CONNECTIONS BETWEEN THE CAUSAL BOUNDARY AND ISOCAUSALITY

VII International Meeting on Lorentzian Geometry, São Paulo 2013

José L. Flores
Universidad de Málaga

(joint works with J. Herrera and M. Sánchez)
MOTIVATION:

- The c-boundary has been computed in multiple classes of spacetimes of physical interest, as *standard stationary* ones.
- It seems natural to argue that spacetimes with similar causal structure will present similar c-boundary.
- This is the case of conformal equivalent spacetimes, which have the same c-boundary.
- *Isocausality* is a generalization of conformal equivalence, but adding more flexibility.
- Is the c-boundary also preserved under isocausal equivalence? No.
- We will show a precise relation between the c-boundaries of stationary spacetimes and spacetimes isocausal to them.
1. C-BOUNDARY OF SPACETIMES
CLASSICAL CAUSAL BOUNDARY:
- Introduced by Geroch, Kronheimer and Penrose’72.
- Conformally invariant and applicable to any strongly causal spacetime.

FURTHER REDEFINITIONS:
- Budic and Sachs’74, Racz’87’88, Szabados’88’89:
 Study the problems derived from the “identifications”.
- Harris’98’00:
 Study the topology of the partial boundaries.
- Marolf y Ross’03:
 “Identifications” ↔ representations of boundary points by pairs.
- F, Herrera y Sánchez’11:
 New re-definition of causal boundary (c-boundary).
FUTURE C-BOUNDARY:

- **Past Set:** $\emptyset \neq P \subset V$ such that $I^-(P) = P$.
- **IP:** Past set which is not the union of two proper past sets.
- **PIP:** IP, $P \subset V$ such that $P = I^-(p)$ for some $p \in V$.
- **TIP:** IP, $P \subset V$ such that $P \neq I^-(\gamma)$ for γ inext. fut. tmkl. curve.

Then, we have:

$$\hat{\partial} V \equiv TIPs, \quad V \equiv PIPs, \quad \hat{V} \equiv IPs$$
PAST C-BOUNDARY:

- Future Set: $\emptyset \neq F \subset V$ such that $I^+(F) = F$.
- IF: Future set which is not the union of two proper future sets.
- PIF: IF, $F \subset V$ such that $F = I^+(p)$ for some $p \in V$.
- TIF: IF, $F \subset V$ such that $F \neq I^+(\gamma)$ for γ inext. past timelike curve.

Then, we have:

$$\partial V \equiv TIFs, \quad V \equiv PIFs, \quad \check{V} \equiv IFs$$
S-Relation (Szabados’88)

P, F are S-related, $P \sim_S F$, iff:

- P is a maximal IP in $\downarrow F := I^-(\{q \in V : q \ll p, \forall p \in F\})$.
- F is a maximal IF in $\uparrow P := I^+(\{p \in V : q \ll p, \forall q \in P\})$.

Moreover, $P \sim_S \emptyset, \emptyset \sim_S F$ otherwise.

\[I^-(p) \sim_S I^+(p) \ \forall \ p \in V \ (Szabados’88); \]
Definition of c-boundary: as point set

- **C-completion:** \(\overline{V} := \{(P, F) \in (\hat{V} \cup \{\emptyset\}) \times (\check{V} \cup \{\emptyset\}), P \sim_S F\} \).
- **C-boundary:** \(\partial V := \overline{V} \setminus V \), where \(V \equiv \{((l^-(p), l^+(p)) : p \in V\} \).
Definition of c-boundary: as chronological set

The extended chronological relation \(\ll \) on \(\overline{V} \) is defined as:

\[(P, F) \ll (P', F') \iff F \cap P' \neq \emptyset.\]
Causal and horismotical relation

The extended causal relation \leq on \overline{V} is defined as (assuming $P \neq \emptyset \neq F'$):

$$(P, F) \leq (P', F') \iff P \subset P' \text{ and } F' \subset F.$$

Two different pairs in \overline{V} are *horismotically related* if they are causally but not chronologically related.
Definition of c-boundary: as a topological space

- **Limit Operator:** The limit operator L is defined as:

$$(P, F) \in L\left(\{(P_n, F_n)\}\right) \iff \begin{cases} P \in \hat{L}(P_n) & \text{if } P \neq \emptyset \\ F \in \hat{L}(F_n) & \text{if } F \neq \emptyset \end{cases}$$

with $P \in \hat{L}(P_n)$ iff $P \subset LI(P_n)$ and P maximal in $LS(P_n)$ and $F \in \hat{L}(F_n)$ iff $F \subset LI(F_n)$ and F maximal in $LS(F_n)$.
Definition of c-boundary: as a topological space

- **Limit Operator**: The limit operator L is defined as:

$$(P, F) \in L(\{(P_n, F_n)\}) \iff \begin{cases} P \in \hat{L}(P_n) & \text{if } P \neq \emptyset \\ F \in \check{L}(F_n) & \text{if } F \neq \emptyset \end{cases}$$

with $P \in \hat{L}(P_n)$ iff $P \subset LI(P_n)$ and P maximal in $LS(P_n)$ and $F \in \check{L}(F_n)$ iff $F \subset LI(F_n)$ and F maximal in $LS(F_n)$.

- **Chr. Topology**: $C \subset \overline{V}$ closed if $L(\sigma) \subset C$ for any sequence $\sigma \subset C$.

Remarks

1. L may not provide all the topological limits of the sequence.
2. A topology on \hat{V} (resp. \check{V}) is defined by considering \hat{L} (resp. \check{L}).
Properties of the c-boundary

1. **(a)** Any timelike curve in V admits some limit in \overline{V}.
2. **(b)** V is chronologically and topologically embedded in \overline{V}. Moreover, V is dense in \overline{V}.
3. **(c)** ∂V is closed in \overline{V}.
4. **(d)** The future and past elements of \overline{V} are open in \overline{V}.
5. **(e)** \overline{V} is a T_1 topological space (but not necessarily T_2).

Remark
- The c-boundary can be deduced from first principles.
- The c-boundary coincides with the accessible part of the conformal boundary when it is well-behaved.
2. ISOCAUSAL COMPARISON
Isocausality

-Introduced by García-Parrado, Senovilla '03:

Causally related

V is *causally related* with V', denoted $V \prec V'$, if there exists a diffeomorphism

$$\phi : V \to V'$$

mapping causal vectors to causal vectors (preserving time orientation).

Isocausality

V and V' are *isocausal* if they are causally related in both directions. In particular, it happens if there exists V'' conformal to V' such that

$$V'' \prec_0 V \prec_0 V' \quad (\prec_0 \text{ means } \phi \equiv Id).$$
Isocausality

Properties

- Based on the conformal structure of the spacetime.
- More flexible than the conformal equivalence.
- It preserves some relevant global properties associated to the conformal structure (but not all of them, G^a-Parrado, Sánchez'05).

Important Fact

There exist spacetimes

\[(V, g_{cl}) \prec_0 (V, g) \prec_0 (V, g_{op}), \quad \text{with } g_{op}, g_{cl} \text{ conformal,}\]

such that (V, g), (V, g_{op}) have different future c-boundaries.
Construction of $V_{cl} \equiv (V, g_{cl})$

$V = (-\infty, 0) \times \mathbb{R}$

$g_{cl} = -dt^2 + dx^2$

Future c-boundary of (V, g_{cl})
Construction of $V_{op} \equiv (V, g_{op})$

$V = (-\infty, 0) \times \mathbb{R}$

$g_{op} = -dt^2 + \frac{1}{4}dx^2$

Future c-boundary of (V, g_{op})
Construction of $V \equiv (V, g)$

$V = (-\infty, 0) \times \mathbb{R}$

$g = -dt^2 + \beta(t/x)dx^2$

$\beta(u) = \begin{cases}
1/4 & \text{if } u \leq \frac{1}{2} \\
1 & \text{if } u \geq 1 \\
incr. & \text{otherwise}
\end{cases}$

$(V, g_{cl}) \prec_0 (V, g) \prec_0 (V, g_{op})$
Future c-boundary of $V \equiv (V, g)$

- Conformal map between (V,g) and the open region V_0 of \mathbb{L}^2.

Thus, (V, g) and V_0 have the same future c-boundary.
Future c-boundary of $V \equiv (V, g)$
Different future c-boundaries

Future c-boundary of \((V, g_{cl})\) (and \((V, g_{op})\))

Future c-boundary of \((V, g)\)

\(\mathcal{J}^+\)

\(\mathcal{T}\)

\(\mathcal{J}^+\)

\(\mathcal{T}_{Str}\)

Strain
3. STANDARD STATIONARY FRAMEWORK
Standard Stationary Spacetime

\((V, g)\) is a standard stationary spacetime if \(V = \mathbb{R} \times M\) and

\[
g = -dt^2 + \omega \otimes dt + dt \otimes \omega + g_0
\]

where \(\omega\) is a one-form and \((M, g_0)\) a Riemannian manifold.

Associated Finsler Metrics

- There exist two Finsler* metrics (of Randers type) associated to every standard stationary spacetime:

\[
F^\pm(v) = \sqrt{g_0(v, v) + \omega(v)^2} \pm \omega(v).
\]

* A Finsler metric gives smoothly a positively homogeneous norm at each \(p \in V\) (i.e., \(F(\lambda v) = \lambda F(v)\) if \(\lambda \geq 0\)).
The Finsler metric $F = F^+$ defines a map $d : M \times M \to \mathbb{R}$ given by

$$d(x, y) = \inf_{\sigma \in C(x, y)} \int_0^1 F(\dot{\sigma}(t))dt,$$

where $C(x, y)$ is the set of piecewise smooth curves from x to y.

This map is a (non-necessarily symmetric) generalized distance, i.e. it satisfies the following properties:

1. $d(x, y) \geq 0$
2. $d(x, y) = d(y, x) = 0 \iff x = y$. (quasi-distance)
3. $d(x, z) \leq d(x, y) + d(y, z)$.
4. $\lim_{n}d(x_n, x) = 0 \iff \lim_{n}d(x, x_n) = 0$.

The pair (M, d) is a generalized metric space.
3.1 CAUCHY COMPLETION
Cauchy Completion

(Forward) Cauchy sequence

- \{x_n\} \subset M is a (forward) Cauchy sequence if \(\forall \epsilon > 0 \) there exists \(n_0 \) such that \(d(x_n, x_m) < \epsilon \) for all \(m \geq n \geq n_0 \).
- \(\text{Cau}^+(M, d) \equiv \) space of (forward) Cauchy sequences.
- Two Cauchy sequences are related, \(\{x_n\} \sim \{x'_n\} \), if, and only if,
 \[
 \lim_n(\lim_m d(x_n, x'_m)) = \lim_n(\lim_m d(x'_n, x_m)) = 0.
 \]

(Forward) Cauchy completion

The (forward) Cauchy completion and boundary are defined as follows:

\[
M^+_C := \text{Cau}^+(M, d)/\sim, \quad \partial^+_C M := M^+_C \setminus M.
\]
Cauchy Completion

Topology
- The map $d_Q : M_C^+ \times M_C^+ \to [0, \infty]$ defined by

 $$d_Q([\{x_n\}], [\{y_n\}]) = \lim_n (\lim_m d(x_n, y_m))$$

 is a well defined **quasi-distance** which extends d.
- M_C^+ is endowed with the topology induced by the **backward** d_Q-balls.

Properties
- Any (forward) Cauchy sequence in M_C^+ has limit (completeness).
- M_C^+ may not be locally compact.
Cauchy Completion

Backward Cauchy sequence

- \{x_n\} \subset M is a backward Cauchy sequence if \(\forall \, \epsilon > 0 \) there exists \(n_0 \) such that \(d(x_m, x_n) < \epsilon \) for all \(m \geq n \geq n_0 \).
- \(\text{Cau}^{-}(M, d) \equiv \) space of (backward) Cauchy sequences.
- Two Cauchy sequences are related, \(\{x_n\} \sim \{x'_n\} \), if, and only if,
 \[
 \lim_n(\lim_m d(x_n, x'_m)) = \lim_n(\lim_m d(x'_n, x_m)) = 0.
 \]

Backward Cauchy completion

The (backward) Cauchy completion and boundary are defined as follows:

\[
M^-_\mathcal{C} := \text{Cau}^{-}(M, d)/ \sim, \quad \partial^-\mathcal{C} M := M^-_\mathcal{C} \setminus M.
\]
In general, M^+_C and M^-_C do not coincide.

However, the following relation holds:

$$\partial^+_CM \cap \partial^-_CM = \partial^s_CM,$$

where ∂^s_CM is the Cauchy boundary for the symmetrized distance

$$d^s(x, y) := 1/2(d(x, y) + d(y, x)).$$

The symmetrized Cauchy completion is

$$M^s_C := M \cup \partial^s_CM$$

endowed with d^s.

\[\text{Symmetrized Cauchy Completion}\]
3.2 BUSEMANN COMPLETION
Busemann Completion

(Forward) Busemann Function

Given any curve $c : [\alpha, \Omega) \to M$, $\Omega \leq \infty$, with $F(\dot{c}) \leq 1$, the (forward) Busemann function associated to c is defined as:

$$b_c^+(\cdot) := \lim_{t \nearrow \Omega} (t - d(\cdot, c(t))) \in \mathcal{L}_1^+(M, d) \cup \{+\infty\}$$

(Forward) Busemann Completion

- $B^+(M) \equiv$ space of finite (forward) Busemann functions.
- The (forward) Busemann completion and boundary are defined as follows:

$$M_B^+ := B^+(M)/\mathbb{R}, \quad \partial_B^+ M := M_B^+ \setminus M.$$
Busemann Completion

The topology adopted here is inspired by the topology of the future c-boundary.

Limit Operator

\[f \in \hat{\mathcal{L}}(\{f_n\}) \iff \begin{cases} & f \leq \liminf f_n f_n \text{ and} \\ & \forall g \in B^+(M) : f \leq g \leq \limsup_n f_n, \text{ it is } g = f. \end{cases} \]

(Forward) Busemann Topology

- The topology on \(B^+(M) \) is the one whose closed sets are those sets \(C \) satisfying \(\hat{\mathcal{L}}(\sigma) \in C \) for any sequence \(\sigma \subset C \).
- The \((forward) Busemann topology\) is the induced quotient topology on the Busemann completion \(M_B^+ = B^+(M)/\mathbb{R} \).
Busemann Completion

Backward Busemann Function

Given any curve \(c : [\alpha, \Omega) \to M, \Omega \leq \infty \), with \(F(\dot{c}) \leq 1 \), the \textit{backward Busemann function} associated to \(c \) is defined as:

\[
b_c^- (\cdot) := \lim_{t \to \Omega} (-t + d(c(t), \cdot)) \in \mathcal{L}_1^-(M, d) \cup \{-\infty\}.
\]

Backward Busemann Completion

- \(B^- (M) \equiv \text{space of finite backward Busemann functions.} \)
- The \textit{backward Busemann completion} and \textit{boundary} are defined as follows:

\[
M_B^- := B^- (M)/\mathbb{R}, \quad \partial_B^- M := M_B^- \setminus M.
\]
Properties

The Busemann completion M^\pm_B satisfies the following properties:

1. M^\pm_B is sequentially compact.
2. M is naturally embedded as an open dense subset in M^\pm_B.
3. The points in $\partial^\pm_B M$ can be reached as limits of curves in M.
4. M^\pm_B is T_1, and non-T_2 related points must lie in $\partial^\pm_B M$.
5. The inclusion $M^\pm_C \subset M^\pm_B$ is continuous if d_Q is a generalized distance, and is a topological embedding if M^\pm_C is locally compact.
3.3 RESULT ON THE C-BOUNDARY
C-boundary of Standard Stationary Spacetimes

Theorem

Let \((V, g)\) be a standard stationary spacetime such that \(d_Q^+\) is a generalized distance, \(M_C^s\) is locally compact and \(M_B^\pm\) are Hausdorff. Then:

\[
\begin{align*}
\hat{\partial} V & \equiv \text{cone with base } \partial_B^+ M \text{ and apex } i^+ \\
\check{\partial} V & \equiv \text{cone with base } \partial_B^- M \text{ and apex } i^-.
\end{align*}
\]

- Points in \(\partial_B^\pm M \setminus \partial_C^s M\) yield horismotic lines starting at \(i^\pm\).
- Points in \(\partial_C^s M\) yield timelike lines from \(i^-\) to \(i^+\).

\[\partial V \cong \left(\hat{\partial} V \cup \check{\partial} V \right) / \sim_S.\]
C-BOUNDARY OF SPACETIMES
ISOCAUSAL COMPARISON
STANDARD STATIONARY FRAMEWORK
MAIN RESULTS

CAUCHY COMPLETION
BUSEMANN COMPLETION
RESULT ON THE C-BOUNDARY

\[\partial^+_B M \setminus \partial^s_C M \]

Future cone

\[\partial^-_B M \setminus \partial^s_C M \]

Past cone

\[\partial^+_s M \]

\[\partial^-_s M \]
4. MAIN RESULTS
Spacetimes of Interest

We will consider spacetimes \((V, g)\) of the form

\[
V = \mathbb{R} \times M \quad \text{and} \quad g = -dt^2 + \omega_t \otimes dt + dt \otimes \omega_t + h_t,
\]

where now \(\omega_t\) and \(h_t\) also depend on \(t\).

General Hypotheses

We will assume that \(g\) satisfies

\[
g_{cl} \prec_0 g \prec_0 g_{op}, \quad \text{thus} \quad g_{op} \text{ conformal to } g_{cl},
\]

being

\[
\begin{aligned}
g_{cl} &= -dt^2 + \omega \otimes dt + dt \otimes \omega + h \\
g_{op} &= -dt^2 + \alpha(t)\omega \otimes dt + \alpha(t)dt \otimes \omega + \alpha^2(t)h.
\end{aligned}
\]
INITIAL OBJECTIVE:

- To relate the future c-boundary of \((V, g)\) with that of \((V, g_{cl})\).

MAIN IDEA:

- Since \(g_{cl} \prec_0 g\), if \(P_{cl} = l_{cl}^-(\gamma)\) is a TIP for \(g_{cl}\) then \(l^-(P_{cl}) = l^-(\gamma)\) is also a TIP for \(g\).

- This suggests to compare the two c-boundaries by defining the following map:

\[
\hat{j} : \hat{\partial}V_{cl} \rightarrow \hat{\partial}V
\]

\[
P_{cl} \mapsto l^-(P_{cl})
\]

* However, \(\hat{j}\) may not be injective, since there may exist different TIPs \(P_{cl} \neq P'_{cl}\) for \(g_{cl}\) such that \(l^-(P_{cl}) = l^-(P'_{cl})\).
Example

Consider the following metrics on $V = \mathbb{R} \times \mathbb{R}$,

$$g_{cl} = -dt^2 + dx^2, \quad g = -dt^2 + dx^2/2, \quad g_{op} = -dt^2 + dx^2/3,$$

which satisfy $g_{cl} \prec g \prec g_{op}$ and g_{op} is conformal to g_{cl}.

Any TIP P_{cl} for g_{cl} satisfies $P_{cl} = I_{cl}^{-}(\gamma)$, $\gamma(t) = (t + k, \pm t)$, and thus

$$\hat{j} : \partial V_{cl} \leftrightarrow \partial V, \quad P_{cl} \mapsto I^{-}(P_{cl}) = I^{-}(\gamma) = V.$$
Example

- Consider the following metrics on $V = \mathbb{R} \times \mathbb{R}$,

\[g_{cl} = -dt^2 + dx^2, \quad g = -dt^2 + dx^2/2, \quad g_{op} = -dt^2 + dx^2/3, \]

which satisfy $g_{cl} \prec g \prec g_{op}$ and g_{op} is conformal to g_{cl}.

- Any TIP P_{cl} for g_{cl} satisfies $P_{cl} = I_{cl}^{-}(\gamma), \gamma(t) = (t + k, \pm t)$, and thus

\[\hat{j} : \hat{\partial}V_{cl} \not\leftrightarrow \hat{\partial}V, \quad P_{cl} \mapsto I^{-}(P_{cl}) = I^{-}(\gamma) = V. \]

Additional Hypothesis

The causal cones of g and g_{cl} must approach at t-infinity in this sense:

\[\int_{0}^{\infty} \left(\frac{1}{\alpha(t)} - 1 \right) dt < \infty. \]
Theorem

Let $V = (\mathbb{R} \times M, g)$ be a spacetime as before such that $g_{op} \prec g \prec g_{op}$ and g_{cl} is conformal to g_{op}. If the integral condition

$$\int_0^{\infty} \left(\frac{1}{\alpha(t)} - 1 \right) dt < \infty$$

holds then the map

$$\hat{j} : \hat{V}_{cl} \rightarrow \hat{V}$$

$$P_{cl} \mapsto I^-(P_{cl})$$

is injective. So, $\hat{\partial}V$ contains $\hat{\partial}V_{cl}$ as a point set.

Remark

The map \hat{j} may not be neither surjective nor continuous.
Example

In $V = \mathbb{R} \times \mathbb{R}$ consider the metrics

$$g_{cl} = -dt^2 + dx^2, \quad g = -dt^2 + h_t, \quad g_{op} = -dt^2 + \alpha(t)dx^2,$$

where

$$\alpha(t)dx^2 \leq h_t \leq dx^2 \quad \text{and} \quad \alpha(t) = (e^{-t} + 1)^{-1}.$$
* \(\gamma(t) = (t, t) \) is lightlike for \(g_{cl} \) \(\Rightarrow P_{cl} = l_{cl}^-(\gamma) \) TIP for \(g_{cl} \).
* \(\rho(t) = (l(t), t) \) is lightlike for \(g_{op} \).
* \(\gamma_k(t) = (l_k(t), t) \) is lightlike for \(g \) \(\Rightarrow P_k = l^-(\gamma_k) \) TIP for \(g \).
They satisfy: $I^-(P_{cl}) \subsetneq P^k$ and $I_{op}^{-1}(P_{cl}) = I_{op}^{-1}(P^k)$.

* The map \hat{j} is not surjective, because P^k are not the image of P_{cl}.
* The map \hat{j} is not continuous, since $\{I_{cl}^-(\gamma_k(n))\} \to P_{cl}$ but

$$\{I^-(\gamma_k(n))\} \to P^k \neq I^-(P_{cl}).$$
They satisfy: $I^{-}(P_{cl}) \subsetneq P^{k}$ and $I^{-}_{op}(P_{cl}) = I^{-}_{op}(P^{k})$.

* The map \hat{j} is not surjective, because P^{k} are not the image of P_{cl}.

* The map \hat{j} is not continuous, since $\{I^{-}_{cl}(\gamma_{k}(n))\} \rightarrow P_{cl}$ but

$$\{I^{-}(\gamma_{k}(n))\} \rightarrow P^{k} \neq I^{-}(P_{cl})$$
They satisfy: $I^{-}(P_{cl}) \subsetneq P^{k}$ and $I_{op}^{-}(P_{cl}) = I_{op}^{-}(P^{k})$.

* The map \hat{j} is not surjective, because P^{k} are not the image of P_{cl}.

* The map \hat{j} is not continuous, since $\{I^{-}(\gamma_{k}(n))\} \to P_{cl}$ but

$$\{I^{-}(\gamma_{k}(n))\} \to P^{k} \neq I^{-}(P_{cl})$$.
st-Relation

$P^1, P^2 \in \partial V$ are st-related, $P^1 \sim_{st} P^2$, if there exists a TIP P_{cl} for g_{cl} such that $P_{cl} \subset P^1 \cap P^2$ and $I_{op}^-(P^1) = I_{op}^-(P_{cl}) = I_{op}^-(P^2)$.

Theorem

Let $V = (\mathbb{R} \times M, g)$ be a spacetime as before such that $g_{cl} \prec_0 g \prec_0 g_{op}$ and g_{cl} is conformal to g_{op}. If the integral condition holds, d_Q is a generalized distance and M_C^+ is locally compact then

$$
\hat{J} = \hat{\Pi} \circ \hat{j} : \hat{V}_{cl} \to \hat{V} / \sim_{st}, \quad \text{with} \quad \hat{\Pi} : \hat{V} \to \hat{V} / \sim_{st}
$$

is bijective and continuous.

If, in addition, \hat{V} / \sim_{st} is Hausdorff, then \hat{J} is an homeomorphism.
st-Relation

\(F^1, F^2 \in \partial V \) are st-related, \(F^1 \sim_{st} F^2 \), if there exists a TIF \(F_{cl} \) for \(g_{cl} \) such that \(F_{cl} \subset F^1 \cap F^2 \) and \(I_{op}^+(F^1) = I_{op}^+(F_{cl}) = I_{op}^+(F^2) \).

Theorem

Let \(V = (\mathbb{R} \times M, g) \) be a spacetime as before such that \(g_{cl} \preceq_0 g \preceq_0 g_{op} \) and \(g_{cl} \) is conformal to \(g_{op} \). If the integral condition holds, \(d_Q^- \) is a generalized distance and \(M^-_C \) is locally compact then

\[\tilde{\mathcal{J}} = \tilde{\Pi} \circ \tilde{j} : \tilde{V}_{cl} \to \tilde{V} / \sim_{st}, \quad \text{with} \quad \tilde{\Pi} : \tilde{V} \to \tilde{V} / \sim_{st} \]

is bijective and continuous.

If, in addition, \(\tilde{V} / \sim_{st} \) is Hausdorff, then \(\tilde{\mathcal{J}} \) is an homeomorphism.
FINAL OBJECTIVE:

- To relate the c-boundary of \((V, g)\) with that of \((V, g_{cl})\).

MAIN IDEA:

- Try to define a map of the form
 \[
 \bar{j} : \partial V_{cl} \longrightarrow \partial V, \quad (P_{cl}, F_{cl}) \mapsto \bar{j}((P_{cl}, F_{cl}))
 \]
 by using the maps \(\hat{j}, \check{j}\) previously defined.

- A natural choice is:
 \[
 \bar{j}((P_{cl}, F_{cl})) := (\hat{j}(P_{cl}), \check{j}(F_{cl})).
 \]

* However

\[
P_{cl} \sim_{S} F_{cl} \quad \nRightarrow \quad \hat{j}(P_{cl})(= I^{-}(P_{cl})) \sim_{S} \check{j}(F_{cl})(= I^{+}(F_{cl})).
\]
Lemma

If \((P_{cl}, F_{cl}) \in V_{cl}, \ P_{cl} \neq \emptyset \neq F_{cl}\) then there exist \(P_0 \in \hat{\Pi}^{-1}(\hat{J}(P_{cl}))\) and \(F_0 \in \hat{\Pi}^{-1}(\hat{J}(P_{cl}))\) such that \(P_0 \sim S F_0\).

Proposition

Let \(V = (\mathbb{R} \times M, g)\) be a spacetime as before such that \(g_{cl} \prec_0 g \prec_0 g_{op}\) and \(g_{cl}\) is conformal to \(g_{op}\). Assume that the integral conditions hold and \(d_Q\) is a generalized distance. Consider any map \(\tilde{j} : \overline{V}_{cl} \rightarrow \overline{V}\) given by

\[
(P_{cl}, F_{cl}) \mapsto \tilde{j}((P_{cl}, F_{cl})) := \begin{cases}
(I^{-}(P_{cl}), \emptyset) & \text{if } F_{cl} = \emptyset \\
(\emptyset, I^{+}(F_{cl})) & \text{if } P_{cl} = \emptyset \\
(P_0, F_0) & \text{otherwise,}
\end{cases}
\]

where \((P_0, F_0)\) is any choice of a pair provided by previous lemma. Then, \(\tilde{j}\) is well defined and injective.
Strain

Let \(\sim_{st} \) be the relation of equivalence on \(\overline{V} \) defined by:

\[
(P, F) \sim_{st} (P', F') \iff (P, F), (P', F') \in ST((P_{cl}, F_{cl})).
\]

for some \((P_{cl}, F_{cl}) \in \overline{V}_{cl} \), where

\[
(P, F) \in ST((P_{cl}, F_{cl})) \iff \begin{cases}
P \neq \emptyset \neq P_{cl} \Rightarrow P \in \hat{\Pi}^{-1}(\hat{J}(P_{cl}))
F \neq \emptyset \neq F_{cl} \Rightarrow F \in \tilde{\Pi}^{-1}(\tilde{J}(F_{cl}))
P_{cl} = \emptyset \Rightarrow P = \emptyset
F_{cl} = \emptyset \Rightarrow F = \emptyset
\end{cases}
\]

The (non-trivial) classes in \(\overline{V}/\sim_{st} \) are called strains.

We will consider the natural projection \(\Pi : \overline{V} \to \overline{V}/\sim_{st} \).
Theorem

Let $V = (\mathbb{R} \times M, g)$ be a spacetime as before such that $g_{cl} \prec_0 g \prec_0 g_{op}$ and g_{cl} is conformal to g_{op}. If the integral conditions

$$
\int_{-\infty}^{0} \left(\frac{1}{\alpha(t)} - 1 \right) dt < \infty, \quad \int_{0}^{\infty} \left(\frac{1}{\alpha(t)} - 1 \right) dt < \infty.
$$

hold, d_Q is a generalized distance and M_C^s is locally compact, then the map

$$
\mathcal{J} = \Pi \circ \bar{j} : \overline{V}_{cl} \to \overline{V} / \sim_{st}, \quad \text{with} \quad \Pi : \overline{V}_{cl} \to \overline{V} / \sim_{st}
$$

is injective and continuous.

If, in addition, \overline{V} / \sim_{st} is Hausdorff, then \mathcal{J} is an homeomorphism.
SUMMARY:

- Isocausality yields the qualitative behavior of the c-boundary for a wide class of spacetimes.
- Such spacetimes include those in the general split form $V = \mathbb{R} \times M$, under the hypothesis that the metric will stabilize for large $|t|$.
- Approach developed in full generality by using stationary spacetimes rather than static ones.
- This broad viewpoint leads to consider some technical conditions, which nonetheless hold trivially in practical cases.
- These results can be extended to the case $V = I \times M$, with $I \subset \mathbb{R}$ interval, which includes Robertson-Walker spacetimes.
- Possible extension to spacetimes isocausal to wave type spacetimes??
References

- **F, Herrera, Sánchez**: Isocausal spacetimes may have different causal boundaries, *Class. Quant. Grav.*, **28** (2011) 175016.