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Context TreeEstimationfor
Not NecessarilyFinite Memory Processes,

via BIC andMDL
Imre Csisźar, Fellow, IEEE, andZsolt Talata

Abstract— The conceptof context tr ee,usually definedfor finite
memory processes,is extended to arbitrary stationary ergodic
processes(with finite alphabet). These context tr ees are not
necessarilycomplete,and may be of infinite depth. The familiar
BIC and MDL principles areshown to provide strongly consistent
estimators of the context tr ee,via optimization of a criterion for
hypothetical context tr eesof finite depth, allowed to grow with the
sample size � as � ������� �
	 . Algorithms are provided to compute
theseestimators in � � ��	 time, and to compute them on-line for
all 
�� � in � � � ����� �
	 time.

Index Terms— Bayesian Inf ormation Criterion (BIC), consis-
tent estimation, context tr ee,Context TreeMaximization (CTM),
infinite memory, Minimum Description Length (MDL), model
selection.

I . INTRODUCTION

I N this paper, processalways meansa stationaryergodic
stochasticprocesswith finite alphabet.Processesareoften

describedby the collection of the conditional probabilities
of the possiblesymbolsgiven the infinite pasts.When these
probabilities depend on at most � previous symbols, the
processis a Markov chainof order � .

Thenumberof parametersof a generalMarkov chaingrows
exponentiallywith the order. A more efficient descriptionis
possibleif thestringsdeterminingtheconditionalprobabilities
– referredto as contexts – are of variablelength, sometimes
substantiallyshorter than the order � . Models of this kind
and the term context tree dateback to Rissanen[10]. These
modelsare also called finite memorysourcesor tree sources
[13], [14], [16] or variablelengthMarkov chains[3]. We note
that the termscontext andcontext treeappearin the literature
in varioussenses.Here, the context tree of a finite memory
processmeans,in effect, the minimal tree admitting a tree
sourcerepresentationof the process;the exact definition will
be given in SectionII.

As indicatedabove, thecontext treemodelis typically used
to more efficiently describecertain Markov chains(of finite
order � ) and,accordingly, the context treehasfinite depth � .
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In this paperwe drop the finite depthrequirement,admitting
also non-Markov processes.The term “infinite-depth context
tree” appearsin [18] in a different sense,as a tree assigned
to an observed sequence,with an “indeterminatesymbol” �
such that infinitely many � ’s may precedea finite number
of symbols of the true alphabet.A conceptof generalized
context tree,see[8] andreferencesthere,admitsedgeslabeled
by strings rather than single symbols. That concept is not
used here, but similarly to [8] we drop the completeness
requirement,often madein the literature, that eachnon-leaf
nodeof the context treehasasmany childrenasthe alphabet
size. If some strings have zero probability for the given
process,thesecan not be contexts, and then the context tree
neednot be complete.

We addresstheproblemof statisticalestimationof thecon-
text treein theindicatedgenerality, basedon anobservedfinite
realizationof the process,of length ����� . This task, for
finite depthcontext trees,hasbeenconsidered,amongothers,
in the referencesabove. Variantsof Rissanen’s [10] “context”
algorithmarepopular. In particular, BühlmannandWyner [3]
proved the consistency of suchan algorithm not assuminga
known prior boundon the depthof the context tree,but using
a bound allowed to grow with � . They assertedthat stan-
dardstatisticalmethodsasthe BayesianInformationCriterion
(BIC) of Schwarz [12] and the Minimum DescriptionLength
(MDL) principle of Rissanen[11], [2] were inappropriatefor
context tree estimation,due to computationalinfeasibility of
comparinga very large numberof hypotheticalmodels.Still,
Willems, Shtarkov andTjalkens[15], [17] showed that time-
consumingcomparisonscanbe avoidedby clever useof tree
techniques.Their Context TreeMaximizing (CTM) algorithm
computesin linear time the context tree estimatorobtained
by the version of MDL that usesthe Krichevsky–Trofimov
(KT) codelength[7], and this estimatoris consistent,as they
proved assuminga known upper bound on the depth of the
context tree.Similar resultswereobtainedalsoby Nohre[9].
Recentresultson consistentcontext tree estimationin linear
time, assumingfinite depthbut no known upperboundon it,
appearin [1], [8]. Thesereferencesusetoolsasthe Burrows–
Wheelertransformor generalizedcontext trees.

We arenot awareof prior resultson context treeestimation
via BIC. While BIC is commonlyregardedasan approximate
versionof MDL, this is justified only when a finite number
of modelclassesis considered,see[4]. We notethat muchof
the literatureof context treemodelsis motivatedby universal
sourcecoding. In particular, CTM is a modification of the
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celebratedContext TreeWeightingdatacompressionalgorithm
of Willems,

�
Shtarkov andTjalkens[16].

In this paper, we prove thatbothMDL with KT codelength
andBIC provide stronglyconsistentestimatorsof the context
tree if the set of candidatecontext treesis suitably chosen;
finitenessor completenessof the true context tree is not
required.Moreover, theseestimatorscan be implementedin
linear time. The setof candidatecontext treesis specifiedby
a boundon the lengthof thehypotheticalcontexts, allowed to
grow as �������! "�$# , andin onecaseby anadditionalconditionon
their occurrencesin the observed sample.Strongconsistency
meansin the finite depthcasethat the estimatedcontext tree
is equalto the true one,eventuallyalmostsurely as �%�&� ,
while otherwise,that the estimatedcontext tree truncatedat
any fixed level is equalto the true one truncatedat the same
level, eventuallyalmostsurelyas �'�(� .

For order estimationof Markov chains, it is well known
that BIC and MDL, both with the KT and the Normalized
Maximum Likelihood (NML) codelength,are strongly con-
sistentwhen the numberof candidatemodel classesis finite,
that is, when thereis a known upperboundon the order [6].
Theconsistency of theBIC orderestimatorwithout suchprior
boundhasbeenprovedby Csisźar andShields[4]. Thatpaper
also containsa counterexampleto the consistency of the KT
andNML versionsof MDL without any boundon the order,
or with a bounddependingon the samplesize � , equal to a
sufficiently large constanttimes �)�* +� . The consistency of the
latter orderestimatorswith bound ���,�)�* +�$# resp. -.�����! +�$# on
the orderwasproved by Csisźar [5].

Linear time implementationof our context tree estimators
is achieved via the CTM method[15], [17]. This has been
developed for the KT version of MDL, it appearsa new
observation that also the BIC estimatoradmits a CTM-like
implementation.Thesamedoesnot seemto hold for theNML
versionof MDL, this is why the latter is not consideredin this
paper.

By our consistency result, if the context tree of a process
hasfinite depth,it canbeexactly recovered,with probability / ,
whenthesamplesizeis largeenough;thesamplesizeactually
neededremains,however, unknown. A heuristicrule might be
to stop when the estimatedcontext tree “stabilizes”, that is,
it remainsunchangedwhen the samplesize � runs over a
large interval. The last result in this papershows that (slightly
modifiedversionsof) our estimatorscanbe calculatedon-line
in sucha way that ���,�0�)�* "�$# time suffices to calculatethem
for all samplesizes1+23� . This impliesthattheabovestopping
rule can be implementedwith only a small incrementin the
orderof requiredcomputations.

The structureof the paper is the following. In SectionII
we introducethe notationand definitions,and formulate the
resultsfor the BIC estimatorand KT estimatoraboutstrong
consistency and computationalcomplexity. In SectionIII we
provetheconsistency theorems.In SectionIV we introducethe
algorithmsfor calculatingthe estimators,and establishtheir
claimedcomputationalcomplexity bothfor off-line andon-line
calculations.SectionV containssomeremarkson the results.

I I . NOTATION AND STATEMENT OF THE MAIN RESULTS

For a finite set 4 we denoteits cardinalityby 5 465 . A string798;:=<9:=<?>�@BA�ACAD:=E (with :=FHG 4 , IJ2K1"2K� ) is denotedalso
by : E< ; its length is LD� 7 # 8 �NMOIQPR/ . The empty string is
denotedby S , its length is LT�US0# 8WV . The concatenationof
thestrings X and Y is denotedby X�Y . We saythata string Y is
a postfixof a string 7 , denotedby 7[Z Y , when thereexists a
string X suchthat 708 X�Y . For a properpostfix, that is, when7]\8 Y , we write 7_^ Y . A postfix of a semiinfinitesequence:
` @`ba 8cA�ACAd: `fe ACACAd: ` @ is definedsimilarly. Note that in the
literature ^ moreoftendenotestheprefix relation.Also, often
the term suffix is usedinsteadof postfix.

A set g of strings, and perhapsalso of semiinfinite se-
quences,is calleda tree if no 7h@9G g is a postfixof any other7�i0G g .

Each string 7j8k: e@ G g is visualizedas a path from a
leaf to the root (drawn with the root at the top), consisting
of � edgeslabeledby the symbols :l@BA�ACAT: e . A semiinfinite
sequence: ` @`fa G g is visualizedas an infinite path to the
root, seeFig. 1. The strings 7mG g areidentifiedalsowith the
leavesof the tree g , leaf 7 is the leaf connectedwith the root
by the pathvisualizing 7 asabove. Similarly, the nodesof the
tree g are identified with the finite postfixes of all (finite or
infinite) 7[G g , the root beingidentifiedwith the emptystringS . The children of a node 7 are thosestrings :=7 , :nG 4 , that
are themselvesnodes,that is, postfixesof some 7�ofG g .

The tree g is complete if each node except the leaves
has exactly 5 465 children. A weaker property we shall need
is irreducibility, which meansthat no 76G g canbe replaced
by a proper postfix without violating the tree property. The
family of irreducibletreeswill be denotedby p .

Denote q���g6# the depth of the tree g : q
�rg6# 8sutwv�x LT� 7 #zy 7{G g}| . Let g�~~ � denotethe tree g truncatedat
level � :g ~~ � 8RxB7 of� 7 o G g with LT� 7 o #�2��

or 7 o is a �,��� -lengthpostfix of some 7[G g}| A (1)

Consider a stationary ergodic stochastic processx$� F y�M9���31+�}Pm��| with finite alphabet4 . Write� � : E< # 8��"� �*� x$� E< 8�: E< |!y
and, if 7mG 4 e has

� � 7 #�� V , write� � : 5 7 # 8��"� �*� x$�.��8�: 5 � ` @`be 8�7 | A
A processasabove will be referredto asprocess

�
.

Definition 2.1: A string 7_G 4 e is a context for a process�
if
� � 7 #�� V and�+� �!� x$�.��8;: 5 � ` @`ba 8}� ` @`ba | 8 � � : 5 7 #zy for all :nG 4[y

whenever 7 is a postfixof thesemiinfinitesequence��` @`ba , and
no properpostfixof 7 hasthis property. An infinite context is a
semiinfinitesequence� ` @`ba whosepostfixes � ` @`fe , � 8 /*y���y A�ACA
areof positive probability but noneof themis a context.

Clearly, the setof all contexts is a tree.It will be calledthe
context treeof the process

�
, denotedby g � .
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Remark2.2: The context tree g � has to be complete if� � 7 #�� V for all strings 7 . In general,for eachnode 7 of g �
which is not a leaf, exactly those :�7 , :{G 4 , are the children
of 7 for which

� � :=7 #0� V . Moreover, Definition 2.1 implies
that the context tree is always irreducible, g �mG p .

When the context tree has depth q
�rg � # 8 � � ��� , the
process

�
is a Markov chain of order � � . In this casethe

context treeleadsto a parsimoniousdescriptionof theprocess,
becausea collection of �d5 4�5�MR/�#C5 g � 5 transition probabilities
sufficesto describetheprocess,insteadof �D5 465rMn/�#�5 4�5 e�� ones.
Note that the context tree of an i.i.d. processconsistsof the
root S only, thus 5 g � 5 8 / .

Example2.3: (Renewal Process).Let 4 8 x�V yC/*| and
supposethat the distancesbetweenthe occurrencesof / ’s are
i.i.d. Denote�l� the probability that this distanceis � , that is,��� 8 � �T/ V � ` @ /h#D� � ��/�# . Thenfor �_�R/ we have

� ��/ V e�` @ # 8��/h� � ��/h#T#¡  aF�¢ e � Fu£�¤ e , � e 8 � ��/=5z/ V e�` @ # 8 � e � ¤ e . Let� � 8 � ��/�# £¥¤ � . Denote � � the smallestinteger such that� e is constantfor �{�;� � with ¤ e � V , or � 8 � if no such
integerexists.Thenthecontexts arethe strings / V F ` @ , 1"2}� � ,
and the string V e � (if � � �¦� ) or the semiinfinitesequenceV a (if � � 8 � ), seeFig. 1.

§ § § §¨ ¨ ¨ ¨
¨ ¨

© © ©
ª ª ª
/ V*V / V

/§ §ªV!V*V
§ § § §¨ ¨ ¨ ¨

¨ ¨
© © ©

ª ª ª
/ V!V / V

/§ §§ §§ § V a
� : # �¬«­#

Fig. 1. Context treeof a renewal process.®)¯�°�±C²H³]´ . ®)µ�°f±�²H³'¶ .

In this paper, we areconcernedwith the statisticalestima-
tion of the context tree g � from the sample� E @ , a realization
of � E@ . We demandstrongly consistentestimation.We mean
by this in the caseq���g � #��;� that the estimatedcontext tree
equalsg � eventuallyalmostsurelyas ���(� , while otherwise
that the estimatedcontext tree truncatedat any fixed level �
equals g � ~~ � eventually almost surely as �W� � , see (1).
Hereandin the sequel,“eventuallyalmostsurely” meansthat
with probability / thereexists a threshold � � (dependingon
the infinite realization � a @ ) such that the claim holds for all�%�K� � .

Let · E � 7 y : # denotethenumberof occurrencesof thestring7mG 4¹¸�º)»�¼ followedby theletter :_G 4 in thesample� E @ , where7 is supposedto beof lengthat most ½��,�$# , specifiedlater, and
– for technicalreasons– only thelettersin positions1+��½����$#
areconsidered:· E � 7 y : # 8 ~~~ ¾ 1 � ½��,�$#��K1+23�Hy � F ` @F ` ¸,º)»¿¼ 8�7 y ��F�8}:mÀ ~~~ A
The numberof suchoccurrencesof 7 is denotedby · E � 7 # :· E � 7 # 8 ~~~ ¾ 1 � ½��,�$#��K1"2K�Hy � F ` @F ` ¸,º)»¿¼ 8�7?À ~~~ A

Given a sample � E @ , a feasibletree is any tree g of depthq
�rg6#K2Á½��,�$# such that · E � 7 #��Â/ for all 7ÃG g , and
eachstring 7�o with · E � 7�o #Ä�Å/ is either a postfix of some7kG g or has a postfix 7kG g . A feasible tree g is
called Æ -frequent if · E � 7 #��ÅÆ for all 7KG g . The family

of all feasible respectively Æ -frequent trees is denotedbyÇ @ � � E @ yd½��,�$#D# respectively
Ç¹È � � E @ yD½����$#T# .

Clearly,ÉÊ�Ë*Ì · E � 7 y : # 8 · E � 7 # , and
É» Ë!Í · E � 7 # 8 �ÄMÎ½N�,�$#

for any feasibletree g . Regardingsucha tree g asthecontext
treeof a hypotheticalprocess

� o , theprobabilityof thesample� E @ canbe written as� o � � E @ # 8 � o � �
Ï º E ¼@ # Ð» Ë!Í+Ñ¬Ê�Ë*Ì � o � : 5 7 #�ÒBÓ º)» Ñ Ê ¼ A
With someabuse of terminology, for a hypotheticalcontext
tree g G Ç @ � � E @ yD½����$#T# we define the maximum likelihoodÔ�Õ Í � � E @ # as the maximum in

� o � : 5 7 # of the secondfactor
above, that is,Ô�Õ Í � � E @ # 8 Ð» Ë!ÍHÑ Ò Ó ºÖ»¿¼U× @ ÐÊ�Ë*Ì

Ø · E � 7 y : #· E � 7 #OÙ ÒBÓ º)» Ñ Ê ¼ A (2)

We investigatetwo informationcriteria to estimateg � , both
motivated by the MDL principle. An information criterion
assignsa scoreto eachhypotheticalmodel(here,context tree)
basedon the sample,and the estimatorwill be that model
whosescoreis minimal.

Definition 2.4: Given a sample � E @ , the BIC for a feasible
tree g isÚ�ÛDÜ Í � � E @ # 8 MÄ�)�* Ô�Õ Í � � E @ #�P �d5 4�5wMK/�#C5 g{5� ���! +� A
Logarithmsare to the baseÝ .

Remark2.5: Characteristicfor BIC is the “penalty term”
half the number of free parameterstimes �)�* "� . Here, a
process

�
with context tree g is describedby the conditional

probabilities
� � : 5 7 # , :ÞG 4 , 7�G g , and �D5 465�MÞ/h#C5 g_5 of

theseare free parameterswhen the tree g is complete.For a
processwith an incompletecontext tree, the probabilitiesof
certainstringsmustbe V , hencethenumberof freeparameters
is typically smallerthan �D5 465�MÄ/h#C5 g{5 when g is not complete.
Thus, Definition 2.4 involves a slight abuse of terminology.
We note that replacing �d5 4�5ßM;/�#d�à� in Definition 2.4 by anyá � V would not affect the resultsbelow and their proofs. In
the literature,context treesareoften requiredto be complete.
This canbeachievedby addingdummyedgesif necessary, but
this increasesthepenaltytermin Definition2.4,andtheanalog
of Theorem2.6 below appearsa weaker result for completed
context trees.

It is known [4] that for estimatingthe order of Markov
chains,the BIC estimatoris consistentwithout any restriction
on the hypotheticalorders.The Theorembelow doesneeda
boundon the depthof the hypotheticalcontext trees.Still, as
this boundgrows with the samplesize � , no a priori bound
on the size of the unknown g � is required, in fact, evenq���g � # 8 � is allowed. Note also that the presenceof this
bounddecreasescomputationalcomplexity.

Theorem2.6: In the caseq
�rg � #?�}� , the BIC estimatorâg=ãlä�å+� � E @ # 8;tà�  s.æ)çÍHËàè�é º�ê Ó é Ñ Ï º E ¼,¼�ë*ì Ú�ÛDÜ Í � � E @ #
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with ½����$# 8 �������! "�$# , satisfiesâg ãlä�å � � E @ # 8 g �
eventuallyalmostsurelyas ���(� .

In generalcase,this estimatorsatisfiesfor any constant�âg ãlä�å � � E @ #à~~ � 8 g � ~~ �
eventuallyalmostsurelyas ���(� .

Proof: SeeSectionIII.
Remark2.7: Hereandin Theorem2.10below, theindicated

minimum is certainlyattained,asthe numberof feasibletrees
is finite, but the minimizer is not necessarilyunique; in that
case,eitherminimizer canbe taken as t*�  s�æ)ç .

The other information criterion we consider is the
Krichevsky–Trofimov codelength[7], [16].

Definition 2.8: Given a sample � E @ , the KT criterion for a
feasibletree g isímî Í � � E @ # 8 M]���! "ï$ð$ñ Ñ Í � � E @ #zy
whereï�ð�ñ Ñ Í � � E @ # 8 /5 465 Ï º E ¼
Ð» Ë!Í%ò ÊCó Ò Ó º)» Ñ Ê ¼U×

@õôTö · E � 7 y : #BM @iß÷ ö · E � 7 y : #øMúùiß÷"ûCû�û ö @iß÷­üý · E � 7 #øMK/þPWÿ Ì ÿi�� ý · E � 7 #HM �¹PQÿ Ì ÿi�� û�ûCû ý ÿ Ì ÿi��
is the KT-probability of � E @ correspondingto g .

Remark2.9: The coding distribution ï$ð�ñ Ñ Í is nearly op-
timal for the classof processeswith context tree g , in the
sensethat the codelengths�¿M]�)�* +ï ð�ñ Ñ Í � � E @ #�� (using base �
ratherthanbaseÝ logarithm)minimize theworstcaseaverage
redundancy for this class,up to an additive constant.

For estimatingthe orderof Markov chains,the consistency
of the KT estimatorhas beenproved when the hypothetical
ordersare �������! "�$# [5], while without any boundon the order,
or with a bound equal to a sufficiently large constanttimes���! "� , a counterexampleto its consistency is known [4].

Theorem2.10: In the caseq���g � #?�}� , the KT estimatorâg ð�ñ � � E @ # 8�tà�  s.æ)çÍHËàè�é º)ê Ó é Ñ Ï º E ¼,¼�ë*ì ímî Í � � E @ #
with ½����$# 8 �������! "�$# , satisfiesâg=ð�ñ�� � E @ # 8 g �
eventuallyalmostsurelyas ���(� .

In generalcase,the KT estimatorâg=ð�ñþ� � E @ # 8�tà�  s.æ)çÍHËàè Ó�� º)ê Ó é Ñ Ï º E ¼,¼�ë*ì ímî Í � � E @ #
with ½��,�$# 8 �������! "�$# and arbitrary V �	�;� / , satisfiesfor
any constant� âg=ð�ñþ� � E @ #à~~ � 8 g � ~~ �
eventuallyalmostsurelyas ���(� .

Proof: SeeSectionIII.
Remark2.11: Strictly speaking,the MDL principle would

requireto minimize the “codelength”
ímî Í � � E @ # incremented

by an additionalterm, the “codelengthof g ” (called the cost

of g in [16]). This additionalterm is omitted,sincethis does
not affect the consistency result.

Corollary 2.12: The vector of the empirical conditional
probabilities,â��
Í � : 5 7 # 8 · E � 7 y : #· E � 7 # y :_G 4 y 7mG âgny
convergesto that of the true conditionalprobabilities

� � : 5 7 # ,: G 4 , 7ÄG g � almostsurely as �K� � , where
âg is either

the BIC estimatoror the KT estimator.
Proof: Immediate from Theorems2.6, 2.10 and the

ergodic theorem.

In practice, it is infeasible to calculate estimators via
computing the value of an information criterion for each
model, since the number of the hypothetical context trees
is very large. However, an algorithm in Section IV admits
finding theconsideredestimatorswith practicalcomputational
complexity.

We considerbothoff-line andon-line methods,in the latter
casewith a slight modification of the estimators.Note that
on-line calculationof the estimatoris usefulwhenthe sample
size is not fixed but we keep sampling until the estimator
becomes“stable”, say it remainsconstantwhen the sample
size is doubled.

As usual,see[1], [8], we assumethat the computationsare
donein registersof size -.�,�)�* þ�$# .

Theorem2.13: The numberof computationsneededto de-
terminethe BIC estimatorandthe KT estimatorin Theorems
2.6 and2.10 for a given sample� E @ is -.���$# , and this can be
achieved storing -.�,�
�h# data,where �6� V is arbitrary.

Proof: SeeSectionIV.
On-linealgorithmsareconsideredwith the following minor

modificationsof theestimators,which obviously do not affect
the consistency. In the BIC penaltyterm, �)�* "� is replacedby���)�* ÿ Ì ÿ �b�$�)�* õ5 4�5 , and in the secondkind of KT estimatorin
Theorem2.10

Ç E � � � E @ yd½��,�$#D# is replacedby
Ç È � � E @ yd½��,�$#D#

with Æ 8 Ý������ ����� ��� E�� . No modification is neededin the first
kind of KT estimatorwhoseconsistency hasbeenproved for
the caseq���g � #?�}� .

Theorem2.14: Suppose ½N�,�$# 8 ���,�)�* +�$# is a non-
decreasingfunction of � . Adopting the above modifications,
the number of computationsneededto determinethe BIC
estimatorin Theorem2.6or theKT estimatorin Theorem2.10,
simultaneouslyfor all subsamples� F @ , 1"2K� , is ���,�0�)�* "�$# , and
this can be achieved storing -.��� � # dataat any time, where�6� V is arbitrary.

Proof: SeeSectionIV.
Remark2.15: Of course,the -.�,� � # storagedoesnot in-

clude storageof the context tree estimatorsfor all 1N2k� ;
note that for the indicatedpurposeof decidingwhen to stop
sampling,it suffices to keep track of the last instancewhen
the estimatorhaschanged.

I I I . CONSISTENCY OF THE KT AND BIC ESTIMATORS

In this sectionwe prove the consistency theoremsstatedin
SectionII.
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Proof of Theorem2.6

It suffices to prove the secondassertionof the Theorem.
Fix an arbitraryconstant� . It sufficesto show that if g ~~ � \8g � ~~ � for some g G Ç @ � � E @ yD½����$#T#��'p then there exists a
modification g o of g alsosatisfying g o�G Ç @ � � E @ yd½��,�$#D#���p
suchthat Ú�ÛDÜ Í � � E @ #�� Ú�ÛDÜ Í�� � � E @ #zy (3)

simultaneouslyfor all consideredtrees g , eventually almost
surelyas �'�(� .

According to (2), the maximumlikelihood factorizesasÔ�Õ Í � � E @ # 8 Ð» Ë!Í! ï#"%$ Ñ » � � E @ #zy (4)

where

 ï "%$ Ñ » � � E @ # 8'& ò Ê�Ë*Ì)( ÒBÓ º)» Ñ Ê ¼ÒBÓ º)»¿¼+* Ò�Ó º)» Ñ Ê ¼ if · E � 7 #��R/*y/ if · E � 7 # 8�VlA
(5)

Using this andthe definition of BIC, seeDefinition 2.4, (3) is
equivalent toÉ» Ë!Í �)�*  ï "%$ Ñ » � � E @ #øM É» � Ë!Í � ���!  ï "%$ Ñ » � � � E @ #� �D5 465àM3/h#� �d5 g_5hM}5 g o 5 #=�)�* "� A (6)

Since g is a feasibletree by assumption,so is also g�~~ �
definedby (1). For � sufficiently large, so that · E � 7 #Ä� /
for all 7 with LT� 7 #¹2�� ,

� � 7 #?� V , it follows by Remark2.2
that g � ~~ � is feasible,aswell. Hence,the indirect assumptiong ~~ � \8 g � ~~ � implies that there exist strings ,7jG g ~~ � and,7 � G g � ~~ � suchthateither ,7.- ,7 � (underestimation)or ,7m^ ,7 �
(overestimation).Equivalently, thereexist 7 G g and 7C� G g �
such that either � : #uLD� 7 #'�J� , 7)-Å7�� or �¬«­#uLD� 7�� #��J� ,7C�.-}7 .

We claim that a modification g o of g with the required
propertiesis g o 8 �àg0/ xh7 |B#21  g (7)

in case � : # , with  g as in Lemma3.1 below, andg o 8 �àg0/  g #
1 x43 | (8)

in case �r«­# , with  g and 3 as in Lemma 3.2 below. The
propertiesof  g in Lemmas3.1, 3.2 immediatelyimply that
thecondition g ofG Ç @ � � E @ yD½����$#T#���p is satisfiedin bothcases� : # , �¬«­# (in case� : # , g ofG Ç @ � � E @ yd½��,�$#D# holdsby theergodic
theorem,eventuallyalmostsurelyas ���(� ). Thus,it remains
to check(6) for this choiceof g o .

In case � : # , for g o given by (7) we have 5 g{5
M 5 g o 5 8/9M�5  g_5 , and the left handside of (6) is equal to that of (9)
below. By Lemma3.1, the latter is lessthan M á � , eventually
almost surely as �Â� � , and thus (6) certainly holds.
Regarding simultaneityfor all consideredtrees g , note that g correspondingto a particular g may be chosendepending
on 7 only, andthenumberof strings 7 with LT� 7 #�2K� is finite.

In case �r«­# , for g o given by (8) we have 5 g{5�M 5 g o 5 85  g_5*MK/ , and the left handside of (6) is equalto that of (10)

below. Henceby Lemma3.2, (6) is satisfiedalsoin this case,
eventuallyalmostsurelyas ���(� for all consideredg .

Lemma3.1: For any properpostfix 7 of some7 � G g � , there
exists an irreducibletree  g with q��  g�#¹�ú� suchthat X ^�7
and

� ��Xb#�� V for eachX G  g , eachY Z}7 with
� ��Y=#?� V has

a postfix in  g , and�)�*  ï "%$ Ñ » � � E @ #BM É5!Ë26Í �)�*  ï "%$ Ñ75 � � E @ #��RM á �Hy (9)

eventually almost surely as �&� � , where á � V is a
sufficiently small constant.

Proof: Given 78-¦7���G g � , denoteby 7�� ¸ the L -length
postfix of 7C� . Let

 g 8ÃxB7 �:9 >�@ |1 x$:�7 � ¸ � LT� 7 #�23Lø2<;¹y :nG 4[y :=7 � ¸ \8;7 � ¸ >�@ y � � :�7 � ¸ #�� V | A
We show that if ; 8 LD� 7 � #¹MÃ/ when LT� 7 � #'�J� , or ; is
sufficiently largewith theproperty

� � 7 �:9 >�@ #�� � � 7 �=9 # whenLT� 7 � # 8 � , this tree  g satisfiesthe assertionsof the Lemma.
Now, using (5), the inequality (9) canbe written asÉ5!Ë26Í"Ñ¬Ê�Ë*Ì · E ��X�y : #����! · E ��X�y : #· E ��Xb#

M ÉÊ�Ë*Ì · E � 7 y : #����! · E � 7 y : #· E � 7 # � á � A
Due to the ergodic theorem, · E �,Y�y : #D�w�Ã� � �,Y : # for any
string Y , almost surely as � � � . Hence, it is enoughto
show thatÉ5!Ë26Í"Ñ¬Ê�Ë*Ì � �,X : #=���! � ��X : #� �,Xf# M ÉÊhË*Ì � � 7�: #=�)�* � � 7�: #� � 7 # � V¡A
Jensen’s inequality implies� � 7 # É5!Ë26Í � ��Xb#� � 7 # Ø � �,X : #� ��Xb# �)�* � �,X : #� ��Xb#9Ù

� � � 7�: #=�)�* � � 7�: #� � 7 # y :nG 4[y
where the strict inequality holds for some :¥G 4 , unless� � : 5 7 # 8 � � : 5¿Xf# for each :%G 4 and X G  g , in particular,
for X 8 7��=9 >B@ . In the case LT� 7�� #��Ã� we have 7��:9 >�@ 8Ã7�� ,
hencethe last contingency is ruled out by 7>-¦7C�ÄG g � and
the definition of context tree g � . In the case LT� 7�� # 8 � , if� � : 5 7 # were equal to

� � : 5 7��=9 >�@ # for each :�G 4 and all ;
satisfying

� � 7��:9 >�@ #n� � � 7��:9 # , letting ; � � would give� � : 5 7 # 8 � � : 5 7�� # , againcontradicting7.-}7��mG g � .
The irreducibility of  g is obvious when LD� 7 � # 8 � , andin

the case LD� 7 � #_�c� it only requirescheckingthat for ; 8LT� 7 � #+M}/ thereexists :�G 4 with :�7 �:9 \8 7 � , � � :=7 �:9 #õ� V ;
this follows from 7 � G g � by Definition 2.1.

Moreover, we have
� �,Xf#.� V for each X G  g , and eachY Z}7 with

� �,Y�#?� V hasa postfix in  g by construction.
Lemma3.2: For any irreducibletree g with q���g�#�2K½����$# ,½����$# 8 �������! +�$# , and 7[G g thathasa properpostfix 7��mG g �
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with LT� 7C� #[2 � , thereexists 3 satisfying 7Ä^	3¥Z 7C� such
that, for

?  g 8Rx X G g � X ^)3 | andarbitrary @Ä� V ,É5!Ë26Í �)�*  ï#"%$ ÑA5 � � E @ #BMÎ���!  ïB"%$ ÑAC � � E @ #?�D@m5  g{5=�)�* +�Hy (10)

holds simultaneouslyfor all g and 7 as above, eventu-
ally almost surely as � � � . Moreover, here 3 8: `fe : `be >B@ ACA�AD: ` @ canbe chosensuchthat : `fe >�@ ACACAD: ` @ is a
properpostfix of some X G gE/  g .

Proof: Let 3�8�: `fe : `be >�@ ACA�AD: ` @ bethe longestpostfix
of 7 with �3� LT� 7 # for which thereexists a string in g not
equalto 3 but having thepostfix : `be >B@ ACA�AD: ` @ . Then g �mG p
implies that 3 Zú7�� , and hence: `fe >�@ A�ACAT: ` @ - X for someX G gE/  g .

SinceÐÊ�Ë*Ì'F · E � 3 y : #· E � 3 #HG Ò�Ó º CBÑ Ê ¼ �cÐÊ�Ë*Ì � � : 5 3 # Ò�Ó º CBÑ Ê ¼ y
the left handside of the claimed inequality can be bounded
above byÉ5*Ë26Í"Ñ¬Ê�Ë*Ì · E �,XBy : #=�)�* · E �,XBy : #· E �,Xf# M ÉÊhË*Ì · E � 3 y : #=�)�* � � : 5 3 #º F ¼8 É5*Ë26Í"Ñ¬Ê�Ë*Ì · E ��X�y : #����! · E ��X�y : #· E ��Xb#M É5!Ë26Í"Ñ¬Ê�Ë*Ì · E �,XBy : #=�)�* � � : 5¿Xf#8 É5!Ë26Í · E �,Xf# ÉÊ�Ë*Ì · E �,XBy : #· E �,Xf# ���! · E ��X�y : #D�z· E �,Xf#� � : 5�Xb#8 É5!Ë26Í · E �,Xf# ½ Ø · E �,XBy û #· E �,Xf#JIIII

� � û 5 Xf# Ù
Here ��1�# follows as X ^K3(ZJ7 � G g � implies

� � : 5¿Xf# 8� � : 5 3 # 8 � � : 5 7 � # by Definition 2.1. Using Lemmas6.2
and 6.3 in the Appendix, this can be further boundedabove,
eventually almostsurely simultaneouslyfor all consideredg
and 7 , byÉ5!Ë26Í · E ��Xb# /¤

min

ÉÊhË*ÌHF · E �,XBy : #· E �,Xf# M � � : 5�Xb# G i
� É5*Ë26Í · E �,Xf# /¤

min
5 465ML �)�* +�· E ��Xb# 2NL 5 465¤

min
5  g_5����! "�Hy

where ¤ min is the minimum of the nonzeroconditionalprob-
abilities

� � : 5 7 � # , :NG 4 , 7 � G g � , LT� 7 � #02ú� , and L � V is
arbitrarysmall.

Proof of Theorem2.10

If q���g � #��}� , theassumptionsg G Ç @ � � E @ yd½��,�$#D# , ½N�,�$# 8���,�)�* +�$# , imply that g G Ç E � � � E @ yd½��,�$#D# eventually almost
surely as �j� � , by Lemma6.1 in the Appendix.Henceit
suffices to prove the secondassertionof the Theorem.

The proof is similar to that of Theorem2.6. It has to be
checkedthatif gN~~ � \8 g � ~~ � for someg G Ç E � � � E @ yD½����$#T#O��p

with q
�rg6#�2�½��,�$# , thenthe modification g o of g definedby
(7) or (8) satisfiesg ofG Ç E � � � E @ yD½N�,�$#T#��6p andímî Í � � E @ #�� ímî Í � � � E @ #­y (11)

simultaneouslyfor all consideredtrees g , eventually almost
surelyas ���(� .

Let  ï$ð�ñ Ñ » � � E @ # denote

ò ÊCó ÒBÓ º)» Ñ Ê ¼¿× @ ôlö · E � 7 y : #BM
@i ÷ ö · E � 7 y : #HM ùi ÷ û�ûCû ö @i ÷�üý · E � 7 #HM3/þP ÿ Ì ÿi�� ý · E � 7 #øMj�¹P ÿ Ì ÿi�� ûCûCû ý ÿ Ì ÿi��

(12)

if · E � 7 #0� / , and / if · E � 7 # 8ÞV . Then the KT probabilityï�ð�ñ Ñ Í � � E @ # in Definition 2.8 factorizesasï ð�ñ Ñ Í � � E @ # 8 /5 465 Ï º E ¼ Ð» Ë!ÍP ï ð$ñ Ñ » � � E @ # A (13)

It follows that (11) is equivalent toÉ» Ë!Í �)�*  ï ð�ñ Ñ » � � E @ #øM É» � Ë!Í � �)�*  ï ð�ñ Ñ » � � � E @ # � VlA (14)

Substitutingg o given by (7) or (8), this reducesto�)�*  ï$ð�ñ Ñ » � � E @ #øM É5!ËQ6Í ���!  ï�ð�ñ ÑA5 � � E @ #�� V (15)

in case � : # , where  g is as in Lemma3.1, respectively toÉ5!Ë26Í �)�*  ï�ð�ñ ÑA5 � � E @ #BM%�)�*  ï "%$ Ñ�C � � E @ #?� V (16)

in case �r«C# , where  g and 3 areas in Lemma3.2.
To deduce(15) and(16) from Lemmas3.1 and3.2 (in the

requiredeventually almost sure sense),we use the standard
bound(see,e.g., [4] eq. (2.12))~~~~~ ���!  ï$ð$ñ ÑA5 � � E @ #øM ÉÊ�Ë*Ì · E �,XBy : #=�)�* · E �,XBy : #· E �,Xf#

P 5 465àM3/� �)�* +· E �,Xf# ~~~~~ �SR
for any string X with · E �,Xf# � / , where R is a constant
dependingonly on the alphabetsize 5 465 with the notation(5).
The last boundcanbe equivalently written as~~~~ ���!  ï$ð$ñ ÑA5 � � E @ #øMÎ���!  ï "%$ ÑA5 � � E @ #P 5 4�5hM3/� �)�* +· E �,Xf# ~~~~ �<R A (17)

The claim (15) immediatelyfollows from (9) by (17) and
the trivial boundsV 23�)�* þ· E �,Xf#�2O�)�* þ� .

Also, (17) gives for the left hand side of (16) the upper
boundÉ5!Ë26Í Ø �)�*  ï "%$ ÑA5 � � E @ #BM 5 4�5wMK/� ���! þ· E ��Xb#$P)R Ù

M Ø ���!  ï#"%$ ÑAC � � E @ #øM 5 465àM3/� �)�* +· E � 3 #"M!R Ù A
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For  g in Lemma 3.2, the assumptiong G Ç E � � � E @ yd½��,�$#D#
implies · E �,Xf# �k� � for each X G  g , and since the sum
of · E �,Xf# for X G  g is equal to · E � 3 # , we have · E ��Xb#��· E � 3 #D�l5  g{5 for at leastone X G  g . Using thesefacts in the
last bound,anddenotingthe left handsideof (10) in Lemma
3.2 by T , it follows that the left handsideof (16) is bounded
above byT MK�d5  g{5wMK/�# 5 465wM3/� � ���! "��M 5 4�5wMK/� ���! · E � 3 #5  g_5P 5 465wMK/� ���! +· E � 3 #�P��D5  g_5�P}/h#UR A
By Lemma3.2,here T �S@m5  g{5ß�)�* "� eventuallyalmostsurely
as ��� � , for arbitrary @ � V , simultaneouslyfor all
consideredg and 7 , and thus the claim (16) follows.

IV. COMPUTATION OF THE KT AND BIC ESTIMATORS

Theestimators
âg ãlä�å � � E @ # and

âg=ð�ñ�� � E @ # in Theorems2.6and
2.10,the latter for the caseq���g � #��}� , canbe representedasâgn� � E @ # 8�tà�  sutwvÍ"Ëàè é º�ê Ó é Ñ Ï º E ¼,¼�ë*ì Ð» Ë!Í  ï » � � E @ #zy (18)

where  ï » � � E @ # 8  ï$ð$ñ Ñ » � � E @ # in the KT case,and  ï » � � E @ # 8� ` � �U� V éW  ï "%$ Ñ » � � E @ # in the BIC case,see(13), Definition 2.8,
(4), Definition 2.4.

Thesefactsadmit a joint treatmentof the computationsof
the BIC and KT estimators,via an extension of the CTM
algorithm of [15], [17] developed for the KT case. This
algorithmhasthe following construction.

Considerthe full tree 4 Ï , where ½ 8 ½N�,�$# 8 ���,�)�* "�$# ,
andlet X Ï denotethesetof its nodes,i.e., thesetof all strings
of length at most ½ . Basedon the sample � E @ we assignto
eachnodea valueand a binary indicator. This assignmentis
recursive,thatis, thevalueandtheindicatorassignedto a node
arecalculatedfrom the valuesassignedto the childrenof this
node.The desiredestimatorwill be thesubtreedeterminedby
the indicatorsasspecifiedbelow.

In the sequel,  ï » � � E @ # denoteseither possibility in the first
passageof this section.

Definition 4.1: Given a sample � E @ , to eachstring 7uG X Ï
with · E � 7 #.��/ , ½ 8 ½����$# we assignrecursively, starting
from the leavesof the full tree 4 Ï , the value

Y Ï» � � E @ # 8[Z\\\\] \\\\^
sutwv Z] ^  ï » � �

E @ #by ÐÊ�Ë*Ì$ó ÒBÓ º Ê »�¼U× @ Y ÏÊ » � � E @ #`_ ab
if V 2�LT� 7 #��K½'y ï » � � E @ # if LT� 7 # 8 ½'y

and the indicator

c Ï » � � E @ # 8 Z\\\\\] \\\\\^
/ if V 2KLD� 7 #���½ and

ò Ê�Ë*Ì$ó Ò Ó º Ê »¿¼¿× @ Y ÏÊ » � � E @ #��  ï » � � E @ #zyV if V 2KLD� 7 #���½ and

ò Ê�Ë*Ì$ó Ò Ó º Ê »¿¼¿× @ Y ÏÊ » � � E @ #�2  ï » � � E @ #zyV if LT� 7 # 8 ½ A

Using theseindicators,we assignto each 7jG X Ï , ½ 8½����$# a maximizingtree g Ï» � � E @ # consistingof strings X ZK7 .
The term “maximizing” is justified by Lemma4.4 below.

Definition 4.2: Given 70G X Ï , let g Ï» � � E @ # equaltod X G X Ï � c Ï5 � � E @ # 8;V y c Ïe � � E @ # 8 / for all 7.f Y - XEg
if c Ï » � � E @ # 8 / , and to xh7 | if c Ï » � � E @ # 8;V .

Themaximizingtree g Ï» � � E @ # is irreducibleunlessit equalsxh7 | . Indeed,if · E � 7 # 8 · E � :�7 # holds for a string 7[G X Ï ` @
anda letter : (andthus · E � : @ 7 # 8;V for all : @ \8;: , : @ G 4 )
then c Ï » � � E @ # 8 / implies c Ï Ê » � � E @ # 8 / .

Proposition4.3: The context tree estimator
âg_� � E @ # in (18)

equalsthe maximizing treeassignedto the root, that is,âg_� � E @ # 8 g Ïh � � E @ # A
Proof: Theclaimedequalityfollowsfrom thenext lemma

by substituting 7{8 S , on accountof (18) and the fact thatg Ïh � � E @ # is irreducible.

For any 7ÄG X Ï with · E � 7 #6� / , define
Ç @ � � E @ 5 7 # as the

family of all treesg of depth q���g6#�2�½ , consistingof stringsX Z}7 with · E �,Xf#���/ , suchthateach7�of^�7 with · E � 7�o # ��/
is eithera postfix of some X G g or hasa postfix in g .

Lemma4.4: For any 7mG X Ï with · E � 7 #��R/Y Ï» � � E @ # 8 sutàvÍHËàè é º)ê Ó é ÿ »¿¼ Ð5!Ë!ÍP ï 5 � � E @ # 8 Ð5*Ë!Í#ij º�ê Ó é ¼  ï 5 � � E @ # A
Proof: By induction on the length of the string 7 ,

similarly to [15]. For LT� 7 # 8 ½ the statementis obvious.
Supposingtheassertionholdsfor all stringsof length q , we

have for any 7 with LD� 7 # 8 q M3/
ÐÊ�Ë*Ì$ó Ò Ó º Ê »¿¼¿× @ Y ÏÊ » � � E @ #8 ÐÊ�Ë*Ì$ó Ò Ó º Ê »¿¼U× @lk s.tàvÍ4m�Ëàè�é º�ê Ó é ÿ Ê »¿¼ Ð5!Ë!Í m  ï 5 � � E @ #on8 s.tàvÍHËàè é º)ê Ó é ÿ »¿¼ ó�p º Í ¼U× @ Ð5!Ë!ÍP ï 5 � � E @ # A

Here the secondequality holds sinceany family of trees g Ê ,:cG 4 , · E � :=7 #;�Â/ , satisfying the indicated constraints,
uniquelycorrespondsto a tree g G Ç @ � � E @ 5 7 # with q���g�# �ú/
via g 8 1 Ê g Ê .

It follows by Definition 4.1 thatY Ï» � � E @ # 8�sutàvE&  ï » � � E @ #by sutàvÍHËàè é º�ê Ó é ÿ »¿¼ ó�p º Í ¼U× @ Ð5!Ë!Í! ï 5 � � E @ #rq8 sutwvÍ"Ëàè é º�ê Ó é ÿ »¿¼ Ð5!Ë!Í! ï 5 � � E @ #­y
proving the first equality in the Lemma.The secondequality
alsofollows from the last identity, by the inductionhypothesis
andDefinitions4.1 and4.2.

Remark4.5: For the KT case,Lemma4.4 above with the
condition g G Ç @ � � E @ 5 7 # replacedby the condition that g is
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complete,is a result of [15], [17] (with the minor difference
that thes treestherealso had “costs”), and the above proof is
similar to theirs.

TheKT estimatorin Theorem2.10for the generalcasecan
still be representedas in (18), with  ï » � � E @ # 8  ï$ð$ñ Ñ » � � E @ # ,the only differenceis that

Ç @ � � E @ yd½��,�$#D# in (18) is replaced
by
Ç È � � E @ yD½N�,�$#T# with Æ 8 � � . For this case,Definition 4.1

is modified by setting
Y Ï» � � E @ # 8 V for all 7�G X Ï with· E � 7 #]�¥Æ . The definition remainsunchangedfor 7 G X Ï

with · E � 7 #?�3Æ , but of coursethevalues
Y Ï» � � E @ # maychange

also for thesestrings 7 . In particular, if · E � 7 #[� Æ but /{2· E � :�7 #u� Æ for some :3G 4 , the modified definition givesY Ï» � � E @ # 8  ï » � � E @ # and c Ï » � � E @ # 8;V .
Adopting this modifiedDefinition 4.1, it is easyto seethat

Proposition4.3 still holds, that is, the maximizing tree of
Definition 4.2 assignedto the root equalsthe KT estimator
in Theorem2.10 for the generalcase.

Next we show that the computationof the estimatorsin
Theorems2.6 and2.10via the above methodhasthe asserted
complexity in the off-line case.

Proof of Theorem2.13

Since ½N�,�$# 8 ���,�)�* þ�$# , we may write ½N�,�$# 8 � E ���! +� ,
where � E � V .

For each string 7WG X Ï , ½ 8 ½����$# 8 � E �)�* "� , the
counts · E � 7 y : # , :nG 4 , aswell as  ï » � � E @ # , Y Ï» � � E @ # , c Ï » � � E @ #are stored.The numberof storeddata is proportionalto the
cardinalityof X Ï , which isÏÉ� ¢ � 5 465 � 8 5 465 Ï >�@ MK/5 465àM3/ 2K�
5 4�5 Ï 8 -.��� � # A (19)

To get the indicators c Ï » � � E @ # , 7�G X Ï which give rise to
the trees g Ï» � � E @ # accordingto Definition 4.2, first we need
the counts · E � 7 y : # , 7mG X Ï , :_G 4 .

The counts · E � 7 y : # for 7[G 4 Ï , :_G 4 canbe determined
successively processingthe sample � E @ from position � 8½��,�$# to � 8 � , and at instance � incrementingthe count· E ý � � ` @� ` Ï º E ¼ y � � � by / (thestartingvaluesof all countsbeingV ). This is -.�,�$# calculations.The othercounts · E � 7 y : # , 7mGX Ï ` @ , : G 4 can be determinedrecursively, as · E � 7 y : # 8 ut Ë*Ì · E �r« 7 y : # . This is 5 465C5 X Ï ` @ 5 8 ���,�$# calculations.

Then, from these counts the values  ï » � � E @ # are deter-
minedby -.���$# multiplications.The calculationof the valuesY Ï» � � E @ # and c Ï » � � E @ # requirescalculationsproportionalto the
cardinalityof X Ï , which is lessthan �¡5 465 Ï 8 ���,�$# .

Considernext the on-line versionsof the estimators,with
the modificationsdescribedin the passagebefore Theorem
2.14. In the BIC case, the representation(18) holds with ï » � � E @ # 8 Ý ` � �U� V éW � � �=�4� ��� E � � �=� ÿ Ì ÿ  ï "%$ Ñ » � � E @ # . In the KT case,
the sameestimatoris used as for the off-line computation,
when q
�rg � #_�c� . The on-line version of the KT estimator
for the generalcaseis analogousto the off-line version,withÆ 8 Ý � � � �=�v� ��� E � insteadof Æ 8 � � .

Finally, we show that thesealgorithms have the asserted
computationalcomplexity in the on-line case.

Proof of Theorem2.14

Thecalculationsrequiredby thealgorithmin Definition 4.1
canbe performedrecursively in the samplesize � .

Supposeat instant 1 , for eachstring 7uG X Ï º F ¼ , the counts· F � 7 y : # , : G 4 , as well as  ï » � � F @ # , Y Ï» � � F @ # , c Ï » � � F @ # are
stored, where ½ 8 ½N�,1�# . The number of stored data is
proportionalto the cardinality of X Ï º F ¼ , which is -.��1 � # , see
(19).

Considerfirst thoseinstances1 when the samplesize in-
creasesfrom 1�M}/ to 1 but ���)�* ÿ Ì ÿ ��1BM�/h#U� 8 ���)�* ÿ Ì ÿ 1!� , and

the depthdoesnot change,½���1¿# 8 ½���1¡MÎ/�# . If  ï » � � F ` @@ # at a
node 7 is known,  ï » � � F @ # canbe calculatedusing,for the KT
case,that

 ï�ð�ñ Ñ » � � F @ # 8 · F � 7 y ��F #�P}/w�à�· F � 7 #�P�5 465 �à�  ï$ð$ñ Ñ » � � F ` @@ #zy
andin theBIC casethatin theexpressionof  ï "%$ Ñ » � � F ` @@ # only
the counts · F � 7 y ��F # and · F � 7 # were incrementedto obtain ï#"%$ Ñ » � � F @ # . From  ï » � � F @ # thevalues

Y Ï» � � F @ # and c Ï » � � F @ # can
be computedin constantnumberof steps.Thesevaluesare
different for � F ` @@ and � F @ only when 7 is a postfix of � F ` @@ ,
henceupdatingis neededat ½N�,1�# nodesonly. Thusthenumber
of requiredcomputationsis proportionalto ½��,1�# .

Considerthoseinstances1 when the samplesize increases
from 1�MO/ to 1 suchthat ���)�* ÿ Ì ÿ 1!� 8 �,���! ÿ Ì ÿ �,1�MO/�#U�þP}/ but
the depthdoesnot change.The additional task comparedto
the previouscaseis that recalculationof

Y Ï» � � F @ # and c Ï » � � F @ #
is neededfor all nodes7mG X Ï º F ¼ , which requirescalculations
proportionalto the cardinalityof X Ï º F ¼ .

Considernext thoseinstances1 when the depth increases,½���1¿# 8 ½���1wMn/�#hPÄ/ . In this casewe have threetasks.We have
to update  ï » � � F ` @@ # at thosenodes 7 that alreadyexisted at
instance1�M./ , namelywhere LT� 7 #���½��,1�# . In addition,we have
to calculatethemfor the new terminal nodes 7 , LD� 7 # 8 ½N�,1�# ,
and recalculate

Y Ï» � � F @ # and c Ï » � � F @ # at all nodes 7 of the
new full tree.The formerneeds-.��1�# calculations.Indeed,the
counts · F � 7 y : # , LT� 7 # 8 ½��,1�# , canbe determinedsuccessively
processingthe sample � F @ from position � 8 ½��,1�# to � 8 1 ,
andat instance� incrementingthecount · F ý � � ` @� ` Ï º F ¼ y � � � by/ (the startingvaluesof all countsbeing V ), and from these
counts  ï » � � F @ # are determinedby -.��1�# multiplications. The
recalculationof the values

Y Ï Ñ » � � F @ # and c Ï Ñ » � � F @ # requires
calculationsproportionalto the cardinalityof X Ï º F ¼ .

Finally, the total numberof computationsperformedon a
sample� E @ is boundedasfollows.Thenumberof computations
neededfor the updatingat all instances1þ23� is proportional
to EÉ F�¢B@ ½N�,1�# 8 EÉ F�¢�@ ��� F ���! "1¬� 8 �����õ�)�* +�$# A
Thenumberof computationsto recalculate

Y Ï Ñ » , c Ï Ñ » for all
nodesin the full tree 4 Ï º F ¼ at the instanceswhen �,���! ÿ Ì ÿ 1*�increasesis of order� � ��� � �U� E �ÉÏ ¢ � �¡5 465 Ï 8 - ö 5 465 � ��� � ��� E ÷ 8 -.���$# A
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Thenumberof computationsto calculate  ï » for thenew termi-
nal nodesat the instanceswhen ½��,1�# increasesis proportional
to � � Ó � ��� E��ÉÏ ¢ � s.æ)ç�x 1 � ½c2O� F �)�* "1
|

8 � � Ó � ��� E��ÉÏ ¢ � s.æ)çfx 1 � Ý Ïxw ��y 231¡|[2 � � Ó � �=� E��ÉÏ ¢ � Ý Ïzw � Ó P}/
2K- ý Ý é{ Ó � Ó � �=� E � Pj� E �)�* +� 8 -.�,�$# A

The numberof computationsto recalculate
Y Ï Ñ » , c Ï Ñ » for

all nodesin the full tree 4 Ï º F ¼ at the instanceswhen ½���1�#
increasesis of order� � Ó � ��� E��ÉÏ ¢ � �¡5 465 Ï 8 - ö 5 465 � Ó � �=� E ÷ 8 ���,�$# A

V. DISCUSSION

We have provedthestrongconsistency of theBIC estimator
and the KT version of MDL estimatorof the context tree
of any (stationaryergodic) process,when the depth of the
hypotheticalcontext treesis allowed to grow with the sample
size � as ���,�)�* +�$# . This context treemay have infinite depth,
and it is not necessarilycomplete.Theseconsistency results
aregeneralizationsof similar resultsfor estimationof theorder
of Markov chains[4], [5].

We have consideredprocesseswith time domainsequalto
thesetof all integers,but aslong asstationarityandergodicity
are insistedupon,any processwith one-sidedtime domain |
can be obtainedby restricting the time domainof a process
of the former kind. When dealing with Markov chain order
estimation in the one-sidedcase,dropping the stationarity
assumptioncausesno additionaldifficulty, see[4]. For context
tree estimation of tree sources,non-stationaritymay cause
technicalproblemsin dealingwith transientphenomena,but
doesnot appearto significantlychangethe picture,see[8].

While theBIC Markov orderestimatoris consistentwithout
any bound on the hypotheticalorders [4], it remainsopen
whether the BIC context tree estimator remains consistent
whendroppingthe depthbound ���,�)�* þ�$# , or replacingit by a
boundá �)�* "� . For theKT context treeestimatorit alsoremains
openwhetherthe depthboundcould be increased;it certainly
cannot bedroppedor replacedby a largeconstanttimes ���! +� ,
sincethenconsistency fails even for Markov orderestimation
[4].

With KT, we have consideredtwo kinds of estimators,the
secondkind admitting only “ Æ -frequent” hypothetical trees
with Æ 8 � � . The latter conforms with the intuitive idea
that the estimation should be basedon those strings that
“frequently” appearedin thesample,see[3]. Whenthecontext
treehasfinite depth,therestrictionto � � -frequenthypothetical
trees was not necessarysince all feasible trees (of depth½��,�$# 8 ���,�)�* þ�$# ) satisfiedit automatically, eventuallyalmost
surely. It remainsopen whetherthe mentionedrestriction is

necessaryfor consistency when the context tree has infinite
depth.

A consequenceof the consistency theoremsis that whena
processis not a Markov chain of any (finite) order, the esti-
matedorder, producedby eitherof the BIC or KT estimators,
tendsto infinity almostsurely.

We have also shown that the BIC and KT context tree
estimatorscanbe computedin linear time, via suitablemodi-
ficationsof the CTM method[15], [17]. An on-lineprocedure
was also consideredthat calculatesthe estimatorsfor all
samplesizes 1Ä2 � in ���,�0�)�* "�$# time. This result may be
useful,for example,to implementcontext treeestimationwith
a stoppingrule basedon “stabilizing” of the estimator.

The NML version of MDL was not consideredfor the
context tree estimationproblem (though it was for Markov
order estimationin [5]), becausethe structureof the NML
criterion, unlike BIC and KT, appearsunsuitablefor CTM
implementation.

Finally wenotethatin thedefinitionof BIC (Definition2.4),
thefactor �D5 465¬M{/�#C5 g_5 �à� in thepenaltytermcouldbereplaced
by á 5 g_5 , with any positive constant á , without affecting our
results.The questionof what other penalty terms might be
appropriateis not in the scopeof this paper.

VI . APPENDIX

Lemma6.1: Given a process
�

with context tree of finite
depth, for any V �}�k� / there exists ~W� V such that,
eventuallyalmostsurelyas ���(� ,· E � 7 #��K���fy
simultaneouslyfor all strings 7 with

� � 7 #�� V , LT� 7 #�2S~ �)�* H� .
Proof: This bound has been used in [5], proof of

Theorem 5. It is a consequenceof the typicality theorem
in [4], see also [5], remark after Th. 1. Indeed, the latter
implies the existenceof ~%� V suchthat · E � 7 #D�w� � � � 7 #d�à�
simultaneouslyfor all 7 with LD� 7 #��D~¹���! "� , eventuallyalmost
surely as �%��� . The assertionof the lemmafollows, since� � 7 # , whenpositive, is boundedbelow by �w¸�º)»�¼ for a constant��� V .

Lemma6.2: Given a process
�

, to any L � V thereexists~]� V suchthat, eventuallyalmostsurelyas ���(� ,~~~~ · E � 7 y : #· E � 7 # M � � : 5 7 # ~~~~ ��� L �)�* "�· E � 7 #
simultaneouslyfor all strings 7 with LT� 7 #¦2�~¹���! "� and· E � 7 #���/ which have a postfix in the context treeof

�
.

Proof: By Theorem2 of [5], for �Ä�¦�����! 95 465 #D�à� there
exist �N� V and á � V suchthat, eventually almostsurely as���(� ,~~~~ · E � 7 y : #· E � 7 # M � � : 5 7 # ~~~~ � � sutwvbx �øLT� 7 #­yU�þ�)�* +���! +· E � 7 #b|· E � 7 #

(20)

simultaneouslyfor all strings 7 with · E � 7 #]� á LD� 7 # which
have a postfix in the context tree of

�
. While Theorem2 of

[5] is statedfor Markov processesonly, the proof reliesupon
the martingalepropertyof the sequence� E of [5], eq. (10),
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and � E 8 · E � 7 y : #?M � � : 5 7 #l· E ` @ � 7 # definesa martingale
whenever 7 hasa postfix in the context treeof the process

�
.

Thus the mentionedproof appliesliterally.
Thenthechoice ~ 8 L � sutàv
x ��y á ���l| is suitablefor Lemma

6.2. Indeed,if · E � 7 #�� á LD� 7 # , the bound(20) holdsandgives
the assertion,while in the oppositecase · E � 7 #]� á LT� 7 #Ä2á ~ �)�* "� we have � � L ���! "�$#D�­· E � 7 #.��� L ��� á ~�#��W� and
the assertionholds trivially.

Lemma6.3: For probability distributions ï @ and ï i on 4½��rï @�� ï i #�2 ÉÊ�Ë*Ì ��ï @ � : #HMÎï i � : #T# iï i � : # A
Proof:

½��rï @ � ï i # 8 ÉÊ�Ë*Ì ï @ � : #=�)�* ï @ � : #ï i � : #2 ÉÊ�Ë*Ì ï @ � : # Ø ï @ � : #ï i � : # M3/ Ù 8 ÉÊ�Ë*Ì ��ï @ � : #øMÎï i � : #T# iï i � : # A
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[3] P. Bühlmann and A. J. Wyner, “Variable length Markov chains,”
Ann. Statist.,vol. 27, pp. 480–513,1999.
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