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Abstract. We consider binary infinite order stochastic chains perturbed by a random noise.

This means that at each time step, the value assumed by the chain can be randomly and

independently flipped with a small fixed probability. We show that the transition probabili-

ties of the perturbed chain are uniformly close to the corresponding transition probabilities

of the original chain. As a consequence, in the case of stochastic chains with unbounded but

otherwise finite variable length memory, we show that it is possible to recover the context

tree of the original chain, using a suitable version of the algorithm Context, provided that

the noise is small enough.

1. Introduction

The original motivation of this paper is the following question. Is it possible to recover the

context tree of a variable length Markov chain from a noisy sample of the chain. We recall

that in a variable length Markov chain the conditional probability of the next symbol, given

the past, depends on a variable portion of the past whose length depends on the past itself.

This class of models were first introduced by Rissanen (1983) who called them finite memory

sources or tree machines. They recently became popular in the statistics literature under the

name of variable length Markov chains coined by Bühlmann and Wyner (1999).

The notion of variable memory model can be naturally extended to a non Markovian

situation where the contexts are still finite, but their lengths are no longer bounded. We

refer the reader to Galves and Löcherbach (2008) for a recent survey of the topic. This leads

us to consider not only randomly perturbed unbounded variable length memory models, but

more generally randomly perturbed infinite order stochastic chains.
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We will consider binary chains of infinite order in which at each time step the value assumed

by the chain can be randomly and independently flipped with a small fixed probability. Even

if the original chain is Markovian, the perturbed chain is in general a chain of infinite order.

(we refer the reader to Fernández et al. (2001) for a self contained introduction to chains of

infinite order). We show that the transition probabilities of the perturbed chain are uniformly

close to the corresponding transition probabilities of the original chain. More precisely, we

prove that the difference between the conditional probabilities of the next symbol given a

finite past of any fixed length is uniformly bounded above by the probability of flipping,

multiplied by a fixed constant. This is the content of our first theorem.

Using this result we are able to solve our original problem of recovering the context tree

of a chain with unbounded variable length from a noisy sample. To make this point clear,

we recall the notion of context. In his original paper, Rissanen used the word context to

designate the minimal suffix of the string of past symbols which is enough to define the

probability of the next symbol. Rissanen also observed that the set of all contexts satisfies

the suffix property, which means that no context is a proper suffix of another context. This

property allows to represent the set of all contexts as the set of leaves of a rooted labeled

tree, henceforth called the context tree of the chain. With this representation the process is

described by the tree of all contexts and an associated family of probability measures over the

set of symbols, indexed by the leaves of the tree. Given a context, its associated probability

measure gives the probability of the next symbol for any past having this context as a suffix.

In his paper Rissanen not only introduced the class of variable memory models but he

also introduced the algorithm Context to estimate both the context tree and the associated

family of probability transition. The way the algorithm Context works can be summarized as

follows. Given a sample produced by a chain with variable memory, we start with a maximal

tree of candidate contexts for the sample. The branches of this first tree are then pruned

until we obtain a minimal tree of contexts well adapted to the sample.

From Rissanen (1983) to Galves et al. (2008), passing by Ron et al. (1996) and Bühlmann

and Wyner (1999), several variants of the algorithm Context have been presented in the

literature. In all the variants the decision to prune a branch is taken by considering a cost
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function. A branch is pruned if the cost function assumes a value smaller than a given thresh-

old. The estimated context tree is the smallest tree satisfying this condition. The estimated

family of probability transitions is the one associated to the minimal tree of contexts.

The proof of the weak consistency of the algorithm Context when the tree of contexts is

finite was done in Rissanen (1983). This result was extended in Bühlmann and Wyner (1999)

where the weak consistency of the algorithm was proved in the finite case, but allowing the

maximal length of the memory to grow with the size of the sample. In both papers the cost

function was defined using the log likelihood ratio test to compare two candidate trees and

the main ingredient of the consistency proofs was the chi-square approximation to the log

likelihood ratio test for Markov chains of fixed order.

The unbounded case was considered by Ferrari and Wyner (2003), Duarte et al. (2006)

and Csiszár and Talata (2006). The first two papers essentially extend to the unbounded

case the original chi-square approach introduced by Rissanen. Instead of the chi-square, the

last paper uses penalized likelihood algorithms, related to the Bayesian Information Criterion

(BIC), to estimate the context tree. We refer the reader to Csiszár and Talata (2006) for

a nice description of other approaches and results in this field, including the context tree

maximizing algorithm by Willems et al. (1995).

In the present paper we use a variant of the algorithm Context introduced in Galves et al.

(2008) for finite trees and extended to unbounded trees in Galves and Leonardi (2008). In this

variant, the decision of pruning a branch is taken by considering the difference between the

estimated conditional probabilities of the original branch and the pruned one, using a suitable

threshold. Using exponential inequalities for the estimated transition probabilities associated

to the candidate contexts, these papers not only show the consistency of this variant of the

algorithm Context, but also provide an exponential upper bound for the rate of convergence.

This version of the algorithm Context does not distinguish transition probabilities which

are closer than the threshold level used in the pruning decision. Our first theorem proves that

the conditional probabilities of the original variable memory chain and of the perturbed one

are uniformly close if the probability of random flipping is small enough. Hence it is natural

to expect that with this version of the algorithm Context, one should be able to retrieve the

original context tree out from the noisy sample. This is actually the case, as we prove in the

second theorem.
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The paper is organized as follows. In section 2 we give the definitions and state the main

results. Section 3 and 4 are devoted to the proof of Theorem 1 and 2, respectively.

2. Definitions and results

Let A denote the binary alphabet {0, 1}, with size |A| = 2. Given two integers m ≤ n

we denote by wn
m the sequence wm, . . . , wn of symbols in A and An

m denotes the set of

such sequences. The length of the sequence wn
m is denoted by `(wn

m) and is defined by

`(wn
m) = n −m + 1. Any sequence wn

m with m > n represents the empty string. The same

notation is extended to the case m = −∞.

Given two sequences w and v, with `(w) < ∞, we will denote by vw the sequence of length

`(v) + `(w) obtained by concatenating the two strings. We say that the sequence s is a suffix

of the sequence w if there exists a sequence u, with `(u) ≥ 1, such that w = us. In this case

we write s ≺ w. When s ≺ w or s = w we write s � w. Given a finite sequence w we denote

by suf(w) the largest suffix of w.

We consider a stationary ergodic stochastic process (Xt)t∈Z over A = {0, 1}. Given a

sequence w ∈ A−1
−∞ and a symbol a ∈ A, we denote by

p(a|w) = P(X0 = a | X−1 = w−1, X−2 = w−2, . . . )

the regular version of the conditional probability of the process. Given a finite sequence

w ∈ A−1
−j we denote by

p(w) = P(X−1
−j = w)

the stationary probability of the cylinder defined by the sequence w.

We assume the process (Xt) satisfies the following conditions

(1) Non-nullness, that is

α := inf{p(a|w) : a ∈ A,w ∈ A−1
−∞} > 0 ,

(2) Summable continuity rate, that is

β :=
∑
k∈N

βk < +∞,

where the sequence {βk}k∈N is defined by

βk := sup
{ ∣∣∣1− p(a|w)

p(a|v)

∣∣∣ : a ∈ A, v, w ∈ A−1
−∞ with w

k= v
}

.
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Here, w
k= v means that there exists a sequence u with `(u) = k such that u ≺ w and

u ≺ v. The sequence {βk}k∈N is called the continuity rate.

In this paper we are interested on the effect of a Bernoulli noise flipping, independent

from the successive symbols of the process (Xt). Namely, let (ξt)t∈Z be an i.i.d. sequence of

random variables taking values in {0, 1}, independent of (Xt), with

P
(
ξt = 0) = 1− ε,

where ε is a fixed noise parameter in (0, 1). For a and b in {0, 1}, we define

a⊕ b = a + b (mod 2),

and ā = 1⊕ a. We now define the stochastically perturbed chain (Zt)t∈Z by

Zt = Xt ⊕ ξt.

In the case ε = 1/2, (Zt) is an i.i.d. uniform Bernoulli. However, generically it is a process

of infinite order.

In what follows we will use the shorthand notation q(w−1
−j ) to denote P

(
Z−1
−j = w−1

−j

)
. For

any sequence w = w−1
−∞ denote by

q(a|w) = P
(
Z0 = a | Z−1 = w−1, Z−2 = w−2, . . .

)
the transition probabilities corresponding to the process (Zt). We can now state our first

theorem.

Theorem 1. For (Xt) and (Zt) as above, for any ε ∈ (0, 1) and for any k ≥ 0,

sup {|q(a|w)− p(a|w)| : a ∈ A,w ∈ A−1
−k} ≤

[
1 +

4β

min(αβ∗, 1)
]
ε ,

where β∗ =
∏+∞

k=0(1− βk) < +∞.

Remark. Here and throughout the rest of the paper we accept conditional events defined by

empty sequences, for example the ones appearing in Theorem 1 when k = 0. In these cases

the convention is that these events are removed from the conditional expressions.

Definition 2.1. A sequence w ∈ A−1
−j is a context for the process (Xt) if it satisfies
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(1) For any semi-infinite sequence x−1
−∞ having w as a suffix

P(X0 = a | X−1
−∞ = x−1

−∞) = p(a|w), for all a ∈ A.

(2) No suffix of w satisfies (1).

An infinite context is a semi-infinite sequence w−1
−∞ such that any of its suffixes w−1

−j , j =

1, 2, . . . is a context.

Definition 2.1 implies that the set of all contexts (finite or infinite) can be represented as

a rooted tree. This tree is called the context tree of the process (Xt) and will be denoted by

T . The non-nullness hypothesis implies that the context tree of the process (Xt) is complete,

i.e., any sequence in A−1
−∞ belongs to T or has a suffix that belongs to T . We say that the

context tree T is bounded if it has a finite number of sequences. In the infinite case we say

that T is unbounded. Examples of bounded and unbounded context trees related to renewal

processes are presented in Csiszár and Talata (2006).

Given an integer K we will denote by T |K the tree T truncated to level K, that is

T |K = {w ∈ T : `(w) ≤ K} ∪ {w : `(w) = K and w ≺ u, for some u ∈ T }.

Our interest is to recover the truncated context tree of the process (Xt) from a sample of

the noisy process (Zt). We will assume z1, z2 . . . , zn is a sample of the process (Zt). For any

finite string w with `(w) ≤ n, we denote by Nn(w) the number of occurrences of the string

in the sample, that is

Nn(w) =
n−`(w)∑

t=0

1{zt+`(w)
t+1 = w}.

For any element a ∈ A and any finite sequence w, the empirical transition probability

q̂n(a|w) is defined by

q̂n(a|w) =
Nn(wa) + 1
Nn(w·) + |A|

.

where

Nn(w·) =
∑
b∈A

Nn(wb) .

The variant of Rissanen’s context tree estimator is defined as follows. First of all, let us

define for any finite string w,

∆n(w) = max
a∈A

|q̂n(a|w)− q̂n(a|suf(w))|.
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The ∆n(w) operator computes a distance between the empirical transition probabilities as-

sociated to the sequence w and the one associated to the sequence suf(w).

Definition 2.2. Given δ > 0 and d < n, the context tree estimator T̂ δ,d
n is the set containing

all sequences w ∈ A−1
−d such that ∆n(a suf(w)) > δ for some a ∈ A and ∆n(uw) ≤ δ for all

u ∈ A
−`(w)
−d .

In order to state our second theorem we need some definitions. Given an integer k ≥ 1,

define Ck = {u ∈ T |k : p(a|u) 6= p(a|suf(u)) for some a ∈ A} and

Dk = min
u∈Ck

max
a∈A

{|p(a|u)− p(a|suf(u))|}.

From the definition we can see that Dk > 0 for all k ≥ 1.

The second main result in this paper is the following.

Theorem 2. Let K be an integer and let z1, z2 . . . , zn be a sample of the perturbed process

(Zt). Then, there exist constants c, n0 and an integer d depending on the process (Xt) such

that for any ε ∈ (0, Dd/2c), any δ ∈ (cε,Dd − cε) and any n ≥ n0 we have

P(T̂ δ,d
n |K 6= T |K) ≤ c1 exp

[
−c2(n− d)

]
.

The constants are all explicit and are given by

(1) c = 2
[
1 + 4β

min(αβ∗,1)

]
.

(2) d = maxu/∈T, `(u)<K min {k : there exists w ∈ Ck with w � u}.

(3) n0 = 6
(min(δ,Dd−δ)−cε)αd + d.

(4) c1 = 12 e
1
e 2d and c2 = [min(δ,Dd−δ)−cε−6/(n−d)αd]2α2d

256e(1+ β
α

)(d+1)
.

As a consequence we obtain the following strong consistency result.

Corollary 3. For any integer K and for almost all infinite sample z1, z2 . . . there exists a n̄

such that, for any n ≥ n̄ we have

T̂ δ,d
n |K = T |K ,

where d and δ are chosen as in Theorem 2.
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3. Proof of Theorem 1

We start by proving three preparatory lemmas.

Lemma 4. For any ε ∈ (0, 1), any k > j ≥ 0, any w0
−∞ and any a, b ∈ A,∣∣P(

X0 = w0 | X−1
−j = w−1

−j , X−j−1 = a, Z−j−1 = b, Z−j−2
−k = w−j−2

−k

)
− p

(
w0|w−1

−∞
)∣∣ ≤ βj .

Proof. We observe that for j ≥ 0 it follows from conditioning on the values of X−j−2
−k and the

independence of the flipping procedure that

P
(
X0 =w0

∣∣ X−1
−j = w−1

−j , X−j−1 = a, Z−j−1 = b, Z−j−2
−k = w−j−2

−k

)
=

∑
u−j−2
−k

p(u−j−2
−k aw−1

−j w0)P
(
Z−j−1
−k = w−j−2

−k b | X−j−1
−k = u−j−2

−k a
)

∑
u−j−2
−k

p(u−j−2
−k aw−1

−j )P
(
Z−j−1
−k = w−j−2

−k b | X−j−1
−k = u−j−2

−k a
) .

It is easy to see using conditioning on the infinite past that

inf
v−j−1
−∞

p(w0|v−j−1
−∞ w−1

−j ) ≤ p(w0|u−j−2
−k aw−1

−j ) ≤ sup
v−j−1
−∞

p(w0|v−j−1
−∞ w−1

−j ). (3.1)

Then, using continuity we have

p(w0|w−1
−∞)− βj ≤ p(w0|u−j−2

−k aw−1
−j ) ≤ p(w0|w−1

−∞) + βj

and the assertion of the Lemma follows immediately. �

Lemma 5. For any ε ∈ (0, 1), any k ≥ 0 and any w0
−k,

q(w0|w−1
−k) ≥ α

and

P
(
X0 = w0

∣∣ Z−1
−k = w−1

−k

)
≥ α.

Moreover, for any 0 ≤ j ≤ k we have

P
(
X−j−1 = w−j−1 | X−1

−j = w−1
−j , Z−j−2

−k = w−j−2
−k

)
≥ αβ∗.

Proof. We first observe that

q(w0|w−1
−k) = (1− ε) P

(
X0 = w0

∣∣ Z−1
−k = w−1

−k

)
+ ε P

(
X0 = w̄0

∣∣ Z−1
−k = w−1

−k

)
.



RANDOM PERTURBATIONS OF STOCHASTIC PROCESSES 9

It is therefore enough to prove the second assertion. From conditioning on the value of X−1
−l ,

the independence of the flipping procedure and the inequalities in (3.1) we have

P
(
X0 = w0

∣∣ Z−1
−k = w−1

−k

)
=

lim
l→∞

(1− ε)k
∑

u−1
−l

p
(
w0|w−l−1

−∞ u−1
−l

)
P
(
X−1
−l = u−1

−l

∣∣ X−l−1
−∞ = w−l−1

−∞
)
(ε/(1− ε))

P−1
j=−k uj⊕wj

(1− ε)k
∑

u−1
−l

P
(
X−1
−l = u−1

−l

∣∣ X−l−1
−∞ = w−l−1

−∞
)
(ε/(1− ε))

P−1
j=−k uj⊕wj

and for each l, the expression in the right hand side is lower bounded by α. Then, the same

holds for the limit when l →∞. For the last assertion we first observe that

P
(
X−j−1 = w−j−1 | X−1

−j = w−1
−j , Z−j−2

−k = w−j−2
−k

)
∑

x−j−2
−k

P
(
Z−j−2
−k = w−j−2

−k | X−j−2
−k = x−j−2

−k

)
P
(
X−1
−j−1 = w−1

−j−1, X
−j−2
−k = x−j−2

−k

)
∑

x−j−2
−k

P
(
Z−j−2
−k = w−j−2

−k | X−j−2
−k = x−j−2

−k

)
P
(
X−1
−j = w−1

−j , X
−j−2
−k = x−j−2

−k

) .

Moreover,

P
(
X−1
−j−1 = w−1

−j−1, X
−j−2
−k = x−j−2

−k

)
P
(
X−1
−j = w−1

−j , X
−j−2
−k = x−j−2

−k

)
=

∏j+1
l=1 p(w−l|x−j−2

−k w−l−1
−j−1)

∏k
l=j+2 p(x−l|x−l−1

−k )∏j
l=1 P

(
X−l = w−l|X−l−1

−j = w−l−1
−j , X−j−2

−k = x−j−2
−k

) ∏k
l=j+2 p(x−l|x−l−1

−k )

= p(w−j−1|x−j−2
−k )

j∏
l=1

p(w−l|x−j−2
−k w−l−1

−j−1)

P
(
X−l = w−l|X−l−1

−j = w−l−1
−j , X−j−2

−k = x−j−2
−k

)
and using non-nullness and log-continuity this can be bounded below by

α

j∏
l=1

(1− βj−l) ≥ αβ∗.

This finishes the proof of the Lemma. �

Lemma 6. For any ε ∈ (0, 1), any k > j ≥ 0 and any w0
−k,

P
(
X−j−1 = w̄−j−1

∣∣ X−1
−j = w−1

−j , Z−j−1
−k = w−j−1

−k

)
≤ ε

αβ∗
.
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Proof. We have

P
(
X−j−1 =w̄−j−1 | X−1

−j = w−1
−j , Z−j−1

−k = w−j−1
−k

)
=

P
(
X−j−1 = w̄−j−1, Z−j−1 = w−j−1 | X−1

−j = w−1
−j , Z

−j−2
−k = w−j−2

−k

)
P
(
Z−j−1 = w−j−1 | X−1

−j = w−1
−j , Z

−j−2
−k = w−j−2

−k

)
=

ε P
(
X−j−1 = w̄−j−1 | X−1

−j = w−1
−j , Z

−j−2
−k = w−j−2

−k

)
P
(
Z−j−1 = w−j−1 | X−1

−j = w−1
−j , Z

−j−2
−k = w−j−2

−k

) .

It follows from Lemma 5 that

P
(
Z−j−1 = w−j−1 | X−1

−j = w−1
−j , Z

−j−2
−k = w−j−2

−k

)
= (1− ε) P

(
X−j−1 = w−j−1 | X−1

−j = w−1
−j , Z

−j−2
−k = w−j−2

−k

)
+ ε P

(
X−j−1 = w̄−j−1 | X−1

−j = w−1
−j , Z

−j−2
−k = w−j−2

−k

)
≥ αβ∗.

This concludes the proof of Lemma 6. �

Proof of Theorem 1. We first observe that for any a ∈ A and any w−1
−k ∈ A−1

−k

q(a|w−1
−k) = (1− ε) P

(
X0 = a

∣∣ Z−1
−k = w−1

−k

)
+ ε P

(
X0 = ā

∣∣ Z−1
−k = w−1

−k

)
.

Therefore,

∣∣q(a|w−1
−k)− P

(
X0 = a

∣∣ Z−1
−k = w−1

−k

)∣∣ ≤ ε

and if k = 0 the Theorem is proved. We will now assume k ≥ 1 and we write

P
(
X0 = a

∣∣ Z−1
−k =w−1

−k

)
− P

(
X0 = a

∣∣ X−1
−k = w−1

−k

)
=

k−1∑
j=0

[
P
(
X0 = a

∣∣ X−1
−j = w−1

−j , Z−j−1
−k = w−j−1

−k

)
− P

(
X0 = a

∣∣ X−1
−j−1 = w−1

−j−1, Z−j−2
−k = w−j−2

−k

)]
.
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We will bound each term in the sum separately. We can write

P
(
X0 =a | X−1

−j = w−1
−j , Z−j−1

−k = w−j−1
−k

)
− P

(
X0 = a | X−1

−j−1 = w−1
−j−1, Z−j−2

−k = w−j−2
−k

)
=

∑
b∈{0,1}

[
P
(
X0 = a | X−1

−j = w−1
−j , X−j−1 = b, Z−j−1

−k = w−j−1
−k

)
− P

(
X0 = a | X−1

−j−1 = w−1
−j−1, Z−j−2

−k = w−j−2
−k

)]
× P

(
X−j−1 = b | X−1

−j = w−1
−j , Z−j−1

−k = w−j−1
−k

)
.

The above sum has two terms. For the term with b = w̄−j−1 we can use Lemma 4, Lemma 6

and the inequalities in (3.1) to obtain∣∣P(
X0 =a | X−1

−j = w−1
−j , X−j−1 = w̄−j−1, Z−j−1

−k = w−j−1
−k

)
− P

(
X0 = a

∣∣ X−1
−j−1 = w−1

−j−1, Z−j−2
−k = w−j−2

−k

)∣∣
× P

(
X−j−1 = w̄−j−1

∣∣ X−1
−j = w−1

−j , Z−j−1
−k = w−j−1

−k

)
≤ 2 βj

αβ∗
ε.

For the other term with b = w−j−1 we can write∣∣P(
X0 = a | X−1

−j = w−1
−j , X−j−1 = w−j−1, Z−j−1

−k = w−j−1
−k

)
− P

(
X0 = a

∣∣ X−1
−j−1 = w−1

−j−1, Z−j−2
−k = w−j−2

−k

)∣∣
× P

(
X−j−1 = w−j−1

∣∣ X−1
−j = w−1

−j , Z−j−1
−k = w−j−1

−k

)
≤

∑
c∈{0,1}

∣∣P(
X0 = a

∣∣ X−1
−j = w−1

−j , X−j−1 = w−j−1, Z−j−1
−k = w−j−1

−k

)
− P

(
X0 = a

∣∣ X−1
−j−1 = w−1

−j−1, Z−j−1 = c, Z−j−2
−k = w−j−2

−k

)∣∣
× P

(
Z−j−1 = c

∣∣ X−1
−j−1 = w−1

−j−1, Z−j−2
−k = w−j−2

−k

)
× P

(
X−j−1 = w−j−1

∣∣ X−1
−j = w−1

−j , Z−j−1
−k = w−j−1

−k

)
.

Note that the term with c = w−j−1 vanishes. For c = w̄−j−1 we can use Lemma 4 and the

inequalities in (3.1) to bound above the last sum with∣∣P(
X0 = a

∣∣ X−1
−j = w−1

−j , X−j−1 = w−j−1, Z−j−1
−k = w−j−1

−k

)
− P

(
X0 = a

∣∣ X−1
−j−1 = w−1

−j−1, Z−j−1 = w̄−j−1, Z−j−2
−k = w−j−2

−k

)∣∣
× P

(
Z−j−1 = w̄−j−1

∣∣ X−1
−j−1 = w−1

−j−1, Z−j−2
−k = w−j−2

−k

)
≤ 2 βj ε.
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Putting all the above bounds together we get∣∣P(
Z0 = w0

∣∣ Z−1
−k = w−1

−k

)
− P

(
X0 = w0

∣∣ X−1
−k = w−1

−k

)∣∣ ≤ ε +
2β

αβ∗
ε + 2βε

and the Theorem follows. �

4. Proof of Theorem 2

The proof relies on five lemmas. The first one is Lemma 3.4 from Galves and Leonardi

(2008). For the convenience of the reader we recall this result.

Lemma 7 (Galves, Leonardi). Let (Xt) be a stationary stochastic process satisfying the

non-nullness and the summable continuity rate hypotheses. Then, there exists a summable

sequence (ρl)l∈N, satisfying ∑
l≥1

ρl ≤ 1 +
2β

α

such that for any i ≥ 1, any k > i, any j ≥ 1 and any finite sequence wj
1, the following

inequality holds

sup
xi
1∈Ai

|P(Xk+j−1
k = wj

1 | Xi
1 = xi

1)− p(wj
1)| ≤

j−1∑
l=0

ρk−i+l .

The constants α and β appearing in the statement of the lemma were defined in Section

2. For a probabilistic interpretation of the sequence (ρl)l∈N we refer the reader to Galves and

Leonardi (2008).

The above lemma will be used in the proof of the following result involving the same

quantities α, β and (ρl)l∈N.

Lemma 8. There exists a summable sequence (ρl)l∈N, satisfying∑
l∈N

ρl ≤ 2
(
1 +

β

α

)
,

such that for any i ≥ 1, any k ≥ i, any j ≥ 1 and any finite sequence wj
1, the following

inequality holds

sup
xi
1, θi

1∈Ai
1

|P(Zk+j−1
k = wj

1 | Xi
1 = xi

1, ξi
1 = θi

1)− q(wj
1)| ≤

j−1∑
l=0

ρk−i+l .
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Proof. Observe that for any xi
1, θi

1 ∈ Ai
1, by the independence of the flipping procedure we

have

|P(Zk+j−1
k = wj

1 | Xi
1 = xi

1, ξi
1 = θi

1)− q(wj
1)| =

|
∑

xk+j−1
k ∈Aj

1

P(Xk+j−1
k = xk+j−1

k , Zk+j−1
k = wj

1 | Xi
1 = xi

1, ξ
i
1 = θi

1)− q(wj
1)| =

|
∑

xk+j−1
k ∈Aj

1

P(Zk+j−1
k = wj

1 | Xk+j−1
k = xk+j−1

k )P(Xk+j−1
k = xk+j−1

k | Xi
1 = xi

1)− q(wj
1)|.

The last term can be rewritten as∣∣∣ ∑
xk+j−1

k ∈Aj
1

P(Zk+j−1
k =wj

1 | Xk+j−1
k = xk+j−1

k )

[
P(Xk+j−1

k = xk+j−1
k | Xi

1 = xi
1)− P(Xk+j−1

k = xk+j−1
k )

]∣∣∣ .

Using lemma 7, this last expression is bounded above by

∑
xk+j−1

k ∈Aj
1

P(ξk+j−1
k = wj

1 ⊕ xk+j−1
k )

j−1∑
l=0

ρk−i+l =
j−1∑
l=0

ρk−i+l.

This concludes the proof of Lemma 8. �

The proof of the next lemma uses Proposition 4 from Dedecker and Doukhan (2003). For

the convenience of the reader, we recall this result.

Proposition 9 (Dedecker, Doukhan). Let (Yt)t∈N be a sequence of centered and square in-

tegrable random variables and let Mi denote the σ-algebra generated by Y0, . . . , Yi. Define

Sn = Y1 + . . . + Yn and

bi,n = max
i≤l≤n

‖Yi

l∑
k=i

E(Yk |Mi)‖p/2.

Then, for any p ≥ 2,

‖Sn‖p ≤
(
2p

n∑
i=1

bi,n

)1/2
.

Lemma 10. For any finite sequence w and any t > 0 we have

P( |Nn(w)− (n− `(w) + 1)q(w)| > t ) ≤ e
1
e exp

[ −t2

4e[n− `(w) + 1]`(w)(1 + β
α)

]
.
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Moreover, for any a ∈ A and any n > |A|+1
tq(w) + `(w) we have

P
(
|q̂n(a|w)− q(a|w)| > t

)
≤ 3 e

1
e exp

[
−(n− `(w))

[t− 3
(n−`(w))q(w) ]

2q(w)2

64e`(wa)[1 + β
α ]

]
.

Proof. Observe that for any finite sequence wj
1 ∈ Aj

1

Nn(wj
1) =

n−j∑
t=0

j∏
i=1

[1{Xt+i=wi}1{ξt+i=0} + 1{Xt+i=w̄i}1{ξt+i=1} ].

Define the process {Ut : t ∈ Z} by

Ut =
j∏

i=1

[1{Xt+i=wi}1{ξt+i=0} + 1{Xt+i=w̄i}1{ξt+i=1} ]− q(wj
1)

and denote by Mi the σ-algebra generated by U0, . . . , Ui. Applying Proposition 9 we obtain

for any r ≥ 2

‖Nn(wj
1)− (n− j + 1)q(wj

1)‖r ≤
(

2r

n−j∑
t=0

max
t≤`≤n−j

‖Ut

∑̀
k=t

E(Uk|Mt)‖ r
2

) 1
2

≤
(

2r

n−j∑
t=0

‖Ut‖ r
2

n−j∑
k=t

‖E(Uk|Mt)‖∞
) 1

2
.

Note that ‖Ut‖ r
2
≤ 1 for any r ≥ 2. On the other hand we have

sup
σt
0∈At

0

|E(Uk|U t
0 = σt

0)| = sup
xt+j
1 , θt+j

1 ∈At+j
1

|E(Uk|Xt+j
1 = xt+j

1 , ξt+j
1 = θt+j

1 )|

= sup
xt+j
1 , θt+j

1 ∈At+j
1

|P(Zk+j
k+1 = wj

1|X
t+j
1 = xt+j

1 , ξt+j
1 = θt+j

1 )− q(wj
1)|.

Therefore, using Lemma 8 we obtain the bound

‖Nn(w)− (n− `(w) + 1)q(w)‖r ≤
[
4r`(w)(n− `(w) + 1)(1 +

β

α
)
] 1

2 .

Let B = 4`(w)(n− `(w)+1)(1+ β
α). Then, as in Dedecker and Prieur (2005) we obtain that,

for any t > 0,

P(|Nn(w)− (n− `(w) + 1)q(w)| > t) ≤ min
(
1,

E(|Nn(w)− (n− `(w) + 1)q(w)|r)
tr

)
≤ min

(
1,

[
rB

t2

] r
2 )

.
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The function r → (cr)
r
2 has a minimum at r0 = 1

ec . Then, comparing the value of this

function with 1 and r0 with 2 we can infer that

min
(
1,

[
rB

t2

] r
2 )

≤ exp(− t2

eB
+ e−1).

We conclude that

P(|Nn(w)− (n− `(w) + 1)q(w)| > t) ≤ e
1
e exp

[ −t2

4e[n− `(w) + 1]`(w)(1 + β
α)

]
.

To prove the second assertion observe that∣∣∣ q(a|w)− (n− `(w))q(wa) + 1
(n− `(w))q(w) + |A|

∣∣∣ ≤ |A|+ 1
(n− `(w))q(w)

.

Then, for all n ≥ (|A|+ 1)/tq(w) + `(w) we have that

P
( ∣∣q̂n(a|w)− q(a|w)

∣∣ > t
)

≤ P
( ∣∣∣ Nn(wa) + 1

Nn(w·) + |A|
− (n− `(w))q(wa) + 1

(n− `(w))q(w) + |A|

∣∣∣ > t− |A|+ 1
(n− `(w))q(w)

)

Denote by t′ = t− (|A|+ 1)/(n− `(w))q(w). Then

P
( ∣∣∣ Nn(wa) + 1

Nn(w·) + |A|
− (n− `(w))q(wa) + 1

(n− `(w))q(w) + |A|

∣∣∣ > t′
)

≤ P
(∣∣Nn(wa)− (n− `(w))q(wa)

∣∣ >
t′

2
[(n− `(w))q(w) + |A|]

)
+

∑
b∈A

P
(∣∣Nn(wb)− (n− `(w))q(wb)

∣∣ >
t′

2|A|
[(n− `(w))q(w) + |A|]

)
.

Now, we can apply the bound in the first assertion of the Lemma to bound above the last

sum by

3 e
1
e exp

[
−(n− `(w))

[t− 3
(n−`(w))q(w) ]

2q(w)2

64e`(wa)[1 + β
α ]

]
.

This concludes the proof of Lemma 10. �

Lemma 11. For any δ > 2(1 + 4β
min(αβ∗,1))ε, any w ∈ T , uw ∈ T̂ δ,d

n and

n >
6

(δ − 2[1 + 4β
min(αβ∗,1) ]ε)α

d
+ d
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we have that

P(∆n(uw) > δ) ≤ 12 e
1
e exp

[
−(n− d)

[ δ
2 − [1 + 4β

min(αβ∗,1) ]ε−
3

(n−d)αd ]2α2d

64e(1 + β
α)(d + 1)

]
.

Proof. Recall that

∆n(uw) = max
a∈A

|q̂n(a|uw)− q̂n(a|suf(uw))|.

Note that the fact w ∈ T implies that for any finite sequence u and any symbol a ∈ A we

have p(a|uw) = p(a|suf(uw)). Hence,

|q̂n(a|uw)− q̂n(a|suf(uw))| ≤ |q̂n(a|uw)− q(a|uw)| + |q(a|uw)− p(a|uw)|

+ |q(a|suf(uw))− p(a|suf(uw))|

+ |q̂n(a|suf(uw))− q(a|suf(uw))|.

Then, using Theorem 1 we have that

P(∆n(uw) > δ) ≤
∑
a∈A

[
P
(
|q̂n(a|uw)− q(a|uw)| > δ

2
− ε [1 +

4β

min(αβ∗, 1)
]
)

+ P
(
|q̂n(a|suf(uw))− q(a|suf(uw))| > δ

2
− ε [1 +

4β

min(αβ∗, 1)
]
)]

.

Now, for

n >
6

(δ − 2[1 + 4β
min(αβ∗,1) ]ε)α

d
+ d

we can bound above the right hand side of the expression above using Lemma 10 by

12 e
1
e exp

[
−(n− d)

[ δ
2 − [1 + 4β

min(αβ∗,1) ]ε−
3

(n−d)αd ]2α2d

64e(1 + β
α)(d + 1)

]
.

�

Lemma 12. There exists d such that for any δ < Dd − 2(1 + 4β
min(αβ∗,1))ε, any w ∈ T̂ δ,d

n ,

`(w) < K, w /∈ T , and any

n >
6

[Dd − δ − 2(1 + 4β
min(αβ∗,1))ε]α

d
+ d

we have

P(
⋂

uw∈T |d

{∆n(uw) ≤ δ}) ≤ 6 e
1
e exp

[
−(n− d)

[Dd−δ
2 − (1 + 4β

min(αβ∗,1))ε−
3

(n−d)αd ]2α2d

64e(1 + β
α)(d + 1)

]
.
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Proof. Let

d = max
u/∈T, `(u)<K

min {k : there exists w ∈ Ck with w � u}.

Then there exists ūw ∈ T |d such that p(a|ūw) 6= p(a|suf(ūw)) for some a ∈ A. We have

P(
⋂

uw∈T |d

{∆n(uw) ≤ δ}) ≤ P(∆n(ūw) ≤ δ).

Observe that for any a ∈ A,

|q̂n(a|suf(ūw))− q̂n(a|ūw)| ≥ |p(a|suf(ūw))− p(a|ūw)| − |q̂n(a|suf(ūw))− q(a|suf(ūw))|−

|q̂n(a|ūw)− q(a|ūw)| − |q(a|suf(ūw))− p(a|suf(ūw))|−

|q(a|ūw)− p(a|ūw)|.

Hence, we have that for any a ∈ A

∆n(ūw) ≥ Dd− 2ε[1 +
4β

min(αβ∗, 1)
]− |q̂n(a|suf(ūw))− q(a|suf(ūw))| − |q̂n(a|ūw)− q(a|ūw)|.

Therefore,

P(∆n(ūw) ≤ δ) ≤ P
( ⋂

a∈A

{ |q̂n(a|suf(ūw))− q(a|suf(ūw))| ≥
Dd − 2ε[1 + 4β

min(αβ∗,1) ]− δ

2
}

)
+ P

( ⋂
a∈A

{ |q̂n(a|ūw)− q(a|ūw)| ≥
Dd − 2ε[1 + 4β

min(αβ∗,1) ]− δ

2
}

)
.

As δ < Dd − 2ε[1 + 4β
min(αβ∗,1) ] and

n >
6

[Dd − δ − 2(1 + 4β
min(αβ∗,1))ε]α

d
+ d

we can use Lemma 10 to bound above the right hand side of the last probability by

6 e
1
e exp

[
−(n− d)

[Dd−δ
2 − (1 + 4β

min(αβ∗,1))ε−
3

(n−d)αd ]2α2d

64e(1 + β
α)(d + 1)

]
.

This concludes the proof of Lemma 12 �

Now we proceed with the proof of our main result.

Proof of Theorem 2. Define

OK,d
n,δ =

⋃
w∈T

`(w)<K

⋃
uw∈T̂ δ,d

n

{∆n(uw) > δ},
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and

UK,d
n,δ =

⋃
w∈T̂ δ,d

n

`(w)<K

⋂
uw∈T |d

{∆n(uw) ≤ δ}.

Then, if d < n we have

{T̂ δ,d
n |K 6= T |K} ⊆ OK,d

n,δ ∪ UK,d
n,δ .

Therefore,

P(T̂ δ,d
n |K 6= T |K) ≤

∑
w∈T

`(w)<K

∑
uw∈T̂ δ,d

n

P(∆n(uw) > δ) +
∑

w∈T̂ δ,d
n

`(w)<K

P(
⋂

uw∈T |d

∆n(uw) ≤ δ).

Applying Lemma 11 and Lemma 12 we obtain, for

n >
6

[min(δ,Dd − δ)− 2(1 + 4β
min(αβ∗,1))ε]α

d
+ d,

the inequality

P(T̂ δ,d
n |K 6=T |K) ≤ c1 exp[−c2(n− d)],

where c1 = 12 e
1
e 2d and c2 =

[min(δ,Dd−δ)−2(1+ 4β
min(αβ∗,1)

)ε− 6

(n−d)αd ]2α2d

256e(1+ β
α

)(d+1)
. We conclude the proof

of Theorem 2. �

Proof of Corollary 3. It follows from Theorem 2, using the first Borel-Cantelli Lemma and

the fact that the bounds for the error in the estimation of the truncated context tree are

summable in n for appropriate choices of d and δ. �
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Bühlmann, P. and Wyner, A. J. (1999). Variable length Markov chains, Ann. Statist. 27: 480–

513.

Csiszár, I. and Talata, Z. (2006). Context tree estimation for not necessarily finite memory

processes, via BIC and MDL, IEEE Trans. Inform. Theory 52(3): 1007–1016.

Dedecker, J. and Doukhan, P. (2003). A new covariance inequality and applications, Stochas-

tic Process. Appl. 106(1): 63–80.

Dedecker, J. and Prieur, C. (2005). New dependence coefficients. examples and applications

to statistics, Probab. Theory Relatated Fields 132: 203–236.

Duarte, D., Galves, A. and Garcia, N. (2006). Markov approximation and consistent estima-

tion of unbounded probabilistic suffix trees, Bull. Braz. Math. Soc. 37(4): 581–592.

Fernández, R., Ferrari, P. and Galves, A. (2001). Coupling, renewal and perfect simulation of

chains of infinite order. Notes for a minicourse at the Vth Brazilian School of Probability.

URL: http://www.ime.unicamp.br/∼ebp5/

Ferrari, F. and Wyner, A. (2003). Estimation of general stationary processes by variable

length Markov chains, Scand. J. Statist. 30(3): 459–480.

Galves, A. and Leonardi, F. (2008). Exponential inequalities for empirical unbounded context

trees, Vol. 60 of Progress in Probability, Birkhauser, pp. 257–270.
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Instituto de Matemática e Estat́ıstica, Universidade de São Paulo, BP 66281, 05315-970 São

Paulo, Brasil

E-mail address: galves@ime.usp.br
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