New Calabi-Bernstein results for some elliptic non-linear equations

Magdalena Caballero
Department of Mathematics. University of Córdoba

Joint work with A. Romero (University of Granada)
and R. M. Rubio (University of Córdoba)

Partially supported by the Spanish MEC-FEDER Grant MTM2010-18099 and the Junta de Andalucía Regional Grant P09FQM-4496
Our goal

Obtaining uniqueness and non-existence results of entire solutions to:

\[
\text{div} \left(\frac{Du}{f(u) \sqrt{f(u)^2 - |Du|^2}} \right) = -2H - \frac{f'(u)}{\sqrt{f(u)^2 - |Du|^2}} \left(2 + \frac{|Du|^2}{f(u)^2} \right) \tag{E1}
\]

\[|Du| < \lambda f(u) \tag{E2}\]

where \(H\) is a fixed real number, \(f\) a smooth real-valued function, \(u\) is defined on a non-compact complete Riemannian surface \((F, g)\), \(D\) and \(\text{div}\) denote the gradient and the divergence of \((F, g)\), \(|Du|^2 := g(Du, Du)\), and \(0 < \lambda \leq 1\).

In two particular cases:

1. \(H = 0\) and \(\lambda = 1\) **The maximal surface equation.**
 Quasi-linear elliptic eq.

2. \(H \neq 0\) and \(0 < \lambda < 1\) **The CMC spacelike surface equation.**
 Quasi-linear uniform elliptic eq.
Obtaining uniqueness and non-existence results of entire solutions to:

$$\text{div} \left(\frac{Du}{f(u)\sqrt{f(u)^2-|Du|^2}} \right) = -2H - \frac{f'(u)}{\sqrt{f(u)^2-|Du|^2}} \left(2 + \frac{|Du|^2}{f(u)^2} \right) \quad (E1)$$

$$|Du| < \lambda f(u) \quad (E2)$$

where H is a fixed real number, f a smooth real-valued function, u is defined on a non-compact complete Riemannian surface (F, g), D and div denote the gradient and the divergence of (F, g), $|Du|^2 := g(Du, Du)$, and $0 < \lambda \leq 1$.

In two particular cases:

1. $H = 0$ and $\lambda = 1$ The maximal surface equation.
 Quasi-linear elliptic eq.

2. $H \neq 0$ and $0 < \lambda < 1$ The CMC spacelike surface equation.
 Quasi-linear uniform elliptic eq.
Brief Introduction
Generalized Robertson-Walker spacetimes (GRW)

We consider $M := I \times F$ with the Lorentzian metric

$$\langle \cdot, \cdot \rangle = -dt^2 + f^2 g,$$

where I is an interval, (F, g) a Riemannian surface and $f > 0$ a smooth function on I.

Given a function $u : F \rightarrow \mathbb{R}$:

Its graph $\Sigma_u = \{(p, u(p)) : p \in F\}$ is spacelike if and only if $|Du| < f(u)$,

D being the gradient of F.

WHERE DOES IT COME FROM?
Generalized Robertson-Walker spacetimes (GRW)

We consider $M := I \times F$ with the Lorentzian metric

$$\langle \ , \ \rangle = -dt^2 + f^2 g,$$

where I is an interval, (F, g) a Riemannian surface and $f > 0$ a smooth function on I.

Given a function $u : F \to \mathbb{R}$:

Its graph $\Sigma_u = \{(p, u(p)) : p \in F\}$ is spacelike if and only if $|Du| < f(u)$,
D being the gradient of F.
WHERE DOES IT COME FROM?

MAXIMAL CASE

\(u \) is a solution of the equation ...

... iff is an extremal under compact support variations for the area of \(\Sigma_u \)

... iff \(\Sigma_u \) is maximal (zero mean curvature).

CMC CASE

\(u \) is a solution of the equation ...

... iff is an extremal of the area under compact support variations with constant volume\(^a\) with respect to a fixed \(\Sigma_{u=t_0} \).

... with condition (E2) iff \(\Sigma_u \) is a CMC spacelike surface with bounded hyperbolic angle.

\(^a\)Other volume type constraints can be considered, such as balance of volume zero.
Maximal Case

u is a solution of the equation ...

... iff is an extremal under compact support variations for the area of Σ_u

... iff Σ_u is maximal (zero mean curvature).

CMC Case

u is a solution of the equation ...

... iff is an extremal of the area under compact support variations

with constant volume\(^a\) with respect to a fixed $\Sigma_{u=t_0}$.

... with condition (E2) iff Σ_u is a CMC spacelike surface

with bounded hyperbolic angle.

\(^a\)Other volume type constraints can be considered, such as balance of volume zero
The condition (E2) with $0 < \lambda < 1$

Hyperbolic angle in a GRW

Where N is the unitary normal chosen such that $\langle N, \partial_t \rangle \geq 1$ on Σ_u, the hyperbolic angle θ is such that $\langle N, \partial_t \rangle = \cosh \theta = 1 / \sqrt{1 - \frac{|Du|^2}{f(u)^2}}$.
A little bit of history

In 1968 Calabi proposed to study the maximal surface equation in \mathbb{L}^{n+1}. He proved that the only entire solutions are the linear functions for $2 \leq n \leq 4$.

Chen and Yau extended it to \mathbb{L}^{n+1} in 1976 \sim Calabi-Bernstein’s theorem in \mathbb{L}^{n+1}.

There exists entire CMC graphs in \mathbb{L}^{n+1} different from hyperplanes: \mathbb{H}^n.

Under which conditions can we get uniqueness?

The only entire bounded solutions are the constant functions, J. A. Aledo and L. J. Alías (2000).
In 1968 Calabi proposed to study the maximal surface equation in \mathbb{L}^{n+1}. He proved that the only entire solutions are the linear functions for $2 \leq n \leq 4$.

Chen and Yau extended it to \mathbb{L}^{n+1} in 1976 \Rightarrow Calabi-Bernstein’s theorem in \mathbb{L}^{n+1}.

There exists entire CMC graphs in \mathbb{L}^{n+1} different from hyperplanes: \mathbb{H}^n.

Under which conditions can we get uniqueness?

The only entire bounded solutions are the constant functions, J. A. Aledo and L. J. Alías (2000).
In 1968 Calabi proposed to study the maximal surface equation in \mathbb{L}^{n+1}. He proved that the only entire solutions are the linear functions for $2 \leq n \leq 4$.

Chen and Yau extended it to \mathbb{L}^{n+1} in 1976 \sim Calabi-Bernstein’s theorem in \mathbb{L}^{n+1}.

There exists entire CMC graphs in \mathbb{L}^{n+1} different from hyperplanes: \mathbb{H}^n.

Under which conditions can we get uniqueness?

The only entire bounded solutions are the constant functions, J. A. Aledo and L. J. Alías (2000).
A little bit of history

The only entire solutions whose graph has bounded hyperbolic angle are the linear functions, Aiyama (1992) and Xin (1991), independently.

The only entire solutions whose graph has a bounded from one side Gauss map, are the linear functions, H-D. Cao, Y. Shen, S. Zhu (1998).

Many authors have obtained Calabi-Berstein type results in other ambient settings: A.L. Albuje, L.J. Alías, F. Camargo, A. Caminha, A. G. Colares, G. Li, H. F. de Lima, S. Montiel, A. Romero, R. M. Rubio, M. Sánchez, I. M. C. Salavessa, ...

We will focus on finding uniqueness and non-existence results of maximal and CMC spacelike graphs in certain 3-dimensional GRW spacetimes.
A little bit of history

The only entire solutions whose graph has bounded hyperbolic angle are the linear functions, Aiyama (1992) and Xin (1991), independently.

The only entire solutions whose graph has a bounded from one side Gauss map, are the linear functions, H-D. Cao, Y. Shen, S. Zhu (1998).

Many authors have obtained Calabi-Berstein type results in other ambient settings: A.L. Albujer, L.J. Alías, F. Camargo, A. Caminha, A. G. Colares, G. Li, H. F. de Lima, S. Montiel, A. Romero, R. M. Rubio, M. Sánchez, I. M. C. Salavessa, ...

We will focus on finding uniqueness and non-existence results of maximal and CMC spacelike graphs in certain 3-dimensional GRW spacetimes.
The only entire solutions whose graph has bounded hyperbolic angle are the linear functions, Aiyama (1992) and Xin (1991), independently.

The only entire solutions whose graph has a bounded from one side Gauss map, are the linear functions, H-D. Cao, Y. Shen, S. Zhu (1998).

Many authors have obtained Calabi-Berstein type results in other ambient settings: A.L. AlbuJer, L.J. Alias, F. Camargo, A. Caminha, A. G. Colares, G. Li, H. F. de Lima, S. Montiel, A. Romero, R. M. Rubio, M. Sanchez, I. M. C. Salavessa, ...

We will focus on finding uniqueness and non-existence results of maximal and CMC spacelike graphs in certain 3-dimensional GRW spacetimes.
Preliminaries
• **Lemma** (A. Romero y R. M. Rubio):

Let S be a Riemannian manifold and $v \in C^2(S)$ such that

$$v \Delta v \geq 0.$$

If B_R is a geodesic ball in R around $p \in S$, then for each $r > 0$ such that $r < R$ we have

$$\int_{B_r} |\nabla v|^2 \, dV \leq \frac{4 \sup_{B_R} v^2}{\mu_{r,R}},$$

B_r being a geodesic ball of radius r around p in S and

$$\frac{1}{\mu_{r,R}} := \int_{A_{r,R}} |\nabla \omega_{r,R}|^2 \, dV$$

is the capacity of the ring $A_{r,R} = B_R \setminus \bar{B}_r$, $\omega_{r,R}$ being the harmonic measure of the boundary ∂B_R respect to $A_{r,R}$.

• **Theorem** (Ahlfors and Blanc-Fiala-Huber): any complete Riemannian surface with non-negative Gaussian curvature is parabolic.
Our main tools

- **Lemma** (A. Romero y R. M. Rubio):

 Let S be a Riemannian manifold and $v \in C^2(S)$ such that
 \[v \Delta v \geq 0. \]

 If B_R is a geodesic ball in R around $p \in S$, then for each $r > 0$ such that $r < R$ we have
 \[\int_{B_r} |\nabla v|^2 \, dV \leq \frac{4 \sup_{B_R} v^2}{\mu_{r,R}}, \]
 B_r being a geodesic ball of radius r around p in S and
 \[\frac{1}{\mu_{r,R}} := \int_{A_{r,R}} |\nabla \omega_{r,R}|^2 \, dV \text{ is the capacity of the ring } A_{r,R} = B_R \setminus \overline{B}_r, \]
 $\omega_{r,R}$ being the harmonic measure of the boundary ∂B_R respect to $A_{r,R}$.

- **Theorem** (Ahlfors and Blanc-Fiala-Huber): any complete Riemmanian surface with non-negative Gaussian curvature is parabolic.
Our main tools

- **Null Convergence Condition (NCC):** \(\bar{\text{Ric}}(Z, Z) \geq 0 \) for all \(Z \) null.

\[
NCC \text{ in a 3-dim. GRW: } \frac{K^F(\pi_F)}{f^2} - \left(\log f\right)'' \geq 0
\]

- **Lemma (—, A. Romero y R. M. Rubio):**

Let \(S \) be a spacelike surface in a 3-dim GRW

\[
K = \frac{f''(t)^2}{f(t)^2} + \left\{ \frac{K^F(\pi_F)}{f(t)^2} - (\log f)''(t) \right\} | \partial_t |^2 + \frac{K^F(\pi_F)}{f(t)^2} - 2H^2 + \frac{1}{2} \text{trace}(A^2).
\]

If NCC holds,

\[
K \geq \frac{f''(t)^2}{f(t)^2} + \frac{K^F(\pi_F)}{f(t)^2} - H^2,
\]

and if \(H = \text{cte}, \)

\(" =" \iff S \text{ is totally umbilic}.\)
Our main tools

- **Null Convergence Condition (NCC):** $\text{Ric}(Z, Z) \geq 0$ for all Z null.

 NCC in a 3-dim. GRW: \[
 \frac{K^F(\pi_F)}{f^2} - (\log f)'' \geq 0
 \]

- **Lemma (—, A. Romero y R. M. Rubio):**

 Let S be a spacelike surface in a 3-dim GRW

 \[
 K = \frac{f'(t)^2}{f(t)^2} + \left\{ \frac{K^F(\pi_F)}{f(t)^2} - (\log f)''(t) \right\} |\partial_t|^2 + \frac{K^F(\pi_F)}{f(t)^2} - 2H^2 + \frac{1}{2} \text{trace}(A^2).
 \]

 If NCC holds,

 \[
 K \geq \frac{f'(t)^2}{f(t)^2} + \frac{K^F(\pi_F)}{f(t)^2} - H^2,
 \]

 and if $H = \text{cte},$

 \[
 "=" \iff S \text{ is totally umbilic.}
 \]
Null Convergence Condition (NCC): $\overline{\text{Ric}}(Z, Z) \geq 0$ for all Z null.

NCC in a 3-dim. GRW: $\frac{K^F(\pi_F)}{f^2} - (\log f)'' \geq 0$

Lemma (—, A. Romero y R. M. Rubio):

Let S be a spacelike surface in a 3-dim GRW

$$K = \frac{f'(t)^2}{f(t)^2} + \left\{ \frac{K^F(\pi_F)}{f(t)^2} - (\log f)''(t) \right\} \left| \partial^\top_t \right|^2 + \frac{K^F(\pi_F)}{f(t)^2} - 2H^2 + \frac{1}{2} \text{trace}(A^2).$$

If NCC holds,

$$K \geq \frac{f'(t)^2}{f(t)^2} + \frac{K^F(\pi_F)}{f(t)^2} - H^2,$$

and if $H = cte$,

"$=\" \iff S$ is totally umbilic."
Our main tools

- Generalized maximum principle due to Omori-Yau:

Let S be a complete Riemannian manifold whose Ricci curvature is bounded from below and let $u : S \rightarrow \mathbb{R}$ be a smooth function bounded from below (resp. from above).

Then for each $\varepsilon > 0 \exists p_\varepsilon \in S$ such that

- $|\nabla u(p_\varepsilon)| < \varepsilon$
- $\triangle u(p_\varepsilon) > -\varepsilon$ (resp. $< \varepsilon$).
- $\inf u \leq u(p_\varepsilon) < \inf u + \varepsilon$ (resp. $\sup u - \varepsilon < u(p_\varepsilon) \leq \sup u$).
Our results
The maximal case

Theorem (—, A. Romero and R. M. Rubio)

Let \((F, g)\) be a non-compact complete Riemannian surface with \(K^F \geq 0\) and let \(f : I \rightarrow \mathbb{R}\) satisfy \(\inf(f) > 0\), \(\sup(f) < \infty\) and \((\log f)'' \leq 0\).

If there exists \(p \in F\) such that \(K^F(p) > 0\), then

the only entire solutions to the maximal surface equation are the constant functions

\[u = u_0 / f'(u_0) = 0. \]
The maximal case - proof

\(u : F \rightarrow \mathbb{R} \) smooth with spacelike graph \(\Sigma_u \) in \(I \times F \) and induced metric \(g_u \).

We identify \((\Sigma_u, \langle \cdot, \cdot \rangle) \equiv (F, g_u)\)

We consider \(\xi := f(\pi_1) \partial_t \) \(\rightarrow \) timelike and conformal.

If \(N \) is the normal to \(\Sigma_u \) in the same orientation as \(-\partial_t\), then \(\langle N, \xi \rangle \) will be our key function on \(\Sigma_u \).
Making a conformal change to get parabolicity:

If \(\inf(f) > 0 \) and \(\sup(f) < \infty \), define \(g^* := (\langle N, \xi \rangle + \sup(f))^2 g_\nu \).

\[
(F, g) \text{ complete} \implies (F, g^*) \text{ complete}.
\]

Using \(\Sigma_\nu \) maximal, \(f \leq \sup(f), K^F \geq 0 \) and \((\log f)^{''} \leq 0 \), from the lemma on \(K \) we get \(K^* \geq 0 \).

Completeness + \(K^* \geq 0 \implies \text{Parabolic} \)
Making a conformal change to get parabolicity:

If $\inf(f) > 0$ and $\sup(f) < \infty$, define $g^* := (\langle N, \xi \rangle + \sup(f))^2 g_u$.

$$(F, g) \text{ complete } \implies (F, g^*) \text{ complete.}$$

Using Σ_u maximal, $f \leq \sup(f)$, $K^F \geq 0$ and $(\log f)'' \leq 0$, from the lemma on K we get $K^* \geq 0$.

Completeness + $K^* \geq 0 \implies$ Parabolic
THE MAXIMAL CASE - PROOF

Making a conformal change to get parabolicity:

If \(\inf(f) > 0 \) and \(\sup(f) < \infty \), define \(g^* := (\langle N, \xi \rangle + \sup(f))^2 g_u \).

\[(F, g) \text{ complete} \implies (F, g^*) \text{ complete}.

Using \(\Sigma_u \) maximal, \(f \leq \sup(f), K^F \geq 0 \) and \((\log f)^{''} \leq 0 \), from the lemma on \(K \) we get \(K^* \geq 0 \).

Completeness + \(K^* \geq 0 \implies \text{Parabolic} \]
Applying the lemma by Romero and Rubio to get \(\text{trace}(A^2) = 0 \):

We replace \(\langle N, \xi \rangle \) by \(h := \arctan(\langle N, \xi \rangle) \) because it is bounded.

We prove \(\triangle^* h \geq 0 \), from the lemma and the boundedness of \(h \)

\[
\int_{D^*_r} |\nabla^* \langle N, \xi \rangle|^2 dA^* \leq \frac{C}{\mu^*_{r, R}}
\]

where \(C = C(p, r) > 0 \) is a constant.

\((F, g^*)\) is parabolic \(\Longrightarrow \lim_{R \to \infty} \frac{1}{\mu^*_{r, R}} = 0 \Longrightarrow \langle N, \xi \rangle = \text{cte} \Longrightarrow \text{trace}(A^2) = 0.\)
Applying the lemma by Romero and Rubio to get $\text{trace}(A^2) = 0$:

We replace $\langle N, \xi \rangle$ by $h := \arctan(\langle N, \xi \rangle)$ because it is bounded.

We prove $\triangle^* h \geq 0$, from the lemma and the boundedness of h

$$\int_{D_r^*} |\nabla^* \langle N, \xi \rangle|^2 \, dA^* \leq \frac{C}{\mu^*_{r,R}}$$

where $C = C(p, r) > 0$ is a constant.

(F, g^*) is parabolic $\implies \lim_{R \to \infty} \frac{1}{\mu^*_{r,R}} = 0 \implies \langle N, \xi \rangle = \text{cte} \implies \text{trace}(A^2) = 0.$
The maximal case - proof

Applying the lemma by Romero and Rubio to get $\text{trace}(A^2) = 0$:

We replace $\langle N, \xi \rangle$ by $h := \arctan(\langle N, \xi \rangle)$ because it is bounded.

We prove $\triangle^* h \geq 0$, from the lemma and the boundedness of h

$$\int_{D_r^*} | \nabla^* \langle N, \xi \rangle |^2 \, dA^* \leq \frac{C}{\mu_{r,R}^*}$$

where $C = C(p, r) > 0$ is a constant.

(F, g^*) is parabolic $\implies \lim_{R \to \infty} \frac{1}{\mu_{r,R}^*} = 0 \implies \langle N, \xi \rangle = \text{cte} \implies \text{trace}(A^2) = 0$.
The maximal case - proof

Applying the lemma by Romero and Rubio to get $\text{trace}(A^2) = 0$:

We replace $\langle N, \xi \rangle$ by $h := \arctan(\langle N, \xi \rangle)$ because it is bounded.

We prove $\triangle^* h \geq 0$, from the lemma and the boundedness of h

$$
\int_{D^*_r} |\nabla^* \langle N, \xi \rangle|^2 \, dA^* \leq \frac{C}{\mu^*_r, R}
$$

where $C = C(p, r) > 0$ is a constant.

(F, g^*) is parabolic $\implies \lim_{R \to \infty} \frac{1}{\mu^*_r, R} = 0 \implies \langle N, \xi \rangle = \text{cte} \implies \text{trace}(A^2) = 0$.
The maximal case - proof

We finish using the lemma on K:

If there exists $p \in F$ such that $K^F(p) > 0$, from the lemma on K we get

\[N(p) = -\partial_t(p). \]

Since Σ_u is totally geodesic, u is constant.
The CMC case

We define $\mathcal{B}_f = \{-f'(t)/f(t) : t \in I\} \subset \mathbb{R}$.

Theorem (—, A. Romero and R. M. Rubio)

Let (F, g) be a non-compact complete Riemannian surface with $K^F \geq 0$. Assume $f : I \to \mathbb{R}^+$ satisfies $(\log f)'' \leq 0$ and $\inf(f) > 0$.

1. If $H \notin \mathcal{B}_f \cup \{0\}$, there exists no bounded entire solution to the H-CMC spacelike surface equation.

2. If $H \in \mathcal{B}_f \setminus \{0\}$, then $u \equiv t_0$, where $H = -\frac{f'(t_0)}{f(t_0)}$, is the only entire bounded solution to the H-CMC spacelike surface equation.
The CMC case - proof

\[u : F \rightarrow \mathbb{R} \text{ smooth with spacelike graph } \Sigma_u \text{ in } I \times F \text{ and induced metric } g_u. \]

We identify \((\Sigma_u, \langle , \rangle) \equiv (F, g_u)\)

Our distinguished function is \(\text{ch}\theta = \langle N, \partial_t \rangle\).

Completeness of the graph:

\[L_u \geq \sqrt{1 - \lambda^2 \inf(f)^2 L}, \]

being \(L_u\) and \(L\) the lengths of a curve in \((F, g_u)\) and \((F, g)\), resp.

Then, \(\inf(f) > 0\) and \((F, g)\) complete \(\implies (F, g_u)\) complete.
THE CMC case - proof

\(u : F \rightarrow \mathbb{R} \) smooth with spacelike graph \(\Sigma_u \) in \(I \times_t F \) and induced metric \(g_u \).

We identify \((\Sigma_u, \langle , \rangle) \equiv (F, g_u)\).

Our distinguished function is \(\text{ch}\theta = \langle N, \partial_t \rangle \).

Completeness of the graph:

\[
L_u \geq \sqrt{1 - \lambda^2 \inf(f)^2 L},
\]

being \(L_u \) and \(L \) the lengths of a curve in \((F, g_u)\) and \((F, g)\), resp.

Then, \(\inf(f) > 0 \) and \((F, g)\) complete \(\implies \) \((F, g_u)\) complete.
We need to prove $H^2 \leq \frac{f'(u)^2}{f(u)^2}$.

From the expression of $\triangle u$, we get

$$H = \frac{-f'(u) \{2 + |\nabla u|^2\} - \Delta u}{2ch\theta}.$$

Since u is bounded, we can apply Omori-Yau twice.

For the supremum:

$$\frac{-f'(\sup u)}{f(\sup u)} \leq H \leq \frac{-f'(\inf u)}{f(\inf u)}.$$

We finish the proof using $(\log f)'' \leq 0 \implies -\frac{f'}{f}$ increasing.
We get parabolicity:

Since $K^F \geq 0$ and $(\log f)'' \leq 0$, M satisfies NCC, and so

$$K \geq \frac{f'(t)^2}{f(t)^2} + \frac{K^F(\pi_F)}{f(t)^2} - H^2 \geq 0.$$

The result of Ahlfors and Blanc-Fiala-Huber gives us: Σ_u is parabolic.

A distinguished function, $\text{ch}\theta$:

Using the expression of the Hessian of u we obtain $\text{ch}\theta \Delta \text{ch}\theta \geq 0$.

Lemma by Romero and Rubio + θ bounded + parabolicity $\implies \theta = \text{cte}$.

From the expression of $\text{ch}\theta \Delta \text{ch}\theta$ and $H \neq 0$, we get $\theta = 0 \implies u = \text{cte}$.
We get parabolicity:

Since $K^F \geq 0$ and $(\log f)'' \leq 0$, M satisfies NCC, and so

$$K \geq \frac{f'(t)^2}{f(t)^2} + \frac{K^F(\pi_F)}{f(t)^2} - H^2 \geq 0.$$

The result of Ahlfors and Blanc-Fiala-Huber gives us: Σ_u is parabolic.

A distinguished function, $\text{ch} \theta$:

Using the expression of the Hessian of u we obtain $\text{ch} \theta \Delta \text{ch} \theta \geq 0$.

Lemma by Romero and Rubio + θ bounded + parabolicity $\implies \theta = \text{cte}$.

From the expression of $\text{ch} \theta \Delta \text{ch} \theta$ and $H \neq 0$, we get $\theta = 0 \implies u = \text{cte}$.