IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 1, NO. 1, JANUARY 2005 1

Context Tree Estimationfor
Not NecessarilyFinite Memory Processes,
via BIC and MDL

Imre Csisar, Fellow, IEEE, and Zsolt Talata

Abstract— The conceptof contexttr ee,usually definedfor finite
memory processesjs extended to arbitrary stationary ergodic
processes(with finite alphabet). These context trees are not
necessarilycomplete,and may be of infinite depth. The familiar
BIC and MDL principles are shown to provide strongly consistent
estimators of the context tree,via optimization of a criterion for
hypothetical contexttr eesof finite depth, allowed to grow with the
sample size n as o(log n). Algorithms are provided to compute
theseestimatorsin O(n) time, and to compute them on-line for
all  <nin o(nlogn) time.

Index Terms— Bayesian Information Criterion (BIC), consis-
tent estimation, context tr ee, Context Tree Maximization (CTM),
infinite memory, Minimum Description Length (MDL), model
selection.

I. INTRODUCTION

N this paper processalways meansa stationaryergodic

stochastigprocesswith finite alphabetProcesseare often
describedby the collection of the conditional probabilities
of the possiblesymbolsgiven the infinite pasts.When these
probabilities dependon at most k& previous symbols, the
processs a Markov chain of order k.

The numberof parametersf a generaMarkov chaingrows
exponentially with the order A more efficient descriptionis
possiblef the stringsdeterminingthe conditionalprobabilities
— referredto as contets — are of variablelength, sometimes
substantiallyshorterthan the order k. Models of this kind
and the term contet tree date back to Rissanen10]. These
modelsare also called finite memory sourcesor tree sources
[13], [14], [16] or variablelengthMarkov chains[3]. We note
thatthe termscontext and context tree appearin the literature
in various sensesHere, the context tree of a finite memory
processmeans,in effect, the minimal tree admitting a tree
sourcerepresentatiomf the processthe exact definition will
be givenin Sectionll.

As indicatedabove, the contet treemodelis typically used
to more efficiently describecertain Markov chains(of finite
order k) and, accordingly the context tree hasfinite depthk.
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In this paperwe drop the finite depthrequirementadmitting
also non-Marlov processesThe term “infinite-depth context
tree” appearsn [18] in a different senseas a tree assigned
to an obsered sequencewith an “indeterminatesymbol” ¢
such that infinitely mary ’s may precedea finite number
of symbolsof the true alphabet.A conceptof generalized
contet tree,see[8] andreferenceshere,admitsedgedabeled
by strings rather than single symbols. That conceptis not
used here, but similarly to [8] we drop the completeness
requirement,often madein the literature, that eachnon-leaf
nodeof the context tree hasas mary childrenasthe alphabet
size. If some strings have zero probability for the given
processthesecan not be contexts, and then the context tree
neednot be complete.

We addresghe problemof statisticalestimationof the con-
text treein theindicatedgenerality basedn anobsenedfinite
realizationof the process,of lengthn — oo. This task, for
finite depthcontet trees,hasbeenconsideredamongothers,
in the referencesbove. Variantsof Rissaners [10] “context”
algorithmare popular In particular Bithimannand Wyner [3]
proved the consisteng of suchan algorithm not assuminga
known prior boundon the depthof the contet tree,but using
a bound allowed to grow with n. They assertedthat stan-
dard statisticalmethodsasthe Bayesianinformation Criterion
(BIC) of Schwarz [12] andthe Minimum DescriptionLength
(MDL) principle of Rissaner{11], [2] were inappropriatefor
context tree estimation,due to computationalinfeasibility of
comparinga very large numberof hypotheticalmodels.Still,
Willems, Shtarlov and Tjalkens[15], [17] showved that time-
consumingcomparisonsan be avoided by clever useof tree
techniquesTheir Context Tree Maximizing (CTM) algorithm
computesin linear time the contect tree estimatorobtained
by the versionof MDL that usesthe Krichevsky —Trofimov
(KT) codelength[7], andthis estimatoris consistentasthey
proved assuminga known upperboundon the depth of the
contet tree. Similar resultswere obtainedalso by Nohre[9].
Recentresultson consistentcontext tree estimationin linear
time, assumingfinite depthbut no known upperboundon it,
appeatin [1], [8]. Thesereferencesisetools asthe Burrows—
Wheelertransformor generalizectontext trees.

We arenot awareof prior resultson contet tree estimation
via BIC. While BIC is commonlyregardedasan approximate
versionof MDL, this is justified only when a finite number
of modelclasseds consideredsee[4]. We note that much of
the literature of context tree modelsis motivatedby universal
sourcecoding. In particulay CTM is a modification of the
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celebratedContext TreeWeightingdatacompressiomlgorithm
of Willems, Shtarlov and Tjalkens[16].

In this paper we prove thatboth MDL with KT codelength
andBIC provide strongly consistentestimatorsof the context
tree if the set of candidatecontet treesis suitably chosen;
finitenessor completenesof the true contect tree is not
required.Moreover, theseestimatorscan be implementedin
linear time. The setof candidatecontext treesis specifiedby
a boundon the lengthof the hypotheticalcontexts, allowed to
grow aso(logn), andin onecaseby anadditionalconditionon
their occurrencesn the obsened sample.Strongconsisteng
meansin the finite depthcasethat the estimatedcontext tree
is equalto the true one, eventually almostsurelyasn — oo,
while otherwise,that the estimatedcontext tree truncatedat
ary fixed level is equalto the true onetruncatedat the same
level, eventuallyalmostsurelyasn — oo.

For order estimationof Markov chains, it is well known
that BIC and MDL, both with the KT and the Normalized
Maximum Likelihood (NML) codelength,are strongly con-
sistentwhenthe numberof candidatemodel classess finite,
thatis, whenthereis a known upperboundon the order[6].
The consisteng of the BIC orderestimatorwithout suchprior
boundhasbeenprovedby Csisar and Shields[4]. That paper
also containsa countergampleto the consisteng of the KT
and NML versionsof MDL without any boundon the order,
or with a bounddependingon the samplesizen, equalto a
sufficiently large constanttimeslog n. The consisteng of the
latter order estimatorswith boundo(logn) resp.O(logn) on
the orderwas proved by Csisar [5].

Linear time implementationof our context tree estimators
is achiered via the CTM method[15], [17]. This hasbeen
developed for the KT version of MDL, it appearsa new
obsenation that also the BIC estimatoradmitsa CTM-like
implementationThe samedoesnot seento hold for the NML
versionof MDL, thisis why the latteris not consideredn this
paper

By our consisteng result, if the contet tree of a process
hasfinite depth,it canbe exactly recovered,with probability 1,
whenthe samplesizeis large enoughithe samplesizeactually
neededemainshowever, unknovn. A heuristicrule might be
to stop when the estimatedcontext tree “stabilizes”, that is,
it remainsunchangedwhen the samplesize n runs over a
large interval. The lastresultin this papershavs that (slightly
modified versionsof) our estimatorscanbe calculatedon-line
in sucha way that o(nlogn) time sufficesto calculatethem
for all samplesizesi < n. Thisimpliesthatthe above stopping
rule can be implementedwith only a small incrementin the
order of requiredcomputations.

The structureof the paperis the following. In Sectionll
we introducethe notation and definitions, and formulate the
resultsfor the BIC estimatorand KT estimatoraboutstrong
consisteng and computationalcomplexity. In Sectionlll we
provetheconsisteng theoremsln SectionlV weintroducethe
algorithmsfor calculatingthe estimators,and establishtheir
claimedcomputationatomplexity bothfor off-line andon-line
calculations.SectionV containssomeremarkson the results.

Il. NOTATION AND STATEMENT OF THE MAIN RESULTS

For a finite set A we denoteits cardinalityby |A|. A string
§ = Qmlm41 - - - ap (With a; € A, m <4 < n) is denotedalso
by al; its lengthis I(s) = n — m + 1. The empty string is
denotedby @, its lengthis /(&) = 0. The concatenatiorof
the stringsu andv is denotedby uv. We saythata stringv is
a postfixof a string s, denotedby s > v, whenthereexists a
string u suchthat s = uv. For a properpostfix, that is, when
s # v, we write s > v. A postfix of a semiinfinite sequence
a:éo = ...a_g-..-a_; is definedsimilarly. Note that in the
literaturex- moreoften denoteghe prefix relation.Also, often
the term suffix is usedinsteadof postfix.

A set T of strings, and perhapsalso of semiinfinite se-
guencesis calledatreeif nos; € T is a postfix of ary other
sa €T.

Eachstring s = a¥ € T is visualizedas a path from a
leaf to the root (drawvn with the root at the top), consisting
of k edgeslabeledby the symbolsa; ...ar. A semiinfinite
sequencez”} € T is visualizedas an infinite path to the
root, seeFig. 1. The stringss € T areidentifiedalsowith the
leavesof thetree T, leaf s is the leaf connectedwith the root
by the pathvisualizing s asabove. Similarly, the nodesof the
tree 7 areidentified with the finite postfixes of all (finite or
infinite) s € T, the root beingidentifiedwith the emptystring
@. The children of a nodes arethosestringsas, a € A, that
arethemselesnodes,thatis, postfixesof somes’ € T.

The tree T is completeif each node except the leaves
has exactly | 4| children. A wealer property we shall need
is irreducibility, which meansthatno s € 7 canbe replaced
by a proper postfix without violating the tree property The
family of irreducibletreeswill be denotedby 7.

Denote d(7) the depth of the tree 7: d(T) =
max{(s),s € T }. Let T|, denotethe tree 7 truncatedat
level K:

Tle={s:s €T withi(s') <K
or s is a | K |-length postfix of somes € T }.

1)

Consider a stationary ergodic stochastic process
{X;,—00 < i < 400} with finite alphabet4. Write

Q(ay,) = Prob{ X7, = a7, },
and,if s € AF hasQ(s) > 0, write
Q(a|s) =Prob{ Xg=a | X", =s}.

A processasabove will be referredto asprocess().
Definition 2.1: A string s € A* is a context for a process
Q if Q(s) >0 and

Prob{Xg=a| X~ =2= } =Q(als), forallac A,

wheneer s is a postfix of the semiinfinitesequenc&:éo, and

no properpostfix of s hasthis property An infinite contect is a

semiinfinitesequence~., whosepostfixesz~;, k = 1,2, ...

are of positive probability but noneof themis a context.
Clearly, the setof all contextsis a tree.It will be calledthe

contet tree of the process(, denotedby 7.
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Remark2.2: The contet tree 7, has to be completeif
Q(s) > 0 for all stringss. In general,for eachnodes of 7
which is not a leaf, exactly thoseas, a € A, arethe children
of s for which Q(as) > 0. Moreover, Definition 2.1 implies
that the context treeis alwaysirreducible, 7, € Z.

When the contet tree hasdepth d(7g) = ko < oo, the
process( is a Markov chain of order kq. In this casethe
contet treeleadsto a parsimoniousiescriptionof the process,
becausea collection of (|A| — 1)|7o| transition probabilities
sufiicesto describethe processinsteadof (| A|—1)|A|* ones.
Note that the contet tree of ani.i.d. processconsistsof the
root & only, thus|7g| = 1.

Example2.3: (Renaval Process).Let A {0,1} and
supposehat the distancesdetweenthe occurrence®f 1's are
i.i.d. Denotep; the probability that this distanceis j, thatis,
p; = Q(10°711)/Q(1). Thenfor k > 1 we have Q(10F~1) =
1/Q)TZ,pi 2 ar Qx = QU10571) = py/gy. Let
Qo = Q(1) £ g. Denotek, the smallestinteger such that
@y, is constantfor k > kg with g > 0, or k = oo if no such
integer exists. Thenthe contexts arethe strings10°~1, i < ko,
and the string 0% (if ky < oo) or the semiinfinite sequence
0% (if ko = 00), seeFig. 1.

(a) (b)
1 1
10 0 / 10
000 100 / 100

Fig. 1. Contet treeof arenaval process(a) ko = 3. (b) ko = oc.

In this paper we are concernedwith the statisticalestima-
tion of the context tree 7, from the samplex?, a realization
of X. We demandstrongly consistentestimation.\We mean
by this in the cased(7;) < oo that the estimatedcontext tree
equalsyy eventuallyalmostsurelyasn — oo, while otherwise
that the estimatedcontext tree truncatedat ary fixed level K
equals g |K eventually almost surely asn — oo, see(1).
Hereandin the sequel,‘eventuallyalmostsurely” meansthat
with probability 1 there exists a thresholdng (dependingon
the infinite realizationz$°) suchthat the claim holds for all
n > ng.

Let N, (s,a) denotethe numberof occurrencesf the string
s € A'®) followedby thelettera € A in thesamplez?, where
s is supposedo be of lengthatmostD (), specifiedater, and
— for technicalreasons- only thelettersin positionsi > D(n)
are considered:

Np(s,a) = ‘{z : D(n) <i<mn, mj:ll(s) =s,&; = a}‘.
The numberof suchoccurrence®f s is denotedby N, (s):
Np(s) = Hz : D(n) <i<m, a::::ll(s) = s}‘ .

Given a samplez?, a feasibletreeis ary tree 7 of depth
d(T) < D(n) suchthat N,(s) > 1 for all s € T, and
eachstring s’ with N, (s") > 1 is either a postfix of some
s € T or has a postfix s € 7. A feasibletree T is
called r-frequentif N,(s) > r for all s € 7. The family

of all feasible respectiely r-frequenttreesis denotedby
Fi(z¥, D(n)) respectiely F,.(z7, D(n)).

Clearly,
> Nu(s,a) = Nu(s), and Y Nn(s) =n—D(n)
a€A seT

for ary feasibletree7. Regardingsuchatree7 asthe context

treeof ahypotheticalprocessy’, the probability of the sample

x} canbe written as
Q@) =Q@™) JI Q@M.

sET,acA

With someakuse of terminology for a hypotheticalcontext
tree T € Fi(z},D(n)) we define the maximum likelihood
ML(2%) asthe maximumin Q'(a|s) of the secondfactor

above, that is,
Nn(S; a) Na(3:0) (2)
Nn(s) '

We investigatetwo informationcriteria to estimate7y, both
motivated by the MDL principle. An information criterion
assignsa scoreto eachhypotheticalmodel (here,context tree)
basedon the sample,and the estimatorwill be that model
whosescoreis minimal.

Definition 2.4: Given a samplez?, the BIC for a feasible
tree7 is

MLy (z7) =

I 1I

s€ET,Nn(s)>1a€A

(1Al = DIT]

BIC1(z7) = —log MLy (2}) + 5

Logarithmsareto the basee.

log n.

Remark2.5: Characteristicfor BIC is the “penalty term”
half the number of free parameterstimes logn. Here, a
processy with context tree7 is describedby the conditional
probabilities Q(a|s), a € A, s € T, and (4| — 1)|T| of
theseare free parametersvhenthe tree 7 is complete.For a
processwith an incompletecontext tree, the probabilities of
certainstringsmustbe 0, hencethe numberof free parameters
is typically smallerthan(]A| —1)|7| whenT is notcomplete.
Thus, Definition 2.4 involves a slight abuse of terminology
We note that replacing (|A| — 1)/2 in Definition 2.4 by ary
¢ > 0 would not affect the resultsbelowv andtheir proofs. In
the literature,context treesare often requiredto be complete.
This canbe achievedby addingdummyedgesf necessarybut
thisincreaseshe penaltytermin Definition 2.4,andtheanalog
of Theorem2.6 belov appearsa wealer resultfor completed
context trees.

It is known [4] that for estimatingthe order of Markov
chains,the BIC estimatoris consistentwithout any restriction
on the hypotheticalorders.The Theorembelon doesneeda
boundon the depthof the hypotheticalcontext trees.Still, as
this bound grows with the samplesize n, no a priori bound
on the size of the unknavn 7, is required,in fact, even
d(7y) = oo is allowed. Note also that the presenceof this
bounddecreasesomputationacomplexity.

Theoem2.6: In the cased(7p) < oo, the BIC estimator

Toio(a}) = arg BICT(27)

min
TeFi(z7.D(n))NT
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with D(n) = o(log n), satisfies
Torc(#}) = To

eventuallyalmostsurelyasn — oo.
In generalcase this estimatorsatisfiesfor any constantk’

%Ic(x?”K = 76|K

eventually almostsurelyasn — oo.
Proof: SeeSectionlll. O

Remark2.7: Hereandin Theorem2.10below, theindicated
minimum s certainly attained asthe numberof feasibletrees
is finite, but the minimizer is not necessarilyunique;in that
case,either minimizer can be taken as arg min.

The other information criterion we consider is the
Krichevsky — Trofimov codelength7], [16].

Definition 2.8: Given a samplez?, the KT criterion for a
feasibletree T is

KT7(27) = —log Pxr,7(27),

where

Pxr r(27) = wﬁ
H Ha:N"(s,a)Zl [(Nn(saa) - %) (Nn(saa) - %) T (%)]
seT (Nn(s) -1+ "21‘) (Nn(s) -2+ |’21|) (%)

is the KT-probability of 27 correspondingo 7.

Remark2.9: The coding distribution Pt 1 is nearly op-
timal for the classof processesvith contet tree 7, in the
sensethat the codelengths — log Pxr,7(z7)] (using base2
ratherthanbasee logarithm)minimize the worst caseaverage
redundany for this class,up to an additive constant.

For estimatingthe orderof Markov chains,the consisteng
of the KT estimatorhas beenproved when the hypothetical
ordersareo(logn) [5], while without any boundon the order,
or with a bound equalto a sufiiciently large constanttimes
logn, a countergampleto its consisteng is known [4].

Theoem2.10: In the cased(7y) < oo, the KT estimator

Ticr (a]) = arg KT (z])

min
TeFi(z},D(n))NT
with D(n) = o(logn), satisfies
Tkr(a}) =To

eventuallyalmostsurelyasn — oo.
In generalcase,the KT estimator

Ticr(2}) = arg KT (27)

min
TeFna(z?,D(n))NT
with D(n) = o(logn) andarbitrary0 < a < 1, satisfiesfor
any constantk’

ﬁ(T(x?”K =Tolx

eventually almostsurelyasn — oo.
Proof: SeeSectionlll. O
Remark2.11: Strictly speakingthe MDL principle would
requireto minimize the “codelength”KT r(z7) incremented
by an additionalterm, the “codelengthof 7 (calledthe cost

of 7 in [16]). This additionaltermis omitted, sincethis does
not affect the consisteng result.

Corollary 2.12: The vector of the empirical conditional
probabilities,

Nu(s) ’

convergesto that of the true conditionalprobabilities@ (als),
a € A, s € Tp almostsurelyasn — oo, where7 is either
the BIC estimatoror the KT estimator

Proof: Immediate from Theorems2.6, 2.10 and the
ergodic theorem. O

Qs(al s) = a€ A seT,

In practice, it is infeasible to calculate estimatorsvia
computing the value of an information criterion for each
model, since the number of the hypothetical context trees
is very large. However, an algorithm in SectionlV admits
finding the consideredestimatorswith practicalcomputational
compleity.

We considerboth off-line andon-line methodsjn the latter
casewith a slight modification of the estimators.Note that
on-line calculationof the estimatoris usefulwhenthe sample
size is not fixed but we keep sampling until the estimator
becomes'stable”, say it remainsconstantwhen the sample
sizeis doubled.

As usual,see[1], [8], we assumeahatthe computationsare
donein registersof size O(logn).

Theoem2.13: The numberof computationsneededo de-
terminethe BIC estimatorandthe KT estimatorin Theorems
2.6 and2.10for a given samplez? is O(n), andthis canbe
achiered storing O(n®) data,wheree > 0 is arbitrary

Proof: SeeSectionlV. O

On-line algorithmsare consideredvith the following minor
modificationsof the estimatorswhich obviously do not affect
the consisteng. In the BIC penaltyterm,logn is replacedby
|log| 4 n] log |A|, andin the secondkind of KT estimatorin
Theorem2.10 Fpo (27, D(n)) is replacedby F,.(z}, D(n))
with r = e2l1°8/41™) No modificationis neededin the first
kind of KT estimatorwhoseconsisteng hasbeenproved for
the cased(7y) < oc.

Theoem2.14: Suppose D(n) = o(logn) is a non-
decreasingunction of n. Adopting the abore modifications,
the number of computationsneededto determinethe BIC
estimatorin Theorem?2.6 ortheKT estimatoilin Theoren?.10,
simultaneouslyor all subsamples?, i < n, is o(nlogn), and
this can be achieved storing O(n®) dataat ary time, where
€ > 0 is arbitrary

Proof: SeeSectionlV. O

Remark2.15: Of course,the O(n®) storagedoesnot in-
clude storageof the context tree estimatorsfor all i < n;
note that for the indicatedpurposeof decidingwhento stop
sampling,it sufficesto keeptrack of the last instancewhen
the estimatorhaschanged.

I1l. CONSISTENCY OF THE KT AND BIC ESTIMATORS

In this sectionwe prove the consisteng theoremsstatedin
Sectionll.
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Proof of Theoem2.6

It sufiicesto prove the secondassertionof the Theorem.
Fix anarbitraryconstantk. It sufiicesto shav thatif 7 | K
75|K for someT € Fi(z%,D(n)) N Z then there exists a
modification 7' of T alsosatisfying7’ € Fi (27, D(n))NZT
suchthat

BICT(2t) > BICT (27), 3)

simultaneouslyfor all consideredireesT, eventually almost
surelyasn — oo.
Accordingto (2), the maximumlik elihood factorizesas

MLy (z}) H Py, s(27), 4)
seT
where
N, (s,a)
= Nn(s,a) ;

P, s(27) = [laca [ No. () ] ff Np(s) > 1,

1 if N,(s)=0.
®)

Using this andthe definition of BIC, seeDefinition 2.4, (3) is
equialentto

Z log PML s .711
seT

Z log PML s! (.’L‘l)

s'eT!

BETED

(IT1=1T")logn. (6)

SinceT is a feasibletree by assumptionso is also T|K
definedby (1). For n suficiently large, so that N,,(s) > 1
for all s with I(s) < K, Q(s) > 0, it follows by Remark2.2
that75| is feasible,aswell. Hence,the indirect assumption
T|K # 75|K implies that there exist strings s € T|K and
$o € 75|K suchthateithers < sy (underestimationdr § > s
(overestimation) Equivalently, thereexist s € 7 andsg € T
such that either (a) I(s) < K, s < so or (b) I(so) < K,
So < S.

We claim that a modification 7' of T with the required
propertiesis

= (T\{shuT (7)
in case(a), with 7 asin Lemma3.1 below, and
= (T\T) U {w} 8)

in case (b), with 7 and w as in Lemma 3.2 belov. The
propertiesof 7 in Lemmas3.1, 3.2 immediatelyimply that
the condition7” € F1 (27, D(n))NZ is satisfiedin both cases
(a), (b) (in case(a), T' € Fi1(z}, D(n)) holdsby the ergodic
theoremgventuallyalmostsurelyasn — oo). Thus,it remains
to check(6) for this choiceof 7.

In case(a), for 7' given by (7) we have |T| — |T'| =
1 — |7, andthe left handside of (6) is equalto that of (9)
below. By Lemma3.1, the latter is lessthan —cn, eventually
almost surely as n — oo, and thus (6) certainly holds.
Regarding simultaneityfor all consideredtrees7, note that
T correspondingo a particular7 may be chosendepending
on s only, andthe numberof stringss with I(s) < K is finite.
_In case(b), for 7' given by (8) we have |T| — |T'| =
|T] — 1, andthe left handside of (6) is equalto that of (10)

belon. Henceby Lemma3.2, (6) is satisfiedalsoin this case,
eventuallyalmostsurelyasn — oo for all considered/. O
Lemma3.1: Forary properpostfixs of somesy € 7o, there
exists an irreducibletree7~'zvith d(T) < oo suchthatu > s
andQ(u) > 0 for eachu € T, eachv > s with Q(v) > 0 has
a postfixin 7, and
ZIOgPML u(wl) < —cmn, (9)
uET

log PML s IL'l

eventually almost surely asn — oo, wheree > 0 is a
sufficiently small constant.

Proof: Givens < sg € Ty, denoteby sg; the I-length
postfix of sqg. Let

% = { S0L+1 }
U{ase :1(s) <I< L,a€ A, aso # soi+1, Q(aso) >0}.
We show thatif L = I(sp) — 1 whenli(sy) < oo, or L is
sufiiciently large with the property@(soz+1) < Q(sor) When

I(sg) = o0, thistree T satisfiesthe assertion®f the Lemma.
Now, using (5), the inequality (9) canbe written as

Na(u,a)

(u)
—ZN salogN( )

a€A ( )

Due to the ergodic theorem, N, (v,a)/n — Q(va) for ary
string v, almostsurelyasn — oo. Hence,it is enoughto
show that

Z Np(u,a)log ——"—= N,
wET,aEA

> Q(ua) log Z Q(sa)log Q(( )) 0.
ueT,acA
Jensers inequalityimplies
Qu) (Q(ua) ,  Q(ua)
9 2, g Cokso)
> Quaytos 975), e

where the strict inequality holds for somea € A, unless
Q(al s) = Q(a|u) for eacha € A andu € T, in particular
for u = sgr+1. In the casel(sg) < oo we have sor+1 = o,
hencethe last contingeng is ruled out by s < sq € 7o and
the definition of context tree 7. In the casel(sg) = oo, If
Q(a|s) wereequalto Q(alsor+1) for eacha € A andall L
satisfying Q(sor+1) < Q(sor), letting L — oo would give
Q(als) = Q(also), againcontradictings < so € To.

The irreducibility of 7 is obviouswheni(sg) = oo, andin
the casel(sg) < oo it only requirescheckingthat for L =
I(so) — 1 thereexistsa € A with asor, # 50, Q(asor) > 0;
this follows from sy € 7o by Definition 2.1. B

Moreover, we have Q(u) > 0 for eachu € 7, and each
v = s with Q(v) > 0 hasa postfixin 7 by construction. [

Lemma3.2: For ary irreducibletree 7 with d(7") < D(n),
D(n) = o(logn), ands € T thathasa properpostfixsq € 7o
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with I(sg) < K, thereexists w satisfyings > w > so such
that,for 7 = {u € T : u > w } andarbitraryv > 0,

>~ log Pyr, u(#}) —log Pyr, w(z}) < v|T] logn, (10)
u€’7’

holds simultaneouslyfor all 7 and s as above, eventu-
ally almost surely as n — oo. Moreover, here w =
a_ra_p41---a_1 canbechosensuchthata ;41...a jisa
properpostfix of someu € T\7T.

Proof: Letw = a_ga_g41 -..a_1 bethelongestpostfix
of s with k& < I(s) for which thereexists a string in 7 not
equalto w but having the postfixa_gy1 ...a—1. ThenTy € T
implies thatw > so, andhencea_j41 ...a_; < u for some

ueT\T.
Since
Nn(w, a) ]Nn(wﬂl) )
[ %5 1] o

the left handside of the claimed inequality can be bounded
above by

Z Ny (u,a)log N(( ) Z Np(w,a)log Q(a| w)
uE’T’,aEA acA
@ Z Ny, (u,a)log N(q(i ;z)
u€T,acA
- Z Nn(uaa‘) IOgQ(alu)
ue'?: a€A
-3 N (1) 1 No(t,0) /N ()
ET 2;, Na Qalw)
_ (u )
= 3wt o (S (-|u))
u€T
Here (i) follows asu > w > so € Top implies Q(a|u) =
Q(a|lw) = Q(a|so) by Definition 2.1. Using Lemmas6.2

and 6.3 in the Appendix, this can be further boundedabove,
eventually almostsurely simultaneouslyfor all considered]”
ands, by

Ny (u,a) ’
Nn( — = —Q(a|u
uezT (Imln (;4 [ Nn(u) Q( | )
0 logn 5|A| ~
< Np(u) — |A T 1 ,
3 ) — |4l G < T2 T{logn

where gmin is the minimum of the nonzeroconditional prob-
abilities Q(a| s9), a € A, so € To, l(s0) < K,andd > 0 is
arbitrary small. O

Proof of Theoem2.10

If d(79) < oo, theassumptiong™ € Fi (27, D(n)), D(n) =
o(logn), imply that T € Fpa« (2}, D(n)) eventually almost
surelyasn — oo, by Lemmagé.1 in the Appendix. Henceit
sufficesto prove the secondassertiorof the Theorem.

The proof is similar to that of Theorem2.6. It hasto be

checledthatif 7|, # 7o/, for someT € Fpa (z7, D(n))NT

with d(T) < D(n), thenthe modification7” of 7 definedby
(7) or (8) satisfiesT' € Fpe (27, D(n))NZ and
KT (at) > KT (1), (11)

simultaneouslyfor all consideredrees7, eventually almost
surelyasn — oc.
Let Pxr, s(2}) denote

[L.~, (8,0)>1 [ (Na(s,a) = 3) (Na(s,a) = §) -+
(Nals) =14+ 141) (Na(s) -2+ 141) -

(3)]

®)

(12)

if Np(s) > 1, and1 if N,(s) = 0. Thenthe KT probability
Pxr,7(2}) in Definition 2.8 factorizesas
Pygr,7(at) = |A|D(") E—PKT s(27) (13)
It follows that (11) is equivalentto
> log Pir,s(zf) — Y log Per, o (a) < 0. (14)
seT s'eT!
Substituting7” givenby (7) or (8), this reducesto
log Pxr, s (z}) — Y log Pir, u(a}) <0 (15)

ueT
in case(a), whereT is asin Lemma3.1, respectiely to

> log Pur, u(@}) — log P, w(2}) < 0
u€'7'

(16)

in case(b), where7 andw areasin Lemma3.2.

To deduce(15) and (16) from Lemmas3.1 and 3.2 (in the
required eventually almost sure sense) we use the standard
bound(see,e.qg.,[4] eq.(2.12))

logPKT w(ZT) ZN u,a) logN n(, )
a€A Nn, ( )
Al-1
+% log Np(u) | < C

for ary string v with N,(u) > 1, where C is a constant
dependingonly on the alphabetsize| A| with the notation(5).
The last boundcan be equialently written as

log Pxr, o (2}) — log Pur, u(z7)

Al -1
2

+ log Np(u) | < C.

(17)

The claim (15) immediatelyfollows from (9) by (17) and
the trivial bounds0 < log N,,(u) < logn.

Also, (17) gives for the left hand side of (16) the upper
bound

Z (log ﬁML, u(.’l??) -

ue’?

Al-1
| |2 log Ny, (u) + C)

Al -1

- (log IBML,w(a:?) - log Np,(w) — C) .
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For 7 in Lemma3.2, the assumption] € Fya(z, D(n))

implies Ny, (u) > n* for eachu € 7, and since the sum
of Ny(u) for u € T is equalto N, (w), we have N, (u) >

Ny, (w)/|T]| for at leastoneu € 7. Using thesefactsin the
last bound,and denotingthe left handside of (10) in Lemma
3.2by A, it follows thatthe left handside of (16) is bounded
above by

|4l -1 [A| =1 Nyp(w)
T -1 alogn — lo =
= (T - )= —alog 5 g 7
Al -1 ~
+ % log Np(w) + (|T|+ 1) C

By Lemma3.2,hereA < v |’7'| log n eventuallyalmostsurely
asn — oo, for arbitrary v > 0, simultaneouslyfor all
considered/” ands, andthusthe claim (16) follows. O

IV. COMPUTATION OF THE KT AND BIC ESTIMATORS

TheestimatorsTgic (z7) and 7kt (2?) in Theorems2.6 and
2.10,the latter for the cased(7p) < oo, canbe representeds

T} = (18)

= ar max Py(x
gTefl(zl, D(n)NZ I;IT i),

Pxr, () in the KT case,and P, (27) =
n (z7) in the BIC case,see(13), Definition 2.8,
4, Deflnmon 2.4,

Thesefactsadmit a joint treatmentof the computationsof
the BIC and KT estimators,via an extension of the CTM
algorithm of [15], [17] developed for the KT case. This
algorithm hasthe following construction.

Considerthe full tree AP, where D = D(n) = o(logn),
andlet Sp denotethe setof its nodesj.e., thesetof all strings
of length at most D. Basedon the samplexz} we assignto
eachnodea value and a binary indicator This assignments
recursve, thatis, thevalueandtheindicatorassignedo anode
are calculatedfrom the valuesassignedo the childrenof this
node.The desiredestimatomwill be the subtreedeterminedoy
the indicatorsas specifiedbelow.

In the sequel,P;(z}) denoteseither possibility in the first
passagef this section.

Definition 4.1: Given a samplex?, to eachstring s € Sp
with N,,(s) > 1, D = D(n) we assignrecursvely, starting
from the leaves of the full tree AP, the value

.
max { P,(z7), D (g7 }

VD(IL'?) = a€A: N, (a3)>1

if 0<I(s)<D,

if i(s) =D,

whereP (.1:1)
1A

\ 133(55'?)
andthe indicator
(1 if 0<I(s)<Dand
HaEA: Np(as)>1 Valg(w?) > Ps(ﬂf?),
0if 0<I(s)<Dand N
HaEA: Ny (as)>1 Val.z(w?) < Ps($?),
L 0 if I(s) =

X2 (ah) = 3

Using theseindicators,we assignto eachs € Sp, D =
D(n) amaximizingtree 7.2 (z7) consistingof stringsu > s.
The term “maximizing” is justified by Lemma4.4 below.

Definition 4.2: Given s € Sp, let T.P(z7) equalto
{ueSp:xPEt)=0,x2@E)=1forall s <v<u}
if xP(27) =1, andto {s} if xP(z7) = 0.

The maximizingtree 7.” (x7) is irreducibleunlessit equals
{s}. Indeed,if N,(s) = N,(as) holdsfor astrings € Sp_;
anda lettera (andthus N,,(a1s) = 0 for all a; # a, a; € A)
thenx?(z7) = 1 implies x2.(z7) = 1.

Proposition4.3: The contet tree estimator7 (z7) in (18)
equalsthe maximizingtree assignedo the root, that is,

T(a}) = 73 (a7)-
Proof: Theclaimedequalityfollows from thenext lemma

by substitutings = @&, on accountof (18) and the fact that
TP (z}) is irreducible. O

For ary s € Sp with N,(s) > 1, define F(z}|s) asthe
family of all trees7 of depthd(7T") < D, consistingof strings
u > s with N,,(u) > 1, suchthateachs’ > s with N,,(s') > 1
is eithera postfix of someu € T or hasa postfixin 7.

Lemma4.4: For ary s € Sp with N, (s) > 1

VP(zh) = max H P, (z}) = H P, (z}).
TeFi(atle) ueTP (z7)
Proof: By induction on the length of the string s,

similarly to [15]. For I(s) = D the statements obvious.
Supposinghe assertiorholdsfor all stringsof lengthd, we
have for ary s with I(s) =d — 1

I1

a€A: Np(as)>1

Vas (27)

= I

a€A: Np(as)>1

TaE]‘H(E |as)

= max P, (z?).
Te]—‘l(mﬂs):d(T)Zlul;Ir (1)

Here the secondequality holds since ary family of trees7,,
a € A, N,(as) > 1, satisfying the indicated constraints,
uniquely corresponddo a tree 7 € Fy(z7|s) with d(T) > 1
viaT =U,7,.

It follows by Definition 4.1 that

f> n
repemax ] Pute) }

V,P (1) = max { Py(a7)
ueT

P,(a?),

u€T

proving the first equalityin the Lemma.The secondequality

alsofollows from the lastidentity, by the inductionhypothesis

and Definitions 4.1 and 4.2. O
Remark4.5: For the KT case,Lemmad4.4 above with the

condition 7 € Fy(z}|s) replacedby the conditionthat 7 is

= max
TE]'H(zfls)
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complete,is a resultof [15], [17] (with the minor difference
that the treesthere also had “costs”), and the above proof is
similar to theirs.

TheKT estimatorin Theorem2.10for the generalcasecan
still be representedas in (18), with Py(2}) = Pxr,s(2}),
the only differenceis that F; (27, D(n)) in (18) is replaced
by F.(z7, D(n)) with r = n“. For this case,Definition 4.1
is modified by setting V;D(a:{”) = 0 for all s € Sp with
N,(s) < r. The definition remainsunchangedor s € Sp
with N,,(s) > r, but of coursethevaluesV.P (z7") maychange
also for thesestringss. In particular if N,(s) > r but1 <
Np(as) < r_for somea € A, the modified definition gives
VP(at) = Py(ay) andxP(a7) = 0.

Adopting this modified Definition 4.1, it is easyto seethat
Proposition4.3 still holds, that is, the maximizing tree of
Definition 4.2 assignedto the root equalsthe KT estimator
in Theorem2.10for the generalcase.

Next we showv that the computationof the estimatorsin
Theorems2.6 and2.10via the abore methodhasthe asserted
compleity in the off-line case.

Proof of Theoem2.13

Since D(n) = o(logn), we may write D(n) = &, logn,
wheree,, — 0.

For eachstring s € Sp, D = D(n) = eplogn, the
countsN,(s,a), a € A, aswell as P, (z}), VP (z}), xP (27)
are stored. The numberof storeddatais proportionalto the
cardinality of Sp, which is

Z ) =

To get the indicatorsxP(z7), s € Sp which give rise to
the trees 7.” (z7) accordingto Definition 4.2, first we need
the countsN,,(s,a), s € Sp, a € A.

The countsN,,(s,a) for s € AP, a € A canbe determined
successiely processingthe sample z? from position j
D(n) to j = n, and at instance;j incrementingthe count
N, (;zzgjj(n) ,a:j) by 1 (thestartingvaluesof all countsbeing
0). Thisis O(n) calculations.The othercountsN,(s,a), s €
Sp_1, a € A canbe determinedrecursvely, as N, (s,a) =
> bea Nn(bs,a). Thisis |A||Sp_1| = o(n) calculations.

Then, from these counts the values P,(z7) are deter
mined by O(n) multiplications. The calculationof the values
V.P(27) andxP(27) requirescalculationsproportionalto the
cardinality of Sp, which is lessthan2|A|P = o(n). O

Considernext the on-line versionsof the estimators,with
the modificationsdescribedin the passagebefore Theorem
2.14. In the BIC case,the representation(18) holds with
Py(ap) = e~z Llogiain] o 141 By (27, In the KT case,
the sameestimatoris usedas for the off-line computation,
when d(7y) < oo. The on-line version of the KT estimator
for the generalcaseis analogougo the off-line version,with
r = e*[8141 ] insteadof r = n®.

Finally, we shav that thesealgorithms have the asserted
computationakcompleity in the on-line case.

D+1 _
|A| < 2|A|D

o). (19

Proof of Theoem2.14

The calculationsrequiredby the algorithmin Definition 4.1
can be performedrecursvely in the samplesizen.

Supposeat instanti, for eachstring s € Sp;), the counts
Ni(s,a), a € A, aswell as P,(zi), VP (1), xP(zi) are
stored, where D D(3). The number of stored data is
proportionalto the cardinality of Sp(;), which is O(i), see
(19).

Considerfirst thoseinstancesi when the samplesize in-
creasedrom i — 1 to 4 but |log 4 (i —1)] = UOg\A\ zJ and
the depthdoesnot change,D (i) = D(i —1). If Ps(zi™ by ata
nodes is known, P;(z¢) canbe calculatedusing, for the KT
case that

Ni(3,$i) + 1/2 D

i—1
Ni(s) + 1Ay e

andin the BIC casethatin theexpressiorof Pyy, ;(zi1) only
the counts N;(s, ;) and N;(s) were incrementedto obtain
Py, s (). From Py () thevaluesV,” (z?) andx? (zi) can
be computedin constantnumberof steps.Thesevaluesare
differentfor ' and z} only when s is a postfix of zi ',
henceupdatlngls neededat D (i) nodesonly. Thusthe number
of requiredcomputationdgs proportionalto D(%).

Considerthoseinstances when the samplesize increases
from i — 1 to i suchthat |log 4 i | = [log 4(i — 1)] + 1 but
the depth doesnot change.The additional task comparedto
the previous caseis that recalculationof V.2 (z%) andx? (z%)
is neededor all nodess € Sp;), which requirescalculations
proportionalto the cardinality of Sp;).

Considernext thoseinstancesi when the depthincreases,
D(i) = D(i—1)+1. In this casewe have threetasks.We have
to update P,(zi™') at thosenodess that already existed at
instance —1, namelywherel(s) < D(i). In addition,we have
to calculatethemfor the new terminal nodess, I(s) = D(i),
and recalculateV.? (zi) and xP(z%) at all nodess of the
new full tree.The formerneedsO(i) calculationslndeed the
countsN;(s,a), l(s) = D(i), canbe determinedsuccessiely
processinghe samplez? from positionj = D(') to j = 1,
andatinstancej incrementinghe countv; xj D(Z) ,w,) by
1 (the startingvaluesof all countsbeing0), and from these
counts P;(z%) are determinedby O(i) multiplications. The
recalculationof the valuesVp s(zi) and xp, s(z}) requires
calculationsproportionalto the cardinality of Sp;).

Finally, the total numberof computationsperformedon a
samplez? is boundedasfollows. The numberof computations
neededor the updatingat all instances < n is proportional
to

Per, s(a}) =

= 3" |eilogi] = o(nlogn).

i=1

Z D(3)

The numberof computationgo recalculatéVp, 5, xp, s for all
nodesin the full tree AP( at the instanceswhen |log, /i |
increasess of order

1og) 4

> 24P =0

D=0

(1A454m) = O(n).
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Thenumberof computationgo calculateP; for the new termi-
nal nodesat the instancesvhen D (i) increasess proportional
to

len log n]
Z min{i: D <¢g;logi}
D=0
len logn] len logn]
= > min{i:ePF<i}< > Pl
D=0 D=0

<0 (eis" 1°g”) + ey logn = O(n).

The numberof computationsto recalculateVp, s, xp,s for
all nodesin the full tree AP at the instanceswhen D(i)
increasess of order

len log ]
> 21AP = O (JA[F"'8") = o(n).

D=0

V. DISCUSSION

We have provedthe strongconsisteng of the BIC estimator
and the KT version of MDL estimatorof the context tree
of ary (stationaryergodic) process,when the depth of the
hypotheticalcontext treesis allowed to grow with the sample
sizen aso(logn). This contet tree may have infinite depth,
andit is not necessarilycomplete.Theseconsisteng results
aregeneralizationsf similar resultsfor estimationof theorder
of Markov chains[4], [5].

We have consideredprocessesvith time domainsequalto
the setof all integers,but aslong asstationarityandergodicity
areinsistedupon, ary processwith one-sidedime domainN
can be obtainedby restrictingthe time domainof a process
of the former kind. When dealingwith Markov chain order
estimationin the one-sidedcase, dropping the stationarity
assumptiorcausesio additionaldifficulty, see[4]. For context
tree estimation of tree sources,non-stationaritymay cause
technicalproblemsin dealingwith transientphenomenabut
doesnot appearto significantly changethe picture, see[8].

While the BIC Markov orderestimatoris consistentvithout
ary bound on the hypotheticalorders[4], it remainsopen
whether the BIC contet tree estimator remains consistent
whendroppingthe depthboundo(log n), or replacingit by a
boundclogn. FortheKT contet treeestimatoiit alsoremains
openwhetherthe depthboundcould be increasedit certainly
cannotbe droppedor replacedby alarge constantimeslog n,
sincethen consisteny fails even for Markov orderestimation
[4].

With KT, we have consideredwo kinds of estimatorsthe
secondkind admitting only “r-frequent” hypothetical trees
with » = n®. The latter conforms with the intuitive idea
that the estimation should be basedon those strings that
“frequently” appearedn the sample seg[3]. Whenthe context
treehasfinite depth,therestrictionto n®-frequenthypothetical
trees was not necessarysince all feasible trees (of depth
D(n) = o(logn)) satisfiedit automatically eventually almost
surely It remainsopenwhetherthe mentionedrestrictionis

necessanfor consisteng when the context tree hasinfinite
depth.

A consequencef the consisteng theoremss that whena
processis not a Markov chainof ary (finite) order, the esti-
matedorder, producedby eitherof the BIC or KT estimators,
tendsto infinity almostsurely

We have also shown that the BIC and KT context tree
estimatorscan be computedin linear time, via suitablemodi-
ficationsof the CTM method[15], [17]. An on-line procedure
was also consideredthat calculatesthe estimatorsfor all
samplesizesi < n in o(nlogn) time. This result may be
useful,for example,to implementcontext tree estimationwith
a stoppingrule basedon “stabilizing” of the estimator

The NML version of MDL was not consideredfor the
contet tree estimationproblem (though it was for Markov
order estimationin [5]), becausethe structureof the NML
criterion, unlike BIC and KT, appearsunsuitablefor CTM
implementation.

Finally we notethatin thedefinitionof BIC (Definition 2.4),
thefactor(]A|—1)|7/2 in the penaltyterm could be replaced
by ¢|T], with ary positive constante, without affecting our
results. The questionof what other penalty terms might be
appropriateis not in the scopeof this paper

V1. APPENDIX

Lemma6.1: Given a process with context tree of finite
depth,for arny 0 < a < 1 thereexists k > 0 such that,
eventuallyalmostsurelyasn — oo,

Nn(S) Z na7

simultaneouslyor all stringss with Q(s) > 0, I(s) < klogn.
Proof: This bound has been used in [5], proof of
Theoremb5. It is a consequencef the typicality theorem
in [4], seealso [5], remark after Th. 1. Indeed, the latter
implies the existenceof k > 0 suchthat N,,(s)/n > Q(s)/2
simultaneouslyor all s with [(s) < klogn, eventuallyalmost
surelyasn — oco. The assertionof the lemmafollows, since
Q(s), whenpositive, is boundedbelow by &%) for a constant
&> 0. O
Lemma6.2: Given a process(, to ary § > 0 thereexists
k > 0 suchthat, eventually almostsurelyasn — oo,

d logn
Nn(s)

simultaneouslyfor all strings s with I(s) < klogn and
N,(s) > 1 which have a postfixin the context tree of Q.

Proof: By Theorem2 of [5], for £ > (log|A|)/2 there
exist p > 0 andc > 0 suchthat, eventually almostsurely as
n — 0o,

N,

T o] <

Ny (s,a)

m —Q(al s)

B \/max{fl(s), nloglog Na(s) }
No(s)

(20)

simultaneouslyfor all stringss with N,(s) > cl(s) which
have a postfix in the context tree of ). While Theorem2 of
[5] is statedfor Markov processe®nly, the proof reliesupon
the martingaleproperty of the sequenceZ,, of [5], eq. (10),
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and Z, = Ny(s,a) — Q(als) N,_1(s) definesa martingale [16] F. M. J. Willems, Y. M. Shtarkv, and T. J. Tjalkens, “The context-

wheneer s hasa postfixin the context tree of the processy. tree ﬁelfglhting g‘;éhggfasm ;i;ogpSertieé, IEEE Trans. Inform. Theory
) - vol. IT-41, pp. 653-664 May .
Thusthe mentl(_)nedprOOf applleslltera_lly. ) [17] F. M. J. Willems, Y. M. Shtarlov, and T. J. Tjalkens, “Context-tree
Thenthe choicex = §/ max{¢, c/4} is suitablefor Lemma maximizing; in Proc. 2000 Conf Information Sciencesand Systems,
6.2.Indeed,if N,,(s) > cl(s), the bound(20) holdsandgives Princeton,NJ, pp. TP6-7-TP6-12Mar. 2000. _ .
the assertionwhile in the oppositecase N ( ) < l( ) < [18] F. M. J. Willems, “The contet-tree weighting method: Extensions,
) pp n\$ Ci8) = IEEE Trans. Inform. Theory vol. IT-44, pp. 792—798 Mar. 1998.
crlogn we have \/(d logn)/N,(s) > /&/(ck) > 2 and
the assertiorholds trivially. O
Lemma6.3: For probability distributions P, and P, on A
(Pi(a) — Py(a))
D(P1||P,) < .
anA Py(a)
Proof:
P1 (a)
D(P||P) = P (a)lo
(P1|P2) anA 1(a) )
P (a) (P1(a) — Px(a))®
<) Pi(a) ( -1)= .
;4 Py(a) ;4 Py(a)
|
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