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Abstract. A seminal paper by Rissanen, published in 1983, introduced
the class of Variable Length Markov Chains and the algorithm Context
which estimates the probabilistic tree generating the chain. Even if the
subject was recently considered in several papers, the central question
of the rate of convergence of the algorithm remained open. This is
the question we address here. We provide an exponential upper bound
for the probability of incorrect estimation of the probabilistic tree, as a
function of the size of the sample. As a consequence we prove the almost
sure consistency of the algorithm Context. We also derive exponential
upper bounds for type I errors and for the probability of underestimation
of the context tree. The constants appearing in the bounds are all
explicit and obtained in a constructive way.

1. Introduction

Variable Length Markov Chains were first introduced in the information
theory literature by Rissanen (1983) under the name of finite memory source
or probabilistic tree. More recently this class of models became quite popular
in the statistics literature under the name of Variable Length Markov Chains
(VLMC) (Bühlman and Wyner 1999 ).

VLMC is a flexible class of Markov chains in which the part of the past
which is relevant to predict the next symbol has a variable length depending
on the observed past values. These relevant parts of the past are called
contexts. The set of contexts define a partition of the past and can be
represented by a tree.

The notion of context makes VLMC models parsimonious, with less pa-
rameters to estimate than the traditional approach to Markov chains in
which the number of parameters grows exponentially with the length of the
fixed past. Rissanen (1983) introduced VLMC models as an universal tool
to perform data compression . Recently, it has been used as a flexible class
of processes to model scientific data, for instance in genomics to classify
proteins (Bejerano and Yona 2001 and Leonardi and Galves 2005).

Rissanen (1983) not only introduced the notion of VLMC, but he also
introduced the algorithm Context to estimate the tree of contexts of the
VLMC as well as the family of probability transitions generating the VLMC.

This work has been partially supported by the program ACI-NIM DynamicAl and by
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ior, critical phenomena and rhythmic pattern identification in natural languages (grant
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The way the algorithm Context works can be summarized as follows.
Given a sample produced by a VLMC, we start with a maximal tree of
candidate contexts for the sample. The branches of this first tree are then
pruned until we obtain a minimal tree of contexts well adapted to the sample.
Given a candidate tree of contexts we associate to each context a probability
transition which is estimated as the proportion of time in the sample the
context is followed by this symbol. Several variants of the algorithm Context
have been presented in the literature. In all the variants the decision to prune
a branch is taken by considering a gain function. A branch is pruned if the
gain function assumes a value smaller than a given threshold. The estimated
context tree is the smallest tree satisfying this condition. The estimated
family of probability transitions is the one associated to the minimal tree of
contexts.

Several recent papers addressed the question of the estimation of the
tree of contexts of the VLMC as well as its associated set of probability
transitions, either using variants of the algorithm Context (cf. Rissanen
1983 and Bühlmann and Wyner 1999 for the bounded case, and Ferrari
and Wyner 2003 for infinite trees), the BIC (Csiszar and Talata 2005), or
other algorithms ( cf. Willems, Y. M. Shtarkov, and T. J Tjalkens 1995 and
Tjalkens and Willems 2000). However the central question of the rate of
convergence of the estimation algorithm remained open. This is the question
we address here.

The central result of this paper is an exponential upper bound for the
probability of error estimation of the finite probabilistic tree defining a Vari-
able Length Markov Chain. As a consequence we prove the almost sure con-
sistency of the algorithm Context. We also derive exponential upper bounds
for type I errors and for the probability of underestimation of the context
tree.

Our proofs are inspired by recent exponential upper bounds obtained
by Dedecker and Doukhan 2003, Dedecker and Prieur 2005 and Maume-
Deschamps 2006. In the first paper, an upper bound for the Lp norm of
sums of weakly dependant variables is obtained. This upper bound is used
in the second paper to obtain an exponential inequality for sums of weakly
dependent random variables. Finally, this exponential inequality leads to an
estimation of conditional probabilities in the third paper. The present paper
takes advantage of the VLMC structure to obtain a more specific version of
this last estimation. This makes possible to control the probability of error
of the version of the algorithm Context we consider here. Our proofs are
constructive and the constants appearing in the bounds are all explicit and
computable.

This paper is organized as follows. In section 2, we state the definitions
and our results. Section 3 is devoted to the proof of an exponential bound for
conditional probabilities. In section 4, we apply this exponential bound to
estimate the rate of convergence of the algorithm Context and the corollaries.

2. Definitions and results

Let (Xn)n∈Z be a stationary process taking values on a finite alphabet
A. Given two time indices m < n we shall use the short hand notation xn

m
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to denote the string (xm, . . . , xn). The process is called a Variable Length
Markov Chain (VLMC) if for any past x−1

−∞ there exists an index k = k(x−1
−∞)

such that for any a ∈ A we have

(2.1) P(X0 = a | X−1
−∞ = x−1

−∞) = P(X0 = a | X−1
−k = x−1

−k) .

Following Rissanen , we call any suffix string x−1
−k satisfying (2.1) a context.

We will use the shorthand notation

p(a | x−1
−k) = P(X0 = a | X−1

−k = x−1
−k) and

p(x−1
−k) = P( X−1

−k = x−1
−k) .

Let us call τ the set of all contexts associated to the VLMC (Xn)n∈Z. We
will assume that τ is minimal. This means that for each context x−1

−k ∈ τ ,
there is no 1 ≤ j < k such that

p(a | x−1
−j ) = p(a | x−1

−k) ,

for any a ∈ A. This minimality condition is equivalent to the suffix property
which means that no context is a suffix of any other context. The suffix
property implies that τ can be represented as a tree in which contexts are
identified by the leaves of the tree. The tree of contexts τ defines a partition
of the pasts accepted by the process (Xn)n∈Z.

The tree of contexts τ together with a family p of conditional probabilities
on A, indexed by the leaves of τ , will be called a probabilistic tree.

In what follows we shall always assume that the tree τ is finite. This
means that for any past x−1

−∞ the index k = k(x−1
−∞) appearing in (2.1) is

bounded.

From now on the length of a finite string w will be denoted |w|. Given two
finite strings w and v, we will denote by vw the string with length |w|+ |v|
obtained by concatenating the two strings We will also denote by h(τ) the
height of the tree τ , i.e.

h(τ) = max{|w|;w ∈ τ} .

Given a finite sample (X1, . . . , Xn) and a finite string w, with |w| ≤ n,
we define the counting random variables Nn(w) as the number of times w
appears in the sample

Nn(w) =
m=n−|w|+1∑

m=1

1{Xm+|w|−1
m = w}.

For any element a ∈ A , the empirical probability transition p̂n(a|w) is
defined by

(2.2) p̂n(a|w) =
Nn(wa) + 1
Nn(w) + |A|

.

This definition of p̂n(a|w) is convenient because it is asymptotically equiva-
lent to Nn(wa)

Nn(w) and it avoids an extra definition in the case Nn(w) = 0. To
estimate the probabilistic tree producing a sample X1, . . . , Xn we define the
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gain function ∆ as follows. For any pair of finite strings u and w, define the
random function

∆n(u, w) = max
a∈A

|p̂n(a|w)− p̂n(a|uw)|.

For any ` ≥ 1 and any δ > 0, we define τ̂n(`, δ) as the set of all finite
strings w = a−1

−k, 1 ≤ k ≤ ` such that :

∆n(a−k, a
−1
−k+1) > δ.

The set of strings selected this way has obviously the suffix property and
therefore can be represented as the set of leaves of a rooted and labeled finite
tree.

We associate to each w ∈ τ̂n(`, δ a probability p̂n(|̇w) on A using definition
(2.2).

If there is no danger of confusion we will omit to mention ` and δ in
the notation τ̂n(`, δ). This construction of the empirical probabilistic tree
(τ̂n, p̂n) is a variant of Rissanen’s algorithm Context.

Let us introduce some quantities associated to the family of probability
transitions p which will be useful in what follows. First of all, we extend
the conditional probabilities p to suffixes of the contexts in a natural way.
Namely, if w = (w−1, . . . , w−k) ∈ τ , for all i = 1, . . . , k − 1, let

p(a|w−1
−i ) = P(X0 = a|X−1

−i = w−1
−i ) ,

where the probabilities appearing in the formula are those of the stationary
VLMC corresponding to (τ , p). Let us introduce some extra notation

D(τ) = min
w∈τ

min
i=1,..., |w|−1

max
a∈A

|p(a|w)− p(a|w−1
−i )|,

ρ = min
a∈A
w∈τ

p(a|w),

pmin = min
w∈τ

p(w),

(2.3)


θ = min

(u,v)∈τ

[∑
a∈A

min(p(a|u), p(a|v))

]

γ =
(
1− θh(τ)

) 1
h(τ)

β = (1− γ)

The quantity θ is called the Dobrushin’s coefficient of (Xn)n∈Z. Observe
that τ finite implies that pmin > 0.

We will assume the following assumption.
Positivity Assumption ρ > 0 .

This implies that the process is aperiodic and irreducible and that 0 < θ.
Obviously θ is always bounded above by 1. Moreover it only takes the value
1 in the trivial case in which the process is a sequence of independent random
variables which will not be considered here. Our main result is the following
theorem.
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Theorem 2.1. For all ` ≥ h(τ), there exists n̄(`), such that for all n ≥ n̄
the following inequality holds

P (τ̂n(`) = τ) ≥

1− 4e
1
e

(
|A|` exp

[
−n

βp2
minρ

`−h(τ)

4e

(
δ

2
− |A|+ 1

npmin

)2
]

+

|A|h(τ) exp

[
−n

βp2
min

4e

(
D(τ)− δ

2
− |A|+ 1

npmin
ρ`−h(τ)

)2
])

.

A first consequence of the theorem is the following almost sure consistency
result for the empirical probability trees.

Corollary 2.2. Let us assume that the sample (X1, . . . , Xn) has been pro-
duced by a VLMC whose probabilistic tree is (τ, pτ ). Let κ = (κn)n≥1 be any
sequence such that ∑

n≥1

exp[−κ2
nn

βp2
min

4e
] < ∞.

Then for almost all infinite samples X1, X2, . . . there exists n̄ = n̄(X1, X2, . . .),
such that for all n ≥ n̄ we have

• τ̂n = τ and
• supw∈τ maxa∈A |p̂n(a|w)− p(a|w)| < κn .

Where (τ̂n, p̂n) is the probabilistic tree constructed with ` = h(τ).
This shows that our variant of the context algorithm is consistent almost
surely.
A convenient choice for κn could be 1

nα , 0 < α < 1
2 .

Another application of the theorem are the following exponential upper
bounds for type I errors and for the probability of underestimation of the
context tree.

In the first case, we want to test the null assumption that the sample
was generated by a VLMC corresponding to the probabilistic tree (τ, p).
To esimate the probability of type I error, we take the control parameter
` = h(τ). The result is the following

Corollary 2.3. Let us assume that the sample (X1, . . . , Xn, . . .) has been
produced by a VLMC whose probabilistic tree is (τ, pτ ). Then the following
inequality holds

P
(
{τ̂n 6= τ } ∪ {τ̂n = τ , sup

w∈τ
max
a∈A

|p̂n(a|w)− pτ (a|w)| > t}
)
≤

e
1
e

(
8|A|h(τ) exp[−nk1] + 2|A| exp

[
−
(

t− |A|+ 1
npmin

)2

nk2

])
.

where

k1 =
βp2

min

8e
max

(
[δ/2− |A|/(npmin)]2ρh(τ)−1,

(
D(τ)− δ

2
− |A|+ 1

npmin

)2
)

and

k2 =
βp2

min

8e
.
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Corollary 2.3 provides an exponential upper bound for the error of type
I, i.e. the probability of erroneously rejecting the null hypothesis that the
sample was generated by the probabilistic tree (τ, p).
When testing in the class of probabilistic trees, the most serious mistake
consists in erroneously accepting that the contexts are smaller than they
really are. The following lemma provides an exponential upper bound for
this type of error that we call underestimate error.
Given two trees of context τ and τ ′, we shall write τ ≤ τ ′ if all w ∈ τ is a
suffix of some w′ = uw ∈ τ ′. This defines an order on trees, which is not
complete. Obviously, if τ < τ ′, there is at least one w ∈ τ which is a strict
suffix w′ = uw ∈ τ ′, |u| ≥ 1.
For 0 < θ0 < 1, 0 < β0 < 1, 0 < p0 < 1 and ` ∈ N define

T (D0, β0, p0, `) = {(τ , p), / h(τ) ≤ `, D(τ) ≥ D0, β(τ) ≥ β0, pmin(τ) ≥ p`
0}.

Corollary 2.4. Let us suppose that the sample X1, . . . , Xn has been gen-
erated by a probabilistic tree belonging to the class T (D0, β0, p0, `). The
following holds

sup
(τ,p)∈T (D0,β0,p0,`)

P(τ̂n < τ) ≤ 4e
1
e |A|` exp

[
−β0p

2`
0 n

8e

(
D0 − δ

2
− |A|+ 1

np`
0

)2
]

.

The main ingredient of the proof are the following exponential inequali-
ties.

Theorem 2.5. For any finite sequence aj
0 and any t > 0 the following

inequality holds

P(|Nn(aj
0)− np(aj

0)| > t) ≤ e
1
e exp

[
−β

t2pmin

2enp(aj
0)

]
.

Moreover, for any n > (|A|+ 1)/tp(aj
0) we have

(2.4)

P
(
|p̂n(aj |aj−1

0 )− p(aj |aj−1
0 )| > t

)
≤ 2·e

1
e exp

−
(

t− |A|+1

np(aj−1
0

)2

npminp(aj−1
0 )β

8e

 .

3. Proof of Theorem 2.5

The proof of Theorem 2.5 follows the strategy developed in Maume-
Deschamps (2006) together with the following classical mixing property of
Markov chains.

Lemma 3.1. Let (Xi)i∈Z be a VLMC satisfying the Positivity Assumption
ρ > 0. Let τ be the related tree whose height equals h < ∞. For any n ≥ 0,
for any m ≥ 0, any word u−1

−k in τ and any bm
0 finite sequence, the following

inequality holds

(3.1) |P(Xn+m
n = bm

0 |X−1
−k = u−1

−k)− p(bm
0 )| ≤ p(bm

0 )
pmin

γn,

Recall that γ and pmin have been defined by (2.3).
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Proof. We will use the method of maximal coupling as presented in Ferrari
and Galves (2000). The VLMC process (Xi)i∈Z being a Markov chain of
order h, we consider the Markov process of order 1 taking values in Ah :
(Yn)n∈Z, Yn = (Xnh, . . . , X(n+1)h−1). For any n ∈ Z, (a2h−1

h ) ∈ Ah, (bh−1
0 ) ∈

Ah,

P(Y1 = a2h−1
h |Y0 = bh−1

0 )

=
h−1∏
j=0

P(Xj = aj |X2h−1
j+1 = a2h−1

j+1 ).

If we denote θh the Dobrushin’s coefficient of (Yn)n∈Z, a simple computation
gives θh ≥ θh.
The irreducibility of (Xn)n∈Z induces irreducibility of (Yn)n∈Z. The condi-
tion ρ > 0 implies that (Xn)n∈Z is aperiodic of degree 1 and (Yn)n∈Z is also
aperiodic of degree 1. It remains to apply theorem 3.2.3 in Ferrari and Galves
2000 for the process (Yn)n∈Z. We obtain : ∀(u(n+1)h−1

nh ) ∈ Ah, ∀(vh−1
0 ) ∈

Ah, ∀n ≥ 0,

(3.2) |P(Yn = u
(n+1)h−1
nh |Y0 = vh−1

0 )− µ(u(n+1)h−1
nh )| ≤ (1− θh)n

where µ is the invariant probability measure of (Yn)n∈Z on Ah. Of course, µ
coincides with the probability that we have denoted p. We can reformulate
(3.2) in the following way : ∀(u(n+1)h−1

nh ) ∈ Ah, ∀(vh−1
0 ) ∈ τ , ∀n ≥ 0,

(3.3) |P(X(n+1)h−1
nh = u

(n+1)h−1
nh |Xh−1

0 = vh−1
0 )− p(u(n+1)h−1

nh )| ≤ (1− θh)n

We are now able to prove the announced mixing property. Take ah−1
0 ∈ Ah

and any finite sequence bm
0 and any n ≥ 0, denote n0 = [nk ]. Using the fact

that (Xn)n∈Z is a Markov chain of order h :

P(X−1
−h = a−1

−h ∩Xn+m
n = bm

0 )

= P(X−1
−h = a−1

−h)
∑

z−1
−h∈Ah

P(Xn+m
n = bm

0 |Yn0 = z−1
−h) · P(Yn0 = z−1

−h|Y0 = a−1
−h)

= P(Y0 = a−1
−h)

P(Xn+m
n = bm

0 ) +
∑

z−1
−h∈Ah

P(Xn+m
n = bm

0 |Yn0 = z−1
−h)·

[
P(Yn0 = z−1

−h|Y0 = a−1
−h)− p(z−1

−h)
] )

Using (3.2), we get :

|P(Y0 = a−1
−h ∩Xn+m

n = bm
0 )− P(Y0 = a−1

−h)P(Xn+m
n = bm

0 )|

≤
P(Y0 = a−1

−h)
pmin

· P(Xn+m
n = bm

0 )(1− θh)[
n
h

].(3.4)

Then, (3.1) follows from (3.4) by dividing by P(Y0 = a0
−h) and observing that

the conditional probabilities of the VLMC (Xn)n∈Z by the event {Y0 = a0
−h}

are the same as those conditioned by the event {X−1
−k = a−1

−k} with a−1
−k ∈ τ

(see formulae (2.1)). �
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Corollary 3.2. Let (Xi)i∈Z be a VLMC satisfying the Positivity Assumption
ρ > 0. Let τ be the related tree whose height equals h < ∞. For any n ≥ 0,
for any m ≥ 0, any finite words u−1

−j , bm
0 , inequality (3.1) holds.

Proof. We only have to prove (3.1) for a word u−1
−k which is a strict suffix of

a branch of τ . We denote by τu−1
−j

the set of branches of τ admitting u−1
−k as

a strict suffix. These are words w such that : wu−1
−k ∈ τ . Then :

P(Xn+m
n = bm

0 ∩X−1
−j = u−1

−j )− P(Xn+m
n = bm

0 )P(X−1
−j = u−1

−j )|

= |
∑

w∈τ
u−1
−j

P(Xn+m
n = bm

0 ∩X
−j−|w|
−j−1 = w ∩X−1

−j = u−1
−j )

−P(Xn+m
n = bm

0 )P(X−j−|w|
−j−1 = w ∩X−1

−j = u−1
−j )|

≤ 1
pmin

|
∑

w∈τ
u−1
−j

P(Xn+m
n = bm

0 ) · P(X−j−1
−j−|w| = w ∩X−1

−j = u−1
−j )(1− θh)[

n
h

]|

=
1

pmin
(1− θh)[

n
h

]P(Xn+m
n = bm

0 ) · P(X−1
−j = u−1

−j ).

We conclude the proof by dividing by P(X−1
−j = u−1

−j ). �

Proof of Theorem 2.5. It is similar to Corollary 1.3 and Theorem 1.5 in
Maume-Deschamps (2005). It is based on an inequality by Dedecker-Doukhan
(2003), Proposition 4).

In our setting, let aj
0 = w ·u with w ∈ τ and u a finite sequence. Let Yi =

1{Xi+j−1
i =aj

0}
− p(aj

0) and Mi be the σ-algebra generated by X0, . . . , Xi−1.
From the definition of the counting function Nn, following Dedecker-Doukhan
(2003), Proposition 4), we have for any q ≥ 2,

‖Nn(aj
0)− np(aj

0)‖q

≤

(
2q

n−j−1∑
i=1

max
i≤`≤n

‖Yi

∑̀
k=i

E(Yk|Mi)‖ q
2

) 1
2

≤

(
2q

n−j−1∑
i=1

max
i≤`≤n

‖Yi‖ q
2

n−j−1∑
k=i

‖E(Yk|Mi)‖∞

) 1
2

≤

(
2q

n−j−1∑
i=1

n−j−1∑
k=i

sup
xi−1
0 ∈Ai

|P(Xk+j
k = aj

0|X
i
0 = xi

0)− p(aj
0)|

) 1
2

≤

(
n

2qp(aj
0)

pminβ

) 1
2

.

The last inequality follows from (3.4), where the parameterβ was defined in
(2.3).
Then, we follow Dedecker-Prieur (2005) and we get that for all t > 0,

(3.5) P(|Nn(aj
0)− np(aj

0)| > t) ≤ e
1
e exp

(
−t2βpmin

2enp(aj
0)

)
.
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A similar estimation may be found in I. Csiszár (2002), but our parameters
and our proof are different.
Inequality (2.4) follows from (3.5) with an improvement of the proof of
Theorem 1.5 in Maume-Deschamps (2006). Let us sketch it.
First of all, remark that

Nn(aj
0) + 1

Nn(aj−1
0 ) + |A|

≤ 1

Now,

P

(
|p̂n(aj |aj−1

0 )− np(aj
0) + 1

np(aj−1
0 ) + |A|

| > t

)

≤ P
(
|Nn(aj

0)− np(aj
0)| >

t

2
(np(aj−1

0 ) + |A|)
)

+P
(
|Nn(aj−1

0 )− np(aj−1
0 )| > t

2
(np(aj−1

0 ) + |A|)
)

≤ 2e
1
e exp

[
− βpmin

8enp(aj−1
0 )

t2(np(aj−1
0 ) + |A|)2

]
using (3.5). To conclude the proof, it is enough to observe that∣∣∣∣∣p(aj |aj−1

0 )− np(aj
0) + 1

np(aj−1
0 ) + |A|

∣∣∣∣∣ ≤ p(aj−1
0 )(|A|+ 1)

p(aj−1
0 )(np(aj−1

0 ) + |A|)

≤ |A|+ 1
n

p(aj−1
0 .

We get (2.4). �

4. Proof of the main theorem

Proof of the main theorem. First of all we need to bound above the proba-
bility of selecting a context which is too long. Given two strings u and w
define On(u, w) as the event in which ∆n(u, w) > δ. The event in which
the algorithm selects a context longer than the real one is

On =
⋃
w∈τ

uw∈τ̂n

On(u, w).

We also need to estimate the probability of selecting a context shorter
than the real one. This event is represented by

Un(u, w) = {∆n(u, w) ≤ δ} , Un =
⋃

uw∈τ
w∈τ̂n

Un(u, w).

If n > ` then
{τ̂n 6= τ} = On ∪ Un.

The proof of the theorem follows from a succession of lemmas.

Lemma 4.1. For any w ∈ τ , uw ∈ τ̂n and ` ≥ h(τ) and for any

n ≥ 2|A|
δpminρ`−h(τ)

,
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we have

P(On(u, w)) ≤ 4e
1
e |A| exp

[
−βnp2

minρ
`−1

8e

(
δ

2
− |A|

npmin

)2
]

.

Proof. Recall that

∆n(u, w) = max
a∈A

|p̂n(a|w)− p̂n(a|uw)|.

Remark that w ∈ τ then for all finite sequence u and a ∈ A we have
p(a|w) = p(a|uw). Therefore,

P(∆n(u, w) > δ) ≤
∑
a∈A

P
(
|p̂n(a|w)− p(a|w)| > δ

2

)
+P
(
|p̂n(a|uw)− p(a|uw)| > δ

2

)
.

Using Theorem 2.5 we bound above the right hand side of this inequality by

4e
1
e |A| exp

[
−βnp(uw)pmin

8e

(
δ

2
− |A|

npmin
ρ`−h(τ)

)2
]

.

Recall that, by definition, a complete branch of τ̂n has its length bounded
above by `. Thus p(uw) ≥ pminρ

`−h(τ). This concludes the proof. �

Lemma 4.2. For any uw ∈ τ , for any

n ≥ 2|A|
pmin(D(τ)− δ)

,

and w ∈ τ̂n we have

P(Un(u, w)) ≤ 4e
1
e exp

[
−βnp2

min

8e

[
D(τ)− δ

2
− |A|

npmin

]2
]

.

Proof. We start by observing that for any a ∈ A,

|p̂n(a|w)− p̂n(a|uw)| ≥ |p(a|w)− p(a|uw)| − |p̂n(a|w)− p(a|w)|+
|p̂n(a|uw)− p(a|uw)|]

I follows that for any a ∈ A we have

∆n(u, w) ≥ D(τ)− |p̂n(a|w)− p(a|w)| − |p̂n(a|uw)− p(a|uw)|.
Therefore,

P(∆n(u, w) ≤ δ) ≤ P(∀a ∈ A, |p̂n(a|w)− p(a|w)| ≥ D(τ)− δ

2
)

+P(∀a ∈ A, |p̂n(a|uw)− p(a|uw)| ≥ D(τ)− δ

2
).

Observing that p(uw) ≥ pmin, the result now follows from Theorem 2.5. �

We can now conclude the proof of the main theorem. We have

P(τ̂n 6= τ) = P(On) + P(Un).

It follows from the definition that

P(On) ≤
∑
w∈τ

uw∈τ̂n

P(On(u, w)).
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Using Lemma 4.1 we obtain the inequality

P(On) ≤ 4e
1
e |A|` exp

[
−βnp2

minρ
`−h(τ)

8e

(
δ

2
− |A|

npminρ`−h(τ)

)2
]

.

Using Lemma 4.2 we obtain the bounds

(4.1) P(Un) ≤ 4e
1
e |A|h(τ) exp

[
−βnp2

min

8e

[
D(τ)− δ

2
− |A|

npmin

]2
]

,

To conclude the proof, it suffices to sum these two terms. �

Proof of Corollary 2.2. Using Theorem 2.5, we have that

P(sup
w∈τ

max
a∈A

|p̂n(a|w)− p(a|w)| > κn)

≤ 2e
1
e |A| exp

[
−
(

κn −
|A|

npmin

)2

n
βp2

min

8e

]
.

Now, we use Theorem 2.1 with ` = h(τ) and δ = (1 − ε)D(τ). The Borel-
Cantelli lemma implies the following almost sure result

P
(

τ̂n = τ , sup
w∈τ

max
a∈A

|p̂n(a|w)− p(a|w)| < κn, ∀n ≥ ñ

)
≥ 1− Ce−Lñ + Ke

1
e |A|

∑
n≥ñ

exp[−κ2
nn

βp2
min

8e
].

where K and C are suitable positive constants. �

Proof of Corollary 2.3. We take ` = h(τ) and apply Theorem 2.1 together
with equation (2.4). �

Proof of Corollary 2.4. This is an immediate application of equation (4.1).
�

As a final remark, we observe Theorem 2.1 could be extended by taking `
increasing with n in a suitable way. A example of this appears in Corollary
2.4 where we could take ` = O(lnn). In the same way, δ may be decreasing
with n in a suitable way. This appears in Corollary 2.3 where we could take
δ = O(n−α) with 0 < α < 1/2.
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