
Visual programming and automatic evaluation of
exercises: an experience with a STEM course

Leônidas de Oliveira Brandão
Institute of Mathematics and Statistics

University of São Paulo, USP
São Paulo – Brazil

leo@ime.usp.br

Yorah Bosse
Department of Computing

Federal Univ. of Mato Grosso do Sul, UFMS
Ponta Porã – Brazil

yorah.bosse@ufms.br

Marco Aurélio Gerosa
Institute of Mathematics and Statistics

University of São Paulo, USP
São Paulo – Brazil
gerosa@ime.usp.br

Abstract—Programming capabilities are important to the new
professionals. Although several initiatives all over the world
haves been proposed for teaching programming to people at all
levels. Many undergraduate students still fail in the
programming courses. Proposed strategies have included visual
programming and automatic evaluation of exercises.
Nevertheless, there is still a lack of knowledge about students’
perceived difficulties in using these strategies in practice: that is,
their challenges to learning how to program. In this paper, we
report a study aimed at understanding these difficulties and
strategies in a STEM course. We used an environment
comprising a visual programming tool to introduce algorithms,
iVProg with iAssign, and the virtual programming lab (VPL) to
introduce programming in C, both with automatic assessment
integrated to Moodle. We report quantitative and qualitative
results and future directions. Teachers and tool designers can
leverage these results to better support programming learning.

Keywords—programming; learning; novice; automatic
evaluation; difficulty

I. INTRODUCTION

The software industry achieved 40.1% of the total amount
of 2015 investments [1], [2], as pointed out by market
researchers, such as MoneyTree1. However, many business fail
before reaching their potential in the market; one cause is
software development failures [1]. Therefore, a major
challenge for modern society is preparing new generations of
software developers, which means people skilled in algorithms
and computer programming. Governments and large
companies are attentive to promote initiatives, as in Scotland,
Israel, New Zealand and South Korea [3]. These projects aim
to encourage students to learn logic and programming since
elementary school.

However, the area still faces many problems. Most evident
is the high failure rates of students in their first programming
course, usually during the first year of STEM (Science,
Technology, Engineering, and Mathematics) courses.

This first programming course comprised about 28% of
failures and dropout [4], [5]. In the University of São Paulo
(USP) - Brazil, the rate of failure and dropout for the last five
years is about 29%. More than 25% of the students try more
than once to pass [5]. Students demonstrate difficulty in
learning a new and formal syntax and abstractions [6]. While
they can understand the syntax and semantics of commands,
they cannot combine them into a single program [7]. Beginners

1https://www.pwcmoneytree.com/

tend to have superficial knowledge, and fail when they need to
apply it [8]. Another factor that may contribute to this index is
the teacher's workload. At the University of São Paulo, in the
last 5 years, the average number of students per class has been
59 for the introduction to programming courses [8], which
causes delayed feedback.

To assist in teaching and learning how to program, several
researchers propose the use of visual programming [9], [10]
and automatic evaluation systems [11]. With visual
programming, students use flowcharts, programming structures
blocks, and other visual aids to assist in the algorithm
construction process. Automatic evaluation systems give
immediate feedback to students about whether their algorithms
or programs are working properly. Without such automation,
this feedback would be expensive and time-consuming with
large classes and many exercises.

The goal of this paper is to understand the difficulties
perceived by students from a STEM course in learning how to
program using visual programming and automated evaluation.
These techniques were applied in course for astronomy and
geophysics majors. The first research question that guided our
study is RQ1: How do students perceive the use of visual
programming and automated evaluation?

This study was conducted in the second semester of 2015.
The class had 46 enrolled students, with 35 effective students
going to classes. Of these, 10 (28.6% of the effective) were
approved and 9 (25.7%) took the recovery test. Thus, 44.7% of
the students failed, even with the use of the visual
programming and automatic evaluation techniques.

Given this result, we decided to deepen the study, seeking
to better understand the difficulties faced by programming
students from STEM courses, what strategies they adopted to
overcome them and how they use the tools for their studies.
Thus, a second research question emerged to guide the second
phase of our study: RQ2: What are student’s difficulties, and
what strategies do they adopt to overcome them? This second
phase was conducted specifically with the students that were
not approved in the regular timing.

This article contributes to the literature the elicitation of
positive and negative aspects of using visual programming and
automatic evaluation tools in introductory programming
courses for students in STEM courses. Moreover, it also shows
the difficulties and strategies used to solve them.

978-1-5090-1790-4/16/$31.00 ©2016 IEEE

II. RELATED WORK AND TOOLS USED

A. Difficulty in learning how to program

“Programming is a complicated business” [12]. This is
evidenced by the high percentage of fail presented in the
Introduction to Programming courses [4], [5]. Beaubourg and
Mason studied the reasons for high rates, checking, among
other factors, reduced problem resolution skills, use of
laboratories provided for homework, and students entering
directly into programming, without going through the analysis
and design steps [13]. Initiatives to bring programming to
schools help to develop skills needed for better performance. In
his study, Hagan argues that having program experience before
starting a programming course helps in better performance
[14].

There are several skills needed to learn how to program, the
more obvious being the ability to solve problems and
fundamental knowledge of math. Besides these, Jenkins says it
is necessary to know to use the computer to create the program,
compile, test, and correct bugs [12]. However, it is fundamental
to deliver to the market professionals who have these skills
because “computers are useless without programs and
programmers to develop them” [12].

Learning style and motivation are factors that influence the
process of learning how to program [12]. Understanding the
process of learning one’s first programming language can help
in the task of creating more effective learning environments
[15], thereby reducing the difficulties encountered by
beginners. Several researchers invest time in finding
information about these difficulties. A study shows that syntax
error is one of the barriers to programming novices, delaying
the feedback provided to the student about the logic of the code
developed [16].

Ribeiro et al. investigated the differences between using
textual and visual programming environments in the
introduction of computer programming [17]. After analyzing
the data collected from NASA TLX, activity log, and survey,
they concluded that visual programming is a good model for
teaching algorithms and programming.

Lahtinen et al. conducted a survey at six universities in five
countries, showing that students are very confident in
independent studies; individualized study was found most
effective when compared to the exercise sessions and practical
classes. The result was the opposite when respondents were
teachers [8].

Some support programming learning systems are used by
many teachers to try to ease the difficulties faced by students.
Scratch is an example of such systems. It enables the student to
program with a visual model, presenting programming with
blocks [18]. According Malan and Leitner, Scratch puts the
focus on the logical problem and not in the syntax [18]. In a
study with students from 5th grade primary school, who used
Scratch, Kalelioglu and Gülbahar found that in the process of
solving problems, half of the students had difficulties and the
other not. Most tried to solve their problems in different ways
[19]. Beyond Scratch, there are other systems such as Alice
[20], Logo [21] , iVProg [22], among others.

B. iVProg

iVProg is an environment to support learning programming
using the Visual Programming (VP) paradigm. This project
started in 2009 [23]. Figure 1 presents the main interface of
iVProg’s current version (in Java - there is another in HTML5).
In the visual programming paradigm, the students mainly use
the mouse to construct the algorithm [24].

Fig. 1. The iVProg screenshot with the code for the calculation of Factorial
(A). Request for a new input (B) and the results printing for previous inputs

(C).

The version of iVProg adopted is an applet Java, working
as an interactive Learning Module (iLM). An iLM is an
educational system that can be integrated with any Learning
Management System (LMS) that implements some special
communication functions [25]. Moodle is an example of an
environment prepared to receive iLM [26], [27]. Furthermore,
iVProg can be used as an iAssign applet and it has an
automatic evaluator system based on test cases. Basically, the
outputs generated by the algorithm built with iVProg is
compared to the outputs provided by the teacher [17]. The
teacher-author prepares a set of inputs and their correspondent
outputs. When the students submit their solution, the input set
is used with the students algorithm and its outputs are
compared against the correspondent test case [17].

In a prior experiment, the use of iVProg increased the
presence in classes by more than 3.3%, and increased students’
average grades by more than 0.53 points [27].

C. Virtual Programming Lab – VPL

Virtual Programming Lab (VPL) is also a Moodle plugin,
developed at the University of Las Palmas Gran Canaria –
ULPGC2. Its main features provide an integrated environment
to teach and learn programming, similar to iAssing/iVprog.
VPL offers an editor to the learners entering their program and
use test cases to automatically validate their solutions [28]

VPL is independent of the programming language. It is
only necessary that the server provides the correspondent
compiler. The tool provides syntax highlighting for several
languages, such as C, Java, and Python [28]. Figure 2 presents

2 Virtual Programming Lab – VPL. URL:
http://vpl.dis.ulpgc.es/index.php/about

the VPL editor in a former version (this one as an applet Java).
On the figure’s left side, one can see the Java editor with C
code, and on the right side the evaluation result, indicating the
presence of 3 case tests. The immediate feedback usually
stimulates the learners to keep trying, until they reach the
perfect score.

Fig. 2. VPL layout (with Java) - editor with syntax highlighting and the
evaluated code.

The teacher-author can limit the time for submission of
solutions, as well as the number of submissions for the same
exercise. Furthermore, teachers have the option to prevent
pasting of external texts into the editor area. Another
interesting VPL feature allows viewing groups of similar
codes.

During the first phase of this study, we used VPL with Java
to be coherent with the Java version of iVProg. In the second
phase, since the focus was C programming, we moved to the
current version of VPL, using HTML5 related technologies. In
fact, figures 2 and 3 present the same content, but with VPL
Java and HTML5 interface, respectively.

D. The NASA-TLX Protocol

The NASA-TLX protocol was proposed to verify the
perceived workload while someone performs a task [27]. It
provides quantitative data for the overall workload assessment,
based on the weighted average of six scales: mental demand,
physical demand, temporal demand, level of achievement, level
of effort, and level of frustration [29]. The NASA-TLX was
used to evaluate systems interface and to measure the user's
perception. It was applied in two steps after the users
completed their work.

In the first step, the user answered, on a scale of 0 to 100,
six questions related to the six aforementioned dimensions
[14]. The six questions were:

1. Mental Demand (MD): How much mental and perceptual
activities were required (e.g., thinking, deciding,
calculating, remembering, observing, searching, etc.)? Was
the task easy or difficult, simple or complex?

2. Physical Demand (PD): How much physical effort was
required during the activity (for example, clicking, typing,
pushing, pulling, controlling, activating, etc.)? Was the
task fast or slow, light or heavy?

3. Temporal Demand (TD): How much time pressure was felt
in the task execution pace? Was the pace slow and
leisurely, or fast and frenetic?

4. Performance (P): How successful do you consider yourself
when performing the task objectives? Were you pleased
with your performance in task fulfillment?

5. Effort (E): How hard did you have to work (mentally and
physically) to reach your level of performance?

6. Frustration (F): How insecure, discouraged, angry,
stressed, or annoyed, versus secure, encouraged, satisfied,
relaxed, or complacent, did you feel during the task?

Fig. 3. VPL layout (with HTML5) - editor with syntax highlighting and the
evaluated of the code.

In the second step, all 6 scales were presented to the user in
pairwise basis, resulting in 15 contests. For each pair, the user
decided between the pair, i.e., considering the two options, they
decided which factor had the greater influence during the task
under screening. After all the pairwise contests, the weights
defined at the first step were used to compute the perceived
workload, by the sum of the products between each level and
their respective weights [14].

III. METHODOLOGY

In this study, we used a mixed-methods approach, aiming
for a triangulation strategy. We combined qualitative and
quantitative data, questionnaires, and interviews. The study
focused on a mandatory introduction to programming course
(PROG1), and was divided into two distinct phases. The first
one occurred during the semester, and the second phase
occurred with a small group of students from the same course.

A. Phase 1: quantitative analysis on automatic
assessment
The adopted process for the first phase is shown in figure 4.

It was conducted during the regular mandatory course at USP,
regularly cited as the most prestigious university in South
America.

The course had 46 students enrolled, and 35 students
effectively participating in the classes. It was offered to
freshmen in STEM courses to introduce them to programming
concepts. It was a semester-long course, lasting 18 weeks, with
2 classes per week of 2 hours each. All classes took place in a
computer laboratory, with one student per computer. During
each class, typically a reduced set of problems were proposed,
and the students were encouraged to find the algorithm that
solved the problem, using VPL or iVProg. During the first 7
weeks, iVProg was adopted as a bridge for introducing C
language with VPL. After week 8, when topics of function and
strings were introduced, only VPL was used.

Fig 4. The first phase process.

Thirty different exercises were considered, 19 of them
being presented twice to students: first with iVProg, then under
C with the VPL. Since visual programming is considered less
demanding to students, it was used as bridge to reduce the
students' difficulties with the C programming language. These
exercises were not mandatory, but aimed to stimulate them to
try hard. Nevertheless, the exercises could add up to 1 point to
the student final grade.

To reduce additional cognitive workload and teacher
workload, Moodle was integrated with the plugins VPL and
iAssign [28] [26]. iAssign was used with a particular iLM, the
iVProg [17].

In order to better understand the students' perception while
using iVProg and VPL, the NASA-TLX questionnaires were
applied to assess the workload when using both iVProg and
VPL. This instrument was not to be used as a comparison
between both technologies, since iVProg was used at first by
the students to conceive of the algorithm that solves the
problem. With this solution, they used VPL to master the C
syntax. In addition, a final questionnaire containing objective
and open questions was used to verify the students' perception
about the course and the technologies used.

At the end of the semester, the students that failed, could
take a final exam. If their grade on the exam compensated for
(outweighed) the semester's failing grade, they passed. This
recuperation option is a common procedure in Brazilian
universities, usually offered to any student that fails a course.

B. Phase 2: qualitative analysis on a small subset
The intention of the second phase was the better understand

the students' difficulties in programming. It was designed as a
short course of PROG1 (8 weeks), and before this, we
conducted individual interviews with a small set of students.
Conveniently, we invited all the students that failed the course
PROG1 (Fig. 5).

There was no reward for students’ participation in phase 2.
However, the student could be motivated to get more assistance

to eventually learn “how to program” and, perhaps, succeed on
recuperation. As a result, we achieved the consent of all 9
invited students.

The individual interviews occurred before the exam. We
used the Think Aloud Protocol. According to Villanueva, the
technique consists of observing users performing specific tasks
within a controlled environment [30]. During the interview, the
students described aloud, in real time, what they were thinking.
To capture these spoken aloud thoughts, there are two possible
techniques: (1) recording on video or (2) transcription by a
moderator. Although video or audio recording has the
advantage of documenting everything that is done and said, the
disadvantage is that the user may become intimidated and not
verbalize everything they are experiencing. In the case of real
time annotation, the moderator writes down everything that
happens and what the interviewed says. The advantage is that
the environment becomes more relaxed, leading the users to
feel more comfortable exposing everything they think and
know. The disadvantage is that the speed required for such
note-taking can lead to loss of important research information
[30].

Fig. 5. The second phase process.

Genise (apud Renzi et al.) describes the protocol
application procedure in five steps: (1) Organize a small group
of users, about 4; (2) the researcher meets these users; (3) the
researcher decides which tasks should be carried out and in
which environment; (4) the researcher explains the method to
users by directing them to verbalize their thoughts; (5) the
researcher notifies the necessary changes in the tool [30]. As
our goal is not the tool but the difficulties of programming,
step 5 does not apply to our study.

We performed the Think Aloud interview session with the
recording process, and asked the students to solve four
exercises with different degrees of difficulty in VPL with C
language. Each interview lasted about one hour, and the
students were encouraged to talk constantly about what they
were doing and thinking. During the process, the moderator
asked a few questions, such as “What do you think about
using the VPL in class?”, in order to seek information beyond
what the students spontaneously exposed.

The next step in the second phase was the short course,
which used the same environment from the semester classes,
but with an updated VPL version. In the version used during
the semester, students faced a lot of problems setting up Java
on their computers. With HTML5, it is not necessary to install
anything in the students’ computers.

Every two weeks in this short course, students received a
set of exercises to solve. Each set of exercises increased in
degree of difficulty. In addition to solving the exercises using
VPL, the students made free record of this process in a text
document. After solving each set of exercises, there was a
face-to-face meeting where doubts were clarified.

IV. MAIN RESULTS

We conducted a two-phase study, the first involving all
students from the class, and the second involving only the
students that had failed during the semester. In the first phase,
we used quantitative instruments, whereas the second focused
on qualitative analysis.

The research questions for this paper were “RQ1 – How do
students perceive the use of visual programming and automated
evaluation?” and “RQ2 - What are student’s difficulties, and
what strategies do they adopt to overcome them?”. To show the
results, we created sub-research questions, as follows.

A. RQ1a – What benefits and difficulties do students
perceive regarding the use of iVProg and VPL?
At the end of PROG1 in the second half of 2015, the

teacher asked students to answer a questionnaire with seven
questions, designated herein as the Final Questionnaire.
Questions can be divided into objective (the first four) and
discursive (the remaining).

The objective questions obtained 100% of responses.
Some results from the answers are that 65% of respondents
had taken this course before, even partially, and had not been
approved. When asked about their preferences concerning
classes in the laboratory, 47% said they most liked when
classes take place in a laboratory setting.

Another question checked if the students liked the
individual class activities of solving exercises in the laboratory.
Furthermore, it was important to have feedback from students
about the number of questions provided for them. The answers
showed that 53% enjoyed solving exercises in class, (Fig 6.),
and the same amount considered the amount of exercises
appropriate (Fig. 7). As previously stated, the course lasts for
one semester, with 18 weeks and it was used 49 exercises, 19
of them under two different technologies, C with VPL and
visual programming with iVProg.

In the two following questions the students were asked to
identify positive and negative aspects about the use of
automatic evaluation systems such as iVProg and VPL. The
answers are compiled in TABLE I. Three students from 16
declared "I do not see negatives aspects"s1, s2, s3.

At the end of the questionnaire, we asked the students for
suggestions, criticism, and praise for the semester class, using
an automatic evaluation system. Some students praised the
class model, stating sentences like “I loved doing the course in
this model”a9, “I loved having a practical class, I believe that
for a computer course, it is essential”a6 and “I liked the way the

course was given a lot, the automatic evaluator, the fact of
being online, the iVProg, etc.”a7. A suggestion given by
students was to switch between practical and theoretical
classes, stating phrases such as "take turns between
conventional classes and the computer"a4 and “as all classes
were practical, I missed introductory lectures”a6. The students
asked for “more exercises available to be done at home before
the assessments.”a3.

Fig. 6. Solve exercise during class.

Fig. 7. Evaluation as the amount of exercises available to students.

Wanting to gather more information about the students and
their behavior during the studies, using the Think Aloud
method we conducted interviews with six students, lasting
about one hour each. The students invited to participate in these
interviews were in the same situation: they did not succeed
during the semester, and needed to take the recovery test to be
approved. During the interviews, they were challenged to solve
four exercises with increasing degree of difficulty. Their
interview session was documented, including the computer
screen and audio recordings, for future analysis. In this report,
the students are numbered from 1 to 6.

TABLE I. POSITIVES AND NEGATIVES ASPECTS IN USE AN AUTOMATIC
EVALUATION

Positives Aspects Negatives Aspects
Presentation of results through
the test cases lets you know if
your code is working correctly s8,

s11

Dependence on compilation
s4, s5, s6 and of the results of
the test cases s6, making the
student does not look for
errors alone s5

Easy to view the syntax errors s1,

s9

Missed print messages /
instructions to users s7, s8

Immediate feedback to the
student s2, s6

Show that the automatic
evaluation has flaws s9, s10

Saving time for solving exercises
s3

Inhibits the practice of how
to test the algorithm s11

It gives an idea of your note
through the percentage of
correct answers of the exercises
s3

Easy to correct s1

One of the observed attitudes, adopted by 2 of the students,
was to take notes while they read the statements (student 1 and
3). These 2 had no better results than the others, but one of
them, when asked by the interview moderator, stated
“annotating helps to remember what needs to be done, because
otherwise I cannot remember”. Analyzing the behavior of
respondents while running the session, we observed that this
annotation process helped, for example, in the definition of
which and how many variables were required to solve the task.
One difference between these students and the others was that
they had less mistakes in declaring the variables and setting
their types; they practically did not need to return to the code to
change what they had written.

The interview moderator observed in two students a
reaction while reading the statement. Student 6 had not read the
entire statement when he stopped reading to make the comment
“I get nervous when I see the word matrix.” Student 1, when
starting to read the second question, spoke instantly “I do not
like function” and “I have difficulty with function parameters.”
During question 6, student 1 said “At a first glance I dislike this
exercise, I like exercises that have numbers.” In these three
situations, the students did not succeed in solving the exercise.
This may be a sign that the students create a barrier to the
content for which they face more difficulty.

We also noticed insecurity in students and some degree of
absence of thinking. They were used to copying and pasting the
code to read matrix elements, but when faced with compilation
errors, they made comments like “We will see now. Must be
something wrong. There is always something wrong.” The
moderator noted that the commands to which they referred
were correctly written, but with undeclared names. Moreover,
in some instances, the students faced problems with intention
and practice. They verbalized something, but wrote something
different. This situation was detected during interviews, and
can be observed through the comments “I do not know if it's
like this to read an array, but okay,”a1 and “I think something is
missing in this print”a6.

Syntax errors were common in all interviews and
resolutions, e.g. opening and closing structures with brackets,

colons, correct spelling of the commands, among others. Some
errors are noteworthy, such as: (A) attempting to read the data
in the matrix; (B) creating an unnamed function, besides the
incorrect declaration of the variables to receive the parameters,
and (C) semi-colons ending a structure of repetition and
selection that has not even started (Fig. 8).

Fig. 8. Less common syntax errors.

When semantic errors occurred, students usually became
more disappointed than with syntax errors. With syntax errors,
they seem more accustomed. The semantic errors made
students drop out of the exercise faster, because this is naturally
more difficult, which they already realized (facing more time to
fix semantic errors).

B. RQ1b – What is the perceived effort by the student?
The NASA-TLX were applied at the end of the first block

of activities using iVProg and after VPL. The questionnaire
evaluated the students’ perceptions of workload concerning 4
elementary exercises (related to input-output, comparison, and
operation with the rest of the integer division).

It is worth remembering that the activities were first
released for iVProg, and then for VPL. Figure 9 presents the
NASA-TLX for iVProg, and Fig. 10 shows the results to VPL.
Note that, despite iVProg being used first, the mental demand
(MD) for it was smaller than using C language with VPL.

Fig. 9. NASA-TLX for the first block of activities with iVProg.

Fig. 10. NASA-TLX for the first block of activities using VPL with C
language

Automatic evaluations

We divided the course into 6 sections, each with a number
of exercises. During the first 9 weeks, the students were
challenged with solving a set of activities (solving a problem
with an algorithm) first using iVProg, then with C, for the same
problem.

These programming activities had a small impact on the
final grade, up to 10% of the student’s final grade. These
exercises were proposed to stimulate students to solve a large
number of exercises. We used 17 iVProg exercises and 28 of
VPL/C (the first 17 of VPL were the same 17 of iVProg).

The number of answers for VPL was 531, but some
activities had more than 50 submissions for the same exercise,
from several students. For iVProg, there were 197 submissions.

Since iVProg was used as a bridge to introduce C, we
focused this analysis in VPL/C. We tested the correlation
between several measures, considering student performance in
VPL activities, compared to their final situation (approved,
fail, final grade). The activities measures were (TABLE II.):
the number of activities with maximum score (N10); the
number of activities with minimum grade (N0); and the
number of activities with minimum grade for compilation
errors (NC). The student situation was: student approval (1) or
fail (0) (AP); student final grade, where 5, or more, means
approved (FG).

TABLE II. FINAL SITUATION TO EACH STUDENT IN THE COURSE

Student N10 N0 NC AP FG

1 13 0 0 0 0

2 3 2 2 0 1.01

3 11 0 0 1 5.87

4 26 0 0 1 7.52

5 18 0 0 1 9.81

6 10 0 1 0 0.31

7 16 2 0 0 4.21

8 15 0 0 0 0

9 22 0 1 1 5.56

10 22 1 0 1 9.41

11 14 2 3 0 0.73

Student N10 N0 NC AP FG

12 16 0 0 0 4.17

13 9 0 1 0 0

14 13 2 0 0 0.36

15 0 0 2 0 0

16 18 3 2 0 2.92

17 14 0 0 1 5.45

18 6 0 0 0 0

19 0 0 0 0 1.23

20 9 0 0 1 8.28

21 0 0 1 0 0

22 15 0 0 0 4.15

23 21 2 1 1 6.21

24 18 0 2 0 3.41

25 15 0 0 0 4.64

26 15 0 3 0 2.05

27 2 0 0 0 0

28 5 4 1 0 4.39

29 15 0 0 1 7.76

30 5 1 0 0 0

31 10 3 3 0 3.61

32 14 2 3 0 1.3

33 21 0 0 0 1.21

34 5 0 1 0 0

35 26 0 0 1 7.98

C. RQ2a – What are the difficulties in programming
learning using iVProg and VPL?
The short course lasted 8 weeks. The average number of

submissions per exercise was 7, and 84% of them had 100%
success in the test cases analyzed by the system. The students
submitted twice on average until their code was compiled, and
three times until correct results began to appear.

During the analysis of the code, some syntax (TABLE III.)
and semantics (TABLE IV.) errors were detected. In this
paper, we show errors that appeared more than once.

We also noticed syntax errors in which we observe that the
student was using mathematical commands in the code, such as
the use of point instead of an asterisk for multiplication and
writing condition as follows: "(600 <x <= 1200)" instead of
"(x> 600 && x <= 1200)."

TABLE III. SYNTAX ERROR

Amount Description
7

Not opened with "{" and closed with "}" any structure
or function

3
Error in the formatting of the number of decimal
places in a float

3 Use of undeclared variables
2 Forgot ";" on some lines

2
In the statement of the float type variables, separated
the names with ";" and not ","

2
Do not separate the variables with comma within the
parentheses of the scanf

2 Use comma rather than dot on real numbers.

TABLE IV. SEMANTIC ERRORS

Amount Description
9 They did not pay attention in division by 0 (zero)
5 Control variable from "while" not initialized
4 Wrong formula
2 If..else structure mounted incorrectly
2 Used "return" to show -1 instead of printf: return "-1"

These are problems that make the program less effective,
such as not using "else" in the selection structures "if." This
problem was noticed 11 times, i.e. a high number compared to
other problems. Other mistakes include loading unnecessary
libraries and lack of indentation.

D. RQ2b – What study strategies do students use?
When students encounter difficulties during their studies

and cannot proceed, they seek help from a classmate or friend
who knows the subject, or seek content from the internet, or
similar examples of exercises that they are solving.

Another students’ strategy to solve problems was to divide
the code into small portions and check each one, trying to
identify where the error was located.

E. RQ2c – How have they used the tools?
Students who participated in the short course reported that

the use of iVProg was very helpful to begin developing logical
thinking, and that continued use of this tool would be
interesting. VPL plays an IDE role. Providing information on
syntax errors shows the student that there are also semantic
errors.

Students said the results of the test cases pointed out by
VPL helped to find semantic errors, which they unanimously
considered the most difficult errors to detect and resolve. Test
cases, according the students, were not completely analyzed, at
times were analyzed only those by accused of error and others
only by those who have succeeded. How to use the test cases to
help resolve the errors would be a good exercise to perform
with the students.

V. CONCLUSION AND FUTURE WORKS

In this study, we observed that students see value in
automatic evaluation, even considering students that already
had failed in the programming course. In addition, the system
with automatic evaluation enabled the teacher to identify
students with low participation levels. We found correlation
between the number of correct exercises and overall course
approval.

For the teacher, it became possible to present a greater
number of exercises. However, this presents a challenge for
using these tools with a large number of students. Perhaps it
could be used with exercises, but not in formal evaluation that
demands the presence of the student. This is now under
investigation. About the preparation of the exercises for the
students, one difficulty faced by us is how to create good test
cases. The first condition is that it test all the important cases,
like a sorting problem the presence of unitary sequence,
increasing sequence, and decreasing sequence.

In our research, we found that the students approved to
learn programing using automated evaluation with iVProg and

VPL as well as visual programming with iVProg. However, a
difficulty mentioned by students is the reduced number of
theoretical classes and one suggestion is to take turns between
conventional classes and in the laboratory. About using iVProg
and VPL, various positives aspects was cited by the students
and fewer negatives points. In the same time, that knows if the
code working correctly with the presentation of the results of
test cases, the use of this systems create a dependence making
the student does not look for error alone.

About difficulties and strategies, we find that take note
during the studies help learners to organize their ideas such as
the amount and types of variables needed to solve the problem.
Semantics errors are considered by students most difficult to
solve than syntax errors. To help them in their studies, when
they don't can proceed, they ask classmates, friends or demand
for similar exercises on the internet.

It is worthy to note that automatic evaluation can promote
an important aspect: allow to challenge students with new
problems.

This study pointed some new questions that we are
considering as future studies. One of them is to deeper the
comparison study presented by Ribeiro et al [16]. This paper
compared visual and textual programming, mainly considering
the cognitive workload. It would be interesting to create a new
method to compare the final skill of the students to solve
problems by algorithms after a course of each model of
programming.

ACKNOWLEDGMENTS

The authors would like to thank all students that participate
in this study for their involvement. This work is partially
supported by grant of São Paulo Research Foundation
(FAPESP).

REFERENCES

[1] M. Crowne, “Why software product startups fail and what to do

about it. Evolution of software product development in startup

companies,” in IEEE International Engineering Management

Conference, 2002, vol. 1, pp. 338–343.

[2] T. Reuters, “MoneyTree Report - Q4 2015/Full Year 2015

Summary,” 2016. Online at https://www.pwcmoneytree.com.

[3] S. P. Jones, “Computing at School International comparisons,”

Retrieved May, no. November, pp. 1–12, 2011.

[4] J. Bennedsen and M. E. Caspersen, “Failure rates in introductory

programming,” ACM SIGCSE Bull., vol. 39, no. 2, p. 32, 2007.

[5] Y. Bosse and M. A. Gerosa, “Reprovações e Trancamentos nas

Disciplinas de Introdução à Programação da Universidade de São

Paulo : Um Estudo Preliminar,”   Work. sobre Educ. em Comput.

(WEI), pp. 1–10, 2015.

[6] C. M. Lewis, “How Programming Environment Shapes Perception,

Learning and Goals: Logo vs . Scratch,” Sigcse ’10, pp. 346–350,

2010.

[7] L. E. Winslow, “Programming Pedagogy - A Psychological

Overview,” ACM SIGCSE Bull., vol. 28, no. 3, pp. 17–22, 1996.

[8] E. Lahtinen, K. Ala-Mutka, and H.-M. Järvinen, “A study of the

difficulties of novice programmers,” ACM SIGCSE Bull., vol. 37,

no. 3, p. 14, 2005.

[9] M. C. Carlisle, T. A. Wilson, J. W. Humphries, and S. M. Hadfield,

“RAPTOR: Introducing Programming to Non-Majors with

Flowcharts,” J. Comput. Sci. Coll., vol. 19, no. 4, pp. 52–60, 2004.

[10] M. Kölling, “Greenfoot - A Highly Graphical IDE for Learning

Object-Oriented Programming,” ACM SIGCSE Bull., vol. 13, no. 4,

p. 60558, 2008.

[11] C. Reade, “A System for Automatic Evaluation of Programs for

Correctness and Performance,” Web Information Systems and

Technologies, 1997.

[12] T. Jenkins, “On the Difficulty of Learning to Program,” ICS - Int.

Conf. Supercomput., 2002.

[13] T. Beaubouef and J. Mason, “Why the high attrition rate for

computer science students,” ACM SIGCSE Bull., vol. 37, no. 2, p.

103, 2005.

[14] D. Hagan and S. Markham, “Does it help to have some

programming experience before beginning a computing degree

program?,” ACM SIGCSE Bull., vol. 32, no. 3, pp. 25–28, 2000.

[15] S. Garner, P. Haden, and A. Robins, “My program is correct but it

doesn’t run: A preliminary investigation of novice programmers'

problems,” Conf. Res. Pract. Inf. Technol. Ser., vol. 42, pp. 173–

180, 2005.

[16] P. Denny, A. Luxton-Reilly, E. Tempero, and J. Hendrickx,

“Understanding the syntax barrier for novices,” Proc. 16th ACM

Conf. Innov. Technol. Comput. Sci. Educ. - ITiCSE ’11, p. 208, 2011.

[17] R. S. Ribeiro, L. O. Brandão, T. V. M. Faria, and A. A. F. Brandão,

“Programming web-course analysis: how to introduce computer

programming?,” ASEE/IEEE Frontiers in Education Conference

(FIE), 2014, pp. 1–8.

[18] D. J. Malan and H. H. Leitner, “Scratch for budding computer

scientists,” ACM SIGCSE Bull., vol. 39, p. 223, 2007.

[19] F. Kalelioğlu and Y. Gülbahar, “The Effects of Teaching

Programming via Scratch on Problem Solving Skills: A Discussion

from Learners’Perspective,” Informatics Educ. Int. J., vol. 13, no. 1,

pp. 33–50, 2014.

[20] S. Cooper, W. Dann, and R. Pausch, “Alice: a 3-D tool for

introductory programming concepts,” J. Comput. Sci. Coll., vol. 15

no. May 2000, pp. 107–116, 2000.

[21] S. Papert, “Mindstorms: Children, Computers and Powerful Ideas”.

Basic Books, Inc. New York, NY, USA, 1980.

[22] L. O. Brandão, R. S. Ribeiro, and A. A. F. Brandão, “A system to

help teaching and learning algorithms,” ASEE/IEEE Frontiers in

Education Conference (FIE), 2012, pp. 1–6..

[23] R. R. Kamiya and L. O. Brandão, “iVProg - um sistema para

introdução à Programação através de um modelo Visual na

Internet,” XX Simpósio Bras. Informática na Educ., 2009.

[24] E. P. Glinert and S. L. Tanimoto, “Pict: An Interactive Graphical

Programming Environment,” Computer (Long. Beach. Calif)., vol.

17, no. 11, pp. 7–25, Nov. 1984.

[25] J. G. Moura, L. O. Brandão, and A. A. F. Brandão, “A web-based

learning management system with automatic assessment resources,”

ASEE/IEEE Frontiers in Education Conference (FIE), 2007, pp.

F2D–1–F2D–6.

[26] P. A. Rodrigues, L. O. Brandão, and A. A. F. Brandão, “Interactive

Assignment: A moodle component to enrich the learning process,”

ASEE/IEEE Frontiers in Education Conference (FIE), pp. 1–6,

2010.

[27] R. S. Ribeiro, “Construção e uso de ambiente visual para o ensino

de programação introdutória,” Doctoral dissertation, Universidade

de São Paulo, 2015.

[28] J. C. Rodríguez-del-Pino, E. Rubio-Royo, and Z. Hernández-

Figueroa, “A Virtual Programming Lab for Moodle with automatic

assessment and anti-plagiarism features,” Conf. e-Learning, e-

Business, Entrep. Inf. Syst. e-Government, 2012.

[29] B. M. Guimarães, L. B. Martins, L. S. Azevedo, and M. D. A.

Andrade, “Análise da carga de trabalho de analistas de sistemas e

dos distúrbios osteomusculares,” Fisioter. em Mov., vol. 24, no. 1,

pp. 115–124, 2011.

[30] A. B. Renzi, S. Freitas, I. Kuhn, and S. Köhler, “Use of Think-

Aloud Protocol to Verify Usability Problems and Flow During Use

of Entertainment and Personal Journal,” in 12o Congresso

Internacional de Ergonomia e Usabilidade de Interfaces Humano-

Computador, 2012, p. 7.

