Session 7B: Computational Thinking

ITiCSE 19, July 15-17, 2019, Aberdeen, Scotland, UK

Pedagogical Content for Professors of Introductory
Programming Courses

Yorah Bosse* David Redmiles Marco A. Gerosa
University of Sao Paulo / Federal University of California Northern Arizona University /
University of Mato Grosso do Sul Irvine, USA University of Sao Paulo

Sao Paulo / Ponta Pora, Brazil
yorah@ime.usp.br

ABSTRACT

Teaching introductory programming requires knowledge of both
content and pedagogy. Pedagogy includes understanding the typical
difficulties students face as they learn, as well as recognizing didac-
tic strategies professors can use to help students to overcome these
difficulties. Our research aims to improve the pedagogical knowl-
edge instructors have to teach introductory programming courses,
especially those new in this area. We conducted 16 semi-structured
interviews with instructors who teach introductory programming
courses and collected diaries filled by 110 students during their
studies. Qualitative analysis of this data revealed a set of difficul-
ties students faced when learning programming basics and a set
of didactic strategies professors use to mitigate them. The results
were reviewed by senior instructors in order to confirm them and
by junior instructors to verify the importance of this material from
their perspective. The main contribution of our paper is a set of
difficulties faced by students learning programming, a classification
of the most harmful challenges, and the didactic strategies usu-
ally used to teach and avoid them. Thus, we provide the basis for
the pedagogical content necessary to junior and senior professors
planning introductory programming courses.

KEYWORDS

pedagogical content; learning to program; novice learners; barriers
to learning; introductory programming; strategies; computational
thinking

ACM Reference Format:

Yorah Bosse, David Redmiles, and Marco A. Gerosa. 2019. Pedagogical
Content for Professors of Introductory Programming Courses. In Innovation
and Technology in Computer Science Education (ITiCSE °19), July 15-17,
2019, Aberdeen, Scotland UK. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3304221.3319776

“The first author is financially supported by the UFMS - Federal University of Mato
Grosso do Sul.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland UK

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6301-3/19/07...$15.00
https://doi.org/10.1145/3304221.3319776

redmiles@ics.uci.edu

429

Flagstaff / Sao Paulo, USA / Brazil
marco.gerosa@nau.edu

1 INTRODUCTION

Learners of programming around the world who are writing, run-
ning, and debugging code in introductory programming courses
(CS1) inevitably run into frustrating hurdles [19], including under-
standing programming’ basic concepts [2, 15, 16, 18, 23, 27, 31].
Though people learn to program in different ways, such as with
graphical programming blocks, text, or both [17, 21, 31], and for
different reasons [4], few consider it an easy task [1, 15, 18]. This
can be perceived through failure and dropout rates, which reach
about 28% among undergraduate students [3, 5].

Preparing new generations of professional and casual developers
is a big challenge. If instructors are to overcome the difficulties
students face, quell their frustrations, and help them achieve their
goals, they need both knowledge of content and pedagogy [25, 29,
30]. Pedagogical knowledge includes three types of information:
difficulties faced by students as they attempt to learn the content,
typical paths students need to traverse to understand the content,
and a set of strategies instructors can use in classes to avoid the
difficulties [6].

Our research was developed to help instructors of CS1 prepare
their classes and improve their teaching strategies so they can
support students learning to program in C or Python. For that, we
focus on two research questions:

RQ1 - What are the difficulties students face when learning how
to program?

RQ2 - What didactic strategies do instructors use to overcome
these difficulties?

Experienced teachers acquire knowledge of content and peda-
gogy and know the types of difficulties students have and how to
circumvent them [6]. However, research has shown that expertise
can lead to over-confidence in one’s knowledge, meaning teachers
can overlook details when teaching a topic they know well [13].
Even so, that knowledge can help other instructors in the task of
how, for instance, to better organize the content for students [6].
Taking this into account, we collected qualitative data from two
sources of data: semi-structured interviews with 16 professors from
the University of Sao Paulo - USP - Brazil and diaries maintained by
110 students when taking CS1 at the same university. This data was
analyzed using Grounded Theory techniques. The findings were
reviewed by experienced instructors to confirm the results, in addi-
tion, it was collected the inexperienced instructors’ perspectives
about the importance of this material. The main contribution of this
paper is a set of difficulties faced by students learning programming,
a classification of the most harmful challenges, and the didactic
strategies usually used to teach and avoid them. This material can

https://doi.org/10.1145/3304221.3319776
https://doi.org/10.1145/3304221.3319776
https://doi.org/10.1145/3304221.3319776

Session 7B: Computational Thinking

guide instructors, especially inexperienced ones, to prepare their
classes, helping them improve their teaching and students’ learning.

2 RELATED WORK

We organize our literature review according to the difficulties stu-
dents face, and then the methods and strategies instructors use to
teach the content.

Difficulties: The content covered in programming courses can
be difficult to understand, such as pointers and abstract data types [22,
24]. According to Mhashi and Alakeel [22], the most difficult pro-
gramming concepts are repetition, recursion, lists, pointers, pass-
ing parameters, abstract data types, and the use of libraries. Some
of these difficulties also appear in the research from Sevella and
Lee [28]. They further show that students confuse ‘For’ and “While’
concepts in C and find it difficult to use functions, sometimes devel-
oping programs without ever using this feature. In addition, they
point out difficulties with variables: students forget to declare them
or assign wrong types. They also note difficulties with selection
structures, such as writing conditional statements and nested selec-
tions. They found no difficulty with understanding lists. However,
for the instructors responding to the questionnaire by Piteira and
Costa [24], lists are among the most difficult topic, aside from point-
ers, structured data types, error handling, and parameters. Pointers
and passing parameter by reference are also considered two of the
most difficult topics by Lahtinen and colleagues [1]. Piteira and
Costa [24] add that other difficulties for students include the use of
language libraries and abstract data types. Regarding syntax, Hris-
tova and colleagues [27] report the wrong use of ‘=" vs ‘==", ‘&&’ vs
‘&, ‘|’ vs |, different amounts of opening and closing parentheses,
brackets and quotation marks, wrong separators in ‘For’ loops, and
so on.

Methods and strategies used to teach basic programming
content: Traditional teaching methods can be inadequate for many
students: teaching is not personalized, and dynamic concepts are

presented with static material [14]. In contrast, Deek and colleagues [20]

have developed an approach to programming courses that helps
students learn concepts and their uses. In this approach, language
characteristics were gradually introduced to students only in the
context of specific problems. This has been shown to have positive
effects on student achievement and confidence in programming.
There are also programming tools that allow students to overcome
the barriers to learning to program themselves [7, 17, 21], and to
give automatic feedback to students about their codes [11, 12], not
only feedback on syntax questions, but also on program semantic
issues [26]. Another approach for increasing students’ knowledge
and developing their abilities is to increase the number of exer-
cises, carefully selecting and solving them afterwards [22]. While
visualization techniques to show complex concepts can help, visu-
alizations are most often used for algorithm animation, with less
emphasis on illustrating the basic structure of programs and their
execution [22].

While the literature tends to focus on the content students con-
sider difficult, we seek to identify a set of difficulties students face
in CS1 in order to organize a set of strategies that instructors may
use to avoid them and improve learning.

430

ITiCSE 19, July 15-17, 2019, Aberdeen, Scotland, UK

Experienced instructors

2nd step of
analysis (GT)

1st step of
analysis (GT)

6 interviews to
confirm the results

6 interviews to
verify the usefulness

Unexperienced instructors

Data collection (2015)
Diaries
(34 students)

Interviews
16 instructors

Diaries All diaries
76 students

Data collection (2016)

Figure 1: Scheme of the methodology.

Table 1: Instructors’ data.

Professor ID Years of Experience Gender
P1-P3 More than 40 years 1Fand2M
P4 -P5 31 to 40 years 2M
P6 - P7 21 to 30 years 2M
P8 - P12 11 to 20 years 2Fand3 M

P13 - P16 1 to 10 years 4 M

3 METHODOLOGY

We conducted semi-structured interviews with 16 instructors and
asked students to maintain diaries. Figure 1 shows an overview of
our methodology, which is detailed below.

3.1 Data Collection

This study is motivated by a previous study conducted at the Uni-
versity of Sao Paulo (Brazil) from 2010 to 2014, based on data from
approximately 18,500 students from various majors who enrolled
in 29 CS1 courses [5]. The results showed that approximately 30%
of these registrations resulted in failures and dropouts, which cor-
roborates results obtained by Bennedsen and Caspersen [3].

In the present study, we chose to further investigate these courses
and topic-related issues. We conducted interviews with instructors
to delve into particulars, focusing on the topics to gain a perspec-
tive of the students’ learning experiences and instructors’ teaching
experiences [10]. Sixteen instructors from the Computer Science
Department at the University of Sao Paulo were selected for in-
terviews. About 30 instructors from the department had taught
this course at least once. The first 6 instructors interviewed were
those who were teaching introductory programming for the six
classes whose students were keeping diaries about the difficulties
in learning how to program. The other 10 were randomly selected.
Each instructor was identified with an ID comprising a P, followed
by a number from 1 to 16. Table 1 shows the level of experience
and gender of the subjects.

The interviews began with a very general question: ‘In your view,
what are the difficulties faced by students in CS1?’ The instructor
was then guided to talk about the following introductory topics:
variables; assignment command; input and output functions; arith-
metic, relational (<, >, =, ...) and logical (and, or not) expressions;
selection (if...else) and repetition structures (while, for, ...); string
manipulation; uni- and multi-dimensional arrays; structured data;

Session 7B: Computational Thinking

Table 2: Students’ data.

Age Total % TACB Total %

Not informed 1 1% 0 81 74%
15-24 84 76% 1 17 15%
25-34 17 15% 2 6 5%
35-44 6 5% 3 4 4%

45 -54 1 1% 4 1 1%
55-64 1 1% 5 1 1%

functions; and pointers. Most of the interviews took about half an
hour, but some lasted for up to an hour.

We arranged for students to fill out diaries during their studies,
keeping us informed about their difficulties as they emerged. We
collected data from 6 different classes in 2015 (34 students) and
another 6 in 2016 (76 students), yielding a total of 110 student
diaries. The diaries were arranged in shared documents (Google
Docs). We asked the students to include: code snippets, especially
the wrong ones; how they fixed the errors; and the doubts they had
about learning the topics. To clarify possible misunderstandings
about the text written by the students, the researchers sometimes
posed questions in the diaries. Each student was also identified
with an ID, composed by an S, followed by a number from 1 to 110.
Table 2 shows the total and percentage of students by age range
and the number of times they attended the course before (TACB).

3.2 Data Analysis

For the analysis of the data, we used Grounded Theory (GT) tech-
niques, as described by Strauss and Corbin [9]. During the anal-
ysis, concepts, categories, and subcategories emerged. According
to Corbin and Strauss [8], “the procedures of grounded theory are
designed to develop a well-integrated set of concepts that provide a
thorough theoretical explanation of social phenomena under study.”
The groupings of these concepts into a higher degree of abstraction
are called “categories” [9].

The data was read and analyzed, and relevant information was
marked with a tag, thus characterizing a concept. Grouping these
concepts, categories emerged. We primarily focused on two of them:
‘Difficulties with the Topics’ and ‘Didactic Strategies. After that, all
text highlighted with codes was read again to identify difficulties,
strategies, and connections among both. To confirm the results
obtained with the data analysis, the results were presented to six
experienced instructors to validate the findings. Then, six other
instructors were interviewed, all inexperienced with the teaching
of programming, in order to verify their opinions about the impor-
tance of the results for preparing their classes.

4 FINDINGS AND DISCUSSION

In this section, we present the results obtained in two categories
defined in the data analysis, Difficulties and Strategies, answering
the two research questions that guided our study.

RQ1 - What are the difficulties students face when learning
how to program?

The difficulties presented below are divided by topics addressed
in the courses, which are listed in the methodology section. Figure

431

ITiCSE 19, July 15-17, 2019, Aberdeen, Scotland, UK

2 presents the set of difficulties reported by instructors and stu-
dents, which we classified in three levels. The first level comprises
difficulties considered the most impactful to learning programming,
which are marked with two stars. The intermediate level is marked
with a star, and the last level has no marking. After each difficulty
appears the number X of times they are cited by instructors ‘p’ and
the number Y of times cited by students ‘s’: XpYs. The 16 inter-
viewed instructors commented mainly on C and Python; most of
the difficulties listed in the diagram are related to the C language.

We found difficulties related to 10 topics taught in CS1, namely:
Variables, Expressions, Input/Output Functions, Selection and Rep-
etition Structures, Uni- and Multidimensional Array, Function,
Pointer, and String. One of the difficulties of the first level of classifi-
cation is initializing the variables, as shown in the topic Variable
of the diagram. Many students do not know if it is necessary to
initialize and with what value: “When compiling everything was fine,
however, the final result (max) has a gigantic number ... problem tidy,
I had not put the initial value of the variable max...” - S18. In addition,
the difference in the treatment of variables in mathematics
and programming can generate doubt, as explained by P8: “Then
there are x = x + 1’ and these students experiencing difficulty do
not understand if you read as in math, ‘x is equal to x + 1,” (student
replies) that ‘it is impossible for x to be equal to x + 177

Working with Expressions, the result shows difficulties related
to detecting the wrong result due to data type problems: ..
when it is a numerical operation, it is difficult for them to perceive
the error. So, for example, an algorithm to calculate, make an average,
... yields zero (as a result) and sometimes the student realizes that
they used integer rather than float” - P7. Another source of difficulty
is writing logical expressions. According to P11, “..something
that exists in natural language and that normally does not exist
in programming language is something like x > 3 and < 5’ and in
computing I cannot write like this, you have to write x > 3 and x <
5’, then they write it wrong, they write x > 3 and < 5" The students
find it difficult to write logical expressions in the syntax of the
programming language, which is usually different from that used
in mathematics and natural language. And, as already cited by
Hristova and colleagues [27], there is confusion between ‘=’ and
‘==". According to S34, this is a constant error: “I wrote the program
and noticed some difficulties I constantly face such as ... whether to
use = or == within the Selections or Repetition Structures.”

Regarding Selection Structures, the most complicated task is
working with nested selections with a set of pairs ‘IF..ELSE’:
“When I had nesting, one selection within another, that caused a lot of
confusion” - P15. Similarly, the most complicated Repetition Structure

to learn is the creation and use of nested repetition structures,
that is, two or more structures of repetition, with one inside the
other. A classic example of using nested repetitions is the manip-
ulation of multidimensional arrays. Other difficulties include the
creation of the stopping condition and manipulating the con-
trol variable. According to P15, students begin to use the control
variable without even initializing it, “... they use a variable in the
stop condition before assigning an initial value to this variable,” and
then they misuse the increment or decrement operators so that it
satisfies the desired stop condition: “... their challenge to generate a
repetition structure was to understand the concept of a stop condition,

Session 7B: Computational Thinking ITiCSE 19, July 15-17, 2019, Aberdeen, Scotland, UK

How to use (3p9s)

% Necessity to create (1p85)\
ok Initializing

% Understand selection as a
repetition and the opposite (2p2s)

* Indexes manipulation (5p0s)

the variables (Op6s)
i * Seeing the pairs (IF..ELSE) (2 35\
2\ Y Variable stores g the pairs | L(2p3s) Lack of prior knowledge,
g only one value (1p0s) Yok Nested selection (6p0s) such as math (2p0s)
‘%Co Yok Difference |n-the) * Understand that a
3 treatr:ner:it of varlable§ in 2-dimensional array
< ath and programming is an array of arrays (1p0s)

(1p0s)

Data stores in variables
is not visible to users (2p0s)

Adapting the template (3p0Os)
% Understand the inversion Difficulties in general (0p3s)
of index's role (6p0s) \

End marker (1p0s)

(4p4s)

% Choose the correct type (1p85)\ % Output - Abstract (2p0s)
% Creation of more complex When and how to use (0p3s) ok Going through positions Working with ‘string’ as
commandsto generate % Input— \ differently than taught (2p0s)\
a single result (1p0s) When and how to use (0p3s) Difficulty to create (0p2s) Difficulties
\ .
with

Jok How to write the

Subjects

Know when to use each

N Difficulty to create (Op7s) <
A Q}\é Use of parentheses (1p0s) type (while; “for; ...) (8p0s) NP commands (4p0s)
© * Precedence (1p0s) Yok Nested repetition (6p12s) 0?5‘ % Do not understand
N Confusing between Yok Stopping condition / (5p5s) / the necessity touse
&/ and ‘<’ (0p2s) Break / State and pointers (1p0s)
,;;00 ok Confusmg between Control variable (10p37s)

‘=" and ‘==" (0p9s) When and how to use (OpSS)

/> Negation (1p0s)
N / Truth table (3p0s)

63& Yok Writing logical
NY expressions (1pls) Decompose problems (10p0s)

) *’l?iffer?nti,ating N Yok Variables with
AND’ from ‘OR’ (4p1s) “ Indexes manipulation (2p0s) ,?;&\'b & / the same name and
N different scopes (1p0s

Abbreviation of arithmeti Lack of prior knowledge,

é}b such as math (1p0s) « % Using the paramete
.‘&& I;thotr.‘ (3p8s) Difficulty in using what they know, ,,\\%o@é& as a variable (1p0s)
& Yok Detecting wrong in more elaborate tasks (1p0s) ,z;—;"\ R i
T Q by reference (13p3s)

result due to data
type problems (1p0s) * Controlling positions (0p35)
“ Return of value (2p5s)]

- How and when to use (Opls) i

Figure 2: Diagram showing the list of difficulties per topics taught in introductory programming courses.

them to understand pointers.” P13 reports that the students “end
up learning by heart,” and adds “I think they can understand, closer
to the end of the second semester,” that is, only in the subsequent
course. Many even avoid teaching pointers: “We try to avoid talking
about pointers too” - P10. Others end up showing them only because
they are necessary to pass parameters by reference, and the main

how to create a stop condition, and how to make an increment of a
variable that satisfies this condition.” Manipulating variables is also
a task necessary for working with Multidimensional Arrays, where
going through positions differently than taught is a source of
difficulty, as exemplified by P14: “... if we use a 2-dimensional array,

for example, to represent a game board and ask to move diagonally,

or backward, ... then things start to get confusing. Especially if the i’ difficulty is how to write the commands using pointers. Working

and §’ (variables used to indicate the position in the row and column) with Functions, besides the difficulty with passing parameters

that are there, begin to appear in a switched order.” by reference, students confuse variables with the same name
and different scopes.

Finally, for P4, when teaching Pointers, “the trouble starts to get
bigger.” Pointers are cited by many researchers as one of the most RQ2 - What didactic strategies do instructors use to over-
difficult topics [22, 24, 28], and the results of this study confirmed come these difficulties?
this, as can be observed in the comment made by P14: “But of During the interviews, instructors mentioned many strategies
the content of the course, I think the most difficult thing was for they used to teach the topics and to mitigate difficulties students

432

Session 7B: Computational Thinking

StIrDat Tc'iT;S Strategy Name Main difficulties that it helps
si| 16 |Usingvi Variables. Nested repetition. Function. Uni
sing visual resources - }
and multidimensional array. General
Using ‘pseudocode and
S2 | 10 |programminglanguage’asa |General
cycle for each new concept
gl oo ?olvingtogetherwith students General
in class
sl s Exp]ain usingproblemsand General
similar exercises
Pointer - how to write the commands.
ss | 8 Omit some conceptsand Function - passing parameters by reference.
language details Programminglanguage - syntaxissues.
General
Programming language - syntax issues.
Multidimensional ~ array - indexes
6| 8 |Using“recipes” rrTanipuIation and going thr.ough positions
differently than taught. Pointer - do not
understand the necessity to use pointers.
Function —return of value. General
Function —variable scope. Repetition
. structure - stopping condition and
S7| 7 [Step-bystepexecution manipulation of the control variable.
General
sl 6 Making an analogy with known |Variables. Expressions. Function. Selection
concepts / objects structure. General
S9 | 6 |Intensive practice General
s0l s Programmingon the projector General
screen

Table 3: Strategy used to avoid or minimize the difficulties
faced by students to learn how to program.

face. In this paper, we present the strategies mentioned 5 times or
more in the interviews. The third column of Table 3 reports the
topics or difficulties linked to the strategies. If the term General is
used in this column, this means that this strategy was quoted at
least once in each of the topics covered.

Using visual resources (S1). Abstraction is one of the major
problems of the course. It is difficult for the novice student to visu-
alize where the data is, how it is processed, or how the commands
work: “...there is a difficulty in working with abstract concepts...” -
P9 and P15 remembered “...classes that at first did not work, you
had to have something visual too” and cited an example “Variable
declaration needs to be visual ... explaining that declaring a variable
will occupy space in memory, this abstraction is a bit difficult.” The
‘visuals’can be drawings: “...I draw the memory...” - P9 or made using
features like arrows that represent the input and output of the data
in a function, for example: “I always do in a graphic way the inputs
and outputs, with arrows” - P8. Another form of visual presentation
is “...animations, if I needed to show that visually...” - P15 and adds
that “...there are many visual resources on the internet....”

Using ‘pseudocode and programming language’ as a cycle
for each new concept (S2). Few instructors begin the course with
pseudocode before progressing to a programming language, “With
the algorithm in pseudo-language, I did not see much success ... having
two simultaneous languages was not going to be as effective” - P16.
Most of the interviewed instructors use pseudocode only to teach
the concept and then immediately show the same concept in the
programming language: “... I give the algorithmic concept and after

433

ITiCSE 19, July 15-17, 2019, Aberdeen, Scotland, UK

this, I go to the program ... I do it like this, coming and going” - P9.
According to P11, “The programming language is a tool to teach algo-
rithms and data structures” and the pseudocode or pseudo language
is quickly used, without many rules, only to explain the concepts.

Solving together with students in class (S3). This is another
highly used strategy: to “solve and write problems together with the
students ... the idea is to let them participate and they try to develop the
program together. Often times, I show the program even knowing that
it is wrong and we try to find (the mistake)” - P3. Many instructors
reported using this strategy and claim it works because students
participate and can see step-by-step how the program is developed.

Explain using problems and similar exercises (S4). To in-
troduce and show the usefulness of the concepts that need to be
taught in the course, one strategy is to use problems: “I usually
start explaining a content by describing a problem” - P16. For P10,
it is a way to motivate students, “...we try to motivate by using
some problems,” because the student sees the concept’s usefulness
in practice and learns how it should be used. Between presenting
the first problem to the student and more complex exercises, P16
advises “...also bring to class exercises that are similar but do not solve
exactly that problem.” In this way, the student can practice what
was taught, and then use it in other situations.

Omit some concepts and language details (S5). Details of
the coding language can hinder the development of the code. If the
instructor omits some details, they may improve initial learning:
“The idea was to abstract the language syntax somewhat” - P15.
P5 also said “...if I have to teach in C, I do not explain an input
command. I even joke: Look, God told you to do it like this.”) because
if you explain every detail of the syntax, the content does progress.
Concepts are also omitted at times when they are not indispensable.
An example of this was offered by P1, with the following statement:
“Passing parameter is also all by pointer, I do not need to speak of
pointers, they do the exercise without problems ... they are hidden
from them, these concepts, but they are in fact using (them).”

Using “recipes” (S6). In content that is considered more com-
plicated, as is the case of passing parameters by reference using
pointers,: “When we teach with C we make the passage by reference,
but we provide a ‘recipe’, so it is (I use) ‘& when I call the function and
within the function “.” - P12. In addition, to avoid language syntax
explanations often unnecessary for the moment, such as ‘scanf” and
‘printf’” in the C programming language, instructors use a kind of
‘recipe;’ that is, a step-by-step instruction of how something should
be done.

Step-by-step execution (S7). Another frequently used tech-
nique is step-by-step execution, so that the student sees what is
happening in the program, which also helps them find existing er-
rors in the code. This execution is done on the board or even using
the projector. Everything that happens, from change of values in the
variables to the output of a repetition or change of variable scope, is
line-by-line shown and analyzed during this exercise: “I used slides
that were showing repetition actually happening as a debugging of
the program and going through each instruction line” - P15. However,
for more advanced students, this exercise can be a bit tedious.

Making an analogy with known concepts / objects (S8).
This involves using an everyday example from the real world, with
situations familiar to the student, as P3 suggested: “make an as-
sociation with a real-world problem where you have the same type

Session 7B: Computational Thinking

of separation (situation). I think this makes sense, so it helps a lot.”
In reference to arithmetic, logical, and relational expressions, P1
said that “they (the students) confuse a lot... I started with day to
day examples” and P11 reinforces that “I think this is a fundamental
thing, exercises that have to do with the universe of the student.”

Intensive practice (S9). Five instructors cited intensive practice
during the interviews, corroborating results presented by Mhashi
and Alakeel [22]. According to P13, “The student has to arrive, sit,
study, work, exercise and solve as many exercises as possible. It is
very Kumon style. It is training, training, training.” Feedback is also
important, as P11 said “I give a lot of exercises for them to do in the
classroom, from there they do on paper..., if we have three solutions
(made by students in the classroom), I ask the 3 students to go (to
write on the board) and I show the three different solutions. Then we
discuss the 3 solutions.”

Programming on the projector screen ($10). Lastly, this strat-
egy includes developing the code during class, projecting it so that
the student can see and participate, and collaboratively making
changes and showing the results: “I use blackboard and projector ...
writing a program in the act and running it” - P15 and P14 said that
this “...makes a significant difference.”

In addition, future confirmatory research could yield data be-
yond instructors’ experiences, exploring the degree of student de-
velopment in the CS1 courses that use those strategies. Linking the
findings to existing pedagogical theories could be of great value to
add knowledge and increase the contribution of these results.

5 VALIDATION OF THE RESULTS

After compiling the results, they were validated by 6 experienced
instructors. Each of them was asked about the difficulties listed by
topic and didactic strategies mentioned. During these interviews,
one new idea arose: a suggestion to classify the difficulties as ex-
plained in the Findings section. Having confirmed our findings, six
inexperienced instructors (Pu) were interviewed. These instructors
had taught less than three CS1 courses and work in universities
of different states in Brazil. We asked them to comment on the
importance of this information about difficulties and strategies.
The difficulties were showed to them without the classification
presented in this paper. Even unaware of this suggestion given by
experienced instructors, two of them commented on the importance
of classification, as indicated in a comment made by Pud: “...the list
of difficulties could help me to organize my classes, but I think that
if the difficulties had a classification, showing which of them are the
most harmful for students learning programming, it could be easier
to use in practice...”

All of the six inexperienced interviewed instructors said that the
list of difficulties and strategies could greatly help to plan the mate-
rial used with students and in explaining the topics, as commented
by Pué: “...knowing the difficulties, I would work out the topic in the
classroom so that the difficulty arise and so I would help them solve
the doubts...” Three of them commented that most of the difficulties
could be minimized or eliminated depending on the programming
language used, citing Python as an example. They added that the
difficulties exist not only for C language, but also for many others,
like Java. One important point they addressed regarded the topics

434

ITiCSE 19, July 15-17, 2019, Aberdeen, Scotland, UK

and/or difficulties linked to the strategies. Even though most strate-
gies are known , this connection could help to determine the best
strategy at certain times in class.

5.1 Threats to Validity

The data was collected from experienced instructors from the same
department who teach in different colleges at a single university.
This factor may raise some doubts as to the accuracy of the re-
sults in other contexts. A survey could be created to confirm the
results obtained and to complete the set of difficulties and didactic
strategies.

6 CONCLUSION

Learning to program is not an easy task [1]. Students who study
programming face many difficulties, as do their instructors. Some
difficulties related to content are generally mild; they can be quickly
clarified with examples of application and practical exercises, as
is the case in understanding variables. Other difficulties are more
complicated, requiring instructors to use several resources to im-
prove learning and not always successfully. One such case is the
topic Pointer. Many instructors shared their desire to avoid this
topic in CS1, because they consider it too difficult. However, it is
necessary for teaching other content, such as pass parameters by
reference in C, in the topic Function. Pointer concepts are often
omitted (S4) and/or used in the form of ‘recipes’ (S8), so there is no
need to delve deeper into them in CS1. In addition, functions, uni-
and multi-dimensional arrays, and repetition structures (while, for,
...) are considered the three most difficult topics in the instructors’
view.

To teach CS1, inexperienced instructors consider it useful to
have the list of difficulties students face and the strategies they can
use to teach the content and avoid them. According to them, having
knowledge of the difficulties could change the way they teach; for
example, they can choose exercises that make the difficulties arise
during the class, so that they can support students in solving them.
About the strategies, we received good feedback from inexperienced
instructors as well. Although many of them were already aware of
many of the strategies on the list, they considered it important to
have the list, in part because some of the strategies were linked to
the difficulties that could be avoided, and also because the list tends
to make them remember each one, making it easier to integrate
them into a class. The contribution of our paper may improve
pedagogical knowledge to better teach and consequently better
learn programming.

ACKNOWLEDGMENTS

We thank the instructors and students who kindly provided us
with the data that made this study possible. We also thanks to
CAPES, this study was financed in part by the “Coordenacao de
Aperfeicoamento de Pessoal de Nivel Superior ” - Brazil (CAPES) -
Finance Code 001.

REFERENCES

[1] Essi Lahtinen; Kirsti Ala-Mutka and Hannu-Matti Jarvinen. 2005. A study of the
difficulties of novice programmers. ACM SIGCSE Bulletin 37, 3 (Sept 2005), 14.
https://doi.org/10.1145/1067445.1067453

https://doi.org/10.1145/1067445.1067453

Session 7B: Computational Thinking

(2]

(3]

[4

o

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12

[13

=
it

[15]

[16]

Kirsti M. Ala-Mutka. 2004. Problems in learning and teaching programming-a
literature study for developing visualizations in the Codewitz-Minerva project.
Codewitz Needs Analysis (2004), 1-13.

Jens Bennedsen and Michael E. Caspersen. 2007. Failure rates in Introductory
Programming. ACM SIGCSE Bulletin 39, 2 (Jun 2007), 32-36. https://doi.org/10.
1145/1272848.1272879

Ilias Bergstrom and Alan F Blackwell. 2016. The practices of programming. 2016
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)
(2016), 190-198. https://doi.org/10.1109/VLHCC.2016.7739684

Yorah Bosse and Marco Aurelio Gerosa. 2016. Why is programming so difficult to
learn? Patterns of Difficulties Related to Programming Learning. ACM SIGSOFT
Software Engineering Notes 41, 6 (2016), 1-6. https://doi.org/10.1145/3011286.
3011301

John D. Bransford; Ann L. Brown and Rodney R. Cocking. 2000. How People
Learn: Brain, Mind, Experience, and School. Expanded Edition. National Academy
Press (2000), 384. https://doi.org/10.17226/9853

Jill Cao; Irwin Kwan; Rachel White; Scott D. Fleming; Margaret M. Burnett and
Christopher Scaffidi. 2012. From barriers to learning in the idea garden: An
empirical study. IEEE Symposium on Visual Languages and Human (2012), 59-66.
https://doi.org/10.1109/VLHCC.2012.6344483

Juliet Corbin and Anselm Strauss. 1990. Grounded theory research: Procedures,
canons, and evaluative criteria. Qualitative Sociology 13, 1 (1990), 3-21. https:
//doi.org/10.1007/BF00988593

Juliet Corbin and Anselm Strauss. 2015. Basics of Qualitative Research: Techniques
and Procedures for Developing Grounded Theory (4rd ed.). SAGE Publications, Inc.
456 pages. https://us.sagepub.com/en-us/nam/basics-of-qualitative-research/
book235578

John W. Creswell. 2014. Research design: Qualitative, quantitative, and mixed
methods approaches (4rd ed.). SAGE Publications, Inc. 304 pages.

Juan C. Rodriguez del Pino; Enrique Rubio-Royo and Zenon J. Hernandez-
Figueroa. 2012. A Virtual Programming Lab for Moodle with automatic as-
sessment and anti-plagiarism features. Conf. e-Learning, e-Business, Entrep. Inf.
Syst. e-Government (2012).

Michelle Ichinco; Yoanna Dosouto and Caitlin Kelleher. 2014. A tool for authoring
programs that automatically distribute feedback to novice programmers. [EEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC) (2014),
207-208. https://doi.org/10.1109/VLHCC.2014.6883058

Matthew Fisher and Frank C. Keil. 2015. The Curse of Expertise: When More
Knowledge Leads to Miscalibrated Explanatory Insight. Cognitive Science: A
Multidisciplinary Journal 40, 5 (Sep 2015), 1251-1269. https://doi.org/10.1111/
cogs.12280

Anabela Gomes and Antonio Mendes. 2007. Learning to program - difficulties
and solutions. International Conference on Engineering Education - ICEE 2007
(2007). http://icee2007.dei.uc.pt/proceedings/papers/411.pdf

Anabela Gomes and Antonio Mendes. 2015. A teacher’s view about introductory
programming teaching and learning: Difficulties, strategies and motivations.
2014 IEEE Frontiers in Education Conference (FIE) Proceedings (Feb 2015), 1-8.
https://doi.org/10.1109/FIE.2014.7044086

Sandy Garner; Patricia Haden and Anthony Robins. 2005. My program is correct
but it doesn’t run: A preliminary investigation of novice programmers’ problems.
ACE 05 Proceedings of the 7th Australasian conference on Computing education 42
(2005), 173-180.

vfill

435

(17

(18

[19

[21

[22

[23

S
=)

[25

[26

[27]

[29

[30

(31]

ITiCSE 19, July 15-17, 2019, Aberdeen, Scotland, UK

Michelle Ichinco and Caitlin Kelleher. 2017. Towards Block Code Examples that
Help Young Novices Notice Critical Elements. 2017 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC) (2017), 335-336. https:
//doi.org/10.1109/VLHCC.2017.8103497

Tony Jenkins. 2002. On the Difficulty of Learning to Program. Language 4 (2002),
53-58. https://doi.org/10.1109/ISIT.2013.6620675

Ian Drosos; Philip J.Guo and Chris Parnin. 2017. HappyFace: Identifying and
predicting frustrating obstacles for learning programming at scale. Proceedings
of IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC
(2017), 171-179. https://doi.org/10.1109/VLHCC.2017.8103465

Fadi P. Deek; Howard Kimmel and James A. McHugh. 1998. Pedagogical Changes
in the Delivery of the First-Course in Computer Science: Problem Solving, Then
Programming. Journal of Engineering Education 87, 3 (July 1998), 313-320. https:
//doi.org/10.1002/j.2168-9830.1998.tb00359.x

Michael J. Lee. 2014. Gidget: An online debugging game for learning and engage-
ment in computing education. 2014 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC) (2014), 193-194. https://doi.org/10.1109/
VLHCC.2014.6883051

Mahmoud M. Mhashi and Ali M. Alakeel. 2013. Difficulties Facing Students in
Learning Computer Programming Skills at Tabuk University. Recent Advances in
Modern Educational Technologies (2013), 15-24. https://www.tib.eu/en/search/id/
BLCP%3ACN084897952/Difficulties-Facing-Students-in-Learning- Computer/
Tain Milne and Glenn Rowe. 2002. Difficulties in Learning and Teaching Program-
ming - Views of Students and Tutors. Education and Information Technologies 7,
1 (Mar 2002), 55-66. https://doi.org/10.1023/A:1015362608943

Martinha Piteira and Carlos Costa. 2013. Learning Computer Programming: Study
of difficulties in learning programming. Proceedings of the 2013 International
Conference on Information Systems and Design of Communication - ISDOC ’13
(2013), 75-80. https://doi.org/10.1145/2503859.2503871

Edward F. Redish. 1996. Discipline-Specific Science Education and Educational
Research: The Case of Physics. Journal of Applied Developmental Psychology 21,
1(1996), 85-96.

Alexander Repenning. 2011. Making programming more conversational. IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC) (2011),
191-194. https://doi.org/10.1109/VLHCC.2011.6070398

Maria Hristova; Ananya Misra; Megan Rutter and Rebecca Mercuri. 2003. Identi-
fying and correcting Java programming errors for introductory computer science
students. ACM SIGCSE Bulletin 35, 1 (2003), 19-23. https://doi.org/10.1145/792548.
611956

Pranay Kumar Sevella and Young Lee. 2013. Determining the barriers faced by
novice programmers. International Journal of Software Engineering (IJSE) 4, 1
(2013), 10-22. https://vpn.utm.my/docview/1416417332?accountid=41678

Lee S. Shulman. 1986. Those Who Understand: Knowledge Growth in Teaching.
American Educational Researcher Association 15, 2 (Feb 1986), 4-14. http://www.
jstor.org/stable/1175860

Lee S. Shulman. 1987. Knowledge and Teaching: Foundations of the New Reform.
Harvard Educational Review 57, 1 (Apr 1987), 1-23. http://hepgjournals.org/doi/
10.17763/haer.57.1.j463w79r56455411

David Weintrop. 2015. Blocks, text, and the space between: The role of rep-
resentations in novice programming environments. 2015 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC) 2015-Decem, C (2015),
301-302. https://doi.org/10.1109/VLHCC.2015.7357237

https://doi.org/10.1145/1272848.1272879
https://doi.org/10.1145/1272848.1272879
https://doi.org/10.1109/VLHCC.2016.7739684
https://doi.org/10.1145/3011286.3011301
https://doi.org/10.1145/3011286.3011301
https://doi.org/10.17226/9853
https://doi.org/10.1109/VLHCC.2012.6344483
https://doi.org/10.1007/BF00988593
https://doi.org/10.1007/BF00988593
https://us.sagepub.com/en-us/nam/basics-of-qualitative-research/book235578
https://us.sagepub.com/en-us/nam/basics-of-qualitative-research/book235578
https://doi.org/10.1109/VLHCC.2014.6883058
https://doi.org/10.1111/cogs.12280
https://doi.org/10.1111/cogs.12280
http://icee2007.dei.uc.pt/proceedings/papers/411.pdf
https://doi.org/10.1109/FIE.2014.7044086
https://doi.org/10.1109/VLHCC.2017.8103497
https://doi.org/10.1109/VLHCC.2017.8103497
https://doi.org/10.1109/ISIT.2013.6620675
https://doi.org/10.1109/VLHCC.2017.8103465
https://doi.org/10.1002/j.2168-9830.1998.tb00359.x
https://doi.org/10.1002/j.2168-9830.1998.tb00359.x
https://doi.org/10.1109/VLHCC.2014.6883051
https://doi.org/10.1109/VLHCC.2014.6883051
https://www.tib.eu/en/search/id/BLCP%3ACN084897952/Difficulties-Facing-Students-in-Learning-Computer/
https://www.tib.eu/en/search/id/BLCP%3ACN084897952/Difficulties-Facing-Students-in-Learning-Computer/
https://doi.org/10.1023/A:1015362608943
https://doi.org/10.1145/2503859.2503871
https://doi.org/10.1109/VLHCC.2011.6070398
https://doi.org/10.1145/792548.611956
https://doi.org/10.1145/792548.611956
https://vpn.utm.my/docview/1416417332?accountid=41678
http://www.jstor.org/stable/1175860
http://www.jstor.org/stable/1175860
http://hepgjournals.org/doi/10.17763/haer.57.1.j463w79r56455411
http://hepgjournals.org/doi/10.17763/haer.57.1.j463w79r56455411
https://doi.org/10.1109/VLHCC.2015.7357237

	Abstract
	1 Introduction
	2 Related Work
	3 METHODOLOGY
	3.1 Data Collection
	3.2 Data Analysis

	4 Findings and Discussion
	5 Validation of the Results
	5.1 Threats to Validity

	6 Conclusion
	Acknowledgments
	References

