Bour’s minimal surface in three dimensional Lorentz-Minkowski space

Erhan GÜLER

Bartin University
TURKEY
The origins of *Minimal Surface Theory* can be traced back to...
The origins of *Minimal Surface Theory* can be traced back to 1744 with the Swedish Mathematician Leonhard Euler’s (1707-1783) paper,
The origins of *Minimal Surface Theory* can be traced back to 1744 with the Swedish Mathematician Leonhard Euler’s (1707-1783) paper, and to the 1760 French Mathematician Joseph Louis Lagrange’s (1736-1813) paper.
A *minimal surface* in \mathbb{E}^3 is a regular surface for which the mean curvature vanishes identically.
A \textit{minimal surface} in \mathbb{E}^3 is a regular surface for which the mean curvature vanishes identically.

This is a definition of Lagrange, who first defined minimal surface in 1760.
Introduction

Brief History of the Classical Minimal Surfaces:
Introduction

1. Plane (trivial)
Introduction

1. Plane (trivial)
2. Euler’s (1707-1783) Catenoid (1740)
Introduction

1. Plane (trivial)
2. Euler’s (1707-1783) Catenoid (1740)
3. Meusnier’s (1754-1793) Helicoid (1776)
Introduction

1. Plane (trivial)
2. Euler’s (1707-1783) Catenoid (1740)
3. Meusnier’s (1754-1793) Helicoid (1776)
4. Scherk’s (1798-1885) surface (1835)
Introduction

1. Plane (trivial)
2. Euler’s (1707-1783) Catenoid (1740)
3. Meusnier’s (1754-1793) Helicoid (1776)
4. Scherk’s (1798-1885) surface (1835)
5. Catalan’s (1814-1894) surface (1855)
Introduction

1. Plane (trivial)
2. Euler’s (1707-1783) Catenoid (1740)
3. Meusnier’s (1754-1793) Helicoid (1776)
4. Scherk’s (1798-1885) surface (1835)
5. Catalan’s (1814-1894) surface (1855)
6. Riemann’s (1826-1866) surface (1860)
Introduction

1. Plane (trivial)
2. Euler’s (1707-1783) Catenoid (1740)
3. Meusnier’s (1754-1793) Helicoid (1776)
4. Scherk’s (1798-1885) surface (1835)
5. Catalan’s (1814-1894) surface (1855)
6. Riemann’s (1826-1866) surface (1860)
7. Bour’s (1832-1866) surface (1862)
Introduction

1. Plane (trivial)
2. Euler’s (1707-1783) Catenoid (1740)
3. Meusnier’s (1754-1793) Helicoid (1776)
4. Scherk’s (1798-1885) surface (1835)
5. Catalan’s (1814-1894) surface (1855)
6. Riemann’s (1826-1866) surface (1860)
7. Bour’s (1832-1866) surface (1862)
8. Enneper’s (1830-1885) surface (1864)
Introduction

1. Plane (trivial)
2. Euler’s (1707-1783) Catenoid (1740)
3. Meusnier’s (1754-1793) Helicoid (1776)
4. Scherk’s (1798-1885) surface (1835)
5. Catalan’s (1814-1894) surface (1855)
6. Riemann’s (1826-1866) surface (1860)
7. Bour’s (1832-1866) surface (1862)
8. Enneper’s (1830-1885) surface (1864)
9. Schwarz’s (1843-1921) surface (1865)
Introduction

1. Plane (trivial)
2. Euler’s (1707-1783) Catenoid (1740)
3. Meusnier’s (1754-1793) Helicoid (1776)
4. Scherk’s (1798-1885) surface (1835)
5. Catalan’s (1814-1894) surface (1855)
6. Riemann’s (1826-1866) surface (1860)
7. Bour’s (1832-1866) surface (1862)
8. Enneper’s (1830-1885) surface (1864)
9. Schwarz’s (1843-1921) surface (1865)
10. Henneberg’s (1850-1922) surface (1875)
Introduction

1. Plane (trivial)
2. Euler’s (1707-1783) Catenoid (1740)
3. Meusnier’s (1754-1793) Helicoid (1776)
4. Scherk’s (1798-1885) surface (1835)
5. Catalan’s (1814-1894) surface (1855)
6. Riemann’s (1826-1866) surface (1860)
7. Bour’s (1832-1866) surface (1862)
8. Enneper’s (1830-1885) surface (1864)
9. Schwarz’s (1843-1921) surface (1865)
10. Henneberg’s (1850-1922) surface (1875)
11. Richmond’s (1863-1948) surface (?)
Almost a hundred years later...
1980s – 90s.

- Chen-Gackstatter’s surface (1981)
1980s – 90s.

- Chen-Gackstatter’s surface (1981)
- Costa’s surface (1982)
1980s – 90s.

- Chen-Gackstatter’s surface (1981)
- Costa’s surface (1982)
- Jorge-Meeks’s surface (1983)
1980s – 90s.

- Chen-Gackstatter’s surface (1981)
- Costa’s surface (1982)
- Jorge-Meeks’s surface (1983)
- Hoffman, Meeks, Karcher, Kusner, Rosenberg, Lopez, Ros, Rossman, Miyaoka, Sato, ...
2000s – ...

- Fujimori, Shoda, Traizet, Weber, ...
In 1862, the French Mathematician Edmond Bour used semigeodesic coordinates and found a number of new cases of deformations of surfaces.
In 1862, the French Mathematician Edmond Bour used semigeodesic coordinates and found a number of new cases of deformations of surfaces.

He gave a well known theorem about the **helicoidal and rotational surfaces**.
In 1862, the French Mathematician Edmond Bour used semigeodesic coordinates and found a number of new cases of deformations of surfaces. He gave a well known theorem about the helicoidal and rotational surfaces. And also the Bour-Enneper equation (today called the sine-Gordon wave equation) used in soliton theory and quantum field theories in Physics was first set down by Bour.
Minimal surfaces applicable onto a rotational surface were first determined by E. Bour [3], in 1862.
Minimal surfaces applicable onto a rotational surface were first determined by E. Bour [3], in 1862.

These surfaces have been called \(\mathcal{B}_m \) (following J. Haag) to emphasize the value of \(m \).
papers dealing with the \mathfrak{B}_m in the literature:
Introduction

Introduction

Introduction

Introduction

- Demoulin, A. Bulletin des Sciences Mathematiques (2), vol. XXI (1897), pp. 244-252.
Demoulin, A. Bulletin des Sciences Mathematiques (2), vol. XXI (1897), pp. 244-252.

Introduction

Demoulin, A. Bulletin des Sciences Mathematiques (2), vol. XXI (1897), pp. 244-252.

Introduction

- Demoulin, A. Bulletin des Sciences Mathematiques (2), vol. XXI (1897), pp. 244-252.
All real minimal surfaces applicable to rotational surfaces setting

$$\mathcal{F}(s) = C \, s^{m-2}$$

in the Weierstrass representation equations, where $s, C \in \mathbb{C}$, $m \in \mathbb{R}$, and $\mathcal{F}(s)$ is an analytic function.
All real minimal surfaces applicable to rotational surfaces setting

$$\mathcal{F}(s) = C \ s^{m-2}$$

in the Weierstrass representation equations, where $s, C \in \mathbb{C}$, $m \in \mathbb{R}$, and $\mathcal{F}(s)$ is an analytic function.

- For $C = 1, m = 0$ we obtain the Catenoid,
All real minimal surfaces applicable to rotational surfaces setting

$$\mathcal{F}(s) = C \ s^{m-2}$$

in the Weierstrass representation equations, where $s, C \in \mathbb{C}$, $m \in \mathbb{R}$, and $\mathcal{F}(s)$ is an analytic function.

- For $C = 1, \ m = 0$ we obtain the Catenoid,
- $C = i, \ m = 0$, the right Helicoid,
All real minimal surfaces applicable to rotational surfaces setting
\[
\bar{\mathcal{F}}(s) = C \ s^{m-2}
\]
in the Weierstrass representation equations, where \(s, C \in \mathbb{C} \), \(m \in \mathbb{R} \), and \(\bar{\mathcal{F}}(s) \) is an analytic function.

- For \(C = 1, m = 0 \) we obtain the Catenoid,
- \(C = i, m = 0 \), the right Helicoid,
- \(C = 1, m = 2 \), Enneper’s surface (see, also [2,4,16]).

Moreover, Bour’s surface has not been studied up till now in three dimensional Minkowski space \mathbb{L}^3.
Ikawa [10, 11] shows that a generalized helicoid is isometric to a rotational surface by Bour’s theorem in the Euclidean and Minkowski 3-spaces. In addition, he determine these surfaces, with the additional conditions that they are minimal and have the same Gauss map.
Güler [5, 7] shows that a generalized helicoid with lightlike profile curve is isometric to a rotational surface with lightlike profile curve, by Bour’s theorem in the Minkowski 3-space.
Güler, Yaylı and Hacısalıhoğlu establish some relations between the Laplace-Beltrami operator and the curvatures of helicoidal surfaces in 3-Euclidean space. In addition, Bour’s theorem on the Gauss map, and some special examples are given in [6]. Some geometric properties of the timelike rotational surfaces with lightlike profile curve of (S,L), (T,L) and (L,L)-types is shown in Minkowski 3-space in [7,8,9].
We will give Bour’s minimal surfaces in \mathbb{E}^3 and \mathbb{L}^3.
Euclidean case

Throughout this work,
Euclidean case

Throughout this work,
- we shall identify a vector $\mathbf{x} = (u, v, w)$ with its transpose \mathbf{x}^t.
Throughout this work,

- we shall identify a vector \(\vec{x} = (u, v, w) \) with its transpose \(\vec{x}^t \),
- the surfaces will be smooth,
Throughout this work,

- we shall identify a vector $\vec{x} = (u, v, w)$ with its transpose \vec{x}^t,
- the surfaces will be smooth,
- and simply connected.
Let \mathbb{E}^3 be a three dimensional Euclidean space with natural metric

$$\langle ., . \rangle_0 = dx^2 + dy^2 + dz^2.$$
In 1818, at age 31, C.F. Gauss (1777-1855) contracted to undertake a geodetic survey, for the German state of Hanover, in order to link up with the existing Danish grid.
Euclidean case

- With the help of this surveying, he invented the "heliotrope" (an instrument used in geodetic surveying for making long distance observations by means of the sun’s rays throwing from a mirror).
With the help of this surveying, he invented the "heliotrope" (an instrument used in geodetic surveying for making long distance observations by means of the sun’s rays throwing from a mirror).
Then Gauss realized a good map (for a given, general surface) should accurately reflect angles between intersecting curves.
Euclidean case

- Then Gauss realized a good map (for a given, general surface) should accurately reflect angles between intersecting curves.
- Infinitesimal squares were mapped by map X to infinitesimal squares on surface.
Euclidean case

Then Gauss realized a good map (for a given, general surface) should accurately reflect angles between intersecting curves.

Infinitesimal squares were mapped by map X to infinitesimal squares on surface.

He obtained a map, and called **conformal** if satisfy

$$\langle X_u, X_u \rangle_0 = \langle X_v, X_v \rangle_0,$$

$$\langle X_u, X_v \rangle_0 = 0,$$

where u, v are local isothermic parameters.
Euclidean case

- A conformal map is a function which preserves the angles.
Euclidean case

- A conformal map is a function which preserves the angles.
- Conformal map preserves both angles and shape of infinitesimal squares, but not necessarily their size.
Euclidean case

- A conformal map is a function which preserves the angles.
- Conformal map preserves both angles and shape of infinitesimal squares, but not necessarily their size.

Figure 0 A conformal mapping
An important family of examples of conformal maps comes from complex analysis.
An important family of examples of conformal maps comes from complex analysis.

If \mathcal{U} is an open subset of the complex plane \mathbb{C}, then a function $f: \mathcal{U} \rightarrow \mathbb{C}$ is conformal iff it is holomorphic (or complex differentiable) and its derivative is everywhere non-zero on \mathcal{U}.
Euclidean case

Let \mathcal{U} be an open subset of \mathbb{C}. A **minimal** (or *isotropic*) **curve** is an analytic function $\Psi : \mathcal{U} \to \mathbb{C}^n$ such that

$$
(\Psi' (z))^2 = 0,
$$

where $z \in \mathcal{U}$, and $\Psi' := \frac{\partial \Psi}{\partial z}$.

References

Applications in \mathbb{E}^3
Euclidean case

- Let \mathcal{U} be an open subset of \mathbb{C}. A **minimal** (or **isotropic**) curve is an analytic function $\Psi : \mathcal{U} \to \mathbb{C}^n$ such that

$$(\Psi'(z))^2 = 0,$$

where $z \in \mathcal{U}$, and $\Psi' := \frac{\partial \Psi}{\partial z}$.

- If in addition

$$\langle \Psi', \overline{\Psi}' \rangle_0 = |\Psi'|^2 \neq 0,$$

Ψ is a **regular minimal curve**.
Euclidean case

- Let \mathcal{U} be an open subset of \mathbb{C}. A minimal (or isotropic) curve is an analytic function $\Psi : \mathcal{U} \to \mathbb{C}^n$ such that

$$\left(\Psi'(z)\right)^2 = 0,$$

where $z \in \mathcal{U}$, and $\Psi' := \frac{\partial \Psi}{\partial z}$.

- If in addition

$$\langle \Psi', \overline{\Psi}' \rangle_0 = |\Psi'|^2 \neq 0,$$

Ψ is a regular minimal curve.

- A minimal surface is the associated family of a minimal curve.
Now, we give the *Weierstrass Representation Theorem* for minimal surfaces in \mathbb{E}^3 [15], discovered by K. Weierstrass (1815-1897) in 1866 (also see [1, 16], for details).
Euclidean case

Theorem

Let \mathcal{F} and \mathcal{G} be two holomorphic functions defined on a simply connected open subset U of \mathbb{C} such that \mathcal{F} does not vanish on U. Then the map

$$
\mathbf{x}(u, v) = \text{Re} \int^z \begin{pmatrix}
\mathcal{F} (1 - \mathcal{G}^2) \\
i \mathcal{F} (1 + \mathcal{G}^2) \\
2\mathcal{F} \mathcal{G}
\end{pmatrix}
dz
$$

is a minimal, conformal immersion of U into \mathbb{E}^3, and \mathbf{x} is called the Weierstrass patch, determined by $\mathcal{F}(z)$ and $\mathcal{G}(z)$.
Lemma

Let $\Psi : U \rightarrow \mathbb{C}^3$ minimal curve and write $\Psi' = (\varphi_1, \varphi_2, \varphi_3)$.

That is

$$\Psi' = \left(\frac{\varphi_1 - i\varphi_2}{2}, \frac{\varphi_1 - i\varphi_2}{2}, 2\varphi_3\right).$$

Then give rise to the Weierstrass representation of Ψ. That is

$$s = \frac{\varphi_1 - i\varphi_2}{2}, \quad g = \frac{\varphi_1 - i\varphi_2}{2}, \quad \varphi_3 = \frac{1 - \varphi_2^2}{1 + \varphi_2^2}.$$
Lemma

The Bour’s curve of value m

$$
\left(\frac{z^{m-1}}{m-1} - \frac{z^{m+1}}{m+1}, \text{i} \left(\frac{z^{m-1}}{m-1} + \frac{z^{m+1}}{m+1} \right), 2\frac{z^m}{m} \right)
$$

is a minimal curve in \mathbb{E}^3, where $m \in \mathbb{R} - \{-1, 0, 1\}$, $z \in \mathcal{U} \subset \mathbb{C}$, $\text{i} = \sqrt{-1}$.
Euclidean case

Proof.

Using differential z of the Bour’s curve of value m, we have

$$\Omega(z) = (z^{m-2} - z^m, i(z^{m-2} + z^m), 2z^{m-1}). \quad (2)$$

Hence we get

$$(\Omega)^2 = 0.$$
Euclidean case

The Bour’s minimal curve of value 3 (see Fig. 0.1) is intersects itself three times along three straight rays, which meet an angle $2\pi/3$ at the origin in \mathbb{E}^3.
Euclidean case

Figure 0.1 Bour’s minimal curve and its shadows
Euclidean case

- Bour’s minimal surface of value m is the associated family of Bour’s minimal curve.
Lemma

The Weierstrass patch determined by the functions

\[\mathcal{F}(z) = z^{m-2} \quad \text{and} \quad \mathcal{G}(z) = z \]

is a representation of the Bour’s minimal surface of value \(m \in \mathbb{R} \) in \(\mathbb{R}^3 \).
The Weierstrass representation of the Bour’s surface is

\[B_m(u, v) = \text{Re}\left(z \Phi(z) \right), \]

where \(m \) is an integer, \(u + iv \) is the corresponding complex coordinate, \(\Phi(z) = z^m + m^{-1}z^{m+1} + \text{other terms} \), and \(\Phi \) is an analytic function.
The Weierstrass representation of the Bour’s surface is

\[\mathcal{B}_m(u, v) = \text{Re} \int \Phi(z) \, dz, \quad (3) \]
Euclidean case

- The Weierstrass representation of the Bour’s surface is

\[\mathcal{B}_m(u, v) = \text{Re} \int \Phi(z) \, dz, \quad (3) \]

- where \(m \in \mathbb{R} \), \((u, v)\) are coordinates on the surface, \(z = u + iv \) is the corresponding complex coordinate,

\[\Phi(z) = \left(\frac{z^{m-1}}{m-1} - \frac{z^{m+1}}{m+1}, i \left(\frac{z^{m-1}}{m-1} + \frac{z^{m+1}}{m+1} \right), 2z^m \right), \]

\((\Phi)^2 = 0 \), and \(\Phi \) is an analytic function.
Euclidean case

- For $z = re^{i\theta}$, Im part of the $\mathcal{B}_m(r, \theta)$ is a conjugate surface, where (r, θ) is polar coordinates.
Euclidean case

- For $z = re^{i\theta}$, Im part of the $\mathcal{B}_m(r, \theta)$ is a conjugate surface, where (r, θ) is polar coordinates.
- The conjugate surface of the Bour’s surface of value m is

$$\mathcal{B}^*_m(r, \theta) = -\text{Re} \int i\Phi$$

$$= \text{Re} \int e^{-i\pi/2}\Phi.$$
Euclidean case

The associated family is thus described by

\[\mathcal{B}_m (r, \theta; \alpha) = \text{Re} \int e^{-i\alpha \Phi} \]

\[= \cos(\alpha) \text{Re} \int \Phi + \sin(\alpha) \text{Im} \int \Phi \]

\[= \cos(\alpha) \mathcal{B}_m (r, \theta) + \sin(\alpha) \mathcal{B}^*_m (r, \theta). \]
The associated family is thus described by

\[\mathcal{B}_m (r, \theta; \alpha) = \text{Re} \int e^{-i\alpha} \Phi \]

\[= \cos (\alpha) \text{Re} \int \Phi + \sin (\alpha) \text{Im} \int \Phi \]

\[= \cos (\alpha) \mathcal{B}_m (r, \theta) + \sin (\alpha) \mathcal{B}_m^* (r, \theta). \]

When \(\alpha = 0 \) (resp., \(\alpha = \pi/2 \)) we have the Bour’s surface of value \(m \) (resp., the conjugate surface).
Euclidean case

Theorem

Bour’s surface of value m

$$\mathcal{B}_m (r, \theta) = \left(\begin{array}{ccc} r^{m-1} \frac{\cos((m-1)\theta)}{m-1} & -r^{m+1} \frac{\cos((m+1)\theta)}{m+1} \\ -r^{m-1} \frac{\sin((m-1)\theta)}{m-1} & -r^{m+1} \frac{\sin((m+1)\theta)}{m+1} \\ 2r^m \frac{\cos(m\theta)}{m} \end{array} \right)$$

is a minimal surface in \mathbb{E}^3, where $m \in \mathbb{R} - \{-1, 0, 1\}$, in (r, θ) coordinates.
Euclidean case

Proof.

The coefficients of the first fundamental form of the Bour’s surface are

\[E = r^{2m-4} \left(1 + r^2\right)^2, \]
\[F = 0, \]
\[G = r^{2m-2} \left(1 + r^2\right)^2. \]
Euclidean case

Proof.

- The coefficients of the first fundamental form of the Bour’s surface are

\[E = r^{2m-4} (1 + r^2)^2, \]
\[F = 0, \]
\[G = r^{2m-2} (1 + r^2)^2, \]

- So, we have

\[\det I = r^{4m-6} (1 + r^2)^4. \]
Euclidean case

Proof. (Cont.)
The Gauss map of the surface is

\[e = \frac{1}{1 + r^2} \begin{pmatrix} 2r \cos(\theta) \\ 2r \sin(\theta) \\ r^2 - 1 \end{pmatrix}. \]
Euclidean case

Proof. (Cont.)

- The coefficients of the second fundamental form of the Bour’s surface are
Euclidean case

Proof. (Cont.)

The coefficients of the second fundamental form of the Bour’s surface are

\[L = -2r^{m-2} \cos (m\theta) , \]
\[M = 2r^{m-1} \sin (m\theta) , \]
\[N = 2r^m \cos (m\theta) . \]
Euclidean case

Proof. (Cont.)

- The coefficients of the second fundamental form of the Bour’s surface are

\[L = -2r^{m-2} \cos(m\theta), \]
\[M = 2r^{m-1} \sin(m\theta), \]
\[N = 2r^m \cos(m\theta). \]

- We have

\[\det II = -4r^{2m-2}. \]
Proof. (Cont.)

Hence, the mean and the Gaussian curvatures of the Bour’s surface of value m, respectively, are
Euclidean case

Proof. (Cont.)

Hence, the mean and the Gaussian curvatures of the Bour’s surface of value m, respectively, are

$$H = 0, \ K = - \left(\frac{2r^{2-m}}{(1 + r^2)^2} \right)^2.$$
Introduction
Euclidean Bour’s surfaces
Minkowskian Bour’s surfaces
References

Applications in \(\mathbb{E}^3 \)

Euclidean case

Example

If we take \(m = 3 \) in \(\mathcal{B}_m (r, \theta) \), then we have the Bour’s minimal surface (see Fig. 1)

\[
\mathcal{B}_3 (r, \theta) = \left(\begin{array}{c}
\frac{r^2}{2} \cos (2\theta) - \frac{r^4}{4} \cos (4\theta) \\
-\frac{r^2}{2} \sin (2\theta) - \frac{r^4}{4} \sin (4\theta) \\
\frac{2}{3} r^3 \cos (3\theta)
\end{array} \right),
\]

where \(r \in [-1, 1], \ \theta \in [0, \pi] \). When \(r = 1 \), and \(z = 0 \), we have deltoid curve, which is a 3-cusped hypocycloid (Steiner’s hypocycloid (1856)), also called tricuspoid, discovered by Euler in 1745, on plane xy in Fig. 0.1.
Euclidean case

Figure 1 Bour's minimal surface of value 3, $\mathcal{B}_3 (r, \theta)$
Euclidean case

(c)

Figure 1 Bour’s minimal surface of value 3, $\mathcal{B}_3 (r, \theta)$
The coefficients of the first fundamental form of the Bour’s surface of value 3 are

\[E = r^2 (1 + r^2)^2, \quad F = 0, \quad G = r^4 (1 + r^2)^2. \]

So,

\[\det I = r^6 (1 + r^2)^4. \]
Euclidean case

The Gauss map of the surface B_3 is

$$e = \frac{1}{1 + r^2} \left(2r \cos(\theta), 2r \sin(\theta), r^2 - 1 \right).$$
Euclidean case

The coefficients of the second fundamental form of the surface are

\[L = -2r \cos(3\theta), \quad M = 2r^2 \sin(3\theta), \quad N = 2r^3 \cos(3\theta). \]

Then,

\[\det II = -4r^4. \]
The mean and the Gaussian curvatures of the Bour’s minimal surface of value 3 are, respectively,

\[H = 0, \quad K = -\frac{4}{r^2 (1 + r^2)^4}. \]
Euclidean case

The Weierstrass patch determined by the functions

$$(\mathcal{F}, \mathcal{G}) = (z, z)$$

is a representation of the Bour’s minimal surface of value 3.
The parametric form of the surface (see Fig. 2) is

\[
\mathcal{B}_3(u, v) = \begin{pmatrix}
-\frac{u^4}{4} - \frac{v^4}{4} + \frac{3}{2} u^2 v^2 + \frac{u^2}{2} - \frac{v^2}{2} \\
-u^3 v - uv^3 - uv \\
\frac{2}{3} u^3 - 2uv^2
\end{pmatrix},
\]

(6)

where \(u, v \in \mathbb{R} \).
Euclidean case

Figure 2 Surface of $\mathcal{B}_3(u, v), \ u, v \in [-1, 1]$
Euclidean case

The coefficients of the first fundamental form of the Bour’s surface of value 3 in u, v coordinates are

$$E = (u^2 + v^2) \left(1 + u^2 + v^2\right)^2 = G, \quad F = 0,$$

So,

$$\det l = (u^2 + v^2)^2 \left(1 + u^2 + v^2\right)^4.$$
Euclidean case

The Gauss map of the surface \mathcal{B}_3 is

$$e = \frac{1}{1 + u^2 + v^2} (2u, 2v, u^2 + v^2 - 1).$$
The coefficients of the second fundamental form of the surface are

\[L = -2u, \quad M = 2v, \quad N = 2u. \]

Then,

\[\det II = -4 \left(u^2 + v^2 \right). \]
The mean and the Gaussian curvatures of the Bour’s minimal surface of value 3 are, respectively,

\[H = 0, \quad K = -\frac{4}{(u^2 + v^2)(1 + u^2 + v^2)^4}. \]
In some literature, however, the Weierstrass representation of the Bour’s minimal surface is known as $(\mathcal{F}, \mathcal{G}) = (1, \zeta^{1/2})$. That is, in polar coordinates, the surface is described by (see Figure 2.1)

\begin{align*}
x &= r \cos (\theta) - \frac{1}{2} r^2 \cos (2\theta), \\
y &= -r \sin (\theta) - \frac{1}{2} r^2 \sin (2\theta), \\
z &= \frac{4}{3} r^{3/2} \cos \left(\frac{3\theta}{2} \right),
\end{align*}

where $r \in [-1/2, 1/2]$, $\theta \in [0, 4\pi]$.
Euclidean case, some remarks

Figure 2.1 Minimal surface, $(\mathcal{F}, \mathcal{G}) = (1, \zeta^{1/2})$
But this is not Bour’s surface, and these equations are incorrect. Since Enneper’s family \mathcal{E}_m is defined by $(\mathcal{F}, \mathcal{G}) = (1, \zeta^m)$, then the surface belongs to Enneper’s family, and it is the surface $\mathcal{E}_{1/2}$ (see Figure 2.2).
Euclidean case, some remarks

Figure 2.2 The surface $\mathfrak{C}_{1/2}$
(K. Weierstrass, 1903) Assume that the function \(w = f(\zeta) \), where \(\zeta = \xi + i\eta \) and \(w = u + iv \), is analytic in \(|\zeta - \zeta_0| < r\) and satisfies a real algebraic relation \(P(\xi, \eta, u) = 0\). Then \(f(\zeta) \) is an algebraic function of its argument.
An **algebraic curve** over a field K is an equation $f(x, y) = 0$, where $f(x, y)$ is a polynomial in x and y with coefficients in K.
An algebraic curve over a field \(K \) is an equation \(f(x, y) = 0 \), where \(f(x, y) \) is a polynomial in \(x \) and \(y \) with coefficients in \(K \).

The set of roots of a polynomial \(f(x, y, z) = 0 \). An algebraic surface is said to be of degree (order) \(n = \max(i + j + k) \), where \(n \) is the maximum sum of powers of all terms \(a_m x^i y^j z^k \).
Integral free form of the Weierstrass representation (obtained by K. Weierstrass, 1903) is

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \text{Re} \left(\begin{pmatrix} (1 - w^2) \phi''(w) + 2w\phi'(w) - 2\phi(w) \\ i \left[(1 + w^2) \phi''(w) - 2w\phi'(w) + 2\phi(w) \right] \\ 2 \left[w\phi''(w) - \phi'(w) \right] \end{pmatrix} \right)$$

$$\equiv \text{Re} \left(\begin{pmatrix} f_1(w) \\ f_2(w) \\ f_3(w) \end{pmatrix} \right),$$
where \(\phi(w) \) (algebraic function) and the functions \(f_i(w) \) are connected by the relation

\[
\phi(w) = \frac{1}{4} (w^2 - 1) f_1(w) - \frac{i}{4} (w^2 + 1) f_2(w) - \frac{1}{2} w f_3(w).
\]
Euclidean case

- Integral free form formulas are suitable for algebraic minimal surfaces.
Euclidean case

- Integral free form formulas are suitable for algebraic minimal surfaces.
- For instance, $\phi(w) = \frac{1}{6} w^3$ give rise to Enneper’s minimal surface $E := B_2$ (see, also [16]).
Euclidean case

- Integral free form formulas are suitable for algebraic minimal surfaces.
- For instance, \(\phi(w) = \frac{1}{6}w^3 \) give rise to Enneper’s minimal surface \(\mathcal{E} := \mathcal{B}_2 \) (see, also [16]).
- We obtain the function

\[
\phi(w) = \frac{1}{24}w^4
\]

leads to Bour’s minimal surface \(\mathcal{B} := \mathcal{B}_3 \).
Euclidean case

- Integral free form formulas are suitable for algebraic minimal surfaces.
- For instance, \(\phi(w) = \frac{1}{6}w^3 \) give rise to Enneper’s minimal surface \(\mathcal{E} := \mathcal{B}_2 \) (see, also [16]).
- We obtain the function

\[
\phi(w) = \frac{1}{24}w^4
\]

leads to Bour’s minimal surface \(\mathcal{B} := \mathcal{B}_3 \).
- And also, it is clear that

\[
\phi'_{\mathcal{B}} = \phi_{\mathcal{E}}.
\]
Euclidean case

- In 1882, Ribaucour shows that
Euclidean case

- In 1882, Ribaucour shows that

- if \(m = \frac{p}{q} \) \(\Rightarrow \) \(\text{class} (\mathcal{B}_m) = 2q (p + q) \),
In 1882, Ribaucour shows that

- if \(m = \frac{p}{q} \) \(\Rightarrow \) \(\text{class} (\mathcal{B}_m) = 2q(p + q) \),
- if \(m \in \mathbb{Z} \) \(\Rightarrow \) \(\text{degree} (\mathcal{B}_m) = (m + 1)^2 \).
Euclidean case

- In 1882, Ribaucour shows that
 - if $m = \frac{p}{q}$ \(\Rightarrow\) class $(\mathcal{B}_m) = 2q(p + q)$,
 - if $m \in \mathbb{Z}$ \(\Rightarrow\) degree $(\mathcal{B}_m) = (m + 1)^2$.

- He also shows that
Euclidean case

- In 1882, Ribaucour shows that

- if $m = \frac{p}{q}$ \implies \text{class} (\mathcal{B}_m) = 2q (p + q),

- if $m \in \mathbb{Z}$ \implies \text{degree} (\mathcal{B}_m) = (m + 1)^2.

- He also shows that

- if $m < 1$ \implies \text{class} (\mathcal{B}_m) = \text{degree} (\mathcal{B}_m),
In 1882, Ribaucour shows that

\[\text{if } m = \frac{p}{q} \Rightarrow \text{class } (\mathcal{B}_m) = 2q (p + q), \]

\[\text{if } m \in \mathbb{Z} \Rightarrow \text{degree } (\mathcal{B}_m) = (m + 1)^2. \]

He also shows that

\[\text{if } m < 1 \Rightarrow \text{class } (\mathcal{B}_m) = \text{degree } (\mathcal{B}_m), \]

\[\text{if } m > 1 \Rightarrow \text{class } (\mathcal{B}_m) < \text{degree } (\mathcal{B}_m). \]
Euclidean case

That is,

- $\text{cl}(\mathcal{B}_2) = 6$ (Enneper),
Euclidean case

That is,

- $cl(\mathcal{B}_2) = 6$ (Enneper),
- $cl(\mathcal{B}_3) = 8$, (Bour),
Euclidean case

That is,

- $cl(B_2) = 6$ (Enneper),
- $cl(B_3) = 8$, (Bour),
- $cl(B_4) = 10$,
- $cl(B_m) = 2q(p+q)$.

$deg(B_2) = 9$ (Enneper),
$deg(B_3) = 16$, (Bour),
$deg(B_4) = 25$,
$deg(B_m) = (m+1)2$.
Euclidean case

That is,

- \(cl(\mathcal{B}_2) = 6 \) (Enneper),
- \(cl(\mathcal{B}_3) = 8 \), (Bour),
- \(cl(\mathcal{B}_4) = 10 \),
- \(cl(\mathcal{B}_5) = 12 \),
Euclidean case

That is,

\begin{itemize}
 \item $cl(B_2) = 6$ (Enneper),
 \item $cl(B_3) = 8$, (Bour),
 \item $cl(B_4) = 10$,
 \item $cl(B_5) = 12$,
 \item \ldots
\end{itemize}
Euclidean case

That is,

- $cl(B_2) = 6$ (Enneper),
- $cl(B_3) = 8$, (Bour),
- $cl(B_4) = 10$,
- $cl(B_5) = 12$,
- ...
- $cl(B_m) = 2q(p + q)$.
Euclidean case

That is,

- \(\text{cl} (\mathcal{B}_2) = 6 \) (Enneper),
- \(\text{cl} (\mathcal{B}_3) = 8 \) (Bour),
- \(\text{cl} (\mathcal{B}_4) = 10 \),
- \(\text{cl} (\mathcal{B}_5) = 12 \),
- \(\text{cl} (\mathcal{B}_m) = 2q(p + q) \).
- \(\text{deg} (\mathcal{B}_2) = 9 \) (Enneper),
- \(\text{deg} (\mathcal{B}_3) = 16 \) (Bour),
- \(\text{deg} (\mathcal{B}_4) = 25 \),
- \(\text{deg} (\mathcal{B}_5) = 36 \),
- \(\text{deg} (\mathcal{B}_m) = (m + 1)^2 \).
That is,

- $cl(B_2) = 6$ (Enneper),
- $cl(B_3) = 8$, (Bour),
- $cl(B_4) = 10$,
- $cl(B_5) = 12$,
- $...$,
- $cl(B_m) = 2q(p + q)$.

- $deg(B_2) = 9$ (Enneper),
- $deg(B_3) = 16$ (Bour),
Euclidean case

That is,

- \(\text{cl} (\mathcal{B}_2) = 6 \) (Enneper),
- \(\text{cl} (\mathcal{B}_3) = 8 \), (Bour),
- \(\text{cl} (\mathcal{B}_4) = 10 \),
- \(\text{cl} (\mathcal{B}_5) = 12 \),
- \(\text{cl} (\mathcal{B}_m) = 2q (p + q) \).

- \(\text{deg} (\mathcal{B}_2) = 9 \) (Enneper),
- \(\text{deg} (\mathcal{B}_3) = 16 \) (Bour),
- \(\text{deg} (\mathcal{B}_4) = 25 \),
- \(\text{deg} (\mathcal{B}_m) = (m + 1)^2 \).
Euclidean case

That is,

- \(\text{cl} (\mathcal{B}_2) = 6 \) (Enneper),
- \(\text{cl} (\mathcal{B}_3) = 8 \) (Bour),
- \(\text{cl} (\mathcal{B}_4) = 10 \),
- \(\text{cl} (\mathcal{B}_5) = 12 \),
- ...\(\text{cl} (\mathcal{B}_m) = 2q(p + q) \).

- \(\text{deg} (\mathcal{B}_2) = 9 \) (Enneper),
- \(\text{deg} (\mathcal{B}_3) = 16 \) (Bour),
- \(\text{deg} (\mathcal{B}_4) = 25 \),
- \(\text{deg} (\mathcal{B}_5) = 36 \).
Euclidean case

That is,

- \(cl(\mathcal{B}_2) = 6 \text{ (Enneper)} \),
- \(cl(\mathcal{B}_3) = 8 \text{, (Bour)} \),
- \(cl(\mathcal{B}_4) = 10 \),
- \(cl(\mathcal{B}_5) = 12 \),
- \(cl(\mathcal{B}_m) = 2q(p + q) \).

- \(deg(\mathcal{B}_2) = 9 \text{ (Enneper)} \),
- \(deg(\mathcal{B}_3) = 16 \text{ (Bour)} \),
- \(deg(\mathcal{B}_4) = 25 \),
- \(deg(\mathcal{B}_5) = 36 \),
- \(... \)
Euclidean case

That is,

- $\text{cl} (\mathcal{B}_2) = 6$ (Enneper),
- $\text{cl} (\mathcal{B}_3) = 8$, (Bour),
- $\text{cl} (\mathcal{B}_4) = 10$,
- $\text{cl} (\mathcal{B}_5) = 12$,
- \ldots
- $\text{cl} (\mathcal{B}_m) = 2q (p + q)$.

- $\text{deg} (\mathcal{B}_2) = 9$ (Enneper),
- $\text{deg} (\mathcal{B}_3) = 16$ (Bour),
- $\text{deg} (\mathcal{B}_4) = 25$,
- $\text{deg} (\mathcal{B}_5) = 36$,
- \ldots
- $\text{deg} (\mathcal{B}_m) = (m + 1)^2$.
Euclidean case

We calculate the implicit equations, classes, and degrees of the surfaces B_2, B_3, B_4, B_5, B_6 using Sylvester and Gr"obner eliminate methods by the help of Maple programme.
Euclidean case

- We calculate the implicit equations, classes, and degrees of the surfaces $\mathcal{B}_2, \mathcal{B}_3, \mathcal{B}_4, \mathcal{B}_5, \mathcal{B}_6$ using Sylvester and Gröbner eliminate methods by the help of Maple programme.
- Our findings agree with Ribaucour’s.
Euclidean case

- We calculate the implicit equations, classes, and degrees of the surfaces B_2, B_3, B_4, B_5, B_6 using Sylvester and Gröbner eliminate methods by the help of Maple programme.
- Our findings agree with Ribaucour’s.
- And we give the following table
Euclidean case

<table>
<thead>
<tr>
<th>(\mathcal{B}_m(u, v))</th>
<th>(\deg(x))</th>
<th>(\deg(y))</th>
<th>(\deg(z))</th>
<th>(cl(\mathcal{B}_m))</th>
<th>(\deg(\mathcal{B}_m))</th>
<th>(Syl(x, y, u))</th>
<th>(Syl(F, G, v))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{B}_2)</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>9</td>
<td>(5 \times 5)</td>
<td>(11 \times 11)</td>
</tr>
<tr>
<td>(\mathcal{B}_3)</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>8</td>
<td>16</td>
<td>(7 \times 7)</td>
<td>(18 \times 18)</td>
</tr>
<tr>
<td>(\mathcal{B}_4)</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>10</td>
<td>25</td>
<td>(9 \times 9)</td>
<td>(29 \times 29)</td>
</tr>
<tr>
<td>(\mathcal{B}_5)</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>12</td>
<td>36</td>
<td>(11 \times 11)</td>
<td>(40 \times 40)</td>
</tr>
<tr>
<td>(\mathcal{B}_6)</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>14</td>
<td>49</td>
<td>(13 \times 13)</td>
<td>(55 \times 55)</td>
</tr>
<tr>
<td>(\mathcal{B}_7)</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>16</td>
<td>64</td>
<td>(15 \times 15)</td>
<td>(70 \times 70)</td>
</tr>
<tr>
<td>(\mathcal{B}_8)</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>18</td>
<td>81</td>
<td>(17 \times 17)</td>
<td>(89 \times 89)</td>
</tr>
<tr>
<td>(\mathcal{B}_9)</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>20</td>
<td>100</td>
<td>(19 \times 19)</td>
<td>(108 \times 108)</td>
</tr>
<tr>
<td>(\mathcal{B}_{10})</td>
<td>11</td>
<td>11</td>
<td>10</td>
<td>22</td>
<td>121</td>
<td>(21 \times 21)</td>
<td>(131 \times 131)</td>
</tr>
<tr>
<td>(\ldots)</td>
</tr>
<tr>
<td>(\mathcal{B}_m)</td>
<td>(m+1)</td>
<td>(m+1)</td>
<td>(m)</td>
<td>(2m+2)</td>
<td>((m+1)^2)</td>
<td>(\frac{(m+1)^2 + m}{(m+1)^2 + m - 1})</td>
<td>(\ldots \text{if } m \text{ even})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>((m+1)^2 \times (2m+1))</td>
<td>(\ldots \text{if } m \text{ odd})</td>
<td></td>
</tr>
</tbody>
</table>

degree and class of \(\mathcal{B}_m(u, v) \)
Euclidean case

We also show the relations between the degree of the algebraic function \(\phi^2(w) \) in the integral free form formulas and the class of the surfaces. We know...
Euclidean case

- We also show the relations between the degree of the algebraic function $\phi^2(w)$ in the integral free form formulas and the class of the surfaces. We know
- $\mathcal{B}_2 : \phi_{\mathcal{B}_2}(w) = \frac{1}{6}w^3$ (Enneper’s minimal surface),
We also show the relations between the \textbf{degree of the algebraic function} $\phi^2(w)$ in the integral free form formulas and the \textbf{class of the surfaces}. We know

- $\mathcal{B}_2 : \phi_{\mathcal{B}_2}(w) = \frac{1}{6}w^3$ (Enneper’s minimal surface),
- $\mathcal{B}_3 : \phi_{\mathcal{B}_3}(w) = \frac{1}{24}z^4$ (Bour’s minimal surface),
Euclidean case

We also show the relations between the degree of the algebraic function $\phi^2(w)$ in the integral free form formulas and the class of the surfaces. We know

- $\mathcal{B}_2 : \phi_{\mathcal{B}_2}(w) = \frac{1}{6} w^3$ (Enneper’s minimal surface),
- $\mathcal{B}_3 : \phi_{\mathcal{B}_3}(w) = \frac{1}{24} z^4$ (Bour’s minimal surface),
- $\mathcal{B}_4 : \phi_{\mathcal{B}_4}(w) = \frac{1}{120} w^5$.
We also show the relations between the degree of the algebraic function \(\phi^2(w) \) in the integral free form formulas and the class of the surfaces. We know

- \(\mathcal{B}_2 : \phi_{\mathcal{B}_2}(w) = \frac{1}{6}w^3 \) (Enneper’s minimal surface),
- \(\mathcal{B}_3 : \phi_{\mathcal{B}_3}(w) = \frac{1}{24}z^4 \) (Bour’s minimal surface),
- \(\mathcal{B}_4 : \phi_{\mathcal{B}_4}(w) = \frac{1}{120}w^5 \),
- ...
We also show the relations between the degree of the algebraic function $\phi^2(w)$ in the integral free form formulas and the class of the surfaces. We know

- $\mathcal{B}_2 : \phi_{\mathcal{B}_2}(w) = \frac{1}{6} w^3$ (Enneper’s minimal surface),
- $\mathcal{B}_3 : \phi_{\mathcal{B}_3}(w) = \frac{1}{24} z^4$ (Bour’s minimal surface),
- $\mathcal{B}_4 : \phi_{\mathcal{B}_4}(w) = \frac{1}{120} w^5$,
- ...
- $\mathcal{B}_m : \phi_{\mathcal{B}_m}(w) = \frac{1}{(m+1)!} w^{m+1}$.
Euclidean case

- Then we can see
We can see
\[
\deg \left(\phi_{\mathcal{B}_2}^2 \right) = 6 = cl \left(\mathcal{B}_2 \right),
\]
Then we can see

\[
\deg \left(\phi_B^2 \right) = 6 = cl \left(\mathcal{B}_2 \right),
\]

\[
\deg \left(\phi_B^3 \right) = 8 = cl \left(\mathcal{B}_3 \right),
\]
Then we can see

\[\deg \left(\phi_{\mathcal{B}_2}^2 \right) = 6 = \text{cl} (\mathcal{B}_2), \]

\[\deg \left(\phi_{\mathcal{B}_3}^2 \right) = 8 = \text{cl} (\mathcal{B}_3), \]

\[\deg \left(\phi_{\mathcal{B}_4}^2 \right) = 10 = \text{cl} (\mathcal{B}_4), \]
Then we can see

\[\deg \left(\phi_{\mathcal{B}_2}^2 \right) = 6 = cl \left(\mathcal{B}_2 \right), \]
\[\deg \left(\phi_{\mathcal{B}_3}^2 \right) = 8 = cl \left(\mathcal{B}_3 \right), \]
\[\deg \left(\phi_{\mathcal{B}_4}^2 \right) = 10 = cl \left(\mathcal{B}_4 \right), \]
\[\ldots \]
Then we can see
\[\deg \left(\phi_{B_2}^2 \right) = 6 = \text{cl} \left(B_2 \right), \]
\[\deg \left(\phi_{B_3}^2 \right) = 8 = \text{cl} \left(B_3 \right), \]
\[\deg \left(\phi_{B_4}^2 \right) = 10 = \text{cl} \left(B_4 \right), \]
\[\ldots \]
\[\deg \left(\phi_{B_m}^2 \right) = 2m + 2 = \text{cl} \left(B_m \right). \]
Bour’s minimal surface \mathcal{B}_3 and its conjugate are as follows:

\[
\mathcal{B}_3 (u, v) = \begin{pmatrix}
-\frac{u^4}{4} - \frac{v^4}{4} + \frac{3}{2} u^2 v^2 + \frac{u^2}{2} - \frac{v^2}{2} \\
-u^3 v - uv^3 - uv \\
\frac{2}{3} u^3 - 2uv^2
\end{pmatrix},
\]

\[
\mathcal{B}_3^* (u, v) = \begin{pmatrix}
\frac{u^4}{4} + \frac{v^4}{4} - \frac{3}{2} u^2 v^2 + \frac{u^2}{2} - \frac{v^2}{2} \\
\frac{2}{3} u^3 + 2uv^2
\end{pmatrix}.
\]
Bour’s minimal surface \mathcal{B}_3 and its conjugate are as follow

$$\mathcal{B}_3 (u, v) = \begin{pmatrix} -\frac{u^4}{4} - \frac{v^4}{4} + \frac{3}{2} u^2 v^2 + \frac{u^2}{2} - \frac{v^2}{2} \\ -u^3 v - uv^3 - uv \\ \frac{2}{3} u^3 - 2uv^2 \end{pmatrix},$$

$$\mathcal{B}^*_3 (u, v) = \begin{pmatrix} \frac{u^4}{4} + \frac{v^4}{4} - \frac{3}{2} u^2 v^2 + \frac{u^2}{2} - \frac{v^2}{2} \\ -\frac{2}{3} u^3 - 2u^2 v \\ -u^3 v + uv^3 + uv \end{pmatrix},$$

and then we can see the Cauchy-Riemann equations hold

$$(\mathcal{B}_3)_u = (\mathcal{B}^*_3)_v, \quad (\mathcal{B}_3)_v = - (\mathcal{B}^*_3)_u.$$
We know $\mathcal{B}_3 (u, v) = \Re \int \Phi dz$, $X := \mathcal{B}_3$, $X_{uu} + X_{vv} = 0$, (i.e. \mathcal{B}_3 minimal),

$\langle X_u, X_u \rangle = \langle X_v, X_v \rangle$,

$\langle X_u, X_v \rangle = 0$, (i.e. \mathcal{B}_3 conformal).
Euclidean case

- We know $\mathcal{B}_3(u, v) = \text{Re} \int \Phi dz$, $X := \mathcal{B}_3$,

 $$X_{uu} + X_{vv} = 0,$$

 (i.e. \mathcal{B}_3 minimal),

 $$\langle X_u, X_u \rangle = \langle X_v, X_v \rangle,$$
 $$\langle X_u, X_v \rangle = 0,$$

 (i.e. \mathcal{B}_3 conformal).

- Then we can see

 $$\Phi = X_u - iX_v$$
 $$= (z - z^3, i(z + z^3), 2z^2),$$

 and $(\Phi)^2 = 0$, Φ analytic (in each component), and also it can be seen for $Y := \mathcal{B}_3^*$. [140x266]
Euclidean case

Problems.

1. Find the \(\mathcal{B}_3 \) algebraic or not,
Problems.

1. Find the \mathcal{B}_3 algebraic or not,
2. the cartesian equation of \mathcal{B}_3,
Euclidean case

Problems.

1. Find the B_3 algebraic or not,
2. the cartesian equation of B_3,
3. degree,
Problems.

1. Find the \mathcal{B}_3 algebraic or not,
2. the cartesian equation of \mathcal{B}_3,
3. degree,
4. and class.
4. **Hint.** The tangent plane at a point \((u, v)\) on Bour’s surface \(\mathcal{B}_3\) is given in terms of running coordinates \(x, y, z\) by

\[
X(u, v)x + Y(u, v)y + Z(u, v)z + P(u, v) = 0.
\]

For the inhomogeneous tangential coordinates \(\bar{u} = X/P\), \(\bar{v} = Y/P\), and \(\bar{w} = Z/P\). By eliminating \(u\) and \(v\), obtain the equation for the surface \(\mathcal{B}_3\) in tangential coordinates. Maximum degree of the equation gives **class** of Bour’s surface \(\mathcal{B}_3\).
Euclidean case

We compute the irreducible implicit equation of surface \mathcal{B}_3 using Sylvester and Gröbner eliminate methods by software programmes:
Euclidean case

\[-859963392\, x^4\, z^6 - 764411904\, y^2\, x^4\, z^4 - 1719926784\, y^2\, x^2\, z^6 + 509607936\, y^4\, x^2\, z^4 - 1934917632\, z^{10} - 2579890176\, x^2\, z^8
\]
\[-859963392\, z^6\, y^4 - 84934656\, z^4\, y^6 - 2579890176\, z^8\, y^2 + 1632586752\, z^{12} + 268435456\, y^{12} - 28991029248\, x^6\, y^6
\]
\[+ 31340888064\, x^6\, z^6 - 3877393536\, z^{12}\, y^2 + 37650272256\, z^8\, y^4 - 3654844416\, z^6\, y^6 + 38985007104\, z^6\, y^8
\]
\[+ 1451182240\, z^{10}\, y^2 - 7255941120\, z^{10}\, y^4 + 3623878656\, z^8\, y^8 + 17836277760\, z^4\, y^8 - 14834368512\, z^8\, x^4\, y^2
\]
\[+ 6115295232\, x^7\, z^4\, y^2 - 56396611584\, y^6\, x^3\, z^4 - 10192158720\, x^5\, y^4\, z^4 + 5435817984\, x^9\, z^4 - 3009871872\, x^6\, z^6
\]
\[+ 21743271936\, y^4\, x^8 - 22932357120\, x^5\, z^6\, y^2 + 119757864960\, x^6\, y^2\, z^4 + 3057647616\, x^7\, z^4 + 945957312\, x^5\, z^6
\]
\[+ 7309688832\, x^3\, z^8 + 272097792\, z^{12}\, x^3 + 37650272256\, x^4\, z^8 + 1451182240\, z^{10}\, x^2 + 10037385216\, x^3\, z^{10}
\]
\[+ 29023764480\, x^5\, z^8 + 8153726976\, x^8\, z^4 - 9965666304\, x^5\, z^4\, y^4 - 58047528960\, z^8\, x^3\, y^2 - 18919194624\, x^3\, y^2\, z^6
\]
\[+ 43486543872\, x^6\, y^4\, z^2 - 7255941120\, x^4\, z^{10} + 22932357120\, x^7\, z^6 + 77970014208\, x^4\, y^4 - 3057647616\, x^5\, z^4\, y^2
\]
\[-3877393536\, x^2\, z^{12} - 459165024\, z^{14} + 43046721\, z^{16} + 14495514624\, y^8\, x^4 - 3221225472\, x^2\, y^{10} - 21929066496\, x\, z^8\, y^2
\]
\[+ 75300544512\, x^2\, z^8\, y^2 - 9059696664\, y^8\, x\, z^2 - 14495514624\, y^8\, x^2\, z^2 - 15288238080\, y^4\, x^4 + 48157949952\, y^4\, z^2\, x^6
\]
\[-28378791936\, y^4\, z^6\, x - 14269022208\, y^8\, z^4\, x + 162819735552\, y^4\, z^6\, x^2 + 2717908992\, y^2\, x^2\, z^2 + 32614907904\, x^8\, z^2\, y^2
\]
\[+ 5737807872\, x^3\, y^6\, z^2 - 114661785600\, x^3\, y^6\, z^2 - 7247757312\, x^4\, y^6\, z^2 - 15797846016\, y^6\, x^2\, z^4 - 14511882240\, x^2\, z^{10}
\]
\[-68797071360\, x\, z^6\, y^6 - 30112155648\, x\, z^6\, y^6 - 9172942848\, x^4\, y^6 - 87071293440\, x^8\, y^4 - 5159780352\, x^2\, z^8\, y^4
\]
\[-816293376\, x\, z^{12}\, y^2 = 0
\]

Implicit equation of \mathcal{B}_3, degree(\mathcal{B}_3)=16
Euclidean case

Answers.

1. B_3 is an algebraic minimal surface.
Answers.

1. B_3 is an algebraic minimal surface.
2. We find the irreducible implicit equation of B_3.
Euclidean case

Answers.

1. \mathcal{B}_3 is an algebraic minimal surface.
2. We find the irreducible implicit equation of \mathcal{B}_3.
3. Degree $(\mathcal{B}_3) = 16.$
Euclidean case

Answers.

1. \mathcal{B}_3 is an algebraic minimal surface.
2. We find the irreducible implicit equation of \mathcal{B}_3.
3. Degree $(\mathcal{B}_3) = 16$.
4. Class $(\mathcal{B}_3) = 8$.
Answer (4). We find \(P(u, v) = \frac{(u^2 + v^2 + 2)(3uv^2 - u^3)}{6(u^2 + v^2 + 1)} \), and the inhomogeneous tangential coordinates

\[
\bar{u} = \frac{12u}{(u^2 + v^2 + 2)(3uv^2 - u^3)}, \\
\bar{v} = \frac{12v}{(u^2 + v^2 + 2)(3uv^2 - u^3)}, \\
\bar{w} = \frac{6(u^2 + v^2 - 1)}{(u^2 + v^2 + 2)(3uv^2 - u^3)}.
\]

By eliminating \(u \) and \(v \), we obtain the equation for the surface \(\mathcal{B}_3 \) in tangential coordinates. Maximum degree of the equation gives \textbf{class}=8 of Bour’s surface \(\mathcal{B}_3 \).
Euclidean case

\[9u^8 + 72u^7 + 144u^6 + 288u^5w^2 + 192u^3w^4 + 8u^6w^2
 - 48u^4v^2w^2
 - 576uv^2w^4
 + 81u^2v^6
 + 432u^4v^2
 - 45u^6v^2
 - 72u^5v^2
 + 432u^2v^4
 - 360u^3v^4
 - 216uv^6
 + 27u^4v^4
 + 144v^6
 - 576u^3v^2w^2
 + 72u^2v^4w^2
 - 864uv^4w^2 = 0 \]

Implicit equation of \(\mathcal{B}_3 \) in tangential coordinates, class(\(\mathcal{B}_3 \))=8
Euclidean case

Figure 30 $\mathcal{B}_3 (r, \theta)$ and its curve $\gamma (r)$ on plane xz
Euclidean case

5. Find the implicit equation of the curve
\[\gamma (r) = \left(\frac{r^2}{2} - \frac{r^4}{4}, 0, \frac{2}{3} r^3 \right) \] (see Fig. 30) on plane xz, and its degree.

Theorem

(L. Henneberg, 1876) A plane intersects an algebraic minimal surface in an algebraic curve [16].
5. Find the implicit equation of the curve

\[\gamma(r) = \left(\frac{r^2}{2} - \frac{r^4}{4}, 0, \frac{2}{3} r^3 \right) \] (see Fig. 30) on plane xz, and its degree.

- **Answer.** The implicit equation of \(\gamma \) is

\[
1024 x^2 + 864 x z^2 = z^2 (288 - 81 z^2), \quad \text{degree} (\gamma) = 4.
\]

Theorem

(L. Henneberg, 1876) A plane intersects an algebraic minimal surface in an algebraic curve [16].
Euclidean case

5. Find the implicit equation of the curve
\[\gamma(r) = \left(\frac{r^2}{2} - \frac{r^4}{4}, 0, \frac{2}{3}r^3 \right) \] (see Fig. 30) on plane \(xz\), and its degree.

- **Answer.** The implicit equation of \(\gamma\) is
 \[1024x^2 + 864xz^2 = z^2(288 - 81z^2) \], degree(\(\gamma\)) = 4.

Theorem

(L. Henneberg, 1876) A plane intersects an algebraic minimal surface in an algebraic curve [16].
Total curvature of \mathcal{B}_m is

$$\mathcal{C}(\mathcal{B}_m) = \iint K dA$$

$$= \iint -\frac{4}{(1 + u^2 + v^2)^2} dudv$$

$$= -4\pi.$$
Example

If take \(m = 2 \), we have **Enneper’s minimal surface** (see Fig. 3)

\[
\mathcal{B}_2(r, \theta) = \begin{pmatrix}
 r \cos(\theta) - \frac{r^3}{3} \cos(3\theta) \\
 -r \sin(\theta) - \frac{r^3}{3} \sin(3\theta) \\
 r^2 \cos(2\theta)
\end{pmatrix},
\]

where \(r \in [-1, 1] \), \(\theta \in [0, \pi] \).
Applications

Figure 3 Bour’s minimal surface of value 2
If $m = 2$, we have **Enneper’s minimal surface** (see Fig. 4) $\mathcal{B}_2 (r, \theta)$, where $r \in [-3, 3]$, $\theta \in [0, \pi]$.
Applications

Figure 4 Bour’s minimal surface of value 2

(a)
(b)
Applications

Example

If take $m = \frac{1}{2}$, we have **Richmond's-like minimal surface** (see Fig. 5)

\[
\begin{pmatrix}
-2r^{-1/2} \cos \left(\frac{\theta}{2} \right) & -\frac{2}{3} r^{3/2} \cos \left(\frac{3\theta}{2} \right) \\
-2r^{-1/2} \sin \left(\frac{\theta}{2} \right) & -\frac{2}{3} r^{3/2} \sin \left(\frac{3\theta}{2} \right) \\
4r^{1/2} \cos \left(\frac{\theta}{2} \right)
\end{pmatrix},
\]

where $r \in [-1, 1]$, $\theta \in [-2\pi, 2\pi]$.
Applications

(a) (b)

Figure 5 Bour’s minimal surface of value 1/2
Applications

Example

If \(m = \frac{3}{2} \), we have (see Fig. 6)

\[
\begin{pmatrix}
2r^{1/2} \cos \left(\frac{\theta}{2} \right) - \frac{2}{5} r^{5/2} \cos \left(\frac{5\theta}{2} \right) \\
-2r^{1/2} \sin \left(\frac{\theta}{2} \right) - \frac{2}{5} r^{5/2} \sin \left(\frac{5\theta}{2} \right) \\
\frac{4}{3} r^{3/2} \cos \left(\frac{3\theta}{2} \right)
\end{pmatrix},
\]

where \(r \in [-3, 3] \), \(\theta \in [-2\pi, 2\pi] \).
Applications

Figure 6 Bour’s minimal surface of value $3/2$
Applications

Example

If \(m = \frac{3}{2} \), we have (see Fig. 7)

\[
\begin{pmatrix}
2r^{1/2} \cos \left(\frac{\theta}{2} \right) - \frac{2}{5} r^{5/2} \cos \left(\frac{5\theta}{2} \right) \\
-2r^{1/2} \sin \left(\frac{\theta}{2} \right) - \frac{2}{5} r^{5/2} \sin \left(\frac{5\theta}{2} \right) \\
\frac{4}{3} r^{3/2} \cos \left(\frac{3\theta}{2} \right)
\end{pmatrix},
\]

where \(r \in [-1, 1], \theta \in [-2\pi, 2\pi] \).
Applications

Figure 7 Bour’s minimal surface of value $3/2$
Applications

Example

If $m = \frac{2}{3}$, we have (see Fig. 8)

$$
\begin{pmatrix}
-3r^{-1/3} \cos \left(\frac{\theta}{3} \right) - \frac{3}{5} r^{5/3} \cos \left(\frac{5\theta}{3} \right) \\
-3r^{-1/3} \sin \left(\frac{\theta}{3} \right) - \frac{3}{5} r^{5/3} \sin \left(\frac{5\theta}{3} \right) \\
3r^{2/3} \cos \left(\frac{2\theta}{3} \right)
\end{pmatrix},
$$

where $r \in [-1, 1]$, $\theta \in [-3\pi, 3\pi]$.

Applications

(a) Figure 8 Bour’s minimal surface of value 2/3

(b)
Applications

Example

If \(m = \frac{4}{3} \), we have (see Fig. 9)

\[
\begin{pmatrix}
3r^{1/3} \cos \left(\frac{\theta}{3} \right) - \frac{3}{7} r^{7/3} \cos \left(\frac{7\theta}{3} \right) \\
-3r^{1/3} \sin \left(\frac{\theta}{3} \right) - \frac{3}{7} r^{7/3} \sin \left(\frac{7\theta}{3} \right) \\
\frac{3}{2} r^{4/3} \cos \left(\frac{4\theta}{3} \right)
\end{pmatrix},
\]

where \(r \in [-2, 2], \ \theta \in [-3\pi, 3\pi] \).
Applications

Figure 9 Bour’s minimal surface of value $4/3$
If $m = \frac{5}{2}$, we have (see Fig. 10)

$$
\begin{pmatrix}
\frac{2}{3} r^{3/2} \cos \left(\frac{3\theta}{2} \right) - \frac{2}{7} r^{7/2} \cos \left(\frac{7\theta}{2} \right) \\
-\frac{2}{3} r^{3/2} \sin \left(\frac{3\theta}{2} \right) - \frac{2}{7} r^{7/2} \sin \left(\frac{7\theta}{2} \right) \\
\frac{4}{5} r^{5/2} \cos \left(\frac{5\theta}{2} \right)
\end{pmatrix},
$$

where $r \in [-1, 1]$, $\theta \in [-2\pi, 2\pi]$.
Applications

Figure 10 Bour’s minimal surface of value $5/2$
Applications

Example

If \(m = 4 \), we have (see Fig. 11)

\[
\left(\begin{array}{c} \frac{1}{3} r^3 \cos (3\theta) - \frac{1}{5} r^5 \cos (5\theta) \\ -\frac{1}{3} r^3 \sin (3\theta) - \frac{1}{5} r^5 \sin (5\theta) \\ \frac{1}{2} r^4 \cos (4\theta) \end{array} \right),
\]

where \(r \in [-1, 1], \theta \in [0, 2\pi] \).
Applications

(a) Figure 11 Bour’s minimal surface of value 4
Now, we will see the definite and indefinite cases of the Bour’s minimal surface.
Let \mathbb{L}^3 be a 3-dimensional Minkowski space with natural Lorentzian metric

$$\langle ., . \rangle_1 = dx^2 + dy^2 - dz^2.$$
Definite case

- A vector \(w \) in \(\mathbb{L}^3 \) is called
A vector w in \mathbb{L}^3 is called

spacelike if $\langle w, w \rangle_1 > 0$ or $w = 0$,

timelike if $\langle w, w \rangle_1 < 0$,

lightlike if $w \neq 0$ satisfies $\langle w, w \rangle_1 = 0$.

A vector w in \mathbb{L}^3 is called

- **spacelike** if $\langle w, w \rangle_1 > 0$ or $w = 0$,
- **timelike** if $\langle w, w \rangle_1 < 0$,
Definite case

A *vector* \(w \) in \(\mathbb{L}^3 \) is called

- **spacelike** if \(\langle w, w \rangle_1 > 0 \) or \(w = 0 \),
- **timelike** if \(\langle w, w \rangle_1 < 0 \),
- **lightlike** if \(w \neq 0 \) satisfies \(\langle w, w \rangle_1 = 0 \).
Definite case

A surface in \mathbb{L}^3 is called a spacelike (resp. timelike, degenerate (lightlike)) if the induced metric on the surface is a positive definite Riemannian (resp. Lorentzian, degenerate) metric.
Definite case

- A *surface* in \mathbb{L}^3 is called a **spacelike** (resp. **timelike**, **degenere** (lightlike)) if the induced metric on the surface is a **positive definite Riemannian** (resp. Lorentzian, degenere) metric.

- A space-like surface with vanishing mean curvature is called a **maximal surface**.
Theorem

(Weierstrass representation for maximal surfaces in \mathbb{L}^3). Let \mathfrak{F} and \mathcal{G} be two holomorphic functions defined on a simply connected open subset U of \mathbb{C} such that \mathfrak{F} does not vanish and $|\mathcal{G}| \neq 1$ on U. Then the map

$$x(u, v) = \text{Re} \int^z \begin{pmatrix} \mathfrak{F}(1 + \mathcal{G}^2) \\ i \mathfrak{F}(1 - \mathcal{G}^2) \\ 2\mathfrak{F}\mathcal{G} \end{pmatrix} \, dz$$

is a conformal immersion of U into \mathbb{L}^3 whose image is a maximal surface [1, 13, 15].
Definite case

Lemma

The Weierstrass patch determined by the functions

\[(F(z), G(z)) = (z^{m-2}, z)\]

is a representation of the Bour’s surface of value \(m \in \mathbb{R}\) in \(\mathbb{L}^3\).
Definite case

Theorem

Bour’s surface of value m

\[
\mathcal{V}_m (r, \theta) = \left(\begin{array}{c}
\frac{r^{m-1}}{m-1} \cos [(m-1) \theta] + \frac{r^{m+1}}{m+1} \cos [(m+1) \theta] \\
-\frac{r^{m-1}}{m-1} \sin [(m-1) \theta] + \frac{r^{m+1}}{m+1} \sin [(m+1) \theta] \\
2 \frac{r^m}{m} \cos (m\theta)
\end{array} \right)
\]

is a maximal surface in \mathbb{L}^3, where $m \in \mathbb{R} - \{-1, 0, 1\}$.
Definite case

Proof.

- The coefficients of the first fundamental form of the surface B_m are

\[
E = r^{2m-4} (1 - r^2)^2, \\
F = 0, \\
G = r^{2m-2} (1 - r^2)^2.
\]
Definite case

Proof.

- The coefficients of the first fundamental form of the surface B_m are

$$
E = r^{2m-4} (1 - r^2)^2 ,
F = 0,
G = r^{2m-2} (1 - r^2)^2 .
$$

- We have

$$
\det I = \left[r^{2m-3} (1 - r^2)^2 \right]^2 .
$$
Definite case

Proof.

• The coefficients of the first fundamental form of the surface \(\mathcal{B}_m \) are

\[
\begin{align*}
E &= r^{2m-4} (1 - r^2)^2, \\
F &= 0, \\
G &= r^{2m-2} (1 - r^2)^2.
\end{align*}
\]

• We have

\[
\det I = \left[r^{2m-3} (1 - r^2)^2 \right]^2.
\]

• So, \(\mathcal{B}_m \) is a spacelike surface.
Proof. (Cont.)
The Gauss map of the surface is

\[e = \frac{1}{r^2 - 1} \begin{pmatrix} 2r \cos(\theta) \\ 2r \sin(\theta) \\ r^2 + 1 \end{pmatrix}. \]
Proof. (Cont.)

- The coefficients of the second fundamental form of the Bour’s surface are

\[
\begin{align*}
L & = 2r^{m-2} \cos (m\theta), \\
M & = -2r^{m-1} \sin (m\theta), \\
N & = -2r^m \cos (m\theta).
\end{align*}
\]
Definite case

Proof. (Cont.)

- The coefficients of the second fundamental form of the Bour’s surface are

\[L = 2r^{m-2} \cos (m\theta) , \]
\[M = -2r^{m-1} \sin (m\theta) , \]
\[N = -2r^m \cos (m\theta) . \]

- Then, we have

\[\det II = -4r^{2m-2} . \]
Proof. (Cont.)

In spacelike case, the Gaussian curvature is defined by

\[K = \epsilon \frac{\det II}{|\det I|}, \]

where \(\epsilon := \langle e, e \rangle_1 = -1 \) in \(\mathbb{L}^3 \).
Definite case

Proof. (Cont.)

- In spacelike case, the Gaussian curvature is defined by

\[K = \epsilon \frac{\det II}{|\det I|}, \]

where \(\epsilon := \langle e, e \rangle_1 = -1 \) in \(\mathbb{I}^3 \).

- Hence, the Gaussian curvature and the mean curvature of the Bour’s surface of value \(m \), respectively, are

\[K = \left(\frac{2r^2 - m}{(1 - r^2)^2} \right)^2, \quad H = 0. \]
Definite case

Proof. (Cont.)

- In spacelike case, the Gaussian curvature is defined by

\[K = \epsilon \frac{\det II}{|\det I|}, \]

where \(\epsilon := \langle e, e \rangle_1 = -1 \) in \(\mathbb{L}^3 \).

- Hence, the Gaussian curvature and the mean curvature of the Bour’s surface of value \(m \), respectively, are

\[K = \left(\frac{2r^2 - m}{(1 - r^2)^2} \right)^2, \quad H = 0. \]

- So, the \(\mathcal{B}_m \) is a maximal surface in \(\mathbb{L}^3 \).
Definite case

Example

If take $m = 3$ in $\mathcal{B}_m (r, \theta)$, we have Bour’s maximal surface (see Fig. 12)

$$
\mathcal{B}_3 (r, \theta) = \begin{pmatrix}
\frac{r^2}{2} \cos (2\theta) + \frac{r^4}{4} \cos (4\theta) \\
-\frac{r^2}{2} \sin (2\theta) + \frac{r^4}{4} \sin (4\theta) \\
\frac{2}{3} r^3 \cos (3\theta)
\end{pmatrix}
$$

(9)

in Minkowski 3-space, where $r \in [-1, 1]$, $\theta \in [0, \pi]$.
Figure 12 Bour’s maximal surface \(\mathcal{B}_3 (r, \theta) \), \((\mathcal{F}, \mathcal{G}) = (z, z)\)
Definite case

The coefficients of the first fundamental form of the Bour’s maximal surface of value 3 are

\[E = r^2 (1 - r^2)^2, \quad F = 0, \quad G = r^4 (1 - r^2)^2. \]

So,

\[\det I = r^6 (1 - r^2)^4. \]
The Gauss map of the surface is

\[e = \frac{1}{r^2 - 1} \left(2r \cos(\theta), 2r \sin(\theta), 1 + r^2 \right). \]
The coefficients of the second fundamental form of the surface are

\[L = 2r \cos (3\theta), \quad M = -2r^2 \sin (3\theta), \quad N = -2r^3 \cos (3\theta). \]

Then,

\[\det II = -4r^4. \]
The mean and the Gaussian curvatures of the Bour’s maximal surface of value 3 are, respectively,

\[H = 0, \quad K = \frac{4}{r^2 (1 - r^2)^4}. \]
The Weierstrass patch determined by the functions

\[(\mathcal{F}, \mathcal{G}) = (z, z)\]

is a representation of the Bour’s maximal surface of value 3 in \(\mathbb{L}^3\).
Definite case

The parametric form of the surface (see Fig. 13) is

\[
\mathcal{B}_3(u, v) = \left(\begin{array}{c}
\frac{u^4}{4} + \frac{v^4}{4} - \frac{3}{2} u^2 v^2 + \frac{u^2}{2} - \frac{v^2}{2} \\
u^3 v - uv^3 - uv \\
\frac{2}{3} u^3 - 2uv^2
\end{array}\right), \tag{10}
\]

where \(u, v \in \mathbb{R} \).
Definite case

Figure 13 Maximal surface $\mathcal{B}_3 (u, \nu)$, $u, \nu \in [-1, 1]$
Applications of the definite case

Example

If take \(m = 2 \), we have **Enneper’s maximal surface** (see Fig. 14)

\[
\mathcal{B}_2(r, \theta) = \begin{pmatrix}
 r \cos(\theta) + \frac{r^3}{3} \cos(3\theta) \\
 -r \sin(\theta) + \frac{r^3}{3} \sin(3\theta) \\
 r^2 \cos(2\theta)
\end{pmatrix}
\]

in \(\mathbb{L}^3 \), where \(r \in [-1, 1], \theta \in [0, \pi] \).
Applications of the definite case

Figure 14 Maximal surface \mathcal{B}_2, $(\mathcal{F}, \mathcal{G}) = (1, z)$
Applications of the definite case

Example

If take $m = 2$, we have $\mathcal{B}_2 (r, \theta)$ (see Fig. 15) in \mathbb{L}^3, where $r \in [-3, 3]$, $\theta \in [0, \pi]$.
Applications of the definite case

Figure 15 Maximal surface \mathcal{B}_2, $(\mathcal{F}, \mathcal{G}) = (1, z)$
Applications of the definite case

Example

If take $m = \frac{1}{2}$, we have (see Fig. 16)

\[
\begin{pmatrix}
-2r^{-1/2} \cos \left(\frac{\theta}{2} \right) + \frac{2}{3} r^{3/2} \cos \left(\frac{3\theta}{2} \right) \\
-2r^{-1/2} \sin \left(\frac{\theta}{2} \right) + \frac{2}{3} r^{3/2} \sin \left(\frac{3\theta}{2} \right) \\
4r^{1/2} \cos \left(\frac{\theta}{2} \right)
\end{pmatrix}
\]

in \mathbb{L}^3.
Applications of the definite case

Figure 16 Maximal surface $\mathcal{B}_{1/2}$, $(\mathcal{F}, \mathcal{G}) = (z^{-3/2}, z)$
Applications of the definite case

Example

If \(m = \frac{3}{2} \), we have (see Fig. 17)

\[
\begin{pmatrix}
2r^{-1/2} \cos \left(\frac{\theta}{2} \right) + \frac{2}{5} r^{5/2} \cos \left(\frac{5\theta}{2} \right) \\
-2r^{-1/2} \sin \left(\frac{\theta}{2} \right) + \frac{2}{5} r^{5/2} \sin \left(\frac{5\theta}{2} \right) \\
\frac{4}{3} r^{3/2} \cos \left(\frac{3\theta}{2} \right)
\end{pmatrix}
\]

in \(\mathbb{L}^3 \).
Applications of the definite case

Figure 17 Maximal surface $\mathcal{B}_{3/2}$, $(\mathcal{F}, \mathcal{G}) = (z^{-1/2}, z)$
Applications of the definite case

Example

If \(m = \frac{3}{2} \), we have \(\mathcal{B}_{3/2}(r, \theta) \) (see Fig. 18) in \(\mathbb{L}^3 \).
Applications of the definite case

Figure 18 Maximal surface $\mathcal{B}_{3/2}$, $(\mathcal{F}, \mathcal{G}) = (z^{-1/2}, z)$
Applications of the definite case

Example

If \(m = \frac{2}{3} \), we have (see Fig. 19)

\[
\begin{pmatrix}
-3r^{-1/3} \cos \left(\frac{\theta}{3} \right) + \frac{3}{5} r^{5/3} \cos \left(\frac{5\theta}{3} \right) \\
-3r^{-1/3} \sin \left(\frac{\theta}{3} \right) + \frac{3}{5} r^{5/3} \sin \left(\frac{5\theta}{3} \right) \\
3r^{2/3} \cos \left(\frac{2\theta}{3} \right)
\end{pmatrix}
\]

in \(\mathbb{L}^3 \).
Applications of the definite case

(a)

Figure 19 Maximal surface $\mathfrak{H}_{2/3}$, $(\mathcal{F}, \mathcal{G}) = (z^{-4/3}, z)$

(b)
Applications of the definite case

Example

If \(m = \frac{4}{3} \), then we have (see Fig. 20)

\[
\begin{pmatrix}
3r^{1/3} \cos \left(\frac{\theta}{3} \right) + \frac{3}{7} r^{7/3} \cos \left(\frac{7\theta}{3} \right) \\
-3r^{1/3} \sin \left(\frac{\theta}{3} \right) + \frac{3}{7} r^{7/3} \sin \left(\frac{7\theta}{3} \right) \\
\frac{3}{2} r^{4/3} \cos \left(\frac{4\theta}{3} \right)
\end{pmatrix},
\]

in \(\mathbb{L}^3 \).
Applications of the definite case

Figure 20 Maximal surface $\mathcal{B}_{4/3}$, $(\mathcal{F}, \mathcal{G}) = (z^{-2/3}, z)$
Applications of the definite case

Example

If \(m = \frac{5}{2} \), then we have (see Fig. 21)

\[
\begin{pmatrix}
\frac{2}{3} r^{3/2} \cos \left(\frac{3\theta}{2} \right) + \frac{2}{7} r^{7/2} \cos \left(\frac{7\theta}{2} \right) \\
-\frac{2}{3} r^{3/2} \sin \left(\frac{3\theta}{2} \right) + \frac{2}{7} r^{7/2} \sin \left(\frac{7\theta}{2} \right) \\
\frac{4}{5} r^{5/2} \cos \left(\frac{5\theta}{2} \right)
\end{pmatrix},
\]

in \(\mathbb{L}^3 \).
Applications of the definite case

Figure 21 Maximal surface $\mathcal{B}_{5/2}, (\mathcal{F}, \mathcal{G}) = (z^{1/2}, z)$
Applications of the definite case

Example

If $m = 4$, then we have (see Fig. 22)

$$
\begin{pmatrix}
\frac{1}{3} r^3 \cos (3\theta) + \frac{1}{5} r^5 \cos (5\theta) \\
-\frac{1}{3} r^3 \sin (3\theta) + \frac{1}{5} r^5 \sin (5\theta) \\
\frac{1}{2} r^4 \cos (4\theta)
\end{pmatrix}
$$

in \mathbb{L}^3.
Applications of the definite case

(a) Figure 22 Maximal surface \mathcal{B}_4, $(\mathcal{F}, \mathcal{G}) = (z^2, z)$
Let $\mathbb{L}^2 = (\mathbb{R}^2, -dx^2 + dy^2)$ be Minkowski plane, and \mathbb{L}^3 be a 3-dimensional Minkowski space with natural Lorentzian metric

$$\langle ., . \rangle_1 = -dx^2 + dy^2 + dz^2.$$
Theorem

(Weierstrass representation for timelike minimal surfaces in \mathbb{L}^3)

Let $\mathbf{x} : \mathbf{M} \to \mathbb{L}^3$ be a timelike surface parametrized by null coordinates (u, v), where $u := -x + y$, $v := x + y$. Timelike minimal surface is represented by

$$
\mathbf{x}(u, v) = \int^u \left(\begin{array}{c} -f (1 + g^2) \\ f (1 - g^2) \\ 2fg \end{array} \right) du + \int^v \left(\begin{array}{c} f (1 + g^2) \\ f (1 - g^2) \\ 2fg \end{array} \right) dv.
$$

(11)
The functions \(f(u), g(u), f(v) \) and \(g(v) \) are defined by

\[
\begin{align*}
f &= \frac{-\phi_1 + \phi_2}{2}, \quad g = \frac{\phi_3}{-\phi_1 + \phi_2}, \\
f &= \frac{\mu_1 + \mu_2}{2}, \quad g = \frac{\mu_3}{\mu_1 + \mu_2},
\end{align*}
\]

and \(\phi = (\phi_1, \phi_2, \phi_3), \mu = (\mu_1, \mu_2, \mu_3) \) vector valued functions, \(\phi(u) := \mathbf{x}_u, \mu(v) := \mathbf{x}_v \) satisfy

\[
(\phi)^2 = 0, \quad (\mu)^2 = 0.
\]
Hence, the timelike minimal surface has the form

\[x(u, v) = \int^u \phi(u) \, du + \int^v \mu(v) \, dv = \Omega(u) + \Psi(v), \]

and its conjugate

\[x^*(u, v) = \Omega(u) - \Psi(v), \]

where \(\phi(u) \) and \(\mu(v) \) are linearly independent, \(\Omega(u) \) and \(\Psi(v) \) are null curves in \(\mathbb{L}^3 \).
Weierstrass formula for the timelike minimal surfaces obtained by M. Magid [14] in 1991 (see [12], for details).
Indefinite case

Lemma

The Weierstrass patch determined by the functions

\[(f(u), g(u)) = (u^{m-2}, u) \quad \text{and} \quad (f(v), g(v)) = (v^{m-2}, v)\]

is a representation of the Bour’s timelike minimal surface of value \(m\) in \(\mathbb{L}^3\), where \(m \in \mathbb{R}\).
Bour’s timelike minimal surface of value m is
Indefinite case

- Bour’s timelike minimal surface of value m is

$$
\int^u \begin{pmatrix} -u^{m-2} (1 + u^2) \\ u^{m-2} (1 - u^2) \\ 2u^{m-1} \end{pmatrix} \, du + \int^v \begin{pmatrix} v^{m-2} (1 + v^2) \\ v^{m-2} (1 - v^2) \\ 2v^{m-1} \end{pmatrix} \, dv,
$$
Indefinite case

- Bour’s timelike minimal surface of value \(m \) is

\[
\int_{u}^{u} \begin{pmatrix} -u^{m-2}(1+u^2) \\ u^{m-2}(1-u^2) \\ 2u^{m-1} \end{pmatrix} \, du + \int_{v}^{v} \begin{pmatrix} v^{m-2}(1+v^2) \\ v^{m-2}(1-v^2) \\ 2v^{m-1} \end{pmatrix} \, dv,
\]

- and it has the form

\[
\mathcal{B}_m(u, v) = \begin{pmatrix} -\frac{1}{m-1}(u^{m-1} - v^{m-1}) - \frac{1}{m+1}(u^{m+1} - v^{m+1}) \\ \frac{1}{m-1}(u^{m-1} + v^{m-1}) - \frac{1}{m+1}(u^{m+1} + v^{m+1}) \\ 2\frac{1}{m}(u^m + v^m) \end{pmatrix}.
\]

(12)
Indefinite case

Therefore, \(\mathfrak{B}_m (r, \theta) \) is

\[
\begin{align*}
x &= - \frac{r^{m-1}}{m-1} \left(\cos^{(m-1)} (\theta) - \sin^{(m-1)} (\theta) \right) \\
&\quad - \frac{r^{m+1}}{m+1} \left(\cos^{(m+1)} (\theta) - \sin^{(m+1)} (\theta) \right), \\
y &= \frac{r^{m-1}}{m-1} \left(\cos^{(m-1)} (\theta) + \sin^{(m-1)} (\theta) \right) \\
&\quad - \frac{r^{m+1}}{m+1} \left(\cos^{(m+1)} (\theta) + \sin^{(m+1)} (\theta) \right), \\
z &= 2 \frac{r^m}{m} \left(\cos^m (\theta) + \sin^m (\theta) \right).
\end{align*}
\]
Indefinite case

Theorem

Bour’s surface $\mathcal{B}_m (r, \theta)$ is a timelike minimal surface in \mathbb{L}^3, where $m \in \mathbb{R} - \{-1, 0, 1\}$.
Proof.

- The coefficients of the first fundamental form of the \mathcal{B}_m are
Indefinite case

Proof.

- The coefficients of the first fundamental form of the \mathcal{B}_m are

\[
E = 4r^{2m-4}(\sin \theta \cos \theta)^{m-1}(1 + r^2 \sin \theta \cos \theta)^2, \\
F = 2r^{2m-3}(\sin \theta \cos \theta)^{m-2}(1 + r^2 \sin \theta \cos \theta)^2 \cos (2\theta), \\
G = -4r^{2m-2}(\sin \theta \cos \theta)^{m-1}(1 + r^2 \sin \theta \cos \theta)^2.
\]
Indefinite case

Proof. (Cont.)

Then we have

\[
\det I_m = h^2 r^2 m^3 \left(\sin \theta \cos \theta \right)^m + r^2 \sin \theta \cos \theta \cdot i^2.
\]

So, \(B_m \) is a timelike surface.
Indefinite case

Proof. (Cont.)

Then we have

\[
\det l = - \left[2r^{2m-3} (\sin \theta \cos \theta)^{m-2} \left(1 + r^2 \sin \theta \cos \theta \right)^2 \right]^2.
\]
Proof. (Cont.)

- Then we have

\[
det I = - \left[2r^{2m-3} (\sin \theta \cos \theta)^{m-2} \left(1 + r^2 \sin \theta \cos \theta\right)^2 \right]^2.
\]

- So, B_m is a timelike surface.
Indefinite case

Proof. (Cont.)

- The Gauss map is
Proof. (Cont.)

The Gauss map is

\[
e = \frac{1}{1 + r^2 \sin \theta \cos \theta} \begin{pmatrix} -r (\sin \theta - \cos \theta) \\ r (\sin \theta + \cos \theta) \\ r^2 \sin \theta \cos \theta - 1 \end{pmatrix}.
\]
Indefinite case

Proof. (Cont.)

- The coefficients of the second fundamental form of the surface are

\[
L = 2r^2 m^2 \left(\sin m(\theta) + \cos m(\theta) \right),
\]

\[
M = 2r^2 m \left(\sin(\theta) \cos \theta \right),
\]

\[
N = 2r^2 m \left(\sin 2(\theta) \cos 2(\theta) + \cos 2(\theta) \sin 2(\theta) \right).
\]
Indefinite case

Proof. (Cont.)

- The coefficients of the second fundamental form of the surface are

\[
\begin{align*}
L &= -2r^{m-2}(\sin^m(\theta) + \cos^m(\theta)), \\
M &= 2r^{m-1}(\sin(\theta)\cos^{m-1}(\theta) - \cos(\theta)\sin^{m-1}(\theta)), \\
N &= -2r^m(\sin^2(\theta)\cos^{m-2}(\theta) + \cos^2(\theta)\sin^{m-2}(\theta)).
\end{align*}
\]
Proof. (Cont.)

- The coefficients of the second fundamental form of the surface are

 \[L = -2r^{m-2}(\sin^m(\theta) + \cos^m(\theta)), \]
 \[M = 2r^{m-1}(\sin(\theta)\cos^{m-1}(\theta) - \cos(\theta)\sin^{m-1}(\theta)), \]
 \[N = -2r^m(\sin^2(\theta)\cos^{m-2}(\theta) + \cos^2(\theta)\sin^{m-2}(\theta)). \]

- We have
 \[\det II = -4r^{2m-2}(\sin \theta \cos \theta)^{m-2}. \]
Indefinite case

Proof. (Cont.)

- Hence, the Gaussian curvature and the mean curvature, respectively, are

\[
K = (\sin \theta \cos \theta)^{2-m} \left(\frac{r^{2-m}}{(1 + r^2 \sin \theta \cos \theta)^2} \right)^2,
\]
Indefinite case

Proof. (Cont.)

- Hence, the Gaussian curvature and the mean curvature, respectively, are

\[K = (\sin \theta \cos \theta)^{2-m} \left(\frac{r^{2-m}}{(1 + r^2 \sin \theta \cos \theta)^2} \right)^2, \]

- and

\[H = 0. \]
Proof. (Cont.)

- Hence, the Gaussian curvature and the mean curvature, respectively, are

\[K = (\sin \theta \cos \theta)^{2-m} \left(\frac{r^{2-m}}{(1 + r^2 \sin \theta \cos \theta)^2} \right)^2, \]

- and

\[H = 0. \]

- So, the \(\mathcal{B}_m \) is a timelike minimal surface in \(\mathbb{L}^3 \).
Indefinite case

Example

If take $m = 3$ in $\mathcal{B}_m(r, \theta)$, we have Bour’s timelike minimal surface (see Fig. 23)

$$
\mathcal{B}_3(r, \theta) = \begin{pmatrix}
-\frac{r^2}{2} - \frac{r^4}{4} \\
\frac{r^2}{2} - \frac{r^4}{4} \left(\cos^4(\theta) + \sin^4(\theta) \right) \\
2\frac{r^3}{3} \left(\cos^3(\theta) + \sin^3(\theta) \right)
\end{pmatrix}
$$

in Minkowski 3-space, where $r \in [-1, 1], \theta \in [0, \pi]$.
Indefinite case

\begin{align*}
(a) & \\
(b) & \\
\text{Figure 23} & \text{Bour’s timelike minimal surface } \mathcal{B}_3 (r, \theta) \\
\end{align*}
The coefficients of the first fundamental form of the Bour’s timelike minimal surface of value 3 are

\begin{align*}
E &= 4r^2(\sin \theta \cos \theta)^2 + r^2 \sin \theta \cos \theta^2, \\
F &= r^3 \sin 2\theta \left(1 + r^2 \sin \theta \cos \theta^2 \cos (2\theta)\right), \\
G &= 4r^4(\sin \theta \cos \theta)^2 + r^2 \sin \theta \cos \theta^2^2.
\end{align*}

Then \(\det I = 4r^6(\sin \theta \cos \theta)^2 + r^2 \sin \theta \cos \theta^4. \)
Indefinite case

The coefficients of the first fundamental form of the Bour’s timelike minimal surface of value 3 are

\[
E = 4r^2 (\sin \theta \cos \theta)^2 \left(1 + r^2 \sin \theta \cos \theta\right)^2, \\
F = r^3 \sin 2\theta \left(1 + r^2 \sin \theta \cos \theta\right)^2 \cos (2\theta), \\
G = -4r^4 (\sin \theta \cos \theta)^2 \left(1 + r^2 \sin \theta \cos \theta\right)^2.
\]
Indefinite case

- The coefficients of the first fundamental form of the Bour’s timelike minimal surface of value 3 are

\[
E = 4r^2 (\sin \theta \cos \theta)^2 \left(1 + r^2 \sin \theta \cos \theta\right)^2,
\]
\[
F = r^3 \sin 2\theta \left(1 + r^2 \sin \theta \cos \theta\right)^2 \cos (2\theta),
\]
\[
G = -4r^4 (\sin \theta \cos \theta)^2 \left(1 + r^2 \sin \theta \cos \theta\right)^2.
\]

- Then

\[
\det l = -4r^6 (\sin \theta \cos \theta)^2 \left(1 + r^2 \sin \theta \cos \theta\right)^4.
\]
Indefinite case

- The coefficients of the second fundamental form of the surface are

\[
L = 2r(\sin^3(\theta) + \cos^3(\theta)),
\]

\[
M = 2r^2(\sin(\theta) \cos^2(\theta) \cos(\theta) \sin^2(\theta)),
\]

\[
N = 2r^3(\sin^2(\theta) \cos(\theta) + \cos^2(\theta) \sin(\theta)).
\]

So,

\[
\det II = 4r^4 \sin \theta \cos \theta.
\]
Indefinite case

- The coefficients of the second fundamental form of the surface are

\[
\begin{align*}
L &= -2r(\sin^3(\theta) + \cos^3(\theta)), \\
M &= 2r^2(\sin(\theta)\cos^2(\theta) - \cos(\theta)\sin^2(\theta)), \\
N &= -2r^3(\sin^2(\theta)\cos(\theta) + \cos^2(\theta)\sin(\theta)).
\end{align*}
\]
The coefficients of the second fundamental form of the surface are

\[
L = -2r(\sin^3(\theta) + \cos^3(\theta)),
\]
\[
M = 2r^2(\sin(\theta) \cos^2(\theta) - \cos(\theta) \sin^2(\theta)),
\]
\[
N = -2r^3(\sin^2(\theta) \cos(\theta) + \cos^2(\theta) \sin(\theta)).
\]

So,

\[
\det II = -4r^4 \sin \theta \cos \theta.
\]
The mean and the Gaussian curvatures of the Bour’s minimal surface of value 3 are, respectively,

\[H = 0, \quad K = \frac{1}{r^2 \sin \theta \cos \theta \left(1 + r^2 \sin \theta \cos \theta\right)^4}. \]
Indefinite case

- The Weierstrass patch determined by the functions...
The Weierstrass patch determined by the functions

\[(f, g) = (u, u) \quad \text{and} \quad (f, g) = (v, v)\]

in \mathbb{L}^3.
The parametric form of the surface (see Fig. 24) is

\[\mathcal{B}_3(u, v) = \left(\begin{array}{c} -\frac{1}{2} (u^2 - v^2) - \frac{1}{4} (u^4 - v^4) \\ \frac{1}{2} (u^2 + v^2) - \frac{1}{4} (u^4 + v^4) \\ \frac{2}{3} (u^3 + v^3) \end{array} \right), \tag{14} \]

where \(u, v \in I \subset \mathbb{R} \).
Indefinite case

\[(a) \quad (b)\]

Figure 24 Timelike minimal surface $\mathcal{B}_3(u, v)$, $u, v \in [-1, 1]$
Applications of the indefinite case

Example

If take $m = 2$, we have $\mathcal{B}_2 (r, \theta)$ (see Fig. 25)

$$\begin{pmatrix}
-r (\cos (\theta) - \sin (\theta)) - \frac{r^3}{3} (\cos^3 (\theta) - \sin^3 (\theta)) \\
r (\cos (\theta) + \sin (\theta)) - \frac{r^3}{3} (\cos^3 (\theta) + \sin^3 (\theta)) \\
r^2 (\cos^3 (\theta) + \sin^3 (\theta))
\end{pmatrix}$$

in \mathbb{L}^3, where $r \in [-2, 2]$, $\theta \in [-\pi/2, \pi/2]$.
Applications of the indefinite case

Figure 25 Bour’s timelike minimal surface $\mathcal{B}_2 (r, \theta)$
Applications of the indefinite case

Example

If take \(m = 2 \), we have \(\mathcal{B}_2(r, \theta) \) (see Fig. 26) in \(\mathbb{L}^3 \).
Applications of the indefinite case

Figure 26 Bour’s timelike minimal surface $\mathcal{B}_2(r, \theta)$
Applications of the indefinite case

Example

If take $m = 4$, we have $\mathcal{B}_4 (r, \theta)$ (see Fig. 27)

\[
\begin{pmatrix}
-\frac{r^3}{3} (\cos^3 (\theta) - \sin^3 (\theta)) - \frac{r^5}{5} (\cos^5 (\theta) - \sin^5 (\theta)) \\
\frac{r^3}{3} (\cos^3 (\theta) + \sin^3 (\theta)) - \frac{r^5}{5} (\cos^5 (\theta) + \sin^5 (\theta)) \\
\frac{r^4}{4} (\cos^4 (\theta) + \sin^4 (\theta))
\end{pmatrix}
\]

in \mathbb{L}^3.
Applications of the indefinite case

Figure 27 Bour’s timelike minimal surface $\mathcal{B}_4 (r, \theta)$
Applications of the indefinite case

Example

If take $m = 4$, we have $\mathcal{B}_2 (r, \theta)$ (see Fig. 28) in \mathbb{L}^3.
Applications of the indefinite case

Figure 28 Bour’s timelike minimal surface $\mathcal{B}_4 (r, \theta)$
Applications of the indefinite case

Example

If take $m = 5$, we have $\mathcal{B}_5 (r, \theta)$ (see Fig. 29)

\[
\begin{pmatrix}
- \frac{r^4}{4} (\cos^4 (\theta) - \sin^4 (\theta)) - \frac{r^6}{6} (\cos^6 (\theta) - \sin^6 (\theta)) \\
\frac{r^4}{4} (\cos^4 (\theta) + \sin^4 (\theta)) - \frac{r^6}{6} (\cos^6 (\theta) + \sin^6 (\theta)) \\
\frac{r^5}{5} (\cos^5 (\theta) + \sin^5 (\theta))
\end{pmatrix}
\]

in \mathbb{L}^3.
Applications of the indefinite case

Figure 29 Bour’s timelike minimal surface $\mathcal{B}_5 (r, \theta)$
References

References

References

I was supported by The Scientific and Technological Research Council of Turkey (TUBITAK), 2219-International Post-Doctoral Research Fellowship.
I was supported by The Scientific and Technological Research Council of Turkey (TUBITAK), 2219-International Post-Doctoral Research Fellowship.

A large part of this talk had been completed, when I visited as a post-doctoral researcher at Katholieke Universiteit Leuven, Belgium in the 2011-2012 academic year.
Acknowledgements

- I was supported by The Scientific and Technological Research Council of Turkey (TUBITAK), 2219-International Post-Doctoral Research Fellowship.
- A large part of this talk had been completed, when I visited as a post-doctoral researcher at Katholieke Universiteit Leuven, Belgium in the 2011-2012 academic year.
- I would like to thank the hospitality of the members of the geometry section, especially to the Professor Franki Dillen (1963-2013) and also Dr. Ana Nistor.
mercii

Jacques Edmond Emile BOUR
(1832 – 1866)
thanks for your attention