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Abstract
In this paper ...

1 Introduction

It has been conjectured in the linguistic literature that languages are divided into three classes according
to their rhythmic properties (Lloyd 1940, Pike 1945, Abercrombie 1967, among others). The intuition was
that these classes were characterized by the special role played by the stress, or the syllable, or the mora
in the emergence of rhythmic units in the language. This intuition justified the names of stress-timed,
syllable-timed or mora-timed associated to the three conjectured classes.

During half a century, neither a precise definition of each class, nor any reliable phonetic evidence of
the existence of the classes was presented in the linguistic literature. The situation started changing at
the end of the century. First of all, Mehler et al. (1996) gave empirical evidence that newborn babies are
able to discriminate rhythmic classes. Then Ramus, Nespor and Mehler (1999), from now on RNM, gave
for the first time evidence that simple statistics of the speech signal could discriminate between different
rhythmic classes.

RNM’s approach is based on two statistics of the speech signal: the proportion of time spent in vocalic
intervals and the empirical standard deviation of the durations of the consonantal intervals, denoted %V
and AC, respectively. The choice of these parameters is guided by the following linguistic facts. Languages
conjectured to be stress-timed, as English, spend a smaller proportion of time in vocalic intervals, than
languages conjectured to be syllable-timed, as Italian. Languages conjectured to be stress-timed display
a much bigger variety of types of consonantal intervals than languages conjectured to be syllable-timed.
Finally, languages conjectured to be mora-timed, like Japanese, behave as super syllable-timed languages.
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Figure 1: Distribution of languages on the (%V,AC) plane, based on Ramus et al.(1999)
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Figure 2: Estimated standard deviation of the Gamma distribution for consonantal intervals

Figure 1 shows the averages values of %V and AC on a sample of 20 sentences produced by 4 speakers
of each of eight languages, English, Polish, Dutch, Catalan, Spanish, Italian, French and Japanese. It
turns out that the empirical values of %V, AC for the eight languages considered appear to cluster into
three groups which correspond precisely to the intuitive notion of rhythmic classes. English, Polish and
Dutch conjectured to be stress-timed languages appear together, French, Spanish, Catalan and Italian
conjectured to be syllable-timed languages appear in a separate group, and finally, Japanese, conjectured
to be moraic, appears isolated.

The statistics performed in RNM are of descriptive nature. This point was improved in Duarte et
al. (2001) who proposed a parametric model that closely fits the data in RNM which made possible to
perform an inferential analysis of the data. In this model the durations of the successive consonantal
intervals are independent and identically Gamma distributed random variables. The model assumes
that languages differ with respect to the values of the parameters of their Gamma distributions. In this
framework the rhythmic classes conjecture can be rephrased as follows: the standard deviation of the
Gamma is constant for all languages belonging to the same rhythmic class, but the standard deviations
of different classes are different. With this model is possible to test the hypothesis that the 8 languages
considered above are clustered as suggested in RNM descriptive statistics. The data support the model.
The hypothesis that the standard deviations of Gamma distributions are constant within classes and
differ among classes is compatible with the data presented in RNM.

Figure 2 shows the estimated standard deviations of the duration of consonantal intervals, for the 8



languages, using the Gamma distribution. The values of the standard deviations presented were obtained
by maximum likelihood estimation. The figure displays the same three clusters already present in RNM’s
descriptive statistics.

Succesfull as it was, RNM’s approach has two major drawbacks. First of all, it depends on a previous
hand-made identification of the boundaries of the vocalic intervals in the acoustic signal. The problem is
that this boundary identification depends in many cases on decisions which are very difficult to reproduce
in a homogeneous way.

The second drawback has a linguistic nature. In fact it has been shown by psycho-linguists that
babies’ ability to discriminate the phonotactic properties of their own language emerge between 6 and 9
months. Therefore the fine-grained discrimination between vowels and consonants necessary to perform
the analysis proposed in RNM seems to be beyond their linguistic ability. However Mehler et al. (1996)
shows that newborn babies are able to discriminate rhythmic classes with a signal filtered at 400Hz. In
the signal so severely filtered, it is hard to distinguish nasals from vowels and glides from consonants.
This strongly suggests that the discrimination of rhythmic classes by babies relies not on fine-grained
distinctions between vowels and consonants, but on a coarse-grained perception of sonority in opposition
to obstruency.

This was the motivation for the introduction in Galves et al. (2002) of a local index of regularity of
the speech signal which was called sonority. This index is a function which maps local windows of the
acoustic signal on the interval [0,1]. This function assumes values close to 1 when the region displays
regular patterns characteristic of sonorant portions of the signal. In contrast, the function will assign
values close to 0 to regions characterized by obstruency.

In Galves et al.(2002) it was suggested that it was possible to recover the conjectured rhythmic classes
directly from the analysis of the trajectories of the sonority in the sample considered in RNM. To give a
sound statistical basis to this claim is the main goal of the present paper.

The main tool we will use in what follows is the projected Kolmogorov-Smirnov test which follows
from a recent result presented in Cuesta-Albertos, Fraiman and Ransforf (2004). This makes it possible
to compare the laws of the stochastic processes producing the time evolutions of the sonority for the
different sentences and languages.

Up to this point we are working with a non parametric point of view. Recently a parametric model
for the family of stochastic processes producing the sonority time evolutions of the different languages
was proposed by Cassandro et al.(2005) . This model is a family of tied quantized chains. The chains are
tied together by the the assumption that there is a universal partition of the sonority domain, such that
the distribution of the sonority, conditioned on each interval of the partition is language independent. In
Cassandro et al.(2005) a consistent cross-linguistic estimator for the cut-points separating these intervals
was also introduced.

It follows from this model that all the relevant linguistic information concerning the sonority should
be retrieved from a symbolic stochastic chain taking values on a finite alphabet. This symbolic chain
can be derived directly from the sonority process. In particular, the most important linguistic question
of the existence of rhythmic classes should be decided using only the properties of the symbolic chains.
The investigation of this issue is the second goal of this paper.

This paper is organized as follows. In Section 2 we define the sonority, and introduce the data
we will analyze. In Section 3 we present the projected Kolmogorov-Smirnov test, which is the main
statistical tool that will be used in our analysis. In Section 4 we present the results of the projected
Kolmogorov-Smirnov test applied to the linguistic corpus considered in RNM. Section ?? recalls the
notion of family of tied quantized chains and apply the projected Kolmogorov-Smirnov test to the symbolic
chains obtained using the universal quantization suggested by this model. Section 6 uses a simple family
of tied Markovian chains to check the adequacy of our classification procedure. A general discussion
of the issues considered here and perspectives of future research are presented in Section 7. The data
sets and computer codes used in this paper can be obtained at the site www. ime.usp.br/~tycho/pro-
sody/sonority/K-S classification.



2 The data

In Galves et al. (2002) an index of local regularity of the speech signal was introduced under the name
of sonority. This is a mapping of the spectrogram of the acoustic signal into a function of time taking
values in the interval [0,1]. At each time step it is computed the relative entropy between neighboring
normalized columns of the spectrogram. A local average of these relative entropies is then mapped
through a fixed decreasing function to define the current value of the sonority.

Formally denote by c;(f) the power spectral density at time ¢ and frequency f. Time is discretized
in steps of 2 milliseconds. The values of the spectrogram are estimated using a 25 milliseconds Gaussian
window. Only frequencies from 80 Hz to 800 Hz, by steps of 20 Hz, were considered. The normalized
power spectral density is defined by

ct(f)

el

This defines a sequence of probability measures {p; : t =1,...,T}.
The sonority is defined as

pe(f) =

3
—n > h(pe | pe—i)
Sty=e = T
where h denotes the relative entropy between two probability measures and 7 is a free parameter taking
positive real values. Following Cassandro et al. we take n = 2.5. This choice was guided by empirical
considerations.
We recall that the relative entropy for the column p; with respect to the column p; ; is defined by

the formula
h (pe|pe-i) Zp 10g< _f&) (1)

The relative entropy is always a positive number (by Jensen’s inequality), and it is close to 0 when the
probability measures are similar.

Figure 3 shows the synchronized time evolutions of the pressure (top), of the spectrogram (middle)
and of the sonority (bottom) for a piece of a Japanese sentence.
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Figure 3: Graphs of the acoustic signal (top), spectrogram (middle) and sonority (bottom) for a Japanese
utterance. The horizontal axis represents time.



The definition of the sonority is motivated by the fact that regular patterns characteristic of sonorant
spans typically will correspond to sequences of probability measures which are close in the sense of relative
entropy. Therefore if the window around time ¢ covers a region of the acoustic signal which is regular, and
therefore sonorant, then S(t) will be close to 1. In contrast, regions in which the acoustic signal present
a chaotic behavior, for instance regions corresponding to stop consonants, will correspond to intervals in
which S(¢) will assume values close to 0, with important variations.

The spectrograms used in the present analysis were produced by the software Praat (www.praat.org).
The computations of the sonority from the spectrogram and some basic statistics were carried out using
the Free software Piccolo developed by Jesus Garcia.

The linguistic data we use in the present article is the one analyzed in the Ramus et al (1999). It is a set
of 160 sentences from eight different languages : English, Polish, Dutch, Catalan, Spanish, Italian, French
and Japanese. For each language a set of of 20 sentences was selected among 54 sentences controlled
with respect to the number of syllables (from 15 to 21) produced by 4 female speakers. The selection of
the sentences was justified by the need to eliminate outliers produced by different rates of speech. To
achieve this goal Ramus et al. selected the sentences whose duration is closer to the mean duration of the
sentences with the same number of syllables in the set. The sentences were read in a soundproof booth,
were low-pass filtered and digitized at 16 kHz and recorded directly in the hard disk. This multi-lingual
corpus belongs to the Laboratoire de Sciences Cognitives et Psycholinguistique (EHESS/CNRS).

3 The projected Kolmogorov-Smirnov test

Kolmogorov-Smirnov type goodness of fit test has been broadly studied for one dimensional data. How-
ever, once we leave the one dimensional setting, the problem becomes a much more difficult task, and
there are no quite satisfactory results even for two dimensional data. Recently, Cuesta-Albertos, Fraiman
and Ransford (2004) have proposed a way to tackle this problem in the infinite dimensional space. The
ideas of the results are based on one dimensional projections. In particular, in that paper, a Kolmogorov-
Smirnov type goodness of fit is derived, which roughly speaking is based on performing a one dimensional
Kolmogorov-Smirnov test for the projections of the data on a randomly selected direction.

In this paper we will use these results to study the sonority sample paths from the linguistic data.
The procedure is based on the following theorem presented in Cuesta-Albertos et al. (2004). In the
statement of the theorem P, stands for the distribution of the projection of P on one-dimensional
subspace spanned by .

Theorem 3.1 (Cuesta-Albertos, Fraiman and Ransford, 2004). Let H be a separable Hilbert
space, and let X be a non-degenerate Gaussian measure on H. Let P, Q) be Borel probability measures on
H. Assume that:

o the absolute moments of P, m,, := [ ||z||" dP(z), n € IN, are finite and satisfy Carleman’s condition

—1/n __ .
E mn/ =0;

n>1

o the set {x € H : P,y = Q(4)}, is of positive \-measure.
Then P = Q.

To apply the above theorem in the classification of the sonority samples, we will consider each sonority
path as the realization of a given probability measure defined on the Hilbert space of square integrable
functions. This is natural since the sonority sample paths are positive bounded functions. To put all the
sonority sample paths in the same L space, we will only consider the sample paths in a fixed interval of
time [0, 7. This means that in what follows we consider the Hilbert space H = L?([0, 7).

Let £ denote the set of 8 languages under consideration. For each [ € L, denote by U; the set of
recorded sentences from language [ in the corpus. It will be convenient to use the representation

U=A{Ui:i=1,...,m},



where (I,i) denotes the " recorded sentences of language [ in the corpus and n; is the total number of
recorded sentences of language [. Denote by

SED = (8ED (1)) ocpar

the sonority time evolution of sentence (I,7). We assume that the sonority time evolutions corresponding
to the different sentences (I,4) € U; are independent realizations of the same stochastic process

St = (S(t))o<t<r -

We will assume that these processes are stationary and ergodic. We will also assume that these processes
are defined on the same, rich enough probability space.

We will be concerned with two-sample goodness of fit problems. To be more precise, for any language
leLlet

S={st:i=1,...,m}

be the sample with all the sonority sample paths corresponding to the sentences in ;. Now take two
different languages [ # I’ and consider the samples S; and Sy. We want to check whether the two samples
come from the same population. This means to decide between the null hypothesis P! = P¥' against the
alternative hypothesis P! # P! where P! and P" stand for the probability laws of the processes S' and
SU respectively.

Following Cuesta et al.(2004), we will use the following procedure to perform the two-sample test.

e First choose at random a realization of a standard Brownian motion W = (W (t))sc[o,77- We assume
without loss of generality that this Brownian motion is defined in the same probability as the family
of sonority processes. The realization of the Brownian motion will play the role of random direction
in which we will project the sonority.

e Then calculate the two samples projected Kolmogorov-Smirnov statistic

nyny 1 L i 1 - '
Dw (S, Si) = =518 Wy <2y — — S 1{(sED W) <z} . (2
w (St Sir) smuer]) F——— m; {« ) <=z} nl; {« ) <az}. (2

In equation (2), {-,-) denotes the usual inner product in the Hilbert space L?([0,T)
T
(S0 W) = / SUD @1y (t)dt
0

and n; and ny are the sizes of the samples S; and Sy respectively.

e Reject the null hypothesis if Dy (S;, Sy) is large enough. Otherwise accept it.

The big advantage of this test is that, under the null hypothesis, if the common distribution has
continuous projections, then the distribution of Dy (S;,Syr) does not depend on the realization W of
the Brownian motion. Moreover, even without the continuity hypothesis, the asymptotic distribution of
Dw (81, Srr) does not depend on the realization W and it is known to be

lim P{Dw(S,Sr)<t}=1- 22(—1)’“"‘1@_2’“2” .
k=1

niAny;—oo

Therefore, given a level a, we can find ¢,, such that

lim P {DW(SI,S,:) > Ca} =a,

niAn; —oo

for an asymptotic a-level conditional test.
The test is consistent, i.e. under the alternative hypothesis P! # P! we have

lim P{Dw(S,Sr)>ca}=1

ngAny —oo

for almost all realizations W of the Brownian motion.



4 Statistical analysis of the sonority data

The application of the projected Kolmogorov-Smirnov test to the sample of sonority sample paths is
made more difficult by the small size of the sample (only 20 sentences for each language). An additional
difficulty comes from the short length of the sonority sample paths. In effect, the length of the original
sentences is between 1 and 3 seconds. The sentences have been digitized with a sampling rate of 16
kHz. Finally their sonority was computed in steps of 2 milliseconds. Therefore the shortest sonority path
has only 800 values. To have all the paths in the sample with the same length we will only consider
the first 800 values of each sonority path. Therefore in order to numerically implement the test, all the
calculations will be done with this finite grid, with discrete time ¢t =1, ..., 800.

To make the test more stable, instead of taking only one random direction we will take many of them.
For each pair of languages [ # I’ we proceed as follows.

e Choose N independent realizations W; : i = 1,..., N of the Brownian motion W = (W (t)):c[0,11-

e For each realization W, i = 1,..., N we test the null hypothesis P! = P at level n by projecting
the samples S; and Sy on direction W;, using the statistic defined in formula (2).

e For each realization W;, i = 1,..., N build up the auxiliary random variable Z;(l,1") which takes
the value 1 if the projected test rejects the null hypothesis, and takes the value 0 otherwise.

e Define the average value
N

- 1
20,1) =+ S 7L 1)
i=1

and reject the null hypothesis if Z(1,1') > ¢, .

. We recall that in our data set the size of the sample of sentences n; = 20 for any [ € L.

The question now is which is the value of ¢, which assures that we have a test of level a? The
auxiliary random variables Z;(l,1'),i = 1,..., N are equally distributed but not independent (since for
each of the N directions we use the same data from the languages). Therefore Zf\il Z;(1,1') is not a
binomial random variable and ¢, cannot be obtained from a binomial table.

To face this difficulty we will use a bootstrap procedure. We want a quantile of the distribution of
the sum of the Bernoulli variables for a given language [ under the null hypothesis. To do this, we first
fix the N directions we have chosen to perform the projected test. Next we bootstrap the statistic Z(I,1)
under the null hypothesis. We proceed as follows. For each bootstrap replication, build up a pair of
independent bootstrap samples of S;. Now we compute the statistic on the two bootstrap samples and
obtain the bootstrap statistic Z*(1,1).

More precisely we proceed as follows.

e Fix the N independent realizations W; : ¢ = 1,..., N of the Brownian motion W = (W (t));¢[0,7]-

e For each b =1,..., B, choose independent and uniformly distributed random indices taking values
in the set {1,...,20} I? and J?, i = 1,...,20. With these indices construct the two bootstrap
samples

s = {50 =1, 20}

and Tb = {S(I,J?) L= 1,...,20} .

e For each realization W; compute Dyy,(S;"", 7,") and define the corresponding Z**(I) as 1 if the
test rejects the null hypothesis at level  and as 0 otherwise.



e Define the average of the bootstrap auxiliary random variables
1N
70 =5 2200
i=1

and define ¢ () as the 1 — a quantile of the vector

Z*Y10), ..., Z2%B(1,1).

In this way we obtain a bootstrap critical value ¢ () for each language I. To perform a two sample test
for two given languages | # I' we will use the maximum between ¢%(I) and cX(I') as critical value.

We applied the test to each pair of languages, with N = 100, B = 1000, = 0.05 and for a = 0.1
and a = 0.05. Table 1 reports the result of the test for each pair of languages. In the table entry (I,1")
presents the value of Z(I,1'). The critical values calculated via bootstrap are reported on the last two
columns and the last two rows. The critical values c}(I) appears both at entries (I,c%(l)) and (c5(1),1).
The test rejects the null hypothesis P! = P! at level a when the value at entry (I,') is larger than
max{cX(l),cx(l')}. To simplify the lecture of the table, we present in boldface the entries in which the
test at level a = 0.1 rejected the null hypothesis of equality of the two populations.

language | pol ital fren span dut eng cat | Eos(l) g1 (0)
jap 0.04 043 0.09 0.08 077 0.74 0.01 0.13 0.06

pol 0.03 0.0 0.0 060 0.21 0.03 0.13 0.05
ital 0.03 0.02 014 00 0.05 0.13 0.05
fren 0.0 050 019 0.06 0.12 0.06
span 0.41 0.08 0.03 0.11 0.05
dut 0.0 0.74 0.14 0.05
eng 0.58 0.12 0.04

o) | 013 013 012 011 014 012 0.12
¢g,() 1005 005 006 005 005 004 0.05

Table 1: Values of Z(I,1') and bootstrap critical values for N = 100, B = 1000 and n = 0.05. Significant
differences appear in boldface.

We observe that at level a = 0.1, if we only consider six languages (Dutch, English, French, Italian,
Japanese and Spanish) the test produces three clusters. The first cluster contains French, Italian and
Spanish. The second cluster contains Dutch and English. Finally Japanese appears isolated as the test
rejects the null hypothesis that the Japanese sample and any one of the other five samples have been
produced with the same law. This clustering is compatible with the linguistic conjecture which classifies
Dutch and English as stress-timed languages, French, Italian and Spanish as syllable-timed languages
and Japanese as a mora-timed language.

The situation is less clear with respect to Catalan and Polish. The test accepts at both levels o = 0.05
and a = 0.1 the null hypothesis of identity of Catalan with any of the other languages, with the exception
of Dutch and English. This would go in the direction of considering that mora-timed languages are
actually super-syllable timed languages, and this is linguistically appealing. However this is incoherent
with the distinction between Italian and Japanese at both levels .05 and .1.

A similar result is obtained with Polish. The test accepts the identity between the law of Polish with
all the other languages, with the exception of Dutch and English.

Based on these remarks we will perform a new test by grouping the sonority sample paths in three
groups. In the first group we put together the 60 sonority sample paths of the conjectured syllable-timed
languages, French, Italian and Spanish. The second group contains the 40 paths of the conjectured stress-
timed languages, Dutch and English. Finally the 20 sonority paths of Japanese, which is conjectured to
be a mora-timed language, remain in a third group.



We perform the projected test in the same way as before, now having as null hypothesis that groups
i and j are samples from the same population, for each pair 7 # j, with 4,7 = 1,2,3. Table 2 shows the
results obtained with N = 100, B = 1000 and 1 = 0.05. We only report the result at level a = 0.05
which is highly significant.

category mora-timed stress-timed | ¢ o5(4)
syllable-timed 0.32 0.70 0.24
stress—timed 0.82 0.09
& 0s) 0.06 0.04

Table 2: Values of Z(i,j) and bootstrap critical values for the three groups, with N = 100, B = 1000 and
n=0.05

Table 2 shows that the test found significant all the differences between groups. This second test
reinforces the linguistic conjecture of existence of three different rhythmic classes. However, this second
test was done with the sonority data of only six languages. The case of Catalan and Polish requires
further analysis. We will return to this point in the final section.

5 Statistical analysis of the quantized sonority

The notion of family of tied quantized chains was introduced in Cassandro et. al. (2005) as a model for
the sonority time evolutions of a family of languages. The basic assumption of the model is the following.

Assumption There exist a positive integer N and an increasing sequence of cut-points ¢co =0 < ¢; <
... <cn < cng1 =1 and N 4+ 1 probability measures 7, j = 0,..., N, such that the support of 7; is
contained in the interval I; = [¢;,cj+1[ and that at any time step ¢ and for any [ € £ we have

P{S; € B|S; € I;} = m;(B), 3)
where B is any Borel subset of [0, 1].

Here we are using the same notation as in section 3, namely S' = (S'(t))o<i<7 is the stochastic
process which correspond to the sonority time evolution of language [ and £ is the set of eight languages
represented in our sample.

By assumption, the cut-points c¢; and the probabilities 7;, j = 0,..., N are independent of I. The
intervals I; will represent regions of different sonority levels.

The universal cut-points suggest the following natural quantization of the sonority process S!. Let
(Xf) +cz De the chain taking values on the finite alphabet 4 = {0,..., N}, defined as follows

X;j=j if Slel;.

This chain tells which regions are successively visited by the sonority time evolution. The assumptions
on (S!) imply that the chains (X}) are stationary and ergodic. Call

P =P{X{ =i},

the stationary marginal probability distribution of the chain.

The linguistic intuition behind this model is that all the linguistic relavant information concerning
language | should be retrieved from the symbolic chain (X}). In this model the universality of the
sonority regions and the corresponding probability distributions mimics the fact that the physiological
features of the speech production apparatus are common to all human beings and therefore are language
independent.



Cassandro et. al. (2005) introduced the following consistent procedure to estimate the universal
cut-points ¢;. For any pair of languages I #1', any T > 1 and any r € [0, 1] define

Wi () = |Fp(r) = Fp. ()],
where
~ 1 &
Py =72 {st<7)
is the empirical marginal distribution of the sonority process (S});>o. Define also

Eqé’l’ = inf {v € [0,1] ‘I//.V\%’ll (v) = sup W%’l’ (r)} .

Theorem (Cassandro et al. 2005). Assume that each probability 7; has no atom and that its support

is the full interval I;. Tf p!(j) # p' (j), for any j € A, then qu’l' converges almost surely to one of the
universal cut-points, as T' diverges.

To use the theorem when N > 2, Cassandro et al.(2005) consider the maxima of the empirical
conditional functions qulll (r] [ai, b;]) where the open intervals (a;, b;) form a covering of (0,1). With this
procedure, they identified four cut-points, which are estimated as ¢; = 0.19, ¢o = 0.46, ¢3 = 0.67 and
cs = 0.93.

Let us now apply the projected Kolmogorov-Smirnov test to the symbolic chains (Xé)
values in the alphabet A = {0,1,2,3,4} obtained from this quantization.

To have the data in the same functional space as before, we identify each symbolic chain produced
by the quantization with a step function. Then we proceed as before, using the same N = 100 random
directions, and doing exactly the same bootstrap procedure as in section 4 with B = 1000 and 5 = 0.05.
Table 3 shows the results of the tests. As before, table entry (I,1') presents the value of Z(I,1'). The
critical values calculated via bootstrap are reported on the last two columns and the last two rows.
The test rejects the null hypothesis P! = P! at level a when the value at entry (I,1') is larger than
max{cy(l),cs(!")}. To simplify the lecture of the table, we present in boldface the entries in which the
test at level @ = 0.1 rejected the null hypothesis of equality of the two populations.

tcZ taking

language | pol ital fren span dut eng cat | Eos(l) g1 (0)
jap 0.04 034 0.07 0.08 079 0.73 0.02 0.15 0.06

pol 0.07 0 0 0.73 0.26 0.04 0.13 0.05
ital 0.03 0.02 0.12 0 0.02 0.18 0.08
fren 0 0.48 0.09 0.03 0.14 0.07
span 0.37 0.05 0.02 0.13 0.06
dut 0.01 0.67 0.11 0.06
eng 0.5 0.11 0.04

os() [ 013 018 014 013 011 011 0.14
¢, () 1005 008 007 006 006 004 0.06

Table 3: Values of Z(1,1') and bootstrap critical values for N = 100, B = 1000 and n = 0.05. Significant
differences appear in boldface.

With just the exception of entry (Spanish, English) all the other tests for the quantized chains give
exactly the same results as the test with the sonority paths. Moreover the values at each entry are very
close in both tables 1 and 3. This supports the idea that the quantized chains summarizes the relevant
information conveyed by the sonority paths. The discussion of this issue was the second goal of this

paper.
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6 A simulation study

In this section we will present a very simple family of Markov chains which mimics in a very realistic way
the behavior of the family of quantized sonority chains derived from the data. The goal of the section is
to provide additional evidence of the validity of our approach. As a by-product we obtain an interesting
simple model for the complex linguistic data.

In our model the quantized chains (X}) will be Markov chains with two states 0 and 1, representing
the low and high sonority zones, respectively. The transition probabilities will be denoted by

P(X{=y|X|_, ==z) =p'(y|z) i,j €{0,1},

while the invariant probability measure P(X} = ) will be denoted by p'(z), for i = 0,1. We will assume
that

#'(0[0) = p(0]0)

is the same for all languages, while the invariant probability measure p’(), will depend on language .
Obviously this choice determines uniquely the value of the other probability transitions of the chain.
Furthermore we will only consider three languages (English, Spanish and Japanese) selected from the
three conjectured rhythmic classes.

The choice of only two regions instead of the five regions suggested by the analysis developed in
Cassandro et al(2005) aims to make the model as parsimonious as possible, with only a parameter p’(1)
distinguishing the different chains in the family. Actually, this choice is reminiscent of the basic binary
linguistic classification of phonemes in two main types: consonants (which have small sonority) and vowels
(which have high sonority).

To obtain a binary quantization out from the data, we re-codify the empirical quantized chains, by
replacing the former symbols 0,1 and 2 by symbol 0 and the former symbols 3 and 4 by symbol 1. Now we
use the re-codified sequences to estimate the parameters by the usual likelihood method. More precisely,
let R be the subset of £ containing only the the three chosen languages, English, Japanese and Spanish.
Assuming that the parameter p(0|0) is the same for all languages, then its estimated value $(0|0) is just
the percentage of all transitions from 0 to 0 in all languages, i.e

(1,4) i R
Yier Lt 1 {Xt(fl) =0,x") = ()}

A0[0) = e W e | @
DoieR 2aimt 2otmz 1 {Xt(—’? = 0}

The parameter p!(1) is estimated for each language as the percentage of time the binary sequence corre-
sponding produced by language [ visits state 1, i.e

Zle’R 2?21 tT:(l1) 1 {Xt(l’i) = 1}
- Zle’R 2?21 T

#(1) ()

In formulas (4) and (5) we denoted Xt(l’i) the binary symbol codifying the sonority value of sentence (I, 1)
of language [ at time ¢ and T(% is total length of sentence (I,i). The estimated values are reported in
Table 4.

! p'Q)

p(0]0) English | 0.940
0.93 Spanish | 0.945
Japanese | 0.950

Table 4: Mazimun likelihood estimates for the parameters of the Markov model.
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We want to check the ability of the projection test to discriminate the samples of the three Markov
chains presented above. For each [ € R we generate 50 independent realizations of length 6000 of the
Markov chain (X!). Here (X!) stands for the Markov chain defined by the parameter p'(1) together
with the common probability transition p(0|0). Then we perform the projected Kolmogorov-Smirnov
test using a unique direction, generated by a discrete version of the Brownian motion. We repeat the
procedure 500 times. The null hypothesis is that the for each pair I # I’ of languages in R, the samples
produced by (X?) and (X!') have the same law. Table 5 reports the the percentage of the 500 replications
in which we do not reject the null hypothesis.

English | Spanish | Japanese
English 0.96 0.36 0.13
Spanish 0.97 0.29
Japanese 0.96

Table 5: Percentage of times in which we do not reject the null hypothesis among the 500 realization of
X

Finally, for each [ € R, we will compare the sample with the empirical binary sequences (Xé’i,t =
1,...,800), for 1 = 1,...,20 with a sample of 20 independent realizations of length 800 of the Markov
chain (X}) generated with parameters presented in Table 5. Notice that in order to have realizations of
the empirical and simulated chains with the same length we only considered the first 800 steps of the
empirical chains. The choice of 800 follows from the fact that the minimal length of the empirical chains
in the sample is precisely 800.

For each simulated sample we perform the projected Kolmogorov-Smirnov test using just one random
direction generated by a discrete version of the Brownian motion. The null hypothesis is that the
simulated and the real binary chains for each language have the same law. We consider 500 independent
realizations of the samples of the Markov model, and for each one of the realizations we test the null
hypothesis that the simulated sample and the empirical sample have the same law. Table 6 summarizes
the results of the tests. The first column presents the average p-values obtained with the 500 replications.
The second column shows the percentage of the replications in which we reject the null hypothesis.

Average p-value | Rejection %
English 0.51 0.04
Spanish 0.65 0.01
Japanese 0.45 0.11

Table 6: Goodness of fit of the Markov model

The goal of this comparison is to investigate the adequacy of the order one Markov approximation
to the law of the symbolic linguistic chains. The general conclusion is that this very simple Markovian
is quite adequate for the languages we consider. However it is also clear that the Markovian model fits
better the empirical English sequences than the empirical Japanese sequences. We will further develop
this analysis in the final discussion.

7 Discussion
The main purpose of the present paper was to give a sound statistical basis to the claim rhythmic class
discrimination using the sonority suggested in Galves et al. (2001).

The idea of studying the law of the one-dimensional projection in a direction chosen at random is
reminiscent of the classical projection pursuit method in multivariate analysis. The difference is that
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in our case the directions are chosen at random, according to a non-degenerate Gaussian probability
distribution. In this way, we are able to use the results in Cuesta et al (2004), that provide a consistent
projected Kolmogorov-Smirnov test.

In our study, in order to make stable the projected Kolmogorov-Smirnov test we have used many
directions chosen at random instead of just one. This has already been suggested in Cuesta et al (2004).
A possibility considered there is to take

D(S1, S )™ i=pax1<i<n Dw; (S, Sr),

the maximum of the projected one-dimensional Kolmogorov—Smirnov statistics over the N directions.
Instead of the maximum of the projected one-dimensional Kolmogorov-Smirnov statistics over the N
directions, in this paper we take the average of the auxiliary variables Z;,i € 1,... N taking value 1 if the
projected Kolmogorov-Smirnov test rejects the null hypothesis at level 5 on the random direction W;, and
0 otherwise. This second way to make the test more stable, using many random directions, has shown in
our case to work better. Notice that a drawback of both approaches is that we lose the distribution-free
property, since the distribution of D(Sl,Slr)[N ] will depend on the covariance function of the common
underlying distribution. However, a bootstrap procedure is implemented to overcome this problem.

If we consider only six languages (Dutch, English, French, Italian, Japanese and Spanish)the test
based on the sonority paths suggest the existence of three clusters. The first one contains French, Italian
and Spanish. The second one contains Dutch and English, while Japanese appears isolated as a third
cluster. This clustering is compatible with the linguistic conjecture which classifies Dutch and English
as stress-timed languages, French, Italian and Spanish as syllable-timed languages and Japanese as a
mora-timed language.

The results in Table 2 reinforces the linguistic conjecture of the existence of three different rhythmic
classes. The differences between groups found by the test are strongly significant for each pair.

The case of Catalan and Polish requires further analysis. Both languages can only be distinguish
from Dutch and English by our test. On one hand, this would go in the direction of considering that
mora-timed languages are actually super-syllable timed languages, and this is linguistic appealing. On
the other hand, this is incoherent with the distinction between Italian and Japanese at both levels .05
and .1. A possible explanation of this phenomena is that the phrases chosen in Ramus et al (1999),
have still a great variability for each language, particularly within this two languages. A more detailed
study based on a different criteria to select a subset of phrases of each language will be considered on a
forthcoming paper.

The two models considered seems to be reasonably adequate.

With the data from the tied quantized chains we mainly replicate the results obtained with the sonority
paths, except for the comparison between Spanish and English. Observe that the results in Table 3 are
almost the same as in Table 1.

In the simple Markovian model used in the simulation presented in section 6 we used only two regions
instead of the five regions suggested by the analysis developed in Cassandro et al (2005). This simplifi-
cation aimed to make the model as parsimonious as possible, with only a parameter p!(1) distinguishing
the different chains in the family. Actually, this choice is reminiscent of the basic binary linguistic clas-
sification of phonemes in two main types: consonants (which have small sonority) and vowels (which
have high sonority). The fact this simplified model behaves in a realistic way raises the question of the
necessity of the model with 5 symbols. This issue is discussed in a forthcoming paper.

To have a closer look at the sensibility of the method when the parameters are close, instead of
increasing the sample size we have increase the length of the sonority sample paths S} from 800 to 6000,
(t =1,...,6000). The sample sizes was 50 realizations for each language and we perform 500 replications.
The results were reported in Table 5. With a sample path of length 800, the problem becomes harder,
in particular when the values of the parameters are very close, like for Spanish and English, or Spanish
and Japanese.

The fact that a simple Markovian model with just one free parameter succeeds that well to fit the
linguistic empirical binary sequences is remarkable.
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It is clear that since the parameters associated to the three different languages by this simple order

one Markov chain model are very close we will need large samples of the chains to achieve this task.

8
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