.com/mauricioaniche/5895261
https://gist.github.com/mauricioaniche/5694865
https://gist.github.com/mauricioaniche/5694865
http://www.ambysoft.com/surveys/howAgileAreYou2010.html
http://www.ambysoft.com/surveys/howAgileAreYou2010.html
http://www.versionone.com/state_of_agile_development_survey/11/
http://www.versionone.com/state_of_agile_development_survey/11/
http://dx.doi.org/10.1109/MC.2005.314
http://dx.doi.org/10.1109/52.951502
http://dx.doi.org/10.1145/1094855.1094954
http://doi.acm.org/10.1145/1094855.1094954
http://doi.acm.org/10.1145/1094855.1094954
http://dx.doi.org/10.1109/CSEET.2006.25

Aniche and Gerosa Journal of the Brazilian Computer Society (2015) 21:15 Page 11 of 11

15. George B, Williams L (2003) An initial investigation of test driven
development in industry. In: Proceedings of the 2003 ACM Symposium
on Applied Computing. SAC ’03. ACM, New York, NY, USA. pp 1135–1139.
doi:10.1145/952532.952753. http://doi.acm.org/10.1145/952532.952753

16. Erdogmus H, Morisio M, Torchiano M (2005) On the effectiveness of the
test-first approach to programming. IEEE Trans Softw Eng 31:226–237.
doi:10.1109/TSE.2005.37

17. Langr J (2001) Evolution of test and code via test-first design. http://eisc.
univalle.edu.co/materias/TPS/archivos/articulosPruebas/test_first_design.
pdf. Last access on March, the 1st, 2011

18. Dogsa T, Batic D (2011) The effectiveness of test-driven development: an
industrial case study. Softw Qual J:1–19. doi:10.1007/s11219-011-9130-2

19. Li AL Understanding the efficacy of test driven development. Master’s
thesis, Auckland University of Technology

20. Madeyski L (2006) The impact of pair programming and test-driven
development on package dependencies in object-oriented design—an
experiment. In: Munch J, Vierimaa M (eds). Product-Focused Software
Process Improvement. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, Heidelberg, Berlin, Germany. Vol. 4034. pp 278–289.
doi:10.1007/11767718_24

21. Muller MM, Hagner O (2002) Experiment about test-first programming.
Softw IEE Proc 149(5):131–136. doi:10.1049/ip-sen:20020540

22. Steinberg DH (2001) The effect of unit tests on entry points, coupling and
cohesion in an introductory java programming course. XP Universe.
Citeseer. 8:2001

23. Meszaros G (2007) xUnit test patterns: refactoring test code. Pearson
Education, United States

24. Josefsson M (2004) Making architectural design phase obsolete—TDD as
a Design Method. T-76.650 Seminar course on SQA in Agile Software
Development Helsinki University of Technology. Last access on March,
the 1st, 2011. http://www.soberit.hut.fi/T-76.5650/Spring_2004/Papers/
M.Josefsson_76650_final.pdf

25. Janzen D (2006) An empirical evaluation of the impact of test-driven
development on software quality. PhD thesis, University of Kansas

26. Shull F, Melnik G, Turhan B, Layman L, Diep M, Erdogmus H (2010) What
do we know about test-driven development? Softw IEEE 27(6):16–19

27. Runeson P, Host M (2009) Guidelines for conducting and reporting case
study research in software engineering. Empir Softw Eng 14(2):131–164.
doi:10.1007/s10664-008-9102-8

28. Creswell JW (2008) Research design: qualitative, quantitative, and mixed
methods approaches. Third edition. Sage Publications, New York

29. Martin RC (2002) Agile software development, principles, patterns, and
practices. Primeira edn. Prentice Hall, Upper Saddle River

30. Freeman ET, Robson E, Bates B, Sierra K (2004) Head first design patterns.
Primeira edn. O’Reilly Media, Sebastopol, CA, USA

31. Fowler M (2004) Is Design Dead? http://martinfowler.com/articles/
designDead.html. Last access on October, the 28th, 2010

32. George B, Williams L (2004) A structured experiment of test-driven
development. Inf Softw Technol 46(5):337–342.
doi:10.1016/j.infsof.2003.09.011

33. Feathers M (2007) The deep synergy between testability and good
design. https://web.archive.org/web/20071012000838/http://
michaelfeathers.typepad.com/michael_feathers_blog/2007/09/the-
deep-synerg.html. Último acesso em 27/10/2010

34. Crowne DP, Marlowe D (1960) A new scale of social desirability
independent of psychopathology. J Consult Psychol 24:349–354

35. Mackinnon T, Freeman S, Craig P (2001) Endotesting: unit testing with
mock objects. In: Succi G, Marchesi M (eds). Extreme Programming
Examined. Addison-Wesley Longman Publishing Co. pp 287–301

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://dx.doi.org/10.1145/952532.952753
http://doi.acm.org/10.1145/952532.952753
http://dx.doi.org/10.1109/TSE.2005.37
http://eisc.univalle.edu.co/materias/TPS/archivos/articulosPruebas/test_f irst_design.pdf
http://eisc.univalle.edu.co/materias/TPS/archivos/articulosPruebas/test_f irst_design.pdf
http://eisc.univalle.edu.co/materias/TPS/archivos/articulosPruebas/test_f irst_design.pdf
http://dx.doi.org/10.1007/s11219-011-9130-2
http://dx.doi.org/10.1007/11767718_24
http://dx.doi.org/10.1049/ip-sen:20020540
http://www.soberit.hut.fi/T-76.5650/Spring_2004/Papers/M.Josefsson_76650_ final.pdf
http://www.soberit.hut.fi/T-76.5650/Spring_2004/Papers/M.Josefsson_76650_ final.pdf
http://dx.doi.org/10.1007/s10664-008-9102-8
http://martinfowler.com/articles/designDead.html
http://martinfowler.com/articles/designDead.html
http://dx.doi.org/10.1016/j.infsof.2003.09.011
https://web.archive.org/web/20071012000838/http://michaelfeathers.typepad.com/michael_feathers_blog/2007/09/the-deep-synerg.html
https://web.archive.org/web/20071012000838/http://michaelfeathers.typepad.com/michael_feathers_blog/2007/09/the-deep-synerg.html
https://web.archive.org/web/20071012000838/http://michaelfeathers.typepad.com/michael_feathers_blog/2007/09/the-deep-synerg.html

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Introduction
	Background
	Discussion

	Methods
	Research question
	Research design
	Participants' profile
	Proposed problems

	Results and discussion
	TDD does not drive to a better design by itself
	Baby steps and simplicity
	Refactoring confidence
	A safe space to think
	Rapid feedback
	The search for testability
	Discussion

	Threats to validity
	Construct validity
	Exercises
	Number of exercises per participant
	TDD x unit testing

	Internal validity
	Recent effects of TDD in participants' mind
	Researcher's influence
	Desirability bias
	Participant selection for the interviews

	External validity
	Selection of participants
	Localization

	Conclusions
	Endnotes
	Competing interests
	Authors' contributions
	Acknowledgements
	References

