Recent progress on the Lorentz-Finsler correspondence

Miguel Sánchez

Universidad de Granada

7th Int. Meeting on Lorentzian Geometry
Sao Paulo,
July 22nd-26th, 2013
Stationary to Randers correspondence. Equivalence:

Conformal structure of stationary spacetimes

←→ Geometry of Randers spaces
Stationary to Randers correspondence. Equivalence:

\[\text{Conformal structure of stationary spacetimes} \leftrightarrow \text{Geometry of Randers spaces}\]

Applicability:

- \(\leftarrow\) Precise description of spacetime elements in terms of Finsler counterparts
- \(\rightarrow\) New geometric elements and results in Randers spaces — some of them extensible to general Finsler manifolds
Introduction

Stationary to Randers correspondence. Equivalence:

Conformal structure of stationary spacetimes \[\leftrightarrow\] Geometry of Randers spaces

Applicability:

\[\leftarrow\] Precise description of spacetime elements in terms of Finsler counterparts

\[\rightarrow\] New geometric elements and results in Randers spaces
—some of them extensible to general Finsler manifolds

Broad relation

\textit{Lorentzian Geometry} \[\leftrightarrow\] \textit{Finsler Geometry}

(including the Riemannian one!)
Starting point

Normalized standard stationary spacetime:
\[V = (\mathbb{R} \times M, g_L = -1 dt^2 + \pi^* \omega \otimes dt + dt \otimes \pi^* \omega + \pi^* g) \]

\(\omega \) 1-form, \(g \) Riemannian metric on \(M \), \(\pi : \mathbb{R} \times M \rightarrow M \) projection

- \(\partial_t \) timelike (future-directed) Killing vector field
 \[g_L \equiv -dt^2 + 2 \omega dt + g \]
- Normalized: \(-1 dt^2\). Useful for conformal elements such as lightlike vectors/geodesics (otherwise: \(-\Lambda dt^2\))
- Global “standard” (but not unique) splitting not too restrictive: it always hold locally and [Javaloyes & — ’08]:

M. Sánchez Lorentz-Finsler correspondence
Normalized standard stationary spacetime:

\[V = (\mathbb{R} \times M, g_L = -dt^2 + \pi^*\omega \otimes dt + dt \otimes \pi^*\omega + \pi^*g) \]

\(\omega \) 1-form, \(g \) Riemannian metric on \(M \), \(\pi : \mathbb{R} \times M \to M \) projection

- \(\partial_t \) timelike (future-directed) Killing vector field

\[g_L \equiv -dt^2 + 2\omega dt + g \]

- Normalized: \(-dt^2\). Useful for conformal elements such as lightlike vectors/geodesics (otherwise: \(-\Lambda dt^2\))

- Global “standard” (but not unique) splitting not too restrictive: it always hold locally and [Javaloyes & — ’08]: A spacetime is (globally) conformal to a standard stationary one iff it admits a complete timelike conformal vector field and it is distinguishing (and, so, strongly causal and causally continuous).
Starting point

Appearance of Finsler Geometry

With these elements \(\omega, g \) construct the functions \(F^\pm : TM \to \mathbb{R} \)

\[
F^\pm(v) = \sqrt{g(v, v) + \omega(v)^2} \pm \omega(v)
\]

Finsler metrics of Randers type on \(M \), “Fermat metrics”
Appearance of Finsler Geometry
With these elements \(\omega, g \) construct the functions \(F^\pm : TM \to \mathbb{R} \)

\[
F^\pm(v) = \sqrt{g(v, v) + \omega(v)^2} \pm \omega(v)
\]

Finsler metrics of Randers type on \(M \), "Fermat metrics"
Connection with the spacetime geometry (Cap, Jav. Mas. ’11):
A curve \(\gamma(t) = (\pm t, c(t)), t \in [a, b] \) is lightlike and future/past directed iff \(F^\pm(\dot{c}) = 1 \). In this case:

- the arrival time \(b - a \) is equal to the \(F^\pm \)-length of \(c \), \(\int_a^b F^\pm(\dot{c}) \)
- (Fermat principle) \(\gamma \) is a pregeodesic iff \(c \) is a geodesic for \(F^\pm \) (i.e., a critical point of the arrival time/length functional \(c \mapsto \int F^\pm(\dot{c}) \) parametrized with \(F^\pm \)-length).
Starting point

These elementary considerations suggest the possibility to relate the conformal geometry of standard stationary spacetimes and the geometry of the corresponding class of Finsler manifolds, i.e. Randers spaces.
These elementary considerations suggest the possibility to relate the \textbf{conformal} geometry of standard stationary spacetimes and the geometry of the corresponding class of Finsler manifolds, i.e. \textbf{Randers} spaces. Aims:

1. Causal structure \longleftrightarrow Finslerian distances
 (Caponio, Javaloyes, — Rev. Mat. Iberoam, ’11)
These elementary considerations suggest the possibility to relate the **conformal** geometry of standard stationary spacetimes and the geometry of the corresponding class of Finsler manifolds, i.e. **Randers** spaces. Aims:

1. Causal structure \(\longleftrightarrow\) Finslerian distances
 (Caponio, Javaloyes, — Rev. Mat. Iberoam, ’11)
2. Visibility and gravitational lensing \(\longleftrightarrow\)
 convexity of Finsler hypersurfaces
 (Caponio, Germinario, —, arxiv:1112.3892)
These elementary considerations suggest the possibility to relate the conformal geometry of standard stationary spacetimes and the geometry of the corresponding class of Finsler manifolds, i.e. Randers spaces. Aims:

1. Causal structure \leftrightarrow Finslerian distances
 (Caponio, Javaloyes, — Rev. Mat. Iberoam, ’11)

2. Visibility and gravitational lensing \leftrightarrow
 convexity of Finsler hypersurfaces
 (Caponio, Germinario, —, arxiv:1112.3892)

3. Causal boundaries \leftrightarrow Cauchy, Gromov and Busemann boundaries in Finslerian (and Riemannian) settings
 (Flores, Herrera, — ATMP’11, Memoirs AMS’13).
1. CAUSAL STRUCTURE
Notion of Finsler and Randers metric

\[F : TM \to \mathbb{R} \]
Finsler metric: continuous, smooth away 0
+ positively homog. strongly convex norm at each \(p \in M \)

- Positively homogeneous: \(F(\lambda v) = \lambda F(v) \) for \(\lambda > 0 \)
- Strongly convex: the second fundamental form of the unit sphere is positive definite
Notion of Finsler and Randers metric

\[F : TM \to \mathbb{R} \]

Finsler metric: continuous, smooth away 0
+ positively homog. strongly convex norm at each \(p \in M \)

- Positively homogeneous: \(F(\lambda v) = \lambda F(v) \) for \(\lambda > 0 \)
- Strongly convex: the second fundamental form of the unit sphere is positive definite

Randers metric: \(R = \sqrt{g + \omega^2} + \omega \) for some Riemannian \(g \) (and \(h := g + \omega^2 \)) and 1-form \(\omega \).

In particular, Fermat metrics \(F^\pm \) are Randers (and viceversa)
Notion of Finsler and Randers metric

\[F : TM \to \mathbb{R} \text{ Finsler metric: continuous, smooth away 0} \]
+ positively homog. strongly convex norm at each \(p \in M \)

- Positively homogeneous: \(F(\lambda v) = \lambda F(v) \) for \(\lambda > 0 \)
- Strongly convex: the second fundamental form of the unit sphere is positive definite

Randers metric: \(R = \sqrt{g + \omega^2} + \omega \) for some Riemannian \(g \) (and \(h := g + \omega^2 \)) and 1-form \(\omega \).

In particular, Fermat metrics \(F^\pm \) are Randers (and vice versa)

Reversed Finsler metric: \(F^{rev}(v) := F(-v) \)

In particular,
- for Fermat metrics \((F^+)^{rev}(v) = F^-(v) \)
- if \(\omega \neq 0 \), Randers metrics are non-reversible \((R \neq R^{rev}) \)
Notion of generalized distance

Taking infimum of lengths of curves connecting two points, each Finsler metric induces a \textit{generalized distance} \(d\). This means:

\[d_{\text{sym}}(x, y) = \frac{d(x, y) + d(y, x)}{2}\]

Remark
Even in the Finslerian case, \(d_{\text{sym}}\) does not come from a length space.
Notion of generalized distance

Taking infimum of lengths of curves connecting two points, each Finsler metric induces a *generalized distance* d. This means:

1. all the axioms of a distance hold but symmetry
2. for sequences $\{x_n\}$: $d(x, x_n) \to 0 \iff d(x_n, x) \to 0$
Notion of generalized distance

Taking infimum of lengths of curves connecting two points, each Finsler metric induces a *generalized distance* \(d \). This means:

1. all the axioms of a distance hold but symmetry
2. for sequences \(\{x_n\} \): \(d(x, x_n) \to 0 \iff d(x_n, x) \to 0 \)

Centered at any point \(x_0 \), there are forward balls \((d(x_0, x) < r) \) and backward balls \((d(x, x_0) < r) \) that may differ but generate the same topology (in the Finslerian case, the manifold topology)
Notion of generalized distance

Taking infimum of lengths of curves connecting two points, each Finsler metric induces a *generalized distance* d. This means:

1. all the axioms of a distance hold but symmetry
2. for sequences $\{x_n\}$: $d(x, x_n) \to 0 \iff d(x_n, x) \to 0$

Centered at any point x_0, there are forward balls ($d(x_0, x) < r$) and backward balls ($d(x, x_0) < r$) that may differ but generate the same topology (in the Finslerian case, the manifold topology)

- Symmetrized distance: $d_s(x, y) = (d(x, y) + d(y, x))/2$

Remark Even in the Finslerian case, d_s does not come from a length space.
Let \((M, F)\) be a (connected) Finsler manifold with generalized distance \(d\). They are equivalent:

(a) \(d\) is forward (resp. backward) complete (Cauchy sequences).

(b) The Finsler manifold \((M, F)\) is forward (resp. backward) geodesically complete.

(c) At some (and then all) point \(p \in M\), \(\exp_p\) (resp. \(\tilde{\exp}_p\)) is defined on all of \(T_pM\).

(d) Heine-Borel property: every closed and forward (resp. backward) bounded subset of \((M, d)\) is compact.

Moreover, in this case \((M, F)\) is convex, i.e., every pair of points \(p, q \in M\) can be joined by a minimizing geodesic from \(p\) to \(q\).
Remark. Relation with d_s:

1. d is either forward or backward complete \implies
2. d_s satisfies Heine-Borel \iff all $\bar{B}_s(x, r)$ compact \implies
3. d_s complete
Basic idea:

For \(p \in M \), \(d^+ \equiv d \) distance of \(F^+ \equiv F \):

\[
l^+(0, p) \text{ determined by the graph of } d^+(p, \cdot):
\{t_0\} \times B^+(p, t_0) = l^+(0, p) \cap (\{t_0\} \times M)
\]
Ladder of causality for stationary s-p

Theorem

- The slices \(\{t_0\} \times M \) are Cauchy hypersurfaces of \((\mathbb{R} \times M, g_L)\) iff \(d^+\) is forward and backward complete.
The slices \(\{ t_0 \} \times M \) are Cauchy hypersurfaces of \((\mathbb{R} \times M, g_L)\) iff \(d^+\) is forward and backward complete.

\((\mathbb{R} \times M, g)\) is globally hyperbolic (causal + \(J^+(z) \cap J^-(z')\) compact) iff \(\overline{B}_s^+(p, r)\) are compact \(\forall p \in M, r > 0\) (Heine-Borel property)
The slices \(\{ t_0 \} \times M \) are Cauchy hypersurfaces of \((\mathbb{R} \times M, g_L) \) iff \(d^+ \) is forward and backward complete.

\((\mathbb{R} \times M, g) \) is globally hyperbolic (causal + \(J^+(z) \cap J^-(z') \) compact) iff \(\bar{B}^+_s(p, r) \) are compact \(\forall p \in M, r > 0 \) (Heine-Borel property)

\((\mathbb{R} \times M, g_L) \) is causally simple (causal + \(J^\pm(z) \) closed) iff \((M, F) \) is convex

(Full characterization of Causality, as standard stationary s-t are always causally continuous.)
Consequences for Finsler manifolds

Remark. Compactness of $\bar{B}_s^+(p, r)$ for a Randers metric
$\implies (\mathbb{R} \times M, g_L)$ is glob. hyp
Consequences for Finsler manifolds

Remark. Compactness of $\bar{B}_s^+(p, r)$ for a Randers metric

$\implies (\mathbb{R} \times M, g_L)$ is glob. hyp

$\implies (\mathbb{R} \times M, g_L)$ admits a spacelike Cauchy hypersurface

$M_f = \{(f(x), x) : x \in M\}$
Consequences for Finsler manifolds

Remark. Compactness of $\bar{B}_s^+(p, r)$ for a Randers metric
$\implies (\mathbb{R} \times M, g_L)$ is glob. hyp
$\implies (\mathbb{R} \times M, g_L)$ admits a spacelike Cauchy hypersurface
$M_f = \{(f(x), x) : x \in M\}$
\implies The spacetime admits a splitting $\mathbb{R} \times M_f$ with Cauchy slices
and Fermat metric $F_f \equiv F - df$
Consequences for Finsler manifolds

Remark. Compactness of $\tilde{B}_s^+(p, r)$ for a Randers metric

$\implies (\mathbb{R} \times M, g_L)$ is glob. hyp

$\implies (\mathbb{R} \times M, g_L)$ admits a spacelike Cauchy hypersurface

$M_f = \{(f(x), x) : x \in M\}$

\implies The spacetime admits a splitting $\mathbb{R} \times M_f$ with Cauchy slices and Fermat metric $F_f \equiv F - df$

\implies for some f, the new metric $F - df$ is a forward and backward complete Randers metric (with the same pregeodesics as F) \iff

current property is extensible to any Finsler metric (Matveev’12).
Consequences for Finsler manifolds

Remark. Compactness of $\bar{B}_s^+(p, r)$ for a Randers metric

$\implies (\mathbb{R} \times M, g_L)$ is glob. hyp

$\implies (\mathbb{R} \times M, g_L)$ admits a spacelike Cauchy hypersurface

$M_f = \{(f(x), x) : x \in M\}$

\implies The spacetime admits a splitting $\mathbb{R} \times M_f$ with Cauchy slices and Fermat metric $F_f \equiv F - df$

\implies for some f, the new metric $F - df$ is a forward and backward complete Randers metric (with the same pregeodesics as F) \iff

this property is extensible to any Finsler metric (Matveev'12).

In general, the compactness of $\bar{B}_s^+(p, r)$ (Heine-Borel) is the optimal assumption for classical Finsler theorems (Myers, sphere...)
Cauchy developments

\(A \subset V \) achronal set
\[D^+(A) = \{ z \in V : \gamma \cap A \neq \emptyset \ \text{for all} \ \gamma \ \text{past-inextensible causal curve starting at} \ p \} \]
\[H^+(A) = \{ z \in \overline{D}^+(A) : I^+(z) \cap D^+(A) = \emptyset \} \]
Cauchy developments

\(A \subset V \) achronal set

\(D^+(A) = \{ z \in V : \gamma \cap A \neq \emptyset \text{ for all } \gamma \text{ past-inextensible causal curve starting at } p \} \)

\(H^+(A) = \{ z \in \overline{D}^+(A) : I^+(z) \cap D^+(A) = \emptyset \} \)

Proposition

For \(A \subset M \equiv \{0\} \times M \) (slice of \(\mathbb{R} \times S \)):

\(D^+(A) = \{(t, y) : 0 \leq t < d^+(x, y) \ \forall x \notin A \} \)

\(H^+(A) = \{(t, y) : t = \inf_{x \notin A} d^+(x, y) (= d^+(M \setminus A, y)) \} \)

\(H^+(A) \) is constructed from the level sets of \(d^+(M \setminus A, \cdot) \)
Remark. The results on horizons also yield results on the distance function to a set in a Randers manifold. [This extends the viewpoint for the static case (and symmetric distances) by Chrusciel, Fu, Galloway and Howard '02.]
Applications to Finsler

Remark. The results on horizons also yield results on the distance function to a set in a Randers manifold. [This extends the viewpoint for the static case (and symmetric distances) by Chrusciel, Fu, Galloway and Howard ’02.]

An example is the following translation of a result by Beem and Krolak ’98:

Theorem

Let $C \subset M$ a closed subset, $p \in M \setminus C$ is a differentiable point of the distance from C iff p is crossed by exactly one minimizing segment.
Remark. The results on horizons also yield results on the distance function to a set in a Randers manifold. [This extends the viewpoint for the static case (and symmetric distances) by Chrusciel, Fu, Galloway and Howard ’02.]

An example is the following translation of a result by Beem and Krolak ’98:

Theorem

Let $C \subset M$ a closed subset, $p \in M \setminus C$ is a differentiable point of the distance from C iff p is crossed by exactly one minimizing segment \rightsquigarrow generalizable to any Finsler manifold (Sabau-Tanaka’12)
SECOND PART

2. VISIBILITY AND LENSOING
Visibility of particles

Problem studied by many authors: Giannoni, Fortunato, Masiello, Perlick, Piccione...
Visibility of particles

Problem studied by many authors: Giannoni, Fortunato, Masiello, Perlick, Piccione...

Fermat principle (Kovner’90, Perlick’90): if a first arriving (or critical for the arrival time) causal curve connecting a point and a line (stationary trajectory) exists then it is a lightlike geodesic.

BUT:
Visibility of particles

Problem studied by many authors: Giannoni, Fortunato, Masiello, Perlick, Piccione...

Fermat principle (Kovner’90, Perlick’90): if a first arriving (or critical for the arrival time) causal curve connecting a point and a line (stationary trajectory) exists then it is a lightlike geodesic.

BUT:

- Does such a geodesic exist?
Visibility of particles

Problem studied by many authors: Giannoni, Fortunato, Masiello, Perlick, Piccione...

Fermat principle (Kovner’90, Perlick’90): if a first arriving (or critical for the arrival time) causal curve connecting a point and a line (stationary trajectory) exists then it is a lightlike geodesic.

BUT:

- Does such a geodesic exist?
- Will it remain in a (reasonably big) realistic region \(\mathbb{R} \times D \)?
 (where the conformally stationary model remains valid)
Visibility of particles

Problem studied by many authors: Giannoni, Fortunato, Masiello, Perlick, Piccione...

Fermat principle (Kovner’90, Perlick’90): if a first arriving (or critical for the arrival time) causal curve connecting a point and a line (stationary trajectory) exists then it is a lightlike geodesic. BUT:

- Does such a geodesic exist?
- Will it remain in a (reasonably big) realistic region $\mathbb{R} \times D$? (where the conformally stationary model remains valid)
- Will massive particles (timelike geodesics) arrive in a finite proper time (length) prior to their desintegration?
Visibility of particles

Problem studied by many authors: Giannoni, Fortunato, Masiello, Perlick, Piccione...

Fermat principle (Kovner’90, Perlick’90): if a first arriving (or critical for the arrival time) causal curve connecting a point and a line (stationary trajectory) exists then it is a lightlike geodesic. BUT:

- Does such a geodesic exist?
- Will it remain in a (reasonably big) realistic region $\mathbb{R} \times D$? (where the conformally stationary model remains valid)
- Will massive particles (timelike geodesics) arrive in a finite proper time (length) prior to their desintegration?
- **Lensing**: can we receive more than once particles from the same source emitted at the same or different times?
Visibility of particles

Problem studied by many authors: Giannoni, Fortunato, Masiello, Perlick, Piccione...

Fermat principle (Kovner’90, Perlick’90): if a first arriving (or critical for the arrival time) causal curve connecting a point and a line (stationary trajectory) exists then it is a lightlike geodesic.

BUT:

- Does such a geodesic exist?
- Will it remain in a (reasonably big) realistic region $\mathbb{R} \times D$? (where the conformally stationary model remains valid)
- Will massive particles (timelike geodesics) arrive in a finite proper time (length) prior to their desintegration?
- **Lensing:** can we receive more than once particles from the same source emitted at the same or different times?

Problems related to **convexity**.
(\(M, g_R\)) Riemannian, \(D \subset M\) open domain with smooth \(\partial D\)

Notions of convexity for \(\partial D\):

1. **Infinitesimal convexity**: second fundamental form positive semi-definite with respect to the inner normal
 \(\iff\) \(\text{Hess} \phi\) negative semidefinite on \(T(\partial D)\) for any smooth \(\phi : \overline{D} \to [0, \infty)\) with \(\partial D = \phi^{-1}(0)\) and \(\phi\) regular on \(\partial D\).

2. **Local convexity**: locally each \(\exp(T_p(\partial D))\) does not touch \(D\).
(M, g_R) Riemannian, $D \subset M$ open domain with smooth ∂D

Notions of convexity for ∂D:

1. **Infinitesimal convexity**: second fundamental form positive semi-definite with respect to the inner normal

 \iff Hessϕ negative semidefinite on $T(\partial D)$ for any smooth $\phi : \overline{D} \to [0, \infty)$ with $\partial D = \phi^{-1}(0)$ and ϕ regular on ∂D.

2. **Local convexity**: locally each $\exp(T_p(\partial D))$ does not touch D.

 - Local \implies infinitesimal trivially (and pointwise)
 - Non-trivial converse (Do Carmo, Warner '70)
Previous: Riemannian convexity

\((M, g_R)\) Riemannian, \(D \subset M\) open domain with smooth \(\partial D\)

Notions of convexity for \(\partial D\):

1. **Infinitesimal convexity:** second fundamental form positive semi-definite with respect to the inner normal \(\iff\) \(\text{Hess} \phi\) negative semidefinite on \(T(\partial D)\) for any smooth \(\phi: \overline{D} \rightarrow [0, \infty)\) with \(\partial D = \phi^{-1}(0)\) and \(\phi\) regular on \(\partial D\).

2. **Local convexity:** locally each \(\exp(T_p(\partial D))\) does not touch \(D\).

- Local \(\implies\) infinitesimal trivially (and pointwise)
- Non-trivial converse (Do Carmo, Warner ’70)
- Bishop ’74 proved the converse but
 - his proof required smoothness \(C^4\) (also for \(g\))
 - it cannot be extended to the Finslerian setting (Borisenko, Olin ’10)
General Finslerian results

Approach by Bartolo, Caponio, Germinario, — ’10:

- previous notions extensible to Finslerian manifolds
- intermediate notion: ∂D is geometrically convex when: no geodesic in \overline{D} connecting some $p, q \in D$ touches ∂D.
General Finslerian results

Approach by Bartolo, Caponio, Germinario, — ’10:

- previous notions extensible to Finslerian manifolds
- intermediate notion: ∂D is geometrically convex when: no geodesic in \overline{D} connecting some $p, q \in D$ touches ∂D.

Theorem

For any Finsler manifold, and domain D with $\mathcal{C}^{1,1}_{loc}$ boundary ∂D:

1. The infinitesimal, geometric and local notions of convexity are equivalent.
General Finslerian results

Theorem (Bartolo, Caponio, Germinario, — ’10)

*For any Finsler manifold, and domain D with $C^{1,1}_{loc}$ boundary ∂D:

1. *The infinitesimal, geometric and local notions of convexity are equivalent.*

2. *If all $\overline{B}_s^D(p, r)$ (in particular, if $\overline{B}_s(p, r) \cap \overline{D}$) are compact: ∂D is convex iff D is convex.*
Theorem (Bartolo, Caponio, Germinario, — ’10)

For any Finsler manifold, and domain \(D \) with \(\mathcal{C}^{1,1}_{\text{loc}} \) boundary \(\partial D \):

1. The infinitesimal, geometric and local notions of convexity are equivalent.

2. If all \(\overline{B}_s^D (p, r) \) (in particular, if \(\overline{B}_s(p, r) \cap \overline{D} \)) are compact: \(\partial D \) is convex iff \(D \) is convex.

In the last case, if \(D \) is not contractible then any \(p, q \in D \) can be connected by infinitely many geodesics contained in \(D \) with diverging lengths.
Basic ideas: existence

Existence of connecting causal geodesics in a prescribed $\mathbb{R} \times D$

- **Lightlike geodesics.** Optimal conditions:
 1. (geometric) light-convexity of $\mathbb{R} \times \partial D$ in $\mathbb{R} \times M$
 \iff Convexity of ∂D in (M, F).

M. Sánchez
Basic ideas: existence

Existence of connecting causal geodesics in a prescribed $\mathbb{R} \times D$

- **Lightlike geodesics.** Optimal conditions:
 1. (geometric) light-convexity of $\mathbb{R} \times \partial D$ in $\mathbb{R} \times M$
 \iff Convexity of ∂D in (M, F).
 2. + completeness of the space of connecting curves:
 \iff Compactness of $\bar{B}_s^D(p, r)$ ($\iff \bar{B}_s(p, r) \cap \bar{D}$)
Basic ideas: existence

Existence of connecting causal geodesics in a prescribed $\mathbb{R} \times D$

- **Lightlike geodesics.** Optimal conditions:
 1. (geometric) light-convexity of $\mathbb{R} \times \partial D$ in $\mathbb{R} \times M$
 \iff Convexity of ∂D in (M, F).
 2. $+$ completeness of the space of connecting curves:
 \iff Compactness of $\bar{B}_{s}^{D}(p, r)$ ($\subseteq \bar{B}_{s}(p, r) \cap \bar{D}$)

- **Timelike geodesics.** Reduction to the lightlike case:
 γ timelike geodesic in $\mathbb{R} \times M$ with $g_{L}(\gamma', \gamma') = -c^{2}$
Basic ideas: existence

Existence of connecting causal geodesics in a prescribed $\mathbb{R} \times D$

- **Lightlike geodesics.** Optimal conditions:
 1. (geometric) light-convexity of $\mathbb{R} \times \partial D$ in $\mathbb{R} \times M$
 \[\iff \text{Convexity of } \partial D \text{ in } (M, F). \]
 2. + completeness of the space of connecting curves:
 \[\iff \text{Compactness of } \bar{B}^D_s(p, r) (\subseteq \bar{B}_s(p, r) \cap \bar{D}) \]

- **Timelike geodesics.** Reduction to the lightlike case:
 γ timelike geodesic in $\mathbb{R} \times M$ with $g_L(\gamma', \gamma') = -c^2$
 \[\iff \tilde{\gamma}(s) = (cs, \gamma(s)) \text{ is a lightlike geodesic in } \mathbb{R} \times (\mathbb{R} \times M) \]
 with the product metric ($\equiv du^2 + g_L$)
Basic ideas: multiplicity

Multiplicity (lensing)

- Local, around a given lightlike pregeodesic $\gamma(t) = (t, c(t))$:
 existence of conjugate points for γ
 \rightsquigarrow c admits conjugate point as a Finsler geodesic
 (tidal lensing)
Basic ideas: multiplicity

Multiplicity (lensing)

- Local, around a given lightlike pregeodesic $\gamma(t) = (t, c(t))$: existence of conjugate points for γ
 $\leadsto c$ admits conjugate point as a Finsler geodesic
 (tidal lensing)

- Global: non trivial topology of $\mathbb{R} \times D$
 $\leadsto D$ non-contractible
 (topological lensing)
Results: lightlike geodesics

$\mathbb{R} \times M$ standard stationary, $D \subset M$ a C^2 domain

Theorem

Assume that all $\overline{B}^D_s(p, r)$ are compact (which happens, in particular, when $\overline{B}_s(p, r) \cap \overline{D}$ are compact). They are equivalent:
Results: lightlike geodesics

\(\mathbb{R} \times M \) standard stationary, \(D \subset M \) a \(C^2 \) domain

Theorem

Assume that all \(\bar{B}_s^D(p, r) \) are compact (which happens, in particular, when \(\bar{B}_s(p, r) \cap \bar{D} \) are compact). They are equivalent:

1. \((\mathbb{R} \times D, g_L) \) is causally simple (\(\iff (D, F) \) is convex)
Results: lightlike geodesics

$\mathbb{R} \times M$ standard stationary, $D \subset M$ a C^2 domain

Theorem

Assume that all $\bar{B}_s^D(p, r)$ are compact (which happens, in particular, when $\bar{B}_s(p, r) \cap \bar{D}$ are compact). They are equivalent:

1. $(\mathbb{R} \times D, g_L)$ is causally simple $(\iff (D, F)$ is convex)$
2. $(\partial D; F)$ is convex
Results: lightlike geodesics

\(\mathbb{R} \times M \) standard stationary, \(D \subset M \) a \(C^2 \) domain

Theorem

Assume that all \(\bar{B}^D_s(p, r) \) are compact (which happens, in particular, when \(\bar{B}_s(p, r) \cap \bar{D} \) are compact). They are equivalent:

1. \((\mathbb{R} \times D, g_L) \) is causally simple \(\iff (D, F) \) is convex
2. \((\partial D; F) \) is convex
3. \((\mathbb{R} \times \partial D; g_L) \) is light-convex.
$\mathbb{R} \times M$ standard stationary, $D \subset M$ a C^2 domain

Theorem

Assume that all $\bar{B}_s^D(p, r)$ are compact (which happens, in particular, when $\bar{B}_s(p, r) \cap \bar{D}$ are compact). They are equivalent:

1. $(\mathbb{R} \times D, g_L)$ is causally simple (\iff (D, F) is convex)
2. $(\partial D; F)$ is convex
3. $(\mathbb{R} \times \partial D; g_L)$ is light-convex.
4. Any point $w \in \mathbb{R} \times D$ and any line $l_q, q \in D$ connected in $\mathbb{R} \times D$ by a future–pointing lightlike geodesic minimizing the (future) arrival time T (\iff idem for past)
Results: lightlike geodesics

\(\mathbb{R} \times M\) standard stationary, \(D \subset M\) a \(C^2\) domain

Theorem

Assume that all \(\bar{B}_s^D(p, r)\) are compact (which happens, in particular, when \(\bar{B}_s(p, r) \cap \bar{D}\) are compact). They are equivalent:

1. \((\mathbb{R} \times D, g_L)\) is **causally simple** \(\iff (D, F)\) is convex
2. \((\partial D; F)\) is convex
3. \((\mathbb{R} \times \partial D; g_L)\) is **light-convex**.
4. Any point \(w \in \mathbb{R} \times D\) and any line \(l_q, q \in D\) connected in \(\mathbb{R} \times D\) by a future–pointing lightlike geodesic minimizing the (future) arrival time \(T\) \(\iff\) idem for past

In this case, if \(D\) is not contractible, infinitely many connecting lightlike geodesics with diverging arrival times exist.
Results: timelike geodesics

$\mathbb{R} \times M$ standard stationary, non-necessarily normalized $(-\Lambda dt^2)$, product metric for $\mathbb{R}_u \equiv (\mathbb{R}, du^2)$ and $(\mathbb{R} \times M, g_L)$, Π_u projection on the first factor, in addition to Π_M. Fermat F_{Λ} on $\mathbb{R} \times M$:

$$F_{\Lambda} = \sqrt{\Pi_M^* h + \frac{\Pi_u^* d u^2}{\Lambda \circ \Pi_M}} + \Pi_M^* \omega = \sqrt{h_{\Lambda}} + \omega_1.$$

(extra dimension plus non-conformal invariance)
Results: timelike geodesics

Theorem

Assume that all $\overline{B}^D(p, r)$ are compact (which happens, in particular, when $\overline{B}_s(p, r) \cap \overline{D}$ are compact). Then:

- $(\mathbb{R}^u \times \partial D; F_\Lambda)$ is convex \iff

 for any length $l > 0$, each point $w \in \mathbb{R} \times D$ and line l_q are joined by a future (and a past) pointing timelike geodesic in $\mathbb{R} \times D$, with length l minimizing the arrival time (among causal curves of length l).

In this case, if D is not contractible, a sequence of such connecting geodesics with diverging arrival times exists.
Asymptotically flat stationary spacetime:

- (M, g) complete, outside a compact subset C, is diffeomorphic to $\mathbb{R}^n \setminus B(0, R_0)$, elements g, ω, Λ turning Euclidean with large radial coordinate r.
- Model isolated systems - gravity outside a star.
- Makes sense to speak on (stationary) large balls $B(0, R) \times \mathbb{R} \subset \mathbb{R} \times M$ and spheres.
Further results: asympt. flat spacetimes

Asymptotically flat stationary spacetime:

- (M, g) complete, outside a compact subset C, is diffeomorphic to $\mathbb{R}^n \setminus B(0, R_0)$, elements g, ω, Λ turning Euclidean with large radial coordinate r.
- Model isolated systems - gravity outside a star.
- Makes sense to speak on (stationary) large balls $B(0, R) \times \mathbb{R} \subset \mathbb{R} \times M$ and spheres.

Application: Large spheres in asympt. flat spacetimes are always light-convex (and all the previous results are applicable) but, typically, (including reasonable matter, when gravity attracts) they are not time-convex.
3. CAUSAL BOUNDARY
Introduction

Causal boundary ∂V of a spacetime V:

- **Involved structure**: conformal structure (Causality). Intrinsinc alternative to common Penrose conformal boundary applicable to any strongly causal spacetime.
- **Purpose**: attach a boundary endpoint $P \in \partial V$ to any inextensible future or past directed timelike curve γ.
Basic idea: the boundary point would be represented by $P = I^-(\gamma)$ or $F = I^+(\gamma)$ or, more precisely, a pair (P, F).
Introduction

Long story from Geroch, Kronheimer & Penrose ’72 until its recent redefinition Flores, Herrera & — ’11 (with contributions by many authors: Budic & Sachs ’74, Szabados ’88, ’89, Harris ’97-’07, Marolf & Ross ’03...):

- **As a point set**, the completion \overline{V} is composed by (S related) pairs (P, F) (“(IP,IF)”, for example $V \ni p \equiv (I^+(p), I^-(p)) \in \overline{V}$)
- **Chronological relation**: $(P, F) \ll (P', F') \iff F \cap P' \neq \emptyset$
Introduction

- Subtle topology ... non always Hausdorff
Introduction

When computed for standard stationary spacetimes, relations with

- Cauchy boundary
- Gromov boundary
- Busemann-type boundary

for Randers manifolds:
Introduction

When computed for standard stationary spacetimes, relations with

- Cauchy boundary
- Gromov boundary
- Busemann-type boundary

for Randers manifolds:

\[\sim \text{previous study for any Riemannian and Finslerian manifold with interest by itself} \]
Cauchy boundary for Riemannian manifolds

Remark: it may be non-locally compact
Gromov boundary for Riemannian manifolds

Classical Gromov’s compactification for complete Riemannian manifolds (Gromov ’81)

- $\mathcal{L}_1(M, g)$ 1-Lipschitz functions (pointwise topology)
- $x \in M$ can be seen in $\mathcal{L}_1(M, g)$ as $d_x : y \mapsto d(x, y)$ and also $d_x + C$ for any $C \in \mathbb{R}$
- $f \sim f' \iff f - f' =$constant (quotient topology)
- each $x \in M$ is represented in $\mathcal{L}_1(M, g)/\sim$ as the class of $-d_x$

$M_G =$ closure of M in $\mathcal{L}_1(M, g)/\sim$
Gromov boundary for Riemannian manifolds

What about if \((M, g)\) is not complete? Repeat construction:
What about if \((M, g)\) is not complete? Repeat construction:

- **Cauchy** \(M_C\): completion, no compactification (\(M_C\) may be non-locally compact)
- **Gromov** \(M_G\): compactification even in the incomplete case.
What about if \((M, g)\) is not complete? Repeat construction:

- **Cauchy** \(M_C\): completion, no compactification (\(M_C\) may be non-locally compact)
- **Gromov** \(M_G\): compactification even in the incomplete case.

1. \(M_C \hookrightarrow M_G\) in a natural way and continuous but:
 - the inclusion is an embedding \(\hookrightarrow\) \(M_C\) is locally compact
2. \(M_G = M \cup \partial_{CG}M \cup \partial_{G}M\)
 - \(\partial_{CG}M\): limits of bounded sequences (\(\partial_{C}M \subset \partial_{CG}M\))
 - \(\partial_{G}M\): limits of unbounded sequences
Busemann boundary for Riemannian manifolds

\[M \equiv (M, g) \text{ connected Riemannian manifold} \]

- Typically, Busemann functions are defined when \(c \) is a ray (half unit geodesic with no cut locus)

\[b_c(x_0) = \lim_{t \to \infty} (t - d(x_0, c(t))) \text{ for all } x_0 \in M \]
Busemann boundary for Riemannian manifolds

\[M \equiv (M, g) \text{ connected Riemannian manifold} \]

- Typically, Busemann functions are defined when \(c \) is a ray (half unit geodesic with no cut locus)
 \[b_c(x_0) = \lim_{t \to \infty} (t - d(x_0, c(t))) \text{ for all } x_0 \in M \]

- Eberlein & O’Neill ’73 developed a compactification of any Hadamard manifold in terms of Busemann functions (cone topology), which a posteriori coincides with Gromov’s one
Busemann boundary for Riemannian manifolds

\[M \equiv (M, g) \] connected Riemannian manifold

- Typically, Busemann functions are defined when \(c \) is a ray (half geodesic with no cut locus)
 \[b_c(x_0) = \lim_{t \to \infty} (t - d(x_0, c(t))) \] for all \(x_0 \in M \)

- Eberlein & O’Neill ’73 developed a compactification of any Hadamard manifold in terms of Busemann functions (cone topology), which coincides with Gromov’s one

- We will admit a “Busemann” function for any curve \(c : [0, \Omega) \to M \) with \(|\dot{c}| \leq 1 \)
 \[b_c(x_0) = \lim_{t \to \Omega} (t - d(x_0, c(t))) \]

- \(b_c \) is \(\infty \) at some \(x_0 \in M \) iff \(b_c \equiv \infty \).

\[B(M) \] set of finite Busemann functions
Busemann boundary for Riemannian manifolds

- As a subset $B(M) \subset \mathcal{L}_1(M, g)$

 Busemann completion $M_B = B(M)/\sim$ (quotient by additive constant –included as a subset in M_G)
Busemann boundary for Riemannian manifolds

- As a subset \(B(M) \subset \mathcal{L}_1(M, g) \)
 Busemann completion \(M_B = B(M)/\sim \) (quotient by additive constant – included as a subset in \(M_G \))

- But \(B(M) \), and then \(M_B \), will be regarded as topological spaces with the chronological topology (\(\neq \) the induced from \(\mathcal{L}_1(M, g) \))
Busemann boundary for Riemannian manifolds

- As a subset $B(M) \subset L_1(M, g)$
 Busemann completion $M_B = B(M)/\sim$ (quotient by additive constant –included as a subset in M_G)

- But $B(M)$, and then M_B, will be regarded as topological spaces with the chronological topology (≠ the induced from $L_1(M, g)$) defined by means of a limit operator L
 given $\{f_n\} \subset B(M)$, the subset $L(\{f_n\}) \subset B(M)$ is defined by:
 $f \in L(\{f_n\})$ iff
 \[
 \begin{cases}
 (a) & f \leq \liminf_n f_n \quad \text{and} \\
 (b) & \forall g \in B(M) \text{ with } f \leq g \leq \limsup_n f_n, \text{ it is } g = f.
 \end{cases}
 \]
Properties of the Busemann completion:

1. M_B is sequentially compact
2. M_B is T_1, and points in $\partial_B M$ may be non-T_2 related
3. $M_C \hookrightarrow M_B \hookrightarrow M_G$ (naturally) but M_B topology is coarser.
4. $M_B = M_G$ (as pointsets and, then, topologically)
 \[\iff\] $\partial_B M$ is Hausdorff

Discrepancy: M_B compactifies directions (finite or asympt)

M_G may contain non-endpoints of curves in M

5. $M_B = M \cup \partial_C M$ (finite directions) $\cup \partial_B M$ (asymptotic)
 - M_C: Busemann functions for curves c with $\Omega < \infty$
 - M_B: Busemann for c with $\Omega = \infty$
Cauchy boundary for Finslerian manifolds

Cauchy completions for a Finsler manifold:
$(M, d), d$ associated to F

1. Two types of Cauchy sequences (ordering)
 Cauchy boundaries $\partial^+_C M, \partial^-_C M$ plus the symmetrized one
 $\partial^s_C M = \partial^-_C M \cap \partial^+_C M$
Cauchy boundary for Finslerian manifolds

Cauchy completions for a Finsler manifold:
\((M, d), d\) associated to \(F\)

1. Two types of Cauchy sequences (ordering)
 Cauchy boundaries \(\partial^+_C M, \partial^-_C M\) plus the symmetrized one
 \(\partial^s_C M = \partial^-_C M \cap \partial^+_C M\)

2. The extension \(d_Q\) of \(d\) to, say, \(M^+_C = M \cup \partial^+_C M\) is not a
 generalized distance but a quasidistance
 \(d_Q(x_n, x) \to 0 \iff d_Q(x, x_n) \to 0\)
 - Topology on \(M^+_C\) generated by the forward balls different to
 generated by backward balls
 - \(\partial^+_C M\) may be only a \(T_0\) space
Gromov completions for a Finsler manifold:

1. Non-symmetric notions of Lipschitzian
 \[\mathcal{L}^+_1(M, d): f(y) - f(x) \leq d(x, y) \]
 \[\mathcal{L}^-_1(M, d): f(x) - f(y) \leq d(x, y) \]
Finslerian Gromov completions

Gromov completions for a Finsler manifold:

1. Non-symmetric notions of Lipschitzian
 \(\mathcal{L}_1^+(M, d) : f(y) - f(x) \leq d(x, y) \)
 \((\mathcal{L}_1^-(M, d) : f(x) - f(y) \leq d(x, y)) \)

2. Two Gromov's compactifications \(M_G^\pm \),
 say: \(M_G^+ = \) closure of \(M \) in \(\mathcal{L}_1^+(M, d)/\sim \)
Finslerian Gromov completions

Gromov completions for a Finsler manifold:

1. Non-symmetric notions of Lipschitzian
\[\mathcal{L}_1^+(M, d): f(y) - f(x) \leq d(x, y) \]
\[(\mathcal{L}_1^-(M, d): f(x) - f(y) \leq d(x, y)) \]

2. Two Gromov's compactifications \(M_G^\pm \),
say: \(M_G^+ = \text{closure of } M \text{ in } \mathcal{L}_1^+(M, d)/\sim \)

In a natural way, \(i: M_C^+ \hookrightarrow M_G^+ \) but:

- \(i \) continuous iff the backward balls generate a finer topology on \(M_C^+ \) than the forward balls
- \(i \) embedding when:
 - \(M_C^+ \) is locally compact [also Riemannian condition] AND
 - \(d_Q \) is a generalized distance
Finslerian Busemann completions

Busemann completions for a Finsler manifold:

1. There are also two completions M^+_B constructed by using Busemann functions (which depends on the order of the arguments in d)
Finslerian Busemann completions

Busemann completions for a Finsler manifold:

1. There are also two completions M_B^{\pm} constructed by using Busemann functions (which depends on the order of the arguments in d)

2. As in the Riemannian case, each M_B^{\pm} is naturally included in M_G^{\pm} (with a coarser topology) and
There are also two completions M_B^\pm constructed by using Busemann functions (which depends on the order of the arguments in d).

As in the Riemannian case, each M_B^\pm is naturally included in M_G^\pm (with a coarser topology) and both boundaries coincide iff $\partial_B^\pm M$ is Hausdorff.

The spacetime viewpoint suggests further relations between M_B^+ and M_B^-.
Appearance of the Busemann functions
Appearance of the Busemann functions

Standard stationary spacetime:

(g Riemannian on M with distance d, $\pi : \mathbb{R} \times M \to M$ projection)

\[V = (\mathbb{R} \times M, g_L = -dt^2 + 2dt \otimes \pi^* \omega + \pi^* g) \]

Fermat metric

(with associated generalized distance d^+)

\[F^+(v) = \sqrt{g(v,v) + \omega(v)^2} \quad \forall v \in TM \]

Aim: computation of IP’s (and dual IF’s)

$P = I^-[\gamma]$, future-directed timelike curve

\[\gamma(t) = (t, c(t)), t \in [\alpha, \Omega), |\dot{c}| < 1 \]
Characterization of \(\ll \):

\[
(t_0, x_0) \ll (t_1, x_1) \iff d^+(x_0, x_1) < t_1 - t_0
\]
Appearance of the Busemann functions

1. Characterization of \ll
 \[(t_0, x_0) \ll (t_1, x_1) \iff d^+(x_0, x_1) < t_1 - t_0\]

2. Application to $P = I^-[\gamma], \gamma(t) = (t, c(t))$:

 \[
P = \{(t_0, x_0) \in V : (t_0, x_0) \ll \gamma(t) \text{ for some } t \in [\alpha, \Omega)\}
 \]

 \[
 = \{(t_0, x_0) \in V : t_0 < t - d^+(x_0, c(t)) \text{ for some } t \in [\alpha, \Omega)\}
 \]

 \[
 = \{(t_0, x_0) \in V : t_0 < \lim_{t \to \Omega} (t - d^+(x_0, c(t)))\}
 \]

 \[
 = \{(t_0, x_0) \in V : t_0 < b^+_c(x_0)\}
 \]

 \[\sim \text{ Busemann forward function:}\]

 \[b^+_c(x_0) = \lim_{t \to \Omega} (t - d^+(x_0, c(t)))\]
Fundamental correspondence

\[B^+(M) \text{: set of all Busemann functions } b_c^+ \text{ for } (M, F^+) \]

\[\{ \text{IP's on } V \} \equiv B^+(M) \cup \{ b_c \equiv \infty \} \]

1. Past of points (PIP’s): converging \(\Omega < \infty \)
2. Past of inextensible curves (TIP’s): non-converging \(\Omega = \infty \)

Remark: for the causal boundary no quotient in the set of Busemann functions must be carried out
Computation: c-boundary for static spacetimes

Parts of ∂V

- i^+, i^- apexes ($b_c \equiv \infty$) of a "double cone"

\[(P, F) : P, F \text{ from } \partial_c M\]
Parts of ∂V

- i^+, i^- apexes ($b_c \equiv \infty$) of a “double cone”
- Horismotic (as lightlike with no cut points) lines on $\partial_B M$ starting at i^\pm
Computation: \(c \)-boundary for static spacetimes

Parts of \(\partial V \)

- \(i^+, i^- \) apexes (\(b_c \equiv \infty \)) of a “double cone”
- Horismotic (as lightlike with no cut points) lines on \(\partial_B M \) starting at \(i^\pm \)
- Timelike lines on \(\partial_c M \) (unique non-trivial \(S \)-pairs) connecting \(i^+, i^- \)

Recall: with the chr-topology
Computation: c-boundary for stationary spacetimes

Parts of ∂V

- **“Static part”**: i^+, i^- “apexes” of two distinct cones
- Horismotic lines on $\partial^\pm M$
- Timelike lines on $\partial^C M$
 (composed of S-pairs)
Parts of ∂V

- **“Static part”:** i^+, i^- “apexes” of two distinct cones
 Horismotic lines on $\partial^\pm_B M$
 Timelike lines on $\partial^s_C M$
 (composed of S-pairs)

- **Locally horismotic lines** on $\partial^\pm_C M \setminus \partial^s_C M$
 The lines arrive both i^+ and i^- iff pairings with lines on $\partial^\pm_C M \setminus \partial^s_C M$
Further developments

1. Gibbons, Herdeiro, Warnick, Werner ’09: progress on the correspondence of curvatures, including a conjecture refined by Javaloyes, —.

2. (Caponio, Javaloyes, —, in progress). Case when the spacetime is not strictly stationary, but $K = \partial_t$ is allowed to have a changing sign. As a consequence:
Futher developments

1. Gibbons, Herdeiro, Warnick, Werner '09: progress on the correspondence of curvatures, including a conjecture refined by Javaloyes, —.

2. (Caponio, Javaloyes, —, in progress). Case when the spacetime is not strictly stationary, but \(K = \partial_t \) is allowed to have a changing sign. As a consequence:
 - Geometric properties of Kropina (and Kropina-Randers) metrics: geodesics, convexity.
 - Extension of classical Finsler metrics and their applicability ("wind Finsler" metrics)
 - Some causal properties of Killing horizons
 - Extension of Fermat principle
Further developments

1. Gibbons, Herdeiro, Warnick, Werner ’09: progress on the correspondence of curvatures, including a conjecture refined by Javaloyes, — .

2. (Caponio, Javaloyes, —, in progress). Case when the spacetime is not strictly stationary, but $K = \partial_t$ is allowed to have a changing sign. As a consequence:
 - Geometric properties of Kropina (and Kropina-Randers) metrics: geodesics, convexity.
 - Extension of classical Finsler metrics and their applicability ("wind Finsler" metrics)
 - Some causal properties of Killing horizons
 - Extension of Fermat principle