Pseudo-Riemannian manifolds all of whose geodesics of one causal type are closed

Stefan Suhr (Hamburg University)

July 23, 2013
Question: What do we know about pseudo-Riemannian manifolds all of whose geodesics of one causal type are closed?
Question: What do we know about pseudo-Riemannian manifolds all of whose geodesics of one causal type are closed?

Causal type \(\cong \) timelike, spacelike or lightlike.
Question: What do we know about pseudo-Riemannian manifolds all of whose geodesics of one causal type are closed?

Causal type \cong timelike, spacelike or lightlike.

Answer: Next to nothing!
Question: What do we know about pseudo-Riemannian manifolds all of whose geodesics of one causal type are closed?

Causal type \(\cong\) timelike, spacelike or lightlike.

Answer: Next to nothing! \(\rightsquigarrow\) Focus on the topological question.
Question: What do we know about pseudo-Riemannian manifolds all of whose geodesics of one causal type are closed?

Causal type \cong timelike, spacelike or lightlike.

Answer: Next to nothing! \rightsquigarrow Focus on the topological question.

Riemannian case:

A large theory contained in the first book by A. Besse. E.g. Theorem (Bott, Samelson)

Let (M, g) be a Riemannian manifold such that all geodesics are simply closed. Then $H^* (M, \mathbb{Z}) \cong H^* (\text{CROSS}, \mathbb{Z})$ where CROSS $\in \{ S^n, \mathbb{R}P^n, \mathbb{C}P^n, \mathbb{H}P^n, \mathbb{C}aP^2 \}$.

Proof with Morse theory \rightsquigarrow not directly applicable in pseudo-Riemannian geometry (future development).
Question: What do we know about pseudo-Riemannian manifolds all of whose geodesics of one causal type are closed?

Causal type ≃ timelike, spacelike or lightlike.

Answer: Next to nothing! ⇞ Focus on the topological question.

Riemannian case: A large theory contained in the first book by A. Besse.
Question: What do we know about pseudo-Riemannian manifolds all of whose geodesics of one causal type are closed?

Causal type \approx timelike, spacelike or lightlike.

Answer: Next to nothing! \rightsquigarrow Focus on the topological question.

Riemannian case: A large theory contained in the first book by A. Besse. E.g.

Theorem (Bott, Samelson)

Let (M, g) be a Riemannian manifold such that all geodesics are simply closed. Then $H^*(M, \mathbb{Z}) \cong H^*(\text{CROSS}, \mathbb{Z})$ where CROSS $\in \{S^n, \mathbb{R}P^n, \mathbb{C}P^n, \mathbb{H}P^n, \mathbb{C}aP^2\}$.

Proof with Morse theory \rightsquigarrow not directly applicable in pseudo-Riemannian geometry (future development).
Question: What do we know about pseudo-Riemannian manifolds all of whose geodesics of one causal type are closed?

Causal type \cong timelike, spacelike or lightlike.

Answer: Next to nothing! \leadsto Focus on the topological question.

Riemannian case: A large theory contained in the first book by A. Besse. E.g.

Theorem (Bott, Samelson)

Let (M, g) be a Riemannian manifold such that all geodesics are simply closed. Then $H^(M, \mathbb{Z}) \cong H^*(\text{CROSS}, \mathbb{Z})$ where $\text{CROSS} \in \{S^n, \mathbb{R}P^n, \mathbb{C}P^n, \mathbb{H}P^n, \mathbb{C}aP^2\}$.*

Proof with Morse theory
Question: What do we know about pseudo-Riemannian manifolds all of whose geodesics of one causal type are closed?

Causal type \cong timelike, spacelike or lightlike.

Answer: Next to nothing! \leadsto Focus on the topological question.

Riemannian case: A large theory contained in the first book by A. Besse. E.g.

Theorem (Bott, Samelson)

Let (M, g) be a Riemannian manifold such that all geodesics are simply closed. Then $H^*(M, \mathbb{Z}) \cong H^*(\text{CROSS}, \mathbb{Z})$ where $\text{CROSS} \in \{S^n, \mathbb{R}P^n, \mathbb{C}P^n, \mathbb{H}P^n, \mathbb{Ca}P^2\}$.

Proof with Morse theory \leadsto not directly applicable in pseudo-Riemannian geometry
Question: What do we know about pseudo-Riemannian manifolds all of whose geodesics of one causal type are closed?

Causal type \cong timelike, spacelike or lightlike.

Answer: Next to nothing! \rightsquigarrow Focus on the topological question.

Riemannian case: A large theory contained in the first book by A. Besse. E.g.

Theorem (Bott, Samelson)

Let (M, g) be a Riemannian manifold such that all geodesics are simply closed. Then $H^*(M, \mathbb{Z}) \cong H^*(\text{CROSS}, \mathbb{Z})$ where $\text{CROSS} \in \{S^n, \mathbb{R}P^n, \mathbb{C}P^n, \mathbb{H}P^n, \mathbb{C}aP^2\}$.

Proof with Morse theory \rightsquigarrow not directly applicable in pseudo-Riemannian geometry (future development).
Known so far:

Proposition (Guillemin)

Let \((M, g)\) be a compact pseudo-Riemannian 2-manifold such that all lightlike geodesics are closed. Then \((M, g)\) is finitely covered by \((T^2, \bar{g})\) which is globally conformal to \((\mathbb{R}^2/\mathbb{Z}^2, dx dy)\).

▶ Easily extended to non-compact 2-manifolds.
▶ For \((S^n \times S^1, g_{\lambda})\) with \(\lambda \in \mathbb{Q}\) all lightlike geodesics are closed.
▶ Similar problem known for refocussing spacetimes.

What about examples with all spacelike/timelike geodesics closed?

Example Consider \(S^{n+1}(r) = \{x \in \mathbb{R}^{n+1} | \langle x, x \rangle = r^2\}\). Then all spacelike geodesics of the induced metric are closed. By change of sign obtain examples with all timelike geodesics closed.
Known so far:

Proposition (Guillemin)

Let (M, g) be a compact pseudo-Riemannian 2-manifold such that all lightlike geodesics are closed. Then (M, g) is finitely covered by (T^2, \bar{g}) which is globally conformal to $(\mathbb{R}^2/\mathbb{Z}^2, dx dy)$.

- Easily extended to non-compact 2-manifolds.
Known so far:

Proposition (Guillemin)

Let \((M, g)\) be a compact pseudo-Riemannian 2-manifold such that all lightlike geodesics are closed. Then \((M, g)\) is finitely covered by \((T^2, \bar{g})\) which is globally conformal to \((\mathbb{R}^2/\mathbb{Z}^2, dx dy)\).

- Easily extended to non-compact 2-manifolds.
- For \((S^n \times S^1, g_{can} - \lambda d\theta^2)\) with \(\lambda \in \mathbb{Q}\) all lightlike geodesics are closed.
Proposition (Guillemin)

Let (M, g) be a compact pseudo-Riemannian 2-manifold such that all lightlike geodesics are closed. Then (M, g) is finitely covered by (T^2, \bar{g}) which is globally conformal to $(\mathbb{R}^2/\mathbb{Z}^2, dx dy)$.

- Easily extended to non-compact 2-manifolds.
- For $(S^n \times S^1, g_{\text{can}} - \lambda d\theta^2)$ with $\lambda \in \mathbb{Q}$ all lightlike geodesics are closed.
- Similar problem known for refocussing spacetimes.
Known so far:

Proposition (Guillemin)

Let \((M, g)\) be a compact pseudo-Riemannian 2-manifold such that all lightlike geodesics are closed. Then \((M, g)\) is finitely covered by \((T^2, \bar{g})\) which is globally conformal to \((\mathbb{R}^2/\mathbb{Z}^2, dx dy)\).

- Easily extended to non-compact 2-manifolds.
- For \((S^n \times S^1, g_{can} - \lambda d\theta^2)\) with \(\lambda \in \mathbb{Q}\) all lightlike geodesics are closed.
- Similar problem known for refocussing spacetimes.

What about examples with all spacelike/timelike geodesics closed?
Known so far:

Proposition (Guillemin)

Let \((M, g)\) be a compact pseudo-Riemannian 2-manifold such that all lightlike geodesics are closed. Then \((M, g)\) is finitely covered by \((T^2, \bar{g})\) which is globally conformal to \((\mathbb{R}^2/\mathbb{Z}^2, dx dy)\).

- Easily extended to non-compact 2-manifolds.
- For \((S^n \times S^1, g_{can} - \lambda d\theta^2)\) with \(\lambda \in \mathbb{Q}\) all lightlike geodesics are closed.
- Similar problem known for refocussing spacetimes.

What about examples with all spacelike/timelike geodesics closed?

Example

Consider

\[S^n_\nu (r) = \{ x \in \mathbb{R}^{n+1} | \langle x, x \rangle_\nu = r^2 \}. \]

Then all spacelike geodesics of the induced metric are closed.
Known so far:

Proposition (Guillemin)

Let \((M, g)\) be a compact pseudo-Riemannian 2-manifold such that all lightlike geodesics are closed. Then \((M, g)\) is finitely covered by \((T^2, \bar{g})\) which is globally conformal to \((\mathbb{R}^2/\mathbb{Z}^2, dx\, dy)\).

- Easily extended to non-compact 2-manifolds.
- For \((S^n \times S^1, g_{can} - \lambda d\theta^2)\) with \(\lambda \in \mathbb{Q}\) all lightlike geodesics are closed.
- Similar problem known for refocussing spacetimes.

What about examples with all spacelike/timelike geodesics closed?

Example

Consider

\[
S^n_\nu(r) = \{ x \in \mathbb{R}^{n+1} | \langle x, x \rangle_\nu = r^2 \}.
\]

Then all spacelike geodesics of the induced metric are closed. By change of sign obtain examples with all timelike geodesics closed.
Topological classification for 2-dimensional spacetimes.

Theorem (Mounoud/–)

Let \((M, g)\) be a pseudo-Riemannian and non-Riemannian 2-manifold all of whose timelike/spacelike geodesics are closed. Then \((M, g)\) is finitely covered by \((S^1 \times \mathbb{R}, g)\) such that all timelike/spacelike \(g\)-geodesics are simply closed (timelike/spacelike Zoll).

▶ The result is optimal, due to the previous examples.

▶ Zoll surfaces are Riemannian 2-manifolds all of whose geodesics are simply closed, i.e. metrics on \(S^2\) and \(\mathbb{R}P^2\).

▶ For 2-manifolds: If all timelike/spacelike geodesics are closed then all non-timelike/non-spacelike geodesics are non-closed. Due to the theorem and the Poincaré-Bendixson theorem.

Corollary (Mounoud/–)

There does not exist a 2-dimensional pseudo-Riemannian and non-Riemannian manifold all of whose geodesics are closed.
Topological classification for 2-dimensional spacetimes.

Theorem (Mounoud/-)

Let \((M, g)\) be a pseudo-Riemannian and non-Riemannian 2-manifold all of whose timelike/spacelike geodesics are closed. Then \((M, g)\) is finitely covered by \((S^1 \times \mathbb{R}, \bar{g})\) such that all timelike/spacelike \(\bar{g}\)-geodesics are simply closed (timelike/spacelike Zoll).

Stefan Suhr (Hamburg University)
Semi-Riemannian manifolds all of whose geodesics are closed
Topological classification for 2-dimensional spacetimes.

Theorem (Mounoud/–)

Let (M, g) be a pseudo-Riemannian and non-Riemannian 2-manifold all of whose timelike/spacelike geodesics are closed. Then (M, g) is finitely covered by $(S^1 \times \mathbb{R}, \bar{g})$ such that all timelike/spacelike \bar{g}-geodesics are simply closed (timelike/spacelike Zoll).

The result is optimal, due to the previous examples.
Topological classification for 2-dimensional spacetimes.

Theorem (Mounoud/–)

Let \((M, g)\) be a pseudo-Riemannian and non-Riemannian 2-manifold all of whose timelike/spacelike geodesics are closed. Then \((M, g)\) is finitely covered by \((S^1 \times \mathbb{R}, \bar{g})\) such that all timelike/spacelike \(\bar{g}\)-geodesics are simply closed (timelike/spacelike Zoll).

- The result is optimal, due to the previous examples.
- Zoll surfaces are Riemannian 2-manifolds all of whose geodesics are simply closed, i.e. metrics on \(S^2\) and \(\mathbb{R}P^2\).
Topological classification for 2-dimensional spacetimes.

Theorem (Mounoud/–)

Let \((M, g)\) be a pseudo-Riemannian and non-Riemannian 2-manifold all of whose timelike/spacelike geodesics are closed. Then \((M, g)\) is finitely covered by \((S^1 \times \mathbb{R}, \bar{g})\) such that all timelike/spacelike \(\bar{g}\)-geodesics are simply closed (timelike/spacelike Zoll).

- The result is optimal, due to the previous examples.
- Zoll surfaces are Riemannian 2-manifolds all of whose geodesics are simply closed, i.e. metrics on \(S^2\) and \(\mathbb{R}P^2\).
- For 2-manifolds: If all timelike/spacelike geodesics are closed then all non-timelike/non-spacelike geodesics are non-closed.
Topological classification for 2-dimensional spacetimes.

Theorem (Mounoud/–)

Let \((M, g)\) be a pseudo-Riemannian and non-Riemannian 2-manifold all of whose timelike/spacelike geodesics are closed. Then \((M, g)\) is finitely covered by \((S^1 \times \mathbb{R}, \bar{g})\) such that all timelike/spacelike \(\bar{g}\)-geodesics are simply closed (timelike/spacelike Zoll).

- The result is optimal, due to the previous examples.
- Zoll surfaces are Riemannian 2-manifolds all of whose geodesics are simply closed, i.e. metrics on \(S^2\) and \(\mathbb{R}P^2\).
- For 2-manifolds: If all timelike/spacelike geodesics are closed then all non-timelike/non-spacelike geodesics are non-closed. Due to the theorem and the Poincaré-Bendixson theorem.
Theorem (Mounoud/–)

Let \((M, g)\) be a pseudo-Riemannian and non-Riemannian 2-manifold all of whose timelike/spacelike geodesics are closed. Then \((M, g)\) is finitely covered by \((S^1 \times \mathbb{R}, \bar{g})\) such that all timelike/spacelike \(\bar{g}\)-geodesics are simply closed (timelike/spacelike Zoll).

- The result is optimal, due to the previous examples.
- Zoll surfaces are Riemannian 2-manifolds all of whose geodesics are simply closed, i.e. metrics on \(S^2\) and \(\mathbb{R}P^2\).
- For 2-manifolds: If all timelike/spacelike geodesics are closed then all non-timelike/non-spacelike geodesics are non-closed. Due to the theorem and the Poincaré-Bendixson theorem.

Corollary (Mounoud/–)

There does not exist a 2-dimensional pseudo-Riemannian and non-Riemannian manifold all of whose geodesics are closed.
Connection to geodesic foliations

Proposition

Let \((M, g)\) be a pseudo-Riemannian manifold. Then there exists a pseudo-Riemannian metric \(G\) on \(TM\) such that the tangent curves of \(g\)-geodesics are \(G\)-geodesics of the same causal type.

Sketch of proof.

Consider the connection map \(\nabla_g\) of the Levi-Civita connection of \(g\).

\[
\nabla_g \circ T : TM \to \text{ker}(\pi_{TM})^* \oplus \text{ker}K_g = T_pM \oplus T_pM
\]

Define \(G\) such that this isomorphism induces an isometry with \(g \oplus g\).

Then \(\pi_{TM} : TM \to M\) becomes an pseudo-Riemannian submersion. Note that the tangent curves of geodesics are parallel lifts.

Remark

If all geodesics of one causal type (say timelike) are closed then \(\{v \in TM | g(v, v) < 0\}\) is foliated by closed geodesics.

Stefan Suhr (Hamburg University)

Semi-Riemannian manifolds all of whose geodesics are closed
Connection to geodesic foliations

Proposition

Let \((M, g)\) be a pseudo-Riemannian manifold. Then there exists a pseudo-Riemannian metric \(G\) on \(TM\) such that the tangent curves of \(g\)-geodesics are \(G\)-geodesics of the same causal type.

Sketch of proof.

Consider the connection map \(K_g\) of the Levi-Civita connection of \(g\).

\[\tau \circ T_v \cong \ker(\pi_{TM}) \oplus \ker K_g \cong T_p M \oplus T_p M \quad (v \in T_p M) \]

Define \(G\) such that this isomorphism induces an isometry with \(g \oplus g\).

Then \(\pi_{TM}: TM \to M\) becomes a pseudo-Riemannian submersion. Note that the tangent curves of geodesics are parallel lifts.

Remark

If all geodesics of one causal type (say timelike) are closed then \(\{v \in TM \mid g(v, v) < 0\}\) is foliated by closed geodesics.
Connection to geodesic foliations

Proposition

Let \((M, g)\) be a pseudo-Riemannian manifold. Then there exists a pseudo-Riemannian metric \(G\) on \(TM\) such that the tangent curves of \(g\)-geodesics are \(G\)-geodesics of the same causal type.

Sketch of proof.

Consider the connection map \(K_g\) of the Levi-Civita connection of \(g\).

\[
\sim T_v TM \cong \ker(\pi_{TM})^* \oplus \ker K_g \cong T_p M \oplus T_p M \quad (v \in T_p M)
\]
Connection to geodesic foliations

Proposition

Let \((M, g)\) be a pseudo-Riemannian manifold. Then there exists a pseudo-Riemannian metric \(G\) on \(TM\) such that the tangent curves of \(g\)-geodesics are \(G\)-geodesics of the same causal type.

Sketch of proof.

Consider the connection map \(K_g\) of the Levi-Civita connection of \(g\).

\[T_v TM \cong \ker(\pi_{TM})^* \oplus \ker K_g \cong T_p M \oplus T_p M \quad (v \in T_p M) \]

Define \(G\) such that this isomorphism induces an isometry with \(g \oplus g\).
Connection to geodesic foliations

Proposition

Let \((M, g)\) be a pseudo-Riemannian manifold. Then there exists a pseudo-Riemannian metric \(G\) on \(TM\) such that the tangent curves of \(g\)-geodesics are \(G\)-geodesics of the same causal type.

Sketch of proof.

Consider the connection map \(K_g\) of the Levi-Civita connection of \(g\).

\[\sim \rightarrow T_v TM \cong \ker(\pi_{TM})^* \oplus \ker K_g \cong T_p M \oplus T_p M \ (v \in T_p M) \]

Define \(G\) such that this isomorphism induces an isometry with \(g \oplus g\). Then \(\pi_{TM}: TM \rightarrow M\) becomes an pseudo-Riemannian submersion. Note that the tangent curves of geodesics are parallel lifts.

Remark

If all geodesics of one causal type (say timelike) are closed then \(\{v \in TM \mid g(v, v) < 0\}\) is foliated by closed geodesics.

Stefan Suhr (Hamburg University)

Semi-Riemannian manifolds all of whose geodesics are closed
Connection to geodesic foliations

Proposition

Let \((M, g)\) be a pseudo-Riemannian manifold. Then there exists a pseudo-Riemannian metric \(G\) on \(TM\) such that the tangent curves of \(g\)-geodesics are \(G\)-geodesics of the same causal type.

Sketch of proof.

Consider the connection map \(K_g\) of the Levi-Civita connection of \(g\).

\[
\Leftrightarrow T_vTM \cong \ker (\pi_{TM})^* \oplus \ker K_g \cong T_pM \oplus T_pM (v \in T_pM)
\]

Define \(G\) such that this isomorphism induces an isometry with \(g \oplus g\). Then \(\pi_{TM}: TM \to M\) becomes an pseudo-Riemannian submersion. Note that the tangent curves of geodesics are parallel lifts.

Remark

If all geodesics of one causal type (say timelike) are closed then \(\{v \in TM| g(v, v) < 0\}\) is foliated by closed geodesics.
Theorem (Wadsley, Mounoud/–)

Let \mathcal{F} be a smooth foliation by circles of M. The following conditions are equivalent:

1. There is a smooth pseudo-Riemannian metric rendering \mathcal{F} a geodesic foliation by non-degenerate geodesics of the same causal character, i.e. the leaves of \mathcal{F} are either timelike or spacelike geodesics.

2. For any compact subset K of M, the circles meeting K have bounded length with respect to some (hence every) Riemannian metric.

3. Let \tilde{M} be the double cover of M obtained by taking the two different possible local orientations of the leaves. There is a smooth action of the orthogonal group $O(2)$ on \tilde{M} and the non-trivial deck transformation $\sigma: \tilde{M} \to \tilde{M}$ is an element of the non-trivial component of $O(2)$. Each orbit under the $O(2)$-action consists of two components and each component is mapped diffeomorphically onto a leaf of \mathcal{F} by the covering projection.
Theorem (Wadsley, Mounoud/–)

Let \mathcal{F} be a smooth foliation by circles of M. The following conditions are equivalent:

1. There is a smooth pseudo-Riemannian metric rendering \mathcal{F} a geodesic foliation by non-degenerate geodesics of the same causal character, i.e. the leaves of \mathcal{F} are either timelike or spacelike geodesics.

2. For any compact subset K of M, the circles meeting K have bounded length with respect to some (hence every) Riemannian metric.

3. Let \tilde{M} be the double cover of M obtained by taking the two different possible local orientations of the leaves. There is a smooth action of the orthogonal group $O(2)$ on \tilde{M} and the non-trivial deck transformation $\sigma: \tilde{M} \to \tilde{M}$ is an element of the non-trivial component of $O(2)$. Each orbit under the $O(2)$-action consists of two components and each component is mapped diffeomorphically onto a leaf of \mathcal{F} by the covering projection.
Theorem (Wadsley, Mounoud/–)

Let \mathcal{F} be a smooth foliation by circles of M. The following conditions are equivalent:

1. There is a smooth pseudo-Riemannian metric rendering \mathcal{F} a geodesic foliation by non-degenerate geodesics of the same causal character, i.e. the leaves of \mathcal{F} are either timelike or spacelike geodesics.

2. For any compact subset K of M, the circles meeting K have bounded length with respect to some (hence every) Riemannian metric.

Let \tilde{M} be the double cover of M obtained by taking the two different possible local orientations of the leaves. There is a smooth action of the orthogonal group $O(2)$ on \tilde{M} and the non-trivial deck transformation $\sigma : \tilde{M} \to \tilde{M}$ is an element of the non-trivial component of $O(2)$. Each orbit under the $O(2)$-action consists of two components and each component is mapped diffeomorphically onto a leaf of \mathcal{F} by the covering projection.
Theorem (Wadsley, Mounoud/–)

Let \mathcal{F} be a smooth foliation by circles of M. The following conditions are equivalent:

1. There is a smooth pseudo-Riemannian metric rendering \mathcal{F} a geodesic foliation by non-degenerate geodesics of the same causal character, i.e. the leaves of \mathcal{F} are either timelike or spacelike geodesics.

2. For any compact subset K of M, the circles meeting K have bounded length with respect to some (hence every) Riemannian metric.

3. Let \overline{M} be the double cover of M obtained by taking the two different possible local orientations of the leaves. There is a smooth action of the orthogonal group $O(2)$ on \overline{M} and the non-trivial deck transformation $\sigma : \overline{M} \to \overline{M}$ is an element of the non-trivial component of $O(2)$. Each orbit under the $O(2)$-action consists of two components and each component is mapped diffeomorphically onto a leaf of \mathcal{F} by the covering projection.
Remark

- (2) \Leftrightarrow (3) is surprising, especially on non-compact manifolds (period could jump unboundedly).
Remark

- (2) \Leftrightarrow (3) is surprising, especially on non-compact manifolds (period could jump unboundedly).
- Epstein: If M^3 is compact every foliation by circles has locally bounded length of the leaves.
Remark

- $(2) \iff (3)$ is surprising, especially on non-compact manifolds (period could jump unboundedly).
- Epstein: If M^3 is compact every foliation by circles has locally bounded length of the leaves.
- (1) cannot be extended to possibly lightlike geodesics. \rightsquigarrow Thurston-Sullivan examples
Sketch of proof of the pseudo-Riemannian Wadsley theorem.

The following are equivalent:

1) There is a smooth pseudo-Riemannian metric rendering F a geodesic foliation by non-degenerate geodesics of the same causal character, i.e., the leaves of F are either timelike or spacelike.

1') There is a smooth Riemannian metric rendering F a geodesic foliation. This is the condition in the known formulation of Wadsley's theorem.

1) \Rightarrow 1': Let X be a locally defined unit-tangent field to the foliation. Choose any Riemannian metric h on the orthogonal complement X^\perp and define the Riemannian metric $h = h^\perp + X^\sharp \otimes X^\sharp$. The claim follows from Koszul's formula.

h is well defined independent of orientability of F.

Stefan Suhr (Hamburg University)
Sketch of proof of the pseudo-Riemannian Wadsley theorem. The following are equivalent:

(1) There is a smooth pseudo-Riemannian metric rendering F a geodesic foliation by non-degenerate geodesics of the same causal character, i.e. the leaves of F are either timelike or spacelike.

(1') There is a smooth Riemannian metric rendering F a geodesic foliation. This is the condition in the known formulation of Wadsley's theorem.

$(1) \Rightarrow (1')$: Let X be a locally defined unit-tangent field to the foliation. Choose any Riemannian metric h_\perp on the orthogonal complement X_\perp and define the Riemannian metric $h = h_\perp + X^\flat \otimes X^\flat$. The claim follows from Koszul's formula. h is well defined independent of orientability of F.

Stefan Suhr (Hamburg University) Semi-Riemannian manifolds all of whose geodesics are closed
Sketch of proof of the pseudo-Riemannian Wadsley theorem. The following are equivalent:

(1) There is a smooth pseudo-Riemannian metric rendering \mathcal{F} a geodesic foliation by non-degenerate geodesics of the same causal character, i.e. the leaves of \mathcal{F} are either timelike or spacelike.

(1') There is a smooth Riemannian metric rendering \mathcal{F} a geodesic foliation. This is the condition in the known formulation of Wadsley's theorem.

Let X be a locally defined unit-tangent field to the foliation. Choose any Riemannian metric h_{\perp} on the orthogonal complement X_{\perp} and define the Riemannian metric $h = h_{\perp} + X \otimes X$. The claim follows from Koszul's formula. h is well defined independent of orientability of \mathcal{F}.

Stefan Suhr (Hamburg University)

Semi-Riemannian manifolds all of whose geodesics are closed
Sketch of proof of the pseudo-Riemannian Wadsley theorem. The following are equivalent:

(1) There is a smooth pseudo-Riemannian metric rendering \mathcal{F} a geodesic foliation by non-degenerate geodesics of the same causal character, i.e. the leaves of \mathcal{F} are either timelike or spacelike.

(1’) There is a smooth Riemannian metric rendering \mathcal{F} a geodesic foliation.

This is the condition in the known formulation of Wadsley’s theorem.

Let X be a locally defined unit-tangent field to the foliation. Choose any Riemannian metric h_\perp on the orthogonal complement X_\perp and define the Riemannian metric $h = h_\perp + X^\flat \otimes X^\flat$. The claim follows from Koszul’s formula. h is well defined independent of orientability of \mathcal{F}.

Stefan Suhr (Hamburg University)
Sketch of proof of the pseudo-Riemannian Wadsley theorem.
The following are equivalent:
(1) There is a smooth pseudo-Riemannian metric rendering \mathcal{F} a geodesic foliation by non-degenerate geodesics of the same causal character, i.e. the leaves of \mathcal{F} are either timelike or spacelike.
(1’) There is a smooth Riemannian metric rendering \mathcal{F} a geodesic foliation.
This is the condition in the known formulation of Wadsley’s theorem.

Let X be a locally defined unit-tangent field to the foliation.
Choose any Riemannian metric h_\perp on the orthogonal complement X_\perp and define the Riemannian metric $h = h_\perp + X^\flat \otimes X^\flat$.
The claim follows from Koszul’s formula.
h is well defined independent of orientability of \mathcal{F}.

Semi-Riemannian manifolds all of whose geodesics are closed
Sketch of proof of the pseudo-Riemannian Wadsley theorem.
The following are equivalent:
(1) There is a smooth pseudo-Riemannian metric rendering \mathcal{F} a geodesic foliation by non-degenerate geodesics of the same causal character, i.e. the leaves of \mathcal{F} are either timelike or spacelike.
(1’) There is a smooth Riemannian metric rendering \mathcal{F} a geodesic foliation.
This is the condition in the known formulation of Wadsley’s theorem.
(1)⇒ (1’): Let X be a locally defined unit-tangent field to the foliation.
Sketch of proof of the pseudo-Riemannian Wadsley theorem.

The following are equivalent:

(1) There is a smooth pseudo-Riemannian metric rendering \mathcal{F} a geodesic foliation by non-degenerate geodesics of the same causal character, i.e. the leaves of \mathcal{F} are either timelike or spacelike.

(1’) There is a smooth Riemannian metric rendering \mathcal{F} a geodesic foliation.

This is the condition in the known formulation of Wadsley’s theorem.

(1) \Rightarrow (1’): Let X be a locally defined unit-tangent field to the foliation. Choose any Riemannian metric h^\perp on the orthogonal complement X^\perp and define the Riemannian metric

$$h = h^\perp + X^b \otimes X^b.$$
Sketch of proof of the pseudo-Riemannian Wadsley theorem. The following are equivalent:
(1) There is a smooth pseudo-Riemannian metric rendering \mathcal{F} a geodesic foliation by non-degenerate geodesics of the same causal character, i.e. the leaves of \mathcal{F} are either timelike or spacelike.
(1’) There is a smooth Riemannian metric rendering \mathcal{F} a geodesic foliation.
This is the condition in the known formulation of Wadsley’s theorem.
(1) \Rightarrow (1’): Let X be a locally defined unit-tangent field to the foliation. Choose any Riemannian metric h^\perp on the orthogonal complement X^\perp and define the Riemannian metric

$$ h = h^\perp + X^b \otimes X^b. $$

The claim follows from Koszul’s formula. h is well defined independent of orientability of \mathcal{F}.
Theorem (”Signature-rigidity-theorem”, Mounoud/–)

A pseudo-Riemannian manifold having a geodesic flow that can be periodically reparametrized is Riemannian or anti-Riemannian.

Proposition

Let F be an oriented 1-dimensional geodesic foliation on a pseudo-Riemannian manifold (M, g). If the leaves of F are circles with locally bounded Riemannian(!) length then they all have the same type.

Remark

▶ If examples exist of pseudo-Riemannian manifolds with all geodesics closed, then their geodesics flow is complicated.
▶ The problem lies on the lightcones.
▶ There exist examples of foliations by circles such that the length of the leafs are not locally bounded (Thurston-Sullivan examples).

Stefan Suhr (Hamburg University)

Semi-Riemannian manifolds all of whose geodesics are closed
Theorem ("Signature-rigidity-theorem", Mounoud/–)

A pseudo-Riemannian manifold having a geodesic flow that can be periodically reparametrized is Riemannian or anti-Riemannian.

Proposition

Let F be an oriented 1-dimensional geodesic foliation on a pseudo-Riemannian manifold (M, g). If the leaves of F are circles with locally bounded Riemannian(!) length then they all have the same type.

Remark ▶ If examples exist of pseudo-Riemannian manifolds with all geodesics closed, then their geodesics flow is complicated. ▶ The problem lies on the lightcones. ▶ There exist examples of foliations by circles such that the length of the leafs are not locally bounded (Thurston-Sullivan examples).

Stefan Suhr (Hamburg University)

Semi-Riemannian manifolds all of whose geodesics are closed
Theorem ("Signature-rigidity-theorem", Mounoud/–)

A pseudo-Riemannian manifold having a geodesic flow that can be periodically reparametrized is Riemannian or anti-Riemannian.

Proposition

Let \mathcal{F} be an oriented 1-dimensional geodesic foliation on a pseudo-Riemannian manifold (M, g). If the leaves of \mathcal{F} are circles with locally bounded Riemannian(!) length then they all have the same type.
Theorem ("Signature-rigidity-theorem", Mounoud/–)

A pseudo-Riemannian manifold having a geodesic flow that can be periodically reparametrized is Riemannian or anti-Riemannian.

Proposition

Let \mathcal{F} be an oriented 1-dimensional geodesic foliation on a pseudo-Riemannian manifold (M, g). If the leaves of \mathcal{F} are circles with locally bounded Riemannian(!) length then they all have the same type.

Remark

- If examples exist of pseudo-Riemannian manifolds with all geodesics closed, then their geodesics flow is complicated.
Theorem ("Signature-rigidity-theorem", Mounoud/–)

A pseudo-Riemannian manifold having a geodesic flow that can be periodically reparametrized is Riemannian or anti-Riemannian.

Proposition

Let \mathcal{F} be an oriented 1-dimensional geodesic foliation on a pseudo-Riemannian manifold (M, g). If the leaves of \mathcal{F} are circles with locally bounded Riemannian(!) length then they all have the same type.

Remark

- If examples exist of pseudo-Riemannian manifolds with all geodesics closed, then their geodesics flow is complicated.
- The problem lies on the lightcones.
Theorem ("Signature-rigidity-theorem", Mounoud/–)

A pseudo-Riemannian manifold having a geodesic flow that can be periodically reparametrized is Riemannian or anti-Riemannian.

Proposition

Let \mathcal{F} be an oriented 1-dimensional geodesic foliation on a pseudo-Riemannian manifold (M, g). If the leaves of \mathcal{F} are circles with locally bounded Riemannian(!) length then they all have the same type.

Remark

- **If examples exist of pseudo-Riemannian manifolds with all geodesics closed, then their geodesics flow is complicated.**
- **The problem lies on the lightcones.**
- **There exist examples of foliations by circles such that the length of the leaves are not locally bounded (Thurston-Sullivan examples).**
Thurston-Sullivan examples:

Consider $H/\Gamma \times S^1 \times S^1$, where H is the 3-dimensional Heisenberg group and Γ is the lattice of integer matrices in H. Denote with (x, y, z, t, u) coordinates on $H \times \mathbb{R} \times \mathbb{R}$. Set $X = \sin(2u)(-\sin(t) \partial_x + \cos(t) \partial_y) + (x \sin(2u) \cos(t) - \cos^2(u)) \partial_z + 2 \sin^2(u) \partial_t$.

X descends to the quotient $H/\Gamma \times S^1 \times S^1$ ($S^1 = \mathbb{R}/2\pi \mathbb{Z}$).

Note that X is tangent to $H \times \mathbb{R}$ and therefore the projection is tangent to $H/\Gamma \times S^1 \times S^1$.

The flowlines of X are all closed and of unbounded length (period $2\pi \sin^2(u)$ for $u \neq 0, \pi$ and 2π for $u = 0, \pi$).
Thurston-Sullivan examples: Consider $H/\Gamma \times S^1 \times S^1$, where H is the 3-dimensional Heisenberg group and Γ is the lattice of integer matrices in H.

Note that X is tangent to $H \times \mathbb{R}$ and therefore the projection is tangent to $H/\Gamma \times S^1 \times S^1$. The flowlines of X are all closed and of unbounded length (period $2\pi \sin^2(u)$ for $u \neq 0, \pi$, and 2π for $u = 0, \pi$).
Thurston-Sullivan examples: Consider $H/\Gamma \times S^1 \times S^1$, where H is the 3-dimensional Heisenberg group and Γ is the lattice of integer matrices in H. Denote with (x, y, z, t, u) coordinates on $H \times \mathbb{R} \times \mathbb{R}$. Set

$$X = \sin(2u)(-\sin(t)\partial_x + \cos(t)\partial_y) + (x \sin(2u) \cos(t) - \cos^2(u))\partial_z + 2 \sin^2(u)\partial_t.$$
Thurston-Sullivan examples: Consider $H/\Gamma \times S^1 \times S^1$, where H is the 3-dimensional Heisenberg group and Γ is the lattice of integer matrices in H. Denote with (x, y, z, t, u) coordinates on $H \times \mathbb{R} \times \mathbb{R}$. Set

$$X = \sin(2u)(-\sin(t)\partial_x + \cos(t)\partial_y) + (x\sin(2u)\cos(t) - \cos^2(u))\partial_z + 2\sin^2(u)\partial_t.$$

X descends to the quotient $H/\Gamma \times S^1 \times S^1$ ($S^1 = \mathbb{R}/2\pi\mathbb{Z}$).
Thurston-Sullivan examples: Consider $H/\Gamma \times S^1 \times S^1$, where H is the 3-dimensional Heisenberg group and Γ is the lattice of integer matrices in H. Denote with (x, y, z, t, u) coordinates on $H \times \mathbb{R} \times \mathbb{R}$. Set

$$X = \sin(2u)(-\sin(t)\partial_x + \cos(t)\partial_y)$$

$$+ (x \sin(2u) \cos(t) - \cos^2(u))\partial_z + 2 \sin^2(u)\partial_t.$$

X descends to the quotient $H/\Gamma \times S^1 \times S^1$ ($S^1 = \mathbb{R}/2\pi\mathbb{Z}$). Note that X is tangent to $H \times \mathbb{R}$ and therefore the projection is tangent to $H/\Gamma \times S^1$.

Stefan Suhr (Hamburg University)
Semi-Riemannian manifolds all of whose geodesics are closed
Thurston-Sullivan examples: Consider $H/\Gamma \times S^1 \times S^1$, where H is the 3-dimensional Heisenberg group and Γ is the lattice of integer matrices in H. Denote with (x, y, z, t, u) coordinates on $H \times \mathbb{R} \times \mathbb{R}$. Set

$$X = \sin(2u)(-\sin(t)\partial_x + \cos(t)\partial_y) + (x\sin(2u)\cos(t) - \cos^2(u))\partial_z + 2\sin^2(u)\partial_t.$$

X descends to the quotient $H/\Gamma \times S^1 \times S^1$ ($S^1 = \mathbb{R}/2\pi\mathbb{Z}$). Note that X is tangent to $H \times \mathbb{R}$ and therefore the projection is tangent to $H/\Gamma \times S^1$. The flowlines of X are all closed and of unbounded length (period $\frac{2\pi}{\sin^2(u)}$ for $u \neq 0, \pi$ and 2π for $u = 0, \pi$).
Turning the flowlines of X into a geodesic foliation:

Consider the frame $(X, \partial_u, V, W, 2\partial_t + \partial_z)$ with $V = \cos(t) \partial_x + \sin(t)(\partial_y + x \partial_z)$ and $W = -\sin(t) \partial_x + \cos(t)(\partial_y + x \partial_z)$.

Note that the frame descends to the quotient.

Define the Lorentzian metric g to be lightlike on X and ∂_u and unit Riemannian on the other vector fields.

Clearly the flowlines of X form a g-geodesic foliations by lightlike geodesics.

Remark: This construction works for type-changing foliations as well.

But nothing is known for geodesic foliations on tangent bundles.

Stefan Suhr (Hamburg University) Semi-Riemannian manifolds all of whose geodesics are closed
Turning the flowlines of X into a geodesic foliation:
Consider the frame $(X, \partial_u, V, W, 2\partial_t + \partial_z)$ with

$$V = \cos(t)\partial_x + \sin(t)(\partial_y + x\partial_z)$$

and

$$W = -\sin(t)\partial_x + \cos(t)(\partial_y + x\partial_z).$$
Turning the flowlines of X into a geodesic foliation:
Consider the frame $(X, \partial_u, V, W, 2\partial_t + \partial_z)$ with

$$V = \cos(t)\partial_x + \sin(t)(\partial_y + x\partial_z)$$

and

$$W = -\sin(t)\partial_x + \cos(t)(\partial_y + x\partial_z).$$

Note that the frame descends to the quotient.
Turning the flowlines of X into a geodesic foliation: Consider the frame $(X, \partial_u, V, W, 2\partial_t + \partial_z)$ with

$$V = \cos(t)\partial_x + \sin(t)(\partial_y + x\partial_z)$$

and

$$W = -\sin(t)\partial_x + \cos(t)(\partial_y + x\partial_z).$$

Note that the frame descends to the quotient. Define the Lorentzian metric g to be lightlike on X and ∂_u and unit Riemannian on the other vector fields.
Turning the flowlines of X into a geodesic foliation:
Consider the frame $(X, \partial_u, V, W, 2\partial_t + \partial_z)$ with

$$V = \cos(t)\partial_x + \sin(t)(\partial_y + x\partial_z)$$

and

$$W = -\sin(t)\partial_x + \cos(t)(\partial_y + x\partial_z).$$

Note that the frame descends to the quotient. Define the Lorentzian metric g to be lightlike on X and ∂_u and unit Riemannian on the other vector fields. Clearly the flowlines of X form a g-geodesic foliations by lightlike geodesics.

Remark
This construction works for type-changing foliations as well. But nothing is known for geodesic foliations on tangent bundles.

Stefan Suhr (Hamburg University)
Turning the flowlines of X into a geodesic foliation:
Consider the frame $(X, \partial_u, V, W, 2\partial_t + \partial_z)$ with

$$V = \cos(t)\partial_x + \sin(t)(\partial_y + x\partial_z)$$

and

$$W = -\sin(t)\partial_x + \cos(t)(\partial_y + x\partial_z).$$

Note that the frame descends to the quotient. Define the Lorentzian metric g to be lightlike on X and ∂_u and unit Riemannian on the other vector fields. Clearly the flowlines of X form a g-geodesic foliations by lightlike geodesics.

Remark

This construction works for type-changing foliations as well.
Turning the flowlines of X into a geodesic foliation:
Consider the frame $(X, \partial_u, V, W, 2\partial_t + \partial_z)$ with

$$V = \cos(t)\partial_x + \sin(t)(\partial_y + x\partial_z)$$

and

$$W = -\sin(t)\partial_x + \cos(t)(\partial_y + x\partial_z).$$

Note that the frame descends to the quotient. Define the Lorentzian metric g to be lightlike on X and ∂_u and unit Riemannian on the other vector fields. Clearly the flowlines of X form a g-geodesic foliations by lightlike geodesics.

Remark

This construction works for type-changing foliations as well. But nothing is known for geodesic foliations on tangent bundles.
Idea of the topological classification:

Non-compact case:

- The fundamental class of the closed geodesics lies in the center of $\pi_1(M)$.
- $\pi_1(M)$ is a free group.
- No pseudo-Riemannian 2-manifold contains contractible non-spacelike/non-timelike loops.
- $\pi_1(M) \cong \mathbb{Z}$.
- M is covered by $S^1 \times \mathbb{R}$.
- The Zoll property follows since the geodesic flow on the unit tangent bundle is induced by an S^1-action.

Compact case:

- The closed unit-speed geodesics all intersect a fixed compact subset of the tangent bundle, i.e. the unit tangents to a timelike/spacelike foliation with the same rotation number (image under the Hurewicz homomorphism) as the geodesics.
- The unit tangents are unbounded and the geodesic flow is continuous.
- There exist arbitrary long (Riemannian sense) closed geodesics whose tangents meet a compact subset of the tangent bundle.
- Contradiction to Wadsley's theorem.
Idea of the topological classification:

(1) Non-compact case:

\[\pi_1(M) \] is a free group and no pseudo-Riemannian 2-manifold contains contractible non-spacelike/non-timelike loops.

\[\pi_1(M) \cong \mathbb{Z} \]

\[M \] is covered by \(S^1 \times \mathbb{R} \).

The Zoll property follows since the geodesic flow on the unit tangent bundle is induced by an \(S^1 \)-action.

(2) Compact case:

The closed unit-speed geodesics all intersect a fixed compact subset of the tangent bundle, i.e. the unit tangents to a timelike/spacelike foliation with the same rotation number (image under the Hurewicz homomorphism) as the geodesics.

The unit tangents are unbounded and the geodesic flow is continuous.

\[\text{There exist arbitrary long (Riemannian sense) closed geodesics whose tangents meet a compact subset of the tangent bundle.} \]

\[\text{Contradiction to Wadsley's theorem.} \]
Idea of the topological classification:

(1) **Non-compact case:** pseudo-Riemannian Wadsley \implies The fundamental class of the closed geodesics lies in the center of $\pi_1(M)$.

(2) **Compact case:** The closed unit-speed geodesics all intersect a fixed compact subset of the tangent bundle, i.e. the unit tangents to a timelike/spacelike foliation with the same rotation number (image under the Hurewicz homomorphism) as the geodesics. The unit tangents are unbounded and the geodesic flow is continuous.

\implies There exist arbitrary long (Riemannian sense) closed geodesics whose tangents meet a compact subset of the tangent bundle.

\implies Contradiction to Wadsley's theorem.

Semi-Riemannian manifolds all of whose geodesics are closed
Idea of the topological classification:

(1) **Non-compact case:** pseudo-Riemannian Wadsley \(\rightsquigarrow\) The fundamental class of the closed geodesics lies in the center of \(\pi_1(M)\). \(\pi_1(M)\) is a free group and no pseudo-Riemannian 2-manifold contains contractible non-spacelike/non-timelike loops.

(2) **Compact case:** The closed unit-speed geodesics all intersect a fixed compact subset of the tangent bundle, i.e. the unit tangents to a timelike/spacelike foliation with the same rotation number (image under the Hurewicz homomorphism) as the geodesics. The unit tangents are unbounded and the geodesic flow is continuous. \(\rightsquigarrow\) There exist arbitrary long (Riemannian sense) closed geodesics whose tangents meet a compact subset of the tangent bundle. \(\rightsquigarrow\) Contradiction to Wadsley’s theorem.
Idea of the topological classification:

(1) **Non-compact case:** pseudo-Riemannian Wadsley \rightsquigarrow The fundamental class of the closed geodesics lies in the center of $\pi_1(M)$. $\pi_1(M)$ is a free group and no pseudo-Riemannian 2-manifold contains contractible non-spacelike/non-timelike loops. $\rightsquigarrow \pi_1(M) \cong \mathbb{Z} \rightsquigarrow M$ is covered by $S^1 \times \mathbb{R}$.

(2) **Compact case:** The closed unit-speed geodesics all intersect a fixed compact subset of the tangent bundle, i.e. the unit tangents to a timelike/spacelike foliation with the same rotation number (image under the Hurewicz homomorphism) as the geodesics. \rightsquigarrow There exist arbitrary long (Riemannian sense) closed geodesics whose tangents meet a compact subset of the tangent bundle. \rightsquigarrow Contradiction to Wadsley's theorem.
Idea of the topological classification:

(1) **Non-compact case:** pseudo-Riemannian Wadsley \leadsto The fundamental class of the closed geodesics lies in the center of $\pi_1(M)$. $\pi_1(M)$ is a free group and no pseudo-Riemannian 2-manifold contains contractible non-spacelike/non-timelike loops. $\leadsto \pi_1(M) \cong \mathbb{Z} \leadsto M$ is covered by $S^1 \times \mathbb{R}$. The Zoll property follows since the geodesic flow on the unit tangent bundle is induced by an S^1-action.

(2) Compact case: The closed unit-speed geodesics all intersect a fixed compact subset of the tangent bundle, i.e. the unit tangents to a timelike/spacelike foliation with the same rotation number (image under the Hurewicz homomorphism) as the geodesics. There exist arbitrary long (Riemannian sense) closed geodesics whose tangents meet a compact subset of the tangent bundle. Contradiction to Wadsley’s theorem.
Idea of the topological classification:

(1) **Non-compact case:** pseudo-Riemannian Wadsley \rightsquigarrow The fundamental class of the closed geodesics lies in the center of $\pi_1(M)$. $\pi_1(M)$ is a free group and no pseudo-Riemannian 2-manifold contains contractible non-spacelike/non-timelike loops. $\rightsquigarrow \pi_1(M) \cong \mathbb{Z} \rightsquigarrow M$ is covered by $S^1 \times \mathbb{R}$. The Zoll property follows since the geodesic flow on the unit tangent bundle is induced by an S^1-action.

(2) **Compact case:**
Idea of the topological classification:

(1) **Non-compact case:** pseudo-Riemannian Wadsley \rightsquigarrow The fundamental class of the closed geodesics lies in the center of $\pi_1(M)$. $\pi_1(M)$ is a free group and no pseudo-Riemannian 2-manifold contains contractible non-spacelike/non-timelike loops. $\rightsquigarrow \pi_1(M) \cong \mathbb{Z} \rightsquigarrow M$ is covered by $S^1 \times \mathbb{R}$. The Zoll property follows since the geodesic flow on the unit tangent bundle is induced by an S^1-action.

(2) **Compact case:** The closed unit-speed geodesics all intersect a fixed compact subset of the tangent bundle,
Idea of the topological classification:

(1) **Non-compact case:** pseudo-Riemannian Wadsley \(\rightsquigarrow\) The fundamental class of the closed geodesics lies in the center of \(\pi_1(M)\). \(\pi_1(M)\) is a free group and no pseudo-Riemannian 2-manifold contains contractible non-spacelike/non-timelike loops. \(\rightsquigarrow\) \(\pi_1(M) \cong \mathbb{Z} \rightsquigarrow M\) is covered by \(S^1 \times \mathbb{R}\). The Zoll property follows since the geodesic flow on the unit tangent bundle is induced by an \(S^1\)-action.

(2) **Compact case:** The closed unit-speed geodesics all intersect a fixed compact subset of the tangent bundle, i.e. the unit tangents to a timelike/spacelike foliation with the same rotation number (image under the Hurewicz homomorphism) as the geodesics.
Idea of the topological classification:

(1) **Non-compact case:** pseudo-Riemannian Wadsley \leadsto The fundamental class of the closed geodesics lies in the center of $\pi_1(M)$. $\pi_1(M)$ is a free group and no pseudo-Riemannian 2-manifold contains contractible non-spacelike/non-timelike loops. $\leadsto \pi_1(M) \cong \mathbb{Z} \leadsto M$ is covered by $S^1 \times \mathbb{R}$. The Zoll property follows since the geodesic flow on the unit tangent bundle is induced by an S^1-action.

(2) **Compact case:** The closed unit-speed geodesics all intersect a fixed compact subset of the tangent bundle, i.e. the unit tangents to a timelike/spacelike foliation with the same rotation number (image under the Hurewicz homomorphism) as the geodesics. The unit tangents are unbounded and the geodesic flow is continuous.
Idea of the topological classification:

(1) **Non-compact case:** pseudo-Riemannian Wadsley \leadsto The fundamental class of the closed geodesics lies in the center of $\pi_1(M)$. $\pi_1(M)$ is a free group and no pseudo-Riemannian 2-manifold contains contractible non-spacelike/non-timelike loops. $\leadsto \pi_1(M) \cong \mathbb{Z} \leadsto M$ is covered by $S^1 \times \mathbb{R}$. The Zoll property follows since the geodesic flow on the unit tangent bundle is induced by an S^1-action.

(2) **Compact case:** The closed unit-speed geodesics all intersect a fixed compact subset of the tangent bundle, i.e. the unit tangents to a timelike/spacelike foliation with the same rotation number (image under the Hurewicz homomorphism) as the geodesics. The unit tangents are unbounded and the geodesic flow is continuous. \leadsto There exist arbitrary long (Riemannian sense) closed geodesics whose tangents meet a compact subset of the tangent bundle.
Idea of the topological classification:

(1) **Non-compact case:** pseudo-Riemannian Wadsley \rightsquigarrow The fundamental class of the closed geodesics lies in the center of $\pi_1(M)$. $\pi_1(M)$ is a free group and no pseudo-Riemannian 2-manifold contains contractible non-spacelike/non-timelike loops. $\rightsquigarrow \pi_1(M) \cong \mathbb{Z} \rightsquigarrow M$ is covered by $S^1 \times \mathbb{R}$. The Zoll property follows since the geodesic flow on the unit tangent bundle is induced by an S^1-action.

(2) **Compact case:** The closed unit-speed geodesics all intersect a fixed compact subset of the tangent bundle, i.e. the unit tangents to a timelike/spacelike foliation with the same rotation number (image under the Hurewicz homomorphism) as the geodesics. The unit tangents are unbounded and the geodesic flow is continuous. \rightsquigarrow There exist arbitrary long (Riemannian sense) closed geodesics whose tangents meet a compact subset of the tangent bundle. \rightsquigarrow Contradiction to Wadsley’s theorem.
3-dimensional spacetimes with all lightlike geodesics closed.
3-dimensional spacetimes with all lightlike geodesics closed.

Definition (Guillemin)

A compact 3-dimensional pseudo-Riemannian manifold \((M, g)\) is *Zollfrei*, if the geodesic flow on the lightlike vectors induces a fibration by circles.
3-dimensional spacetimes with all lightlike geodesics closed.

Definition (Guillemin)
A compact 3-dimensional pseudo-Riemannian manifold \((M, g)\) is \textit{Zollfrei}, if the geodesic flow on the lightlike vectors induces a fibration by circles.

Remark

- \textit{Zollfrei is inspired by notion of Zoll surfaces.}
3-dimensional spacetimes with all lightlike geodesics closed.

Definition (Guillemin)

A compact 3-dimensional pseudo-Riemannian manifold \((M, g)\) is \textit{Zollfrei}, if the geodesic flow on the lightlike vectors induces a fibration by circles.

Remark

- \textit{Zollfrei} is inspired by notion of Zoll surfaces.
- \((S^2 \times S^1, g_{\text{can}} - \lambda d\theta^2)\) is \textit{Zollfrei} iff \(\lambda \in \mathbb{Q}\).
3-dimensional spacetimes with all lightlike geodesics closed.

Definition (Guillemin)
A compact 3-dimensional pseudo-Riemannian manifold \((M, g)\) is \textit{Zollfrei}, if the geodesic flow on the lightlike vectors induces a fibration by circles.

Remark
- \textit{Zollfrei} is inspired by notion of Zoll surfaces.
- \((S^2 \times S^1, g_{can} - \lambda d\theta^2)\) is Zollfrei iff \(\lambda \in \mathbb{Q}\).
- Connection to Low's notion of refocussing spacetimes.
3-dimensional spacetimes with all lightlike geodesics closed.

Definition (Guillemin)
A compact 3-dimensional pseudo-Riemannian manifold (M,g) is Zollfrei, if the geodesic flow on the lightlike vectors induces a fibration by circles.

Remark
- Zollfrei is inspired by notion of Zoll surfaces.
- $(S^2 \times S^1, g_{can} - \lambda d\theta^2)$ is Zollfrei iff $\lambda \in \mathbb{Q}$.
- Connection to Low’s notion of refocussing spacetimes.

Theorem (Tollefson)
The only diffeomorphism types of compact manifolds covered by $S^2 \times S^1$ are $S^2 \times S^1$ itself, $\mathbb{R}P^2 \times S^1$, $\mathbb{R}P^3 \sharp \mathbb{R}P^3$ and the unique non-orientable 2-sphere bundle over S^1.

Stefan Suhr (Hamburg University)
Semi-Riemannian manifolds all of whose geodesics are closed
Remark (Guillemin)

The metrics $g_{can} - \lambda d\theta^2$ descend to all quotients. They are Zollfrei iff $\lambda \in \mathbb{Q}$ and are called the standard examples.

Conjecture (Guillemin)
Every Zollfrei manifold has the diffeomorphism type of one of the standard examples.

Theorem
Every non-trivial orientable circle bundle over a closed and orientable surface admits a Zollfrei metric.

Corollary
Guillemin's conjecture is wrong. By the Gysin sequence all diffeomorphism types in the theorem are different and none is one of the standard examples.
Remark (Guillemin)

The metrics \(g_{\text{can}} - \lambda d\theta^2 \) *descend to all quotients. They are Zollfrei iff* \(\lambda \in \mathbb{Q} \) *and are called the standard examples.*

Conjecture (Guillemin)

Every Zollfrei manifold has the diffeomorphism type of one of the standard examples.
Remark (Guillemin)

The metrics $g_{\text{can}} - \lambda d\theta^2$ descend to all quotients. They are Zollfrei iff $\lambda \in \mathbb{Q}$ and are called the standard examples.

Conjecture (Guillemin)

Every Zollfrei manifold has the diffeomorphism type of one of the standard examples.

Theorem

Every non-trivial orientable circle bundle over a closed and orientable surface admits a Zollfrei metric.
Remark (Guillemin)

The metrics $g_{\text{can}} - \lambda d\theta^2$ descend to all quotients. They are Zollfrei iff $\lambda \in \mathbb{Q}$ and are called the standard examples.

Conjecture (Guillemin)

Every Zollfrei manifold has the diffeomorphism type of one of the standard examples.

Theorem

Every non-trivial orientable circle bundle over a closed and orientable surface admits a Zollfrei metric.

Corollary

Guillemin’s conjecture is wrong.
Remark (Guillemin)

The metrics $g_{\text{can}} - \lambda d\theta^2$ descend to all quotients. They are Zollfrei iff $\lambda \in \mathbb{Q}$ and are called the standard examples.

Conjecture (Guillemin)

Every Zollfrei manifold has the diffeomorphism type of one of the standard examples.

Theorem

Every non-trivial orientable circle bundle over a closed and orientable surface admits a Zollfrei metric.

Corollary

Guillemin’s conjecture is wrong.

By the Gysin sequence all diffeomorphism types in the theorem are different and none is one of the standard examples.
Guillemin gives a weaker version of his conjecture assuming causality of the universal cover.

Theorem
If \((M, g)\) is Zollfrei and the universal cover is globally hyperbolic, then \(M\) has the diffeomorphism type of one of the standard examples.

Follows from a result of Low on refocussing spacetimes. Here \((M, g)\) Zollfrei and globally hyperbolicity of the universal cover imply that the universal cover is refocussing.

Theorem (Low, Chernov/Rudyak)
Let \((M, g)\) be a globally hyperbolic spacetime with non-compact Cauchy hypersurfaces. Then \((M, g)\) is not refocussing.

For Zollfrei spacetimes this implies that the Cauchy hypersurfaces of the universal cover are compact and simply connected, i.e. 2-spheres. Then the Zollfrei spacetimes are covered by \(S^2 \times S^1\).
Guillemin gives a weaker version of his conjecture assuming causality of the universal cover. But we have:

Theorem

If \((M, g)\) is Zollfrei and the universal cover is globally hyperbolic, then \(M\) has the diffeomorphism type of one of the standard examples.

Follows from a result of Low on refocussing spacetimes. Here \((M, g)\) Zollfrei and globally hyperbolicity of the universal cover imply that the universal cover is refocussing.

Theorem (Low, Chernov/Rudyak)

Let \((M, g)\) be a globally hyperbolic spacetime with non-compact Cauchy hypersurfaces. Then \((M, g)\) is not refocussing. For Zollfrei spacetimes this implies that the Cauchy hypersurfaces of the universal cover are compact and simply connected, i.e. 2-spheres. Then the Zollfrei spacetimes are covered by \(S^2 \times S^1\).
Guillemin gives a weaker version of his conjecture assuming causality of the universal cover. But we have:

Theorem

If (M, g) *is Zollfrei and the universal cover is globally hyperbolic, then* M *has the diffeomorphism type of one of the standard examples.*

Follows from a result of Low on refocussing spacetimes. Here (M, g) Zollfrei and globally hyperbolicity of the universal cover imply that the universal cover is refocussing.
Guillemin gives a weaker version of his conjecture assuming causality of the universal cover. But we have:

Theorem

If (M, g) is Zollfrei and the universal cover is globally hyperbolic, then M has the diffeomorphism type of one of the standard examples.

Follows from a result of Low on refocussing spacetimes. Here (M, g) Zollfrei and globally hyperbolicity of the universal cover imply that the universal cover is refocussing.

Theorem (Low, Chernov/Rudyak)

Let $(\overline{M}, \overline{g})$ be a globally hyperbolic spacetime with non-compact Cauchy hypersurfaces. Then $(\overline{M}, \overline{g})$ is not refocussing.
Guillemin gives a weaker version of his conjecture assuming causality of the universal cover. But we have:

Theorem

If (M, g) is Zollfrei and the universal cover is globally hyperbolic, then M has the diffeomorphism type of one of the standard examples.

Follows from a result of Low on refocussing spacetimes. Here (M, g) Zollfrei and globally hyperbolicity of the universal cover imply that the universal cover is refocussing.

Theorem (Low, Chernov/Rudyak)

Let $(\overline{M}, \overline{g})$ be a globally hyperbolic spacetime with non-compact Cauchy hypersurfaces. Then $(\overline{M}, \overline{g})$ is not refocussing.

For Zollfrei spacetimes this implies that the Cauchy hypersurfaces of the universal cover are compact and simply connected, i.e. 2-spheres. Then the Zollfrei spacetimes are covered by $S^2 \times S^1$.
Construction of the metrics:
Construction of the metrics:

- \((B^2, g)\) closed oriented surface with constant curvature, such that \(\text{vol}^g(B) \in 2\pi \mathbb{Z}\)
Construction of the metrics:

- \((B^2, g)\) closed oriented surface with constant curvature, such that \(\text{vol}^g(B) \in 2\pi\mathbb{Z}\)

- \(S^1 \hookrightarrow M \rightarrow B\) principal bundle with Euler class
 \[
 \left[-\frac{d\text{vol}^g}{2\pi}\right] \in H^2(B, \mathbb{Z}),
 \]

For \(\phi \in (0, \pi/2)\) set \((\pi_\#: M \rightarrow B)\)

\(h_\phi = \pi_\# - \cot^2(\phi) \alpha \otimes \alpha\)

Opening angles of the lightcones is \(\pi/2 - \phi\)

\(h_\phi\) is stationary with timelike Killing vector field
Construction of the metrics:

- (B^2, g) closed oriented surface with constant curvature, such that $\text{vol}^g(B) \in 2\pi \mathbb{Z}$
- $S^1 \hookrightarrow M \rightarrow B$ principal bundle with Euler class $\left[-\frac{\text{dvol}^g}{2\pi} \right] \in H^2(B, \mathbb{Z})$, \mathcal{R} tangent field to the fibres
Construction of the metrics:

- (B^2, g) closed oriented surface with constant curvature, such that $\text{vol}^g(B) \in 2\pi \mathbb{Z}$
- $S^1 \hookrightarrow M \rightarrow B$ principal bundle with Euler class $\left[-\frac{\text{dvol}^g}{2\pi}\right] \in H^2(B, \mathbb{Z})$, \mathcal{R} tangent field to the fibres
- α connection 1-form on M, such that $\mathcal{L}_\mathcal{R}(\alpha) = 0$, $\alpha(\mathcal{R}) = 1$ and curvature dvol^g (contact form)
Construction of the metrics:

- \((B^2, g)\) closed oriented surface with constant curvature, such that \(\text{vol}^g(B) \in 2\pi \mathbb{Z}\)
- \(S^1 \hookrightarrow M \rightarrow B\) principal bundle with Euler class

 \[
 \left[- \frac{\text{dvol}^g}{2\pi}\right] \in H^2(B, \mathbb{Z}), \quad \mathcal{R} \text{ tangent field to the fibres}
 \]
- \(\alpha\) connection 1-form on \(M\), such that \(\mathcal{L}_\mathcal{R}(\alpha) = 0, \quad \alpha(\mathcal{R}) = 1\) and curvature \(\text{dvol}^g\) (contact form)
- For \(\phi \in (0, \frac{\pi}{2})\) set \((\pi : M \rightarrow B)\)

\[
 h_\phi = \pi^* g - \cot^2(\phi) \alpha \otimes \alpha
\]
Construction of the metrics:

- \((B^2, g)\) closed oriented surface with constant curvature, such that \(\text{vol}^g(B) \in 2\pi\mathbb{Z}\)

- \(S^1 \to M \to B\) principal bundle with Euler class \(\left[-\frac{d\text{vol}^g}{2\pi}\right] \in H^2(B, \mathbb{Z}), \mathcal{R}\) tangent field to the fibres

- \(\alpha\) connection 1-form on \(M\), such that \(\mathcal{L}_\mathcal{R}(\alpha) = 0\), \(\alpha(\mathcal{R}) = 1\) and curvature \(d\text{vol}^g\) (contact form)

- For \(\phi \in (0, \frac{\pi}{2})\) set \((\pi : M \to B)\)

\[h_\phi = \pi^* g - \cot^2(\phi) \alpha \otimes \alpha\]

- Opening angles of the lightcones is \(\frac{\pi}{2} - \phi\)

- \(h_\phi\) is stationary with timelike Killing vector field \(\mathcal{R}\)
Example

For \((B, g) = (\mathbb{C}P^1, g_{FS}) (K = 4)\) we have \(M \cong S^3\) and

\[
h_\phi = J^* \otimes J^* + K^* \otimes K^* - \cot^2(\phi) I^* \otimes I^*.
\]
Example

For \((B, g) = (\mathbb{C}P^1, g_{FS}) \ (K = 4)\) we have \(M \cong S^3\) and

\[
h_\phi = J^* \otimes J^* + K^* \otimes K^* - \cot^2(\phi)I^* \otimes I^*.
\]

(i) The lightlike geodesics are locally given by the arrival time functional of a Finsler metric defined via \(g\) and a local primitive of \(d\text{vol}^g\).
Example

For \((B, g) = (\mathbb{C}P^1, g_{FS})\) \((K = 4)\) we have \(M \cong S^3\) and

\[
h_\phi = J^* \otimes J^* + K^* \otimes K^* - \cot^2(\phi) I^* \otimes I^*.
\]

(i) The lightlike geodesics are locally given by the arrival time functional of a Finsler metric defined via \(g\) and a local primitive of \(d\text{vol}^g\). In the present case the construction is therefore not global.
Example

For \((B, g) = (\mathbb{C}P^1, g_{FS})\) \((K = 4)\) we have \(M \cong S^3\) and

\[
h_\phi = J^* \otimes J^* + K^* \otimes K^* - \cot^2(\phi) I^* \otimes I^*.
\]

(i) The lightlike geodesics are locally given by the arrival time functional of a Finsler metric defined via \(g\) and a local primitive of \(\text{dvol}^g\). In the present case the construction is therefore not global.

(ii) Global description is not well defined on curves, but on ”films” (Taimanov).
Example

For \((B, g) = (\mathbb{CP}^1, g_{FS})\) \((K = 4)\) we have \(M \cong S^3\) and

\[h_\phi = J^* \otimes J^* + K^* \otimes K^* - \cot^2(\phi)l^* \otimes l^*. \]

(i) The lightlike geodesics are locally given by the arrivial time functional of a Finsler metric defined via \(g\) and a local primitive of \(d\text{vol}^g\). In the present case the construction is therefore not global.
(ii) Global description is not well defined on curves, but on ”films” (Taimanov). A smooth map \(f : S \to B\) is called a film, where \(S\) is a compact surface with boundary.
Example

For \((B, g) = (\mathbb{C}P^1, g_{FS})\) \((K = 4)\) we have \(M \cong S^3\) and

\[h_\phi = J^* \otimes J^* + K^* \otimes K^* - \cot^2(\phi) I^* \otimes I^*. \]

(i) The lightlike geodesics are locally given by the arrival time functional of a Finsler metric defined via \(g\) and a local primitive of \(d\text{vol}^g\). In the present case the construction is therefore not global.

(ii) Global description is not well defined on curves, but on ”films” (Taimanov). A smooth map \(f: S \to B\) is called a film, where \(S\) is a compact surface with boundary. The charged particles functional \(cp_\phi\) for films is

\[cp_\phi(f) = L^g(f|_{\partial S}) - \cot^2(\phi) \int_S f^*d\text{vol}^g. \]
Example

For \((B, g) = (\mathbb{C}P^1, g_{FS})\) \((K = 4)\) we have \(M \cong S^3\) and

\[h_\phi = J^* \otimes J^* + K^* \otimes K^* - \cot^2(\phi) I^* \otimes I^*. \]

(i) The lightlike geodesics are locally given by the arrival time functional of a Finsler metric defined via \(g\) and a local primitive of \(\text{dvol}^g\). In the present case the construction is therefore not global.

(ii) Global description is not well defined on curves, but on ”films” (Taimanov). A smooth map \(f : S \to B\) is called a film, where \(S\) is a compact surface with boundary. The charged particles functional \(cp_\phi\) for films is

\[cp_\phi(f) = L^g(f|_{\partial S}) - \cot^2(\phi) \int_S f^* \text{dvol}^g. \]

If the ”magnetic” term \(\text{dvol}^g\) is exact the arrival time functional is retained.
(iii) The critical points of \(cp_\phi \) have closed “magnetic geodesics” as boundary. A curve \(\gamma \) is a magnetic geodesic if

\[
\nabla_{\dot{\gamma}} \dot{\gamma} = \cot^2(\phi) \ dvol^g(\dot{\gamma}, .)\#.
\]

(The charged particle functional on films induces an Euler-Lagrange flow.)
(iii) The critical points of cp_ϕ have closed “magnetic geodesics” as boundary. A curve γ is a magnetic geodesic if

$$\nabla_{\dot{\gamma}}\dot{\gamma} = \cot^2(\phi) \, d\text{vol}^g(\dot{\gamma}, .) \#.$$

(The charged particle functional on films induces an Euler-Lagrange flow.)

(iv) cp_ϕ is invariant under isometries of (B, g).

Semi-Riemannian manifolds all of whose geodesics are closed
(iii) The critical points of $cp\phi$ have closed “magnetic geodesics” as boundary. A curve γ is a magnetic geodesic if

$$\nabla_{\dot{\gamma}}\dot{\gamma} = \cot^2(\phi) \, d\text{vol}^g(\dot{\gamma}, \cdot)\#.$$

(The charged particle functional on films induces an Euler-Lagrange flow.)

(iv) $cp\phi$ is invariant under isometries of (B, g). All magnetic geodesics are simply closed and induce a fibration of T^1B by circles for $\sec g \geq 0$.

Proposition $(M, h\phi)$ is Zollfrei iff $cp\phi \in 2\pi\mathbb{Q}$ on its critical points.

For $B = \mathbb{C}P^1$ we have $cp\phi = 4\tan(\phi) - 1/\sqrt{1+4\tan^2\phi}$ on the critical points.
(iii) The critical points of cp_ϕ have closed “magnetic geodesics” as boundary. A curve γ is a \textit{magnetic geodesic} if
\[
\nabla_{\dot{\gamma}}\dot{\gamma} = \cot^2(\phi) \ d\text{vol}^g(\dot{\gamma}, .)\#.
\]
(The charged particle functional on films induces an Euler-Lagrange flow.)

(iv) cp_ϕ is invariant under isometries of (B, g). All magnetic geodesics are simply closed and induce a fibration of T^1B by circles for $\sec g \geq 0$. If $\sec g < 0$ there exist a ϕ_0 such that for all $0 < \phi \leq \phi_0$ the same holds.
(iii) The critical points of \(cp_\phi \) have closed “magnetic geodesics” as boundary. A curve \(\gamma \) is a magnetic geodesic if

\[
\nabla_{\dot{\gamma}} \dot{\gamma} = \cot^2(\phi) \ d\text{vol}^g(\dot{\gamma}, .)\#.
\]

(The charged particle functional on films induces an Euler-Lagrange flow.)

(iv) \(cp_\phi \) is invariant under isometries of \((B, g)\). All magnetic geodesics are simply closed and induce a fibration of \(T^1B \) by circles for \(\sec g \geq 0 \). If \(\sec g < 0 \) there exist a \(\phi_0 \) such that for all \(0 < \phi \leq \phi_0 \) the same holds.

Proposition

\((M, h_\phi)\) is Zollfrei iff \(cp_\phi \in 2\pi\mathbb{Q} \) on its critical points.
(iii) The critical points of cp_ϕ have closed “magnetic geodesics” as boundary. A curve γ is a magnetic geodesic if

$$\nabla_{\dot{\gamma}}\dot{\gamma} = \cot^2(\phi) \ dvol^g(\dot{\gamma}, .)^\sharp.$$

(The charged particle functional on films induces an Euler-Lagrange flow.)

(iv) cp_ϕ is invariant under isometries of (B, g). All magnetic geodesics are simply closed and induce a fibration of T^1B by circles for $\sec_g \geq 0$. If $\sec_g < 0$ there exist a ϕ_0 such that for all $0 < \phi \leq \phi_0$ the same holds.

Proposition

(M, h_ϕ) is Zollfrei iff $cp_\phi \in 2\pi\mathbb{Q}$ on its critical points.

For $B = \mathbb{C}P^1$ we have $cp_\phi = \frac{4\tan(\phi) - 1}{\sqrt{1 + 4\tan^2\phi}} \cdot 2\pi + 2\pi\mathbb{Z}$ on the critical points.
Open problem:

- Give a topological classification of manifolds with all lightlike/timelike/spacelike geodesics closed in dimension 3 or higher. Note that anti-deSitter 3-space admits compact quotients, so the structure will be richer.
- What can be said about the modular space of timelike/spacelike Zoll surfaces?
- Are there non-obvious Zollfrei manifolds in higher dimension?
- Is every Zollfrei 3-manifold geometrizable? The constructed example cover 4 out of 8 possible geometries.
- Maybe better (due to P. Mounoud): Is every Zollfrei manifold a Seifert fibration? If counterexamples exist they are not stationary by Flores/Javaloyes/Piccione.
- Does every (nontrivial) Seifert fibration admit a Zollfrei metric? It is probably easy to construct Lorentzian metrics with all lightlike geodesics closed.
Open problem:

- Give a topological classification of manifolds with all lightlike/timelike/spacelike geodesics closed in dimension 3 or higher.

Note that anti-deSitter 3-space admits compact quotients, so the structure will be richer.

- What can be said about the modular space of timelike/spacelike Zoll surfaces?

- Are there non-obvious Zollfrei manifolds in higher dimension?

- Is every Zollfrei 3-manifold geometrizable? The constructed example cover 4 out of 8 possible geometries.

- Maybe better (due to P. Mounoud): Is every Zollfrei manifold a Seifert fibration? If counterexamples exist they are not stationary by Flores/Javaloyes/Piccione.

- Does every (nontrivial) Seifert fibration admit a Zollfrei metric? It is probably easy to construct Lorentzian metrics with all lightlike geodesics closed.
Open problem:

- Give a topological classification of manifolds with all lightlike/timelike/spacelike geodesics closed in dimension 3 or higher. Note that anti-deSitter 3-space admits compact quotients, so the structure will be richer.

- What can be said about the modular space of timelike/spacelike Zoll surfaces?

- Are there non-obvious Zollfrei manifolds in higher dimension?

- Is every Zollfrei 3-manifold geometrizable? The constructed example cover 4 out of 8 possible geometries.

- Maybe better (due to P. Mounoud): Is every Zollfrei manifold a Seifert fibration? If counterexamples exist they are not stationary by Flores/Javaloyes/Piccione.

- Does every (nontrivial) Seifert fibration admit a Zollfrei metric? It is probably easy to construct Lorentzian metrics with all lightlike geodesics closed.
Open problem:

- Give a topological classification of manifolds with all lightlike/timelike/spacelike geodesics closed in dimension 3 or higher. Note that anti-deSitter 3-space admits compact quotients, so the structure will be richer.

- What can be said about the modular space of timelike/spacelike Zoll surfaces?

- Are there non-obvious Zollfrei manifolds in higher dimension?

- Is every Zollfrei 3-manifold geometrizable? The constructed example cover 4 out of 8 possible geometries.

- Maybe better (due to P. Mounoud): Is every Zollfrei manifold a Seifert fibration? If counterexamples exist they are not stationary by Flores/Javaloyes/Piccione.

- Does every (nontrivial) Seifert fibration admit a Zollfrei metric? It is probably easy to construct Lorentzian metrics with all lightlike geodesics closed.
Open problem:

- Give a topological classification of manifolds with all lightlike/timelike/spacelike geodesics closed in dimension 3 or higher. Note that anti-deSitter 3-space admits compact quotients, so the structure will be richer.

- What can be said about the modular space of timelike/spacelike Zoll surfaces?

- Are there non-obvious Zollfrei manifolds in higher dimension?

- Is every Zollfrei 3-manifold geometrizable? The constructed example cover 4 out of 8 possible geometries.

- Maybe better (due to P. Mounoud): Is every Zollfrei manifold a Seifert fibration? If counterexamples exist they are not stationary by Flores/Javaloyes/Piccione.

- Does every (nontrivial) Seifert fibration admit a Zollfrei metric? It is probably easy to construct Lorentzian metrics with all lightlike geodesics closed.
Open problem:

- Give a topological classification of manifolds with all lightlike/timelike/spacelike geodesics closed in dimension 3 or higher. Note that anti-deSitter 3-space admits compact quotients, so the structure will be richer.

- What can be said about the modular space of timelike/spacelike Zoll surfaces?

- Are there non-obvious Zollfrei manifolds in higher dimension?

- Is every Zollfrei 3-manifold geometriziable? The constructed example cover 4 out of 8 possible geometries.
Open problem:

- Give a topological classification of manifolds with all lightlike/timelike/spacelike geodesics closed in dimension 3 or higher. Note that anti-deSitter 3-space admits compact quotients, so the structure will be richer.

- What can be said about the modular space of timelike/spacelike Zoll surfaces?

- Are there non-obvious Zollfrei manifolds in higher dimension?

- Is every Zollfrei 3-manifold geometrizable? The constructed example cover 4 out of 8 possible geometries.

- Maybe better (due to P. Mounoud): Is every Zollfrei manifold a Seifert fibration?
Open problem:

- Give a topological classification of manifolds with all lightlike/timelike/spacelike geodesics closed in dimension 3 or higher. Note that anti-deSitter 3-space admits compact quotients, so the structure will be richer.
- What can be said about the modular space of timelike/spacelike Zoll surfaces?
- Are there non-obvious Zollfrei manifolds in higher dimension?
- Is every Zollfrei 3-manifold geometrizable? The constructed example cover 4 out of 8 possible geometries.
- Maybe better (due to P. Mounoud): Is every Zollfrei manifold a Seifert fibration? If counterexamples exist they are not stationary by Flores/Javaloyes/Piccione.
Open problem:

> Give a topological classification of manifolds with all lightlike/timelike/spacelike geodesics closed in dimension 3 or higher. Note that anti-deSitter 3-space admits compact quotients, so the structure will be richer.

> What can be said about the modular space of timelike/spacelike Zoll surfaces?

> Are there non-obvious Zollfrei manifolds in higher dimension?

> Is every Zollfrei 3-manifold geometrizable? The constructed example cover 4 out of 8 possible geometries.

> Maybe better (due to P. Mounoud): Is every Zollfrei manifold a Seifert fibration? If counterexamples exist they are not stationary by Flores/Javaloyes/Piccione.

> Does every (nontrivial) Seifert fibration admit a Zollfrei metric?
Open problem:

- Give a topological classification of manifolds with all lightlike/timelike/spacelike geodesics closed in dimension 3 or higher. Note that anti-deSitter 3-space admits compact quotients, so the structure will be richer.

- What can be said about the modular space of timelike/spacelike Zoll surfaces?

- Are there non-obvious Zollfrei manifolds in higher dimension?

- Is every Zollfrei 3-manifold geometrizable? The constructed example cover 4 out of 8 possible geometries.

- Maybe better (due to P. Mounoud): Is every Zollfrei manifold a Seifert fibration? If counterexamples exist they are not stationary by Flores/Javaloyes/Piccione.

- Does every (nontrivial) Seifert fibration admit a Zollfrei metric? It is probably easy to construct Lorentzian metrics with all lightlike geodesics closed.
References:

▶ Suhr, S., *A Counterexample to Guillemin’s Zollfrei Conjecture*. accepted to the J. Topol. Anal..