
How Does the Shift to GitHub Impact Project
Collaboration?

Luiz Felipe Dias1 Igor Steinmacher1 Gustavo Pinto2 Daniel Alencar da Costa3 Marco Gerosa4
1UTFPR, Brazil 2IFPA, Brazil 3UFRN, Brazil 4USP, Brazil

luizdias@alunos.utfpr.edu.br, igorfs@utfpr.edu.br, gustavo.pinto@ifpa.edu.br, danielcosta@ppgsc.ufrn.br, gerosa@ime.usp.br

Abstract—Social coding environments such as GitHub and
Bitbucket are changing the way software is built. They are
not only lowering the barriers for placing changes, but also
making open-source contributions more visible and traceable.
Not surprisingly, several mature, active, non-trivial open-source
software projects are switching their decades of software history
to these environments. There is a belief that these environments
have the potential of attracting new contributors to open-source
projects. However, there is little empirical evidence to support
these claims. In this paper, we quantitatively and qualitatively
studied a curated set of open-source projects that made the
move to GitHub, aiming at understanding whether and how
this migration fostered collaboration. Our results suggest that
although interaction in some projects increased after migrating
to GitHub, the rise of contributions is not straightforward.

I. INTRODUCTION

Along with the growth of open-source software (OSS), a

wide range of social coding environments were created to

support software development. These environments, which

are particularly rich when it comes to collaboration features,

changed the way that software developers communicate in,

collaborate at, and contribute to OSS projects [1]. This is

influenced by their contribution flow, the so-called pull-request

(PR) model [2]. Developers clone (or “fork”) the project,

implement changes, and send the modifications back to the

original project through a pull-request, which is evaluated by

and discussed with project members.

Social coding environments helped to increase the number

of contributors to OSS [2], [1], [3]. Gousios et al. [4] observed

that in January 2016, 135,000 open-source projects hosted

on GitHub, received more than 600,000 PRs. In addition,

an increasing number of software developers are becoming

open-source contributors [5], even though some of them do

not wish to become active members [3]. This fact introduced

the recurring belief that social coding environments foster

engagement and collaboration within a project.

In this study, we investigate whether this growth in pop-
ularity can also be translated to contributions. Therefore, we

selected a curated set of popular open-source projects that used

to be hosted on non-collaborative coding environments (e.g.,
Sourceforge) and moved to GitHub. Using data acquired from

their repositories and a survey, we analyzed whether the mi-

gration process attracted more contributors and contributions.

Among the collaborative coding environments, we focused

on GitHub because of its popularity (it contained over 35

million repositories and more than 14 million contributors).1 In

addition, GitHub is often used in recent software engineering

studies (e.g., [3], [6], [7], [8]).
The main contributions of this paper are: (1) comparing

quantitatively and qualitatively the contributions performed

in popular OSS projects, before and after their migration to

GitHub; (2) surveying project developers in order to cross-

validate and further investigate the results; (3) making the

dataset used in this study available.2

II. RELATED WORK

Studying collaborative coding environments is an emerging

direction. In this section we describe the studies overlapping

with the scope of our work.

Github Social Features. Marlow et al. [9] found that devel-

opers use signals (skills, relationships, etc.) from the GitHub

profile to form impressions of users and projects. Dabbish et
al. [10] noticed that the number of watchers of a project serves

as a social cue to attract developers. In sequence, Tsay et al. [8]

found that both technical and social information influence

the evaluation of contributions. McDonald and colleagues [5]

found that the features provided by GitHub are cited as one

of the main reasons to the increasing number of contributions

and contributors to a project. These studies focused on col-

laborative coding environment features as drivers to attract

developers and to generate signals to form impressions about

projects and developers. However, they do not investigate how

the migration to social coding environments influences the

onboarding of new members and the number of contributions

received by the projects.

Influence of Social Factors. Some studies focus on analyz-

ing the influence of social factors in the retention of new

developers [11], [12], [13]. These studies analyzed social

networks (e.g., mailing lists) in order to understand (1) with

whom new developers collaborate, and (2) how the networks

evolve. Although these studies focus on the relationship of

social aspects and onboarding of contributors, they do not

analyze social coding environments as contribution drivers.

III. RESEARCH METHODOLOGY

In this section we state our research question (RQ) (§ III-A),

the subjects under investigation (§ III-B), and the research

approach (§ III-C).

1https://github.com/about/press
2https://github.com/fronchetti/ICSME-ERA-Dataset

2016 IEEE International Conference on Software Maintenance and Evolution

978-1-5090-3806-0/16 $31.00 © 2016 IEEE

DOI 10.1109/ICSME.2016.78

473

A. Research Question

We investigated the following overlooked research question:

RQ. How does the shift to GitHub impact projects’ collabora-

tion?

By projects’ collaboration, we compared (1) the number of

newcomers, active contributors, and contributions, (2) number

of PRs received, and (3) number of issues created.

B. Subjects

For evaluation, we used a variety of software projects that

migrated to GitHub: jenkins, ruby, rails, jquery,

mongodb, and joomla!. Table II summarizes the character-

istics of the studied projects. Some projects lack issues data

because, although hosted on GitHub, they do not use GitHub’s

issue tracking system.

We selected these projects because they are: non-trivial
(most of them with hundreds of thousands lines of code and

use more than one programming language); well-established
(with an average of 12 years old); active (they received an

average number of 64 PRs per month and an average of 429

contributions in the last 12 months performed by 500 different

contributors) and diverse (projects from different domains and

written in different programming languages).

C. Research Approach

We conducted a two-step approach, investigating data and

meta-data of the studied projects and questionnaires.

1) Mining Subjects: We used mining software repositories

techniques to collect the following projects’ characteristics:

• The number of newcomers that have joined the project

over time, number of contributions (i.e., commits) that

have been performed to the project, the number of active

contributors in a given time window.

• The number of PRs that are either opened, closed, or

merged.

• The number of issues that are either opened or closed.

Next, we compared each collected metric per month before

and after the migration of the studied subjects. To perform

the comparisons, we used Mann-Whitney-Wilcoxon (MWW)

tests [14] and Cliff’s delta effect-size measures [15]. Both

statistical tools are non-parametric, which means they do not

require our collected metrics to follow a normal distribu-

tion. We use MWW tests to compare if two distributions

do come from the same population (α = 0.05). We used

Cliff’s delta to verify how often values in one distribution

are larger than values in another distribution. The higher the

value of the Cliff’s delta, the greater the difference between

distributions. A positive Cliff’s delta shows how larger are

the values of the first distribution, whilst a negative Cliff’s

delta shows otherwise. We use the thresholds provided by

Romano et al. [16]: delta < 0.147 (negligible), delta < 0.33
(small), delta < 0.474 (medium), and delta >= 0.474 (large).

2) Surveying Subjects: After collecting the data from the

repositories, we designed our survey not only to cross-validate

our findings from the repositories but also to gain further

insights from the communities. Our survey is based on the

recommendations of Kitchenham et al. [17]. Before sending

the final survey, we conducted a pilot study and rephrased our

questions whenever necessary.

Survey Questions. We designed the following three general

open questions:

Q1 What motivated the project to move to Github? How do

you evaluate the benefits of this migration?

Q2 Does this snapshot make sense? Did you find any incon-

sistency on the data?

Q3 Do you have any internal policy to promote/attract/retain

newcomers? If so, do they succeed?

In addition to these questions, we also asked specific

questions. The specific questions were aimed at revealing the

reasons behind particular trends observed in each figure, for

instance, why did the number of contributors decrease in a

given time window, or why did the project attracted so much/so

few external contributors? When relevant, we highlight them

in Section IV.

Survey Application. We sent out the questionnaire by means

of issues on the repositories. This approach worked as an

effective feedback loop between the researchers and the re-

spondents, making it easy to further clarify questions. For the

repositories that do not use the issue tracking system, we sent

the questionnaire by means of their official mailing lists.

During a period of over 30 days, we received 4 answers,

although only 3 of them were analyzed. One was discarded

because it did not provide any valuable insight. In total, we

accumulate 16 messages from 11 participants. To compile the

survey results, we qualitatively analyzed the answers following

open-coding and axial-coding procedures [18].

IV. RESEARCH RESULTS

We organize our findings in terms of Contributions and

Contributors (§ IV-A), PRs (§ IV-B), and Issues (§ IV-C).

A. Contributors and Contributions

To provide an overview of our dataset, Figure 1 presents

a temporal perspective of different characteristics. The dotted

green line represents the number of newcomer contributors that

successfully placed at least one source code contribution to the

project repository. The dotted blue line represents the number

of contributions performed during the software lifetime. The

red line represents the number of active contributors in the

particular time window. Contributions can be performed in

terms of commits or PRs. The vertical dotted line indicates

when the project migrated to GitHub. Finally, all of our

obtained statistical results (p− values and effect-size values)

can be found in Table II.

Recruiting Newcomers. We observed that some projects

attacked a significant number of contributors right after the

project moved to GitHub, such as rails (p−value = 0.001

474

TABLE I
THE DIVERSITY OF OUR TARGET APPLICATIONS. LOC MEANS LINES OF CODE. MAIN PL MEANS MAIN PROGRAMMIN LANGUAGE. PR MEANS

PULL-REQUESTS. AGE IS PRESENTED IN YEARS.

Pro
jec

ts

Dom
ain

Lau
nc

he
d

in

M
igr

ate
d

in

M
ain

PL

LoC Com
mitt

er
s

Com
mits

Iss
ue

s

PR Age

jenkins Continuous Integration Server Nov. 2006 Nov. 2010 Java 191K 556 21K — 2K 10
ruby Programming language Jan. 1998 Feb. 2010 C and Ruby 1,001K 95 40K — 1K 18
rails Web-application framework Nov. 2004 Apr. 2008 Ruby 203K 3K 53K 8K 15K 12
jquery JavaScript library Mar. 2006 Apr. 2009 JavaScript 41K 263 5K 838 2K 10
mongodb NoSQL database Oct. 2007 Jan. 2009 C++ 2,104K 324 31K — 1K 9
joomla! Content Management System Aug. 2005 Sep. 2011 PHP 610K 726 26K 2K 8K 11

Ruby Jenkins Rails

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

0

5

10

15

20

25

30

35

#
C
o
m
m
it
te
r
/
N
e
w
c
o
m
e
r

M
ig
ra
te
d

0

100

200

300

400

500

600

700

800

#
C
o
n
tr
ib
u
ti
o
n
s

Contribution

Committer

Newcomer

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

0

5

10

15

20

25

30

35

40
#
C
o
m
m
it
te
r
/
N
e
w
c
o
m
e
r

M
ig
ra
te
d

0

50

100

150

200

250

300

350

400

#
C
o
n
tr
ib
u
ti
o
n
s

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

0

50

100

150

200

250

300

#
C
o
m
m
it
te
r
/
N
e
w
c
o
m
e
r

M
ig
ra
te
d

0

200

400

600

800

1000

1200

#
C
o
n
tr
ib
u
ti
o
n
s

JQuery MongoDB Joomla!

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

0

5

10

15

20

#
C
o
m
m
it
te
r
/
N
e
w
c
o
m
e
r

M
ig
ra
te
d

0

50

100

150

200

250

#
C
o
n
tr
ib
u
ti
o
n
s

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

0

10

20

30

40

50

#
C
o
m
m
it
te
r
/
N
e
w
c
o
m
e
r

M
ig
ra
te
d

0

200

400

600

800

1000

#
C
o
n
tr
ib
u
ti
o
n
s

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

0

10

20

30

40

50

60

70

#
C
o
m
m
it
te
r
/
N
e
w
c
o
m
e
r

M
ig
ra
te
d

0

100

200

300

400

500

600

700

#
C
o
n
tr
ib
u
ti
o
n
s

Fig. 1. A temporal perspective of the number of contributions and contributors that on boarded in the project. The vertical dashed line in each chart
indicates when the studied project have migrated to github.

TABLE II
STATISTICAL RESULTS. GREEN CELLS INDICATE LARGE EFFECT SIZE,

WHEREAS YELLOW CELLS INDICATE MEDIUM EFFECT SIZE.

Projects Newcomers Contributors Contributions
p-value delta p-value delta p-value delta

jenkins 0.001 0.131 2.66−06 0.147 0.138 -0.031

ruby 0.489 -0.015 5.16−07 0.106 2.20−16 0.478

rails 0.001 0.460 2.20−16 0.633 2.20−16 0.635
jquery 0.060 0.160 0.001 0.144 0.035 0.066

mongodb 0.178 0.143 1.41−07 0.403 2.20−16 0.710

joomla! 0.006 0.206 2.20−16 0.299 0.378 -0.018

with a medium delta = 0.46). In the rails project, the

number of newcomers raised from 15 (before migration) to 67

(three months after migrating). On average, rails received

872 different newcomers per year. When asked why this

happens, rails members suggested that one of the reasons

are the GitHub’s social features: “It is easier to contribute.
Traditional workflow of sending an email with the patch to an
obscure mailing list while works, is not very user-friendly.”

One jenkins team member corroborates this finding: “I
think most projects that migrate there from other platforms
obtain more contribution due to the basic popularity of GitHub
and visibility.”

Repelling Newcomers. On the other hand, other projects

recruited fewer newcomers. For instance, ruby, in about two

decades of software development, attracted only 96 different

contributors (a rate of 5 newcomers per year). Since this

particular project did not answer our survey, we hypothesize

that this slow pace in attracting source code contributors might

be related to the complexity of its internal code or domain.

Another reason is that the ruby programming language

became popular around the 2000s, whereas GitHub was

launched only in 2008 and became popular around 2011.

Thus, the ruby project did not experience the benefits of

GitHub’s social features during its rise of popularity. Fi-

nally, the contribution guideline followed by ruby develop-

ers do not seem to facilitate contributions: “Pull-request to
https://github.com/ruby/ruby is acceptable for tiny fixes. But
PRs which need discussions will be simply ignored.”3

Dealing With Newcomers. In our survey, we asked if the

project has any internal policy to deal with newcomers.

However, none of the respondents mentioned such kind of

policy, as one respondent said: “Our team don’t have any
strong policy other than: be nice with the newcomers, give
them the attention that they deserve, give them good feedback
and try to motivate them to solve their own problems.” A

jquery respondent mentioned that, instead of an internal

3https://bugs.ruby-lang.org/projects/ruby/wiki/HowToContribute

475

policy, they use conferences and summits as means to attract

new contributors: “...developers summits and organic conver-
sation in person have played the biggest roles in attracting
newcomers.” Still, another team member raised the fact that

in the end of 2012, when the jquery project faced a burst

of newcomers, they held their first developer summit.

The migration to GitHub may have an impact on the rise
of contributions. We could find evidence that the migration

to GitHub is related to the increase of contributions of the

majority of the studied projects. We observed that rails,

mongodb, and ruby projects achieved large effect-sizes

when we compare the number of contributions after the

migration (delta = 0.635, delta = 0.710, and delta = 0.478,

respectively). As for the number of contributors, we observed

that rails and mongodb projects also achieved signifi-

cant effect sizes after the migration (large difference with

delta = 0.633 and medium difference with delta = 0.403,

respectively). Nevertheless, we did not observe a substantial

impact to the remaining projects. Overall, we observed that

the migration to GitHub may play a major role to the rise

of contributions in some of the studied projects (2 out of 5 in

terms of contributors and 3 out of 5 in terms of contributions).

However, there might be other project related factors (e.g.,

developer responsiveness and effective coordination) that may

be hindering the increase of contributions in some projects.

This was mentioned by one jenkins developer “It’s going
to be hard to untangle what factor contributed how much.”
[to the amount of contributions received by the project].

B. Pull-Requests
As regarding PRs usage, Figure 2 shows the number of PRs

opened, closed, and merged over time.

Jenkins Rails

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

0

10

20

30

40

50

60

#
O
c
c
u
rr
e
n
c
e
s

Opened

Closed

Merged

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

0

50

100

150

200

250

300

350

400

#
O
c
c
u
rr
e
n
c
e
s

Opened

Closed

Merged

Mongo JQuery

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

0

10

20

30

40

50

#
O
c
c
u
rr
e
n
c
e
s

Opened

Closed

Merged

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

0

20

40

60

80

#
O
c
c
u
rr
e
n
c
e
s

Opened

Closed

Merged

Ruby Joomla!

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

0

10

20

30

40

50

60

#
O
c
c
u
rr
e
n
c
e
s

Opened

Closed

Merged

20
11

20
12

20
13

20
14

20
15

20
16

20
17

0

100

200

300

400

#
O
c
c
u
rr
e
n
c
e
s

Opened

Closed

Merged

Fig. 2. Number of PRs opened (red lines), closed (blue dotted lines), and
merged (green dotted lines).

The rise of PRs is not guaranteed. Since PR is usually the

main channel to provide changes to GitHub hosted projects,

one might expect that the number of PRs increases over time.

However, our results suggest that this belief only holds for

the ruby project. In this project, the number of PRs increased

about 4 times from 2012 to 2016. In contrast, projects jquery
and mongodb present a reduction on the overall number of

PRs. This is, however, not related to a decrease in the overall

number of contributions, as we saw in Figure 1. One reason

that might explain this behavior is that core team members

are not required to submit code changes through PRs; since

they have write access to the repository, they can push changes

directly to the main branch.

Several PRs are submitted, few got merged. Notwithstanding,

as aforementioned, the ruby project uses PRs only for tiny

fixes. As a result, we found that only 3 out of the 1,223

proposed PRs got merged. Projects mongodb and jquery
present a similar behavior (9.86% and 8.20% of the PR got

merged, respectively).

We manually investigated the ruby PRs that got merged

and found that two of them were, indeed, tiny fixes (PR

#557 and #194), but the third one (#125) was not (it has

379 additions and 9 deletions). However, the latter PR was

performed by a ruby core developer, which usually does not

need to follow the PR review cycle.

Steady flow of PRs. Although with variances, projects

jenkins and rails present a steady flow of PRs contribu-

tions. On average, the rails project receive 2,072 PRs per

year (variation: 1,478.73), whereas jenkins received 432.4

PRs per year, which a variation of 275.80. Also, these two

projects present the highest rate of merged PRs, which might

explain the steady flow of PR contributions, (i.e., if core team

members are accepting external contributions, it is likely that

external contributors will keep contributing).

C. Issues

Figure 3 shows the number of issues created and closed

during the lifetime of the analyzed projects. This figure shows

the projects that use GitHub’s issue tracking.

Rails JQuery

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

0

100

200

300

400

500

600

700

#
O
c
c
u
rr
e
n
c
e
s

Opened

Closed

20
14

20
15

20
16

20
17

0

20

40

60

80

100

120

#
O
c
c
u
rr
e
n
c
e
s

Opened

Closed

Joomla!

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

20
15

20
16

20
17

0

50

100

150

200

#
O
c
c
u
rr
e
n
c
e
s

Opened

Closed

Fig. 3. Number of issues closed (blue dotted lines) and opened (red lines).

There is a peak in the number of issues right after the

project start using GitHub. This happens with the rails and

jquery projects. On average, the rails project has a rate

476

of 136 new issues per month. In comparison, a total of 735

issues were created in the first month. A similar trend, but

on a lower scale, is observed in jquery. We believe this

happens because developers need to migrate their issues from

other issue tracking system to GitHub. Yet, we hypothesize

that not all projects are using GitHub issue tracking systems

in order to avoid the initial effort required. On the other hand,

joomla! presents a distinct scenario. During 2011 and 2014,

there is a slow flow of issues. However, it peaks after mid-

2014. Analyzing these issues, we found that in the second half

is in fact related to the migration process from another issue

track system, which corroborates to our hypothesis.

V. DISCUSSIONS

Lessons Learned. First, we observed that the rise of contribu-

tions after the migration to GitHub is not straightforward. In-

deed, one project faced a decrease in the flow of contributions.

So the belief that GitHub itself will be effective in attracting

new contributors to OSS projects does not capture the whole

picture, although some project members agree that GitHub’s

features increase project visibility. Second, we found that

little effort was placed on policies for attracting or retaining

newcomers. Some projects use conferences and summits to

attract new contributors. Third, we found that some projects

have a high rate of PRs closed and not merged. Thus, if the

project is not intended to use PRs, team members should state

this upfront (i.e., in the README file). Therefore, contributors

willing to contribute will not spend their time providing PRs.

Fourth, project members willing to move to GitHub might

expect an overhead on managing issues migrated from other

issue tracking system. Thus, project members should carefully

consider this option.

Threats to Validity. One might argue that we analyzed too few

open source projects and, therefore, it limits the generalization

of our results. However, the selected open-source projects are

diverse in terms of domain, size, and age. Another threat to

validity is related to how we disambiguate commit authors.

Since some of the analyzed projects moved from SVN-based

environments, which do not distinguish author from commit-

ter, we used email address to disambiguate commit authors.

However, SVN does not require one to inform his email. Also,

one contributor might use different emails to perform different

contributions. These facts have the potential of creating false-

positive contributors, i.e., the same contributor is counted more

than once. To mitigate this threat, we used a disambiguate

technique proposed by Bird et al. [19]. Also, we asked team

members whether our data make sense. Finally, we used

statistical methods to mitigate the threats of generalizing data

based on our personal hypothesis.

VI. CONCLUSIONS

Social coding environments are changing the way software

is built. These environments leverage social features that make

contributions to software much more visible. Along with their

popularity and these key features, these environments are being

responsible for attracting new contributors to open-source

projects hosted on them. In this paper, we studied whether this

belief holds true for the analyzed projects. Among the results

of our study, we found that although some projects increased

interaction after migrating to GitHub, the rise of contributions

is not guaranteed.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their useful com-

ments. This work is sponsored by FAPESP (2014/21899-4),

NAPSoL, CNPq (477831/2013-3), and PROPESQ/IFPA.

REFERENCES

[1] R. Pham, L. Singer, O. Liskin, F. Figueira Filho, and K. Schneider,
“Creating a shared understanding of testing culture on a social coding
site,” in ICSE, 2013, pp. 112–121.

[2] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study of the
pull-based software development model,” in ICSE, 2014, pp. 345–355.

[3] G. Pinto, I. Steinmacher, and M. Gerosa, “More common than you think:
An in-depth study of casual contributors,” in SANER, 2016, pp. 112–123.

[4] G. Gousios and A. Bacchelli, “Work practices and challenges in pull-
based development: The contributor’s perspective,” in ICSE, 2016, pp.
358–368.

[5] N. McDonald and S. Goggins, “Performance and participation in open
source software on github,” in CHI, 2013, pp. 139–144.

[6] I. Moura, G. Pinto, F. Ebert, and F. Castor, “Mining energy-aware
commits,” in MSR, May 2015, pp. 56–67.

[7] B. Ray, D. Posnett, V. Filkov, and P. Devanbu, “A large scale study of
programming languages and code quality in github,” in FSE, 2014, pp.
155–165.

[8] J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of social and technical
factors for evaluating contribution in github,” in ICSE, 2014, pp. 356–
366.

[9] J. Marlow, L. Dabbish, and J. Herbsleb, “Impression formation in online
peer production: Activity traces and personal profiles in github,” in
CSCW, 2013, pp. 117–128.

[10] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in
github: Transparency and collaboration in an open software repository,”
in CSCW. New York, NY, USA: ACM, 2012, pp. 1277–1286.

[11] M. Zhou and A. Mockus, “Who will stay in the floss community? mod-
elling participant’s initial behaviour,” IEEE Transactions on Software
Engineering, vol. 41, no. 1, pp. 82–99, 2015.

[12] N. Ducheneaut, “Socialization in an open source software community:
A socio-technical analysis,” CSCW, vol. 14, no. 4, pp. 323–368, Aug.
2005.

[13] C. Bird, “Sociotechnical coordination and collaboration in open source
software,” in ICSM. Washington, DC, USA: IEEE Computer Society,
2011, pp. 568–573.

[14] D. Wilks, Statistical Methods in the Atmospheric Sciences, ser.
Academic Press. Academic Press, 2011. [Online]. Available:
https://books.google.com.br/books?id=IJuCVtQ0ySIC

[15] R. Grissom and J. Kim, Effect Sizes for Research: Univariate and
Multivariate Applications. Taylor & Francis, 2005.

[16] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek, “Should we
really be using t-test and cohen’s d for evaluating group differences
on the nsse and other surveys?” in Annual meeting of the Florida
Association of Institutional Research, 2006.

[17] B. Kitchenham and S. Pfleeger, “Personal opinion surveys,” in Guide
to Advanced Empirical Software Engineering, F. Shull, J. Singer, and
D. Sjberg, Eds. Springer London, 2008, pp. 63–92.

[18] A. Strauss and J. M. Corbin, Basics of Qualitative Research : Techniques
and Procedures for Developing Grounded Theory, 3rd ed. SAGE
Publications, 2007.

[19] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan, “Min-
ing email social networks,” in Proceedings of the 2006 international
workshop on Mining software repositories. ACM, 2006, pp. 137–143.

477

